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Abstract

In this paper fuzzy models are used as an alternative to describe groundwater flow in the unsaturated zone. The core of these models
consists of a fuzzy rule-based model of the Takagi–Sugeno type. Various fuzzy clustering algorithms are compared in the data-driven
identification of these Takagi–Sugeno models. The performance of the resulting fuzzy models is evaluated on the training surface on
which they were identified, and on time series measurements of water content values obtained through an experiment carried out by
the non-vegetated terrain (NVT) workgroup of the European Microwave Signature Laboratory (EMSL) (see [Mancini M, Hoeben R,
Troch PA. Multifrequency radar observations of bare surface soil moisture content: a laboratory experiment. Water Resour Res
1999;35(6):1827–38] and [Hoeben R, Troch PA. Assimilation of active microwave observation data for soil moisture profile estimation.
Water Resour Res 2000;36(10):2805–19]). Despite higher errors at the borders of high water content values in the training surface, good
results are obtained on the simulation of the time series.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The one-dimensional groundwater flow in an unsatu-
rated soil column is generally modelled by means of a
partial non-linear differential equation known as the
one-dimensional Richards equation. Since this equation
can only be solved analytically in some special cases [3],
one has to resort to numerical algorithms for approximat-
ing its solution. However, an alternative solution to this
Richards equation in the form of a fuzzy rule-based
model has been proposed by Bárdossy et al. [4–6]. Their
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purpose was to introduce a simpler methodology to calcu-
late the water movement in the soil. Bárdossy et al. [4]
used zero-order Takagi–Sugeno rules to model the one-,
two- and three-dimensional unsaturated flow. The main
advantage of their model is its simplicity and its ‘‘small
computational requirement’’. Furthermore, they state that
numerical two- and three-dimensional solutions to the
Richards equation are scarce and have a high CPU
requirement. Although their fuzzy rule-based model gives
promising results, some disadvantages can be recognised.
Their method is restricted to triangular fuzzy sets, and
requires an explicit definition of the support of the
antecedent fuzzy sets, indicating that knowledge about
the system to model is indispensable. However, this need
for knowledge could be bypassed, for instance, by the use
of optimisation techniques such as genetic algorithms,
demanding an additional effort. Furthermore, their
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method requires a predetermined number of rules.
Alternatively, an exhaustive search on the number of
rules that yield an accurate fuzzy rule base could be
performed.

The objective of this paper is twofold. First, a fuzzy
model with similar rules as those described by Bárdossy
et al. [4–6] is developed to simulate the one-dimensional
unsaturated groundwater flow. The core of our fuzzy
groundwater model consists of a first-order Takagi–Sugeno
(TS) model: a flexible fuzzy rule-based model that is suit-
able to describe non-linear systems and that can be identi-
fied with a data-driven method. Second, it is investigated
which clustering algorithm, including the popular fuzzy c-
means and Gustafson–Kessel clustering algorithms, used
for the identification of the antecedent parts of the fuzzy
rules, yields the best TS model. The consequent parameters
of the TS rules are computed using the global least squares
method [7].

This paper is organised as follows. Section 2 gives an
introduction to Takagi–Sugeno models and their identifica-
tion. The results obtained by the different fuzzy models are
evaluated in Section 3. Finally, Section 4 draws the conclu-
sions and gives indications for further research.
2. Fuzzy models of the Takagi–Sugeno type

2.1. Introduction

The kernel of a fuzzy rule-based model is the fuzzy rule
base, containing rules of the form

IF antecedent part THEN consequent part:

These IF–THEN rules describe logical relations between
the variables of the system. The rule-based nature of the
model allows for a linguistic description of the knowledge,
captured in the model (gray-box model), which is an
advantage compared to other non-linear modelling tech-
niques such as neural networks (black-box model). The
central concept in fuzzy set theory is the fuzzy set or mem-
bership function, which numerically represents the degree
to which a given element belongs to a fuzzy set. Mathemat-
ically speaking, a fuzzy set A on a universe X is defined as a
function

A : X ! ½0; 1� : x 7! AðxÞ; ð1Þ

where A(x) is the degree of membership of x in A. The
number, position and shape (triangular, trapezoidal, . . .)
of fuzzy sets can be determined from expert knowledge
or through data analysis.

The Takagi–Sugeno (TS) model was proposed by Takagi
and Sugeno [8]. In order to apply a TS model to a p-dimen-
sional input space, in particular if the fuzzy set of the ante-
cedent part Ai is a Cartesian product Ai ¼ A1;i1 � � � � � Ap;ip ,
with i1 2 {1, . . . ,n1}, . . . , ip 2 {1, . . . ,np}, and n1,n2, . . . ,np

the number of fuzzy sets each input variable is partitioned
into, the rule reads:
Ri : IFðX 1; . . . ;X pÞ is Ai THEN Y

¼ a1;iX 1 þ a2;iX 2 þ � � � þ ap;iX p þ bi: ð2Þ

For a p-dimensional input vector x = (x1, . . . ,xp), Ai(x) is
then usually realised as

AiðxÞ ¼ A1;i1ðx1Þ � A2;i2ðx2Þ � � �Ap;ipðxpÞ: ð3Þ

When the above type of rules is used, Ai(x) is also the de-
gree of fulfilment (DOF) wi(x) of rule i. The resulting out-
put value y is then computed as

y ¼
Pn

i¼1wiðxÞða1;ix1 þ � � � þ ap;ixp þ biÞPn
i¼1wiðxÞ

ð4Þ

with n the number of rules. A first-order TS model
approximates a non-linear function by means of local
linear models, represented in the consequent parts. By
computing a weighted average of the individual rule out-
puts, i.e. the linear functions, the non-linear function can
be approximated, and a smooth transition between the
consequent functions is established, which is different
from an ordinary piecewise linear approximation method
[8].
2.2. Identification of a TS model

In general, TS models are constructed following a
data-driven approach. The identification of TS models
consists of the determination of the number of rules, of
the antecedent parts and of the parameters of the
consequent parts. The input and output variables are
assumed to be known beforehand. Different methods
can be applied for the identification of the antecedent
parts of the rules. Among them are the widely used fuzzy
clustering algorithms, from which the obtained fuzzy
clusters can serve as multi-dimensional membership
functions, or can be projected onto the variable axes in
order to obtain one-dimensional membership functions.
To each cluster then corresponds a rule. The number
of clusters/rules of the TS models in this work was
selected using the algorithm ClusterFinder [9] that seeks
for the lowest number of clusters/rules which still
allows an accurate description of the data set (see
Section 2.4).
2.2.1. Identification of the antecedent parts

The antecedent parts of the TS models in this paper are
identified using fuzzy clustering algorithms: the popular
fuzzy c-means (FCM) and Gustafson–Kessel (GK) clus-
tering algorithms [10], the simplified Gustafson–Kessel
(SGK) algorithm [11], the Gath–Geva (GG) algorithm
[12], the simplified Gath–Geva (SGG) algorithm [11]
and the modified Gath–Geva (MGG) algorithm [13] are
used. All these fuzzy clustering algorithms can be categor-
ised into the group of the objective function-based cluster-
ing algorithms, since they all try to minimise the same
objective function:
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J ¼
XN

k¼1

Xc

i¼1

uiðzkÞm � dðzk; ciÞ2: ð5Þ

This objective function can be seen as a generalisation of
the least squared error with N the number of data points,
c the number of clusters, d(zk,ci) a measure for the distance
between data vector zk and cluster centre ci and
ui(zk) 2 [0,1] the membership degree of data vector z to
cluster Ci. The exponent m 2 R>1, called fuzzifier, repre-
sents an additional parameter. A common choice of the
fuzzifier is m = 2 [7,11] a value that also will be used
throughout this paper. All these objective function-based
clustering algorithms follow an iterative procedure as
shown in Algorithm 1. The iteration starts with a randomly
initialised partition matrix for the FCM, GK and SGK
clustering algorithms. For the GG, SGG and MGG clus-
tering algorithms, the initial partition matrix is generated
by the GK clustering algorithm. The iteration ends when
the maximal difference between the partition matrices,
which store the membership degrees of the data points to
the clusters, of the previous and the current iteration be-
comes lower than a predetermined tolerance value �:

kU ðlÞ � U ðl�1Þk < �: ð6Þ
The major difference between these fuzzy clustering algo-
rithms lies in the calculation of the distance of a data
point to a cluster centre. The FCM clustering algorithm
uses the Euclidean distance, indicating that data points
with the same distance to the cluster centre are situated
on a sphere. The GK clustering algorithm uses covari-
ance matrices in calculating the distance between a data
point and a cluster centre. Data points with the same dis-
tance to the cluster centre are then situated on an ellip-
soid. In the GG clustering algorithm, the data are
considered to be realisations of normally distributed ran-
dom variables. This fuzzy clustering algorithm is equiva-
lent to a Gaussian mixture model that expands a
probability density function into a sum over c clusters
[13]. The distance of a data point to a cluster centre is
then calculated as the reciprocal of an unnormalised a
posteriori probability or likelihood [11]. The SGK and
the SGG clustering algorithms are simplifications of the
original GK and GG algorithms in the sense that they
only permit axes-parallel clusters, i.e. the covariance
matrices have off-diagonal zero elements. The MGG
algorithm has been specifically designed to identify TS
models, and incorporates the identification of the conse-
quent parameters.

With the objective function-based clustering algorithms,
multi-dimensional membership functions are obtained. The
membership degree of a data point to the multi-dimen-
sional membership function is calculated as is done in the
corresponding clustering algorithm, as a function of the
distance to the cluster centre. In order to obtain one-
dimensional membership functions, the clusters obtained
with the objective function-based clustering algorithms
are projected onto the variable axes. The projection is
mainly performed as it is written in the source code of
the Fuzzy Modelling and Identification Toolbox for MAT-
LAB [14] through projection of the partition matrix
obtained by each clustering algorithm onto the input vari-
able axes. Just as in the toolbox, the resulting projection is
filtered by means of a low-pass filter and exponential mem-
bership functions are fitted. In the Fuzzy Modelling and
Identification Toolbox, a factor 7 is used in the equation
for the exponential membership function. This factor is
replaced by a variable factor b which was, in our applica-
tion, increased from 1 to 10, with steps of size 1. The expo-
nential membership function is then given by

AðxÞ ¼
e
�b

ðx�a2Þ2

ða2�a1Þ2 if x < a2;

e
�b

ðx�a3Þ2

ða4�a3Þ2 if x > a3;

1 otherwise:

8>>><
>>>:

ð7Þ

The parameters a2 and a3 determine the core of the mem-
bership function, and a1 and a4 are the parameters for
which the membership degree equals e�b. These parameters
are obtained by fitting Eq. (7) to the projection of the clus-
ters onto the variable axes.

Algorithm 1: Outline of an objective function-based
clustering algorithm

Data: Data set Z

Number of clusters 1 < c < N

The weighting exponent m > 1
The termination tolerance � > 0

Result: Cluster centres ci

Other cluster parameters: covariance matrices, a
priori probabilities, consequent parameters (for the MGG
algorithm), etc.

Initialise partition matrix U(0)

while kU(l) � U(l�1)kP � do

Compute cluster prototypes ci

Compute other cluster parameters
Compute the distance between data points zk and cluster

centres ci

Update the partition matrix
end
2.2.2. Identification of the consequent parameters

A TS model consisting of n rules can be seen as a weighted
average of n ‘regression models’. Therefore, its consequent
parameters can be estimated by means of a linear least
squares method taking into account the respective weighting
parameters c, which are functions of the obtained degree of
fulfillments. The calculation of the output values by means
of a TS model can be expressed in matrix notation:

O ¼ I � P ; ð8Þ
or



O ¼ ½y1 � � � yN �
T ¼

c1;1x1;1 � � � c1;1x1;p c1;1 � � � c1;nx1;1 � � � c1;nx1;p c1;n

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

cN ;1xN ;1 � � � cN ;1xN ;p cN ;1 � � � cN ;nxN ;1 � � � cN ;nxN ;p cN ;n

2
664

3
775

� a1;1 a1;2 � � � a1;p b1 � � � an;1 an;2 � � � an;p bn½ �T

ð9Þ
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where ck;j ¼
wjðxkÞPn

i¼1
wiðxkÞ

are the normalised membership de-

grees, with k = 1, . . . ,N; j = 1, . . . ,n with N the number of
data points and n the number of rules. Using ck,j in I, the
weighting of the rules is taken into account, and a minimal
global prediction error is obtained. The parameters P are
then estimated by

P ¼ ½ITI ��1ITO: ð10Þ

This method is also referred to as the global least squares
method [7]. Alternatively, the recursive least squares meth-
od [15] which bypasses the problem of singularity of [ITI]
can be used.

2.3. Performance indices for Takagi–Sugeno models

The accuracy of the identified TS models is evaluated
using two performance indices. The first index is the Nash
and Sutcliffe (NS) performance measure [16]:

NS ¼ 1�
PN

k¼1ðymðkÞ � yðkÞÞ2PN
k¼1ðyðkÞ � �yÞ2

; ð11Þ

with N the number of data points, and ym the modelled and
y the observed output. �y denotes the mean of the observed
values. The optimal value of NS is 1, meaning a perfect
match of the model. A value of zero indicates that the mod-
el predictions are as good as that of a ‘no-knowledge’ mod-
el continuously simulating the mean of the observed signal.
Negative values indicate that the model is performing
worse than this ‘no-knowledge’ model [17]. The second per-
formance index is the root mean square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1ðyðkÞ � ymðkÞÞ

2

N

s
: ð12Þ

The RMSE takes positive values with an optimal value of
0, indicating a perfect match of the model.

2.4. ClusterFinder

Evaluating the values of the performance indices for
models with an increasing number of rules, e.g. models with
2–64 clusters/rules, confirmed an obvious relationship
between the accuracy and the complexity of the models:
the complexer the model, the more accurate its perfor-
mance. It was also observed that adding an extra cluster
strongly improved the values of the NS- or RMSE-index
for a low number of clusters, whereas the improvement
due to an additional cluster became less apparent for a
higher number of clusters. Hadjili and Wertz [18] point
out that three approaches are commonly used to determine
the appropriate number of clusters. In the first approach,
one starts with a small number of clusters, and subsequently
adds more clusters based on the prediction error between
the model and the system. The second approach starts with
a large number of clusters and subsequently removes redun-
dant clusters based on e.g. a similarity measure between
clusters, while the third aims at acquiring ‘‘good parti-
tions’’. Throughout the literature, several cluster validity
measures (see [12,19–21] among others) have been proposed
to obtain these ‘‘good partitions’’. The criteria for the defi-
nition of an ‘‘optimal partition’’ of the data into subgroups
are based on three requirements [12]: a clear separation
between the resulting clusters, a minimal volume of the clus-
ters, and a maximum number of data points concentrated in
the vicinity of the cluster centre. However, in this paper, an
optimal model rather than an optimal partition is sought
for. Therefore, the number of clusters is determined based
on the quality of the prediction obtained with the resulting
model. Vernieuwe et al. [9] developed the algorithm Cluster-

Finder to search for the number of clusters that yield a
model with an acceptable accuracy and complexity. For
the models identified in this paper, ClusterFinder starts with
the identification of models with 64 clusters. The optimal
number of clusters is then determined by means of a recur-
sive algorithm in which the performance of the candidate
model is compared with the performance of the model with
64 clusters. The optimal model is found as the model with
the lowest possible number of clusters for which the value
of the performance index does not differ more than a prede-
fined margin a from the value of the performance index for
the model with 64 clusters. In order to account for the influ-
ence of the initialisation on the clustering, 30 repetitions
were performed of which the best model was retained and
used for ClusterFinder. In this paper, the value of a was
set at 0.02 and ClusterFinder was applied to the NS values.
3. Fuzzy models for 1D unsaturated groundwater flow

3.1. Structure and identification of the fuzzy groundwater

models

The water movement in a one-dimensional, isotropic
soil matrix is described by the one-dimensional Richards
equation [3,22]:
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; ð13Þ

where h is the soil water content [–], t is the time [T], z is the
gravity head expressing the elevation [L] of a point with re-
spect to the soil surface for which z = 0, defined positive
upward, K is the hydraulic conductivity of the soil [L/T]
and w is referred to as the matric head [L], which both vary
with the soil water content. The matric head w and the soil
water content h are linked through the van Genuchten
equation [23]:

hðwÞ ¼ hr þ ðhs � hrÞ
1

1þ ðavgwÞnvg

� �mvg

; ð14Þ

where avg, nvg, mvg are soil-related parameters (with
m = 1 � 1/n), hs is the saturated water content and hr is
the residual water content of the soil.

In this paper, the solution of the Richards equation is
approximated by means of a first-order TS model with
rules of the following form:

Ri : IF
h
hs

� �
u

;
h
hs

� �
l

� �
IS Ai THEN

qv ¼ ai
h
hs

� �
u

þ bi
h
hs

� �
l

þ ci; ð15Þ

with Ai a multi-dimensional membership function and ai, bi

and ci the consequent parameters. The subscripts u and l
refer to respectively the upper and lower soil cell between
which the flux is calculated. If one-dimensional member-
ship functions are used, Ai represents the cartesian product
A1,i · A2,i. The TS model, either with one- or multi-
dimensional membership functions, calculates the flux qv

between two adjacent soil cells with relative water content
h
hs

� �
u

and h
hs

� �
l
.

The fuzzy groundwater model, incorporating the TS
model, updates the water content with the simulated fluxes.
Given an initial soil profile of water contents, the TS model
calculates the incoming qv,in and outgoing qv,out fluxes for
each soil cell with thickness Dz. Using the initial water con-
tent hold and the newly calculated fluxes at time t, the water
content hnew at time t + Dt is calculated using the continu-
ity equation:

hnew ¼ ðholdDzþ qv;inDt � qv;outDtÞ=Dz: ð16Þ

The newly obtained water contents are given as input to the
TS model to calculate new fluxes at time t + Dt and the
process restarts. Evaporation or rainfall values are used
to set the boundary conditions at the top of the soil profile.
A zero flux or constant water content are the boundary
conditions that can be imposed at the bottom of the profile.
During rainfall, the infiltration rate equals the rainfall
intensity, until the upper soil cell is saturated. In this case,
the water content in the upper soil cell equals hs. If this oc-
curs, we consider the water excess to be transported
through runoff, i.e. ponding of water on the soil profile is
not accounted for. A backstepping procedure is applied
to determine the time when the soil cell reached saturation.
From that moment on, water can infiltrate at a pace equal
to the hydraulic conductivity. If the upper soil cell reaches
a water content lower than or equal to the water content
corresponding to pF = 3 during the interstorm period,
and an evaporation rate Qa is imposed, the amount of
water Qs the soil is able to supply decreases linearly as fol-
lows (see [2]):

Qs ¼ Qa

h� hWP

hpF3
� hWP

; ð17Þ

with hpF3
and hWP the water content at pF = 3 and wilting

point, respectively.
The number of rules and the corresponding antecedent

and consequent parts of these rules were identified on a
training data set, consisting of the relative water contents
for the upper and lower soil cells and the flux between those
soil cells (see Fig. 1). This training data set was syntheti-
cally generated using a discretisation of the Darcy
equation:

q ¼
ffiffiffiffiffiffiffiffiffiffiffi
KuK l

p hu � hl þ Dz
Dz

� �
; ð18Þ

with Ku and Kl the hydraulic conductivity [L/T], in accor-
dance with the h-value [L], of the upper and lower soil cell,
respectively, and Dz, the discretisation step [L]. With this
equation, only the vertical water movement is considered
and the z-axis is chosen positive upward while the positive
flux points downward.

An initial data set was generated for a sandy loam soil
with the van Genuchten parameters given in Table 1. The
relative water content h/hs of both upper and lower layer
were discretised with steps of size 0.0025 and all possible
moisture combinations between both layers resulted in a
data set of 154449 data points. In view of the CPU time
that would be required to cluster this data set, the number
of data points had to be reduced. Therefore a training data
set of 10000 data points was randomly selected and the
remaining data points were used as validation data set.
Based on this validation set, models will be retained and



Table 1
The van Genuchten parameters for the EMSL data set [2]

hs [–] 0.55
hr [–] 0.01
Ks [cm/h] 5
avg [1/cm] 0.048
nvg [–] 1.5632
mvg [–] 0.3603

Table 2
Number of clusters obtained with ClusterFinder for the different fuzzy
clustering algorithms and the performance of the corresponding models

Clustering
method

#Clusters NS
[–]

RMSE
[mm/day]

NS64

[–]
RMSE64

[mm/day]

FCM 19 0.9458 73.3523 0.9642 59.5813
GK 16 0.9794 45.1877 0.9989 10.4480
SGK 17 0.9735 51.2496 0.9921 27.9158
GG 22 0.9809 43.5188 0.9987 11.3245
SGG 33 0.9791 45.5201 0.9964 18.9872
MGG 37 0.9768 48.0146 0.9953 21.6053

Fig. 2. Errors on the training data set for the model with 22 rules
identified with the Gath–Geva clustering algorithm.
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will be further evaluated on time series of moisture con-
tents obtained through wetting and drying experiments
set up by the non-vegetated terrain (NVT) workgroup of
the European Microwave Signature Laboratory (EMSL),
Joint Research Centre of the European Community in
Ispra (Italy) [1,2]. In this experiment, a cylindric container
with diameter and height of respectively 2 m and 0.4 m was
filled with a sandy loam soil. The moisture conditions of
the soil were monitored by means of time domain reflec-
tometry (TDR) probes. These TDR probes were placed
along three vertical transects at different distances from
the centre of the cylinder. The probes were positioned at
depths of 2.5 cm, 5 cm, 10 cm, 15 cm and 25 cm. The cylin-
der was subjected to wetting and drying phases, during
which the soil moisture profiles were monitored every
10 min. Given the depths of the TDR probes, the spatial
discretisation in the generation of the training set was cho-
sen to be 2.5 cm. Fig. 1 shows the training data set. By
means of the methods described in Section 2.2, and based
on this training data set, the fuzzy rule-based groundwater
models can be identified.

3.2. Evaluation of the fuzzy groundwater models

The evaluation of the fuzzy groundwater models is per-
formed on the training surface as well as on two time ser-
ies obtained for one of the transects in the EMSL
experiment. For these time series, the evaluation of the
fuzzy groundwater models is performed by means of a
comparison with the measurements and with the results
obtained with the numerical model of Hoeben and Troch
[2] for the same initial and boundary conditions. The
boundary conditions at the upper soil cell are given by
rainfall and evaporation during the experiment and
remain the same throughout the simulations. Two initial
conditions were possible: the first consists of a partition
of the soil profile in homogeneous blocks of the same
water content given by the initial measurements with the
TDR probes in the experiment, the second uses the mea-
sured water contents at the depths of the TDR probes
and a linear interpolated water content at depths in
between two measurements. Since the TS models were
identified on a training surface obtained through the solu-
tion of the Darcy equation for a discretisation of the
entire domain of water contents, more attention was given
to the comparison of the results of both models than to
the comparison of the results with the measurements.
3.2.1. Takagi–Sugeno models with multi-dimensional

membership functions

The obtained numbers of clusters with the correspond-
ing performance on the training data set are listed in Table
2. As ClusterFinder searches for the optimal number of
clusters, based on the performance values of the models
with 64 clusters, the values of the performance indices for
these models are listed as well. This table shows that the
worst values both in terms of NS and RMSE are obtained
with the FCM algorithm. The values of the performance
indices corresponding to the other fuzzy clustering algo-
rithms are rather similar. The best obtained values for
the optimal number of clusters are given by the GG algo-
rithm. Furthermore, it can be seen that the values of the
NS-index differ just less than 0.02 from the values for the
corresponding models with 64 clusters and that, given a
value of 0.02 for the margin a, different numbers of clusters
for the different models can be obtained.

Fig. 2 illustrates the error surface on the training data
set for the GG model. The error surface exhibits large
errors at the borders corresponding to high water content.
The presence of those large errors is due to the steepness of
the slope of the training surface in these areas. The error
surfaces of more complex models, e.g. for a model with
64 clusters, show that these errors are considerably reduced
with respect to those of the optimal models (data not



Table 4
Mean absolute errors with the measurements and the numerical model for
the different fuzzy models for the second time series

Clustering algorithm Interpolation Homogeneous
blocks

ZF CM ZF CM

Comparison with measurements

FCM 0.0438 0.0853 0.0401 0.0818
GK 0.0271 0.0270 0.0272 0.0272
SGK 0.0626 0.0899 0.0602 0.0857
GG 0.0298 0.0367 0.0268 0.0341
SGG 0.0248 0.0248 0.0238 0.0238
MGG 0.0238 0.0241 0.0219 0.0222
Numerical model 0.0206 0.0205 0.0217 0.0216

Comparison with numerical model

FCM 0.0365 0.0780 0.0346 0.0762
GK 0.0214 0.0234 0.0203 0.0226
SGK 0.0554 0.0789 0.0547 0.0779
GG 0.0149 0.0208 0.0115 0.0178
SGG 0.0100 0.0101 0.0099 0.0099
MGG 0.0042 0.0042 0.0041 0.0042
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shown). A more complex model smoothens the error sur-
face and is able to reduce the errors at the borders of high
water content. Still, using a less complex model seems a
reasonable choice to obtain a sufficiently high performance
since the transition between water contents in a soil profile
is mainly gradual. The location of the water content com-
binations on the training surface, during simulation, will
mainly be around the diagonal from the (0,0) corner to
the (1,1) corner (see further). For all models, low (or
almost no) errors are found in the regions with low or mod-
erate water content.

The models of which the obtained number of clusters
and performances are listed in Table 2 were evaluated on
the two time series of the EMSL experiment. The obtained
results, expressed as mean absolute errors in water con-
tents, are listed in Tables 3 and 4. The results of the fuzzy
models are compared with the measurements as well as
with the numerical model of Hoeben and Troch [2] applied
under the same boundary and initial conditions.

Generally, poor results are obtained for the FCM and
SGK models on both time series. The GK model also
shows some poor results on the first time series given an
initial homogeneous partition of water contents and given
initial interpolated water contents with a constant water
content at the bottom of the profile.

The models identified with the GG algorithm and its
variants approximate the results of the numerical model
best for both time series. Among these models, the MGG
model yields the best values. Some dependence on the dif-
ferent initial conditions can be observed for the SGK, SGG
and MGG models. A dependence on the different bound-
ary conditions at the bottom of the profile can be noticed
for the SGK model. Based on Tables 3 and 4 on the one
hand and Table 2 on the other hand, the models can be
ranked in a different order of performance. This is due to
the fact that water contents reached during the evaluation
Table 3
Mean absolute errors with the measurements and the numerical model for
the different fuzzy models for the first time series

Clustering algorithm Interpolation Homogeneous
blocks

ZF CM ZF CM

Comparison with measurements

FCM 0.0908 0.0980 0.0859 0.1004
GK 0.0343 0.0334 0.0494 0.0485
SGK 0.0667 0.0587 0.0727 0.0595
GG 0.0242 0.0244 0.0286 0.0280
SGG 0.0223 0.0223 0.0238 0.0238
MGG 0.0227 0.0226 0.0236 0.0236
Numerical model 0.0210 0.0210 0.0202 0.0202

Comparison with numerical model

FCM 0.1022 0.1077 0.0946 0.1097
GK 0.0320 0.0525 0.0924 0.0916
SGK 0.0625 0.0479 0.0660 0.0484
GG 0.0152 0.0154 0.0131 0.0124
SGG 0.0087 0.0087 0.0081 0.0081
MGG 0.0043 0.0044 0.0033 0.0033
on these two time series only cover a part of the entire
domain of possible water contents while the performance
indices of Table 2 on the contrary, are calculated based
on the complete domain. Figs. 3 and 4 show the simulation
results for the MGG model. The simulations performed
with the numerical model are plotted as well. The initial
and the lower boundary conditions used consist of homo-
geneous blocks of water contents and a zero flux at the bot-
tom of the profile. From these figures, it follows that a
good agreement between the numerical and the fuzzy
rule-based model is obtained. Both models show the same
behaviour.
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The mean absolute errors listed in Tables 3 and 4 only
compare the results at measured depths. The behaviour
of the models throughout the soil profile is therefore not
known. For this reason, moisture profiles at certain time
steps of the time series (see Figs. 5 and 6) are plotted for
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Fig. 5. Moisture profiles for the first time series. Results of the MGG model (d
boundary conditions used consist of homogeneous blocks of water content and
profiles are captured are indicated in Fig. 3.
the MGG model and the numerical model. The time steps
upon which these profiles are captured, are indicated in
Figs. 3 and 4 with the numbers corresponding to those of
Figs. 5 and 6. The initial and the lower boundary condi-
tions used to obtain these profiles consist of homogeneous
blocks of water contents and a zero flux at the bottom of
the profile. Generally, a very good agreement between both
results is observed. At the bottom of the profile, the results
of the fuzzy model diverge little from the results of the
numerical model.

As an example, water contents obtained through simula-
tion of the second time series are displayed in Fig. 7,
together with the contours of the error surface obtained
for the MGG model. The largest part of the obtained water
contents are located in the area with errors smaller than
10 mm/day. The remaining part, however, exhibits larger
errors. A few obtained combinations of water contents
are situated in these regions of higher errors. The errors
made by the fuzzy model at a certain time step cause a mis-
calculation of the water contents for the next time step,
influencing the further simulations of the fluxes and water
contents throughout the remaining simulation time and
the soil profile.

The water content values in the time series of the EMSL
experiment are located in the region of the error surface
with low errors. The influence of the larger errors observed
in the error surfaces on the simulation of the time series is
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evaluated with additional tests. The initial water contents
of the two original time series were incremented by 0.1,
0.2 or 0.3. Since the best mean absolute errors were
obtained with the GG model, this model was employed
to undergo the additional tests. The results are compared
with the results of the numerical model under the same ini-
tial and boundary conditions (see Tables 5 and 6). The
results show that an increasing initial water content leads
to an increasing error. Furthermore, it is observed that
when higher water contents are reached, the same errors
are obtained for different implementations of initial condi-
tions, i.e. interpolation or homogeneous blocks of water
contents, but with the same lower boundary condition.
When the original initial water contents are, for instance,
increased with 0.3, an error of 0.016 is obtained when the
lower boundary condition is a constant water content for
both interpolation and homogeneous blocks of water con-
tents, and an error of ca. 0.014 is obtained when the lower
boundary condition is a zero flux, again for both imple-
mentations of the initial conditions. This is probably due
to the fact that, in the case of a very wet soil profile, the
lower boundary conditions, in this case a constant water
content or a zero imposed flux, have a larger influence on
the water contents reached by the model. Fig. 8 shows
the position of the water content combinations on a con-
tour plot of the error surface of the MGG model. These
water content combinations were obtained for interpolated
initial water contents augmented by 0.3 and a constant zero
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Fig. 7. Contour plot of the absolute errors on the training data set for the
MGG model (contour levels from 10 to 100 mm/day are indicated). The
water content combinations obtained for the second time series (interpo-
lation and ZF) are indicated.

Table 5
Mean absolute errors with the numerical model for the additional tests on
the first time series

Clustering algorithm Interpolation Homogeneous
blocks

ZF CW ZF CW

Initial condition +0.1

MGG 0.0020 0.0032 0.0034 0.0028

Initial condition +0.2

MGG 0.0073 0.0135 0.0073 0.0126

Initial condition +0.3

MGG 0.0147 0.0164 0.0136 0.0160

Table 6
Mean absolute errors with the numerical model for the additional tests on
the second time series

Clustering algorithm Interpolation Homogeneous
blocks

ZF CW ZF CW

Initial condition +0.1

MGG 0.0037 0.0041 0.0038 0.0041

Initial condition +0.2

MGG 0.0106 0.0178 0.0103 0.0174

Initial condition +0.3

MGG 0.0380 0.0384 0.0382 0.0405
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flux and a constant water content as respective lower
boundary conditions. These water contents are the results
of the performance of the additional test on the second
time series. The water contents reached by the model on
which a constant zero flux is imposed as lower boundary
condition are more situated in the region of water contents
nearby saturation whereas the water contents reached by
the model on which a constant water content is imposed
as lower boundary condition are more situated in the
region of moderate to higher water contents.

3.2.2. Takagi–Sugeno models with projected membership
functions

A second way of identifying TS models was performed
by projecting the multi-dimensional clusters obtained by
the different fuzzy clustering algorithms onto the input var-
iable axes. In this way, one-dimensional exponential mem-
bership functions as in Eq. (7) were obtained. The degree of
fulfilment of a rule is then obtained by multiplying the
membership degrees of the considered data point to the
antecedent fuzzy sets (see Eq. (3)). The projection proce-
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Fig. 8. Combination of water contents reached by the MGG model on the ad
contents and a constant zero flux (a) and a constant water content (b) as resp
dure of the toolbox of Babuška, as explained in Section
2.2 is used. Exponential membership functions are fitted
to the projections. In the toolbox, a factor 7 is used in
the equation for the exponential membership function.
This factor is replaced by a variable factor b which was,
for these applications, increased from 1 to 10, with steps
of size 1.

Concerning the values of the performance indices, simi-
lar results as for the models with multi-dimensional mem-
bership functions were obtained. A remarkably better
performance for models having their origin in the FCM
clustering algorithm was observed. Best results were
obtained for the model with 26 rules, obtained with the
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H. Vernieuwe et al. / Advances in Water Resources 30 (2007) 701–714 711
MGG algorithm with b = 2, namely NS = 0.9813 and
RMSE = 43.1025 mm/day.

The resulting models were used to simulate the two
time series of the EMSL experiment. For each obtained
number of rules, 10 models were evaluated, i.e. b-values
from 1 to 10 were considered. The best obtained mean
absolute errors in water content between the simulations
of the fuzzy rule-based and the numerical model for the
first time series were obtained for the SGG model and
the MGG model with mean absolute errors of 0.0071
for the initial condition of interpolated water contents
for both boundary conditions for the SGG model, and
with mean absolute errors of 0.0081 and 0.0082 for the
initial conditions of homogeneous blocks of water con-
tent for the MGG model. The b-value for which these
results are obtained are 3 and 2–6, 8–10 for the SGG
model, and 7 for the MGG model. Concerning the sim-
ulations on the second time series, the best results are
obtained for the MGG model with mean absolute errors
of 0.0082 and 0.0079 for initial interpolated water con-
tents and homogeneous blocks of water content respec-
tively. The b-value for which these results are obtained
range from 1 to 10. In general, the obtained results for
other b-values are quite similar. Larger differences, rang-
ing from approximately 0.01 to approximately 0.02,
between the results of different b-values are found for
the FCM, GK, GG and SGK models. In most cases,
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Fig. 9. Moisture profiles for the first time series. Results of the SGG model wit
lower boundary conditions used consist of interpolated water contents and a zer
are captured are indicated in Fig. 3.
the best simulations on the time series are obtained for
different values of b than those obtained on the training
surface. This implies that models with different b-values
perform better in the area reached by the water contents
in the time series, than models that generally perform
best for the entire domain. Furthermore, the value of b
can change with different initial and/or boundary condi-
tions, since the area reached by the water contents is
likely to be influenced by these conditions. A straightfor-
ward conclusion concerning the optimal value of b-value
can therefore not be made.

The obtained differences for all simulation results (data
not shown) stay within a range of approximately 4% water
content, which is fairly acceptable. Concerning the
obtained differences with the simulations of the numerical
model, inferior results are obtained for the FCM, GK,
SGK and GG models for both time series. The best results
are obtained for the SGG and MGG models for the first
time series, and for the MGG model for the second time
series. Simulation results for the SGG model, for the first
time series, and for the MGG model for the second time
series (data not shown) show a very close agreement
between the simulation results of the numerical and the
fuzzy model.

Figs. 9 and 10 display moisture profiles obtained with
the fuzzy and the numerical model. The profiles for the first
time series are obtained with the SGG model. A constant
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Fig. 10. Moisture profiles for the second time series. Results of the MGG model with b = 1 (dashed line) and the numerical model (dotted line). The initial
and lower boundary conditions used consist of homogeneous blocks of water content and a zero flux at the bottom of the profile. The time steps upon
which these profiles are captured are indicated in Fig. 4.
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zero flux was imposed at the bottom of the profile and the
initial moisture conditions were obtained through interpo-
lations of the measured water contents for depths between
the measurement depths. The profiles for the second time
series are obtained with the MGG model. A constant zero
flux was also imposed at the bottom of the profile and ini-
tial conditions existed of homogeneous blocks of the mea-
sured water contents. The respective values of b used for
these models are 3 and 1. A relatively good agreement
between the different profiles is observed. Due to the accu-
mulation of errors, the deviation between the profiles
becomes larger as the simulation time proceeds, which is
observed for both time series in the lower and central part
of the profiles.
Since the two time series reach low and moderate water
contents, the additional tests consisting of an increase of
the initial water contents with 0.1, 0.2 or 0.3 were also per-
formed on the SGG and MGG models, in order to evaluate
the influence of the larger errors in the regions of higher
water contents on the time series (see Tables 7 and 8).
The models with their corresponding b-values that gener-
ally yielded best results on the original time series were
selected and used to perform the additional tests. A similar
behaviour as for models with multi-dimensional member-
ship functions is noticed. The accuracy of the models
decreases when high initial water contents are imposed (ini-
tial water contents are incremented by 0.3). Still, generally
acceptable errors are obtained. However, depending on the



Table 7
Mean absolute errors with the numerical model for the additional tests on
the first time series

Clustering algorithm b Interpolation Homogeneous
blocks

ZF CW ZF CW

Initial condition +0.1

SGG 3 0.0105 0.0106 0.0114 0.0111
MGG 7 0.0072 0.0079 0.0073 0.0061

Initial condition +0.2

SGG 3 0.0048 0.0068 0.0058 0.0074

MGG 7 0.0161 0.0183 0.0153 0.0177

Initial condition +0.3

SGG 3 0.0147 0.0231 0.0138 0.0217
MGG 7 0.0087 0.0149 0.0087 0.0150

Table 8
Mean absolute errors with the numerical model for the additional tests on
the second time series

Clustering algorithm b Interpolation Homogeneous
blocks

ZF CW ZF CW

Initial condition +0.1

SGG 3 0.0029 0.0035 0.0030 0.0035

MGG 7 0.0088 0.0110 0.0083 0.0103

Initial condition +0.2

SGG 3 0.0059 0.0058 0.0064 0.0052

MGG 7 0.0135 0.0293 0.0129 0.0293

Initial condition +0.3

SGG 3 0.0343 0.0313 0.0360 0.0312
MGG 7 0.0204 0.0163 0.0220 0.0163
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initial and/or boundary conditions, different performances
are observed. Concerning simulations with the models with
a higher complexity, similar results as for the models with
multi-dimensional membership functions are obtained.

4. Conclusion

In this paper, different methods were used to determine
the antecedent parameters of TS models. The obtained
models were incorporated into a fuzzy 1D groundwater
model for the unsaturated zone. Results of an experiment
carried out at the European Microwave Signature Labora-
tory were used to evaluate the performance of the fuzzy
model, together with the results obtained by the numerical
groundwater model of Hoeben and Troch [2]. Since the TS
models were identified on a training surface obtained
through the solution of the Darcy equation for a discretisa-
tion of the entire domain of water contents, more attention
was given to the comparison of the results of both models
than the comparison of the results with the measurements.

Evaluation of the error surfaces. It was observed that the
error surfaces on the training data set showed higher errors
when one of the two soil cells have a higher or saturated
moisture content.
Evaluation of the simulation results. Concerning the sim-
ulation results on the time series, it was found that for
models identified with the most popular algorithms, i.e.
the fuzzy c-means and the Gustafson–Kessel algorithm,
yielded inferior results compared to the models identified
with the Gath–Geva algorithm and its variants. These lat-
ter models yielded very good results. For these models,
results were very similar when the clusters were projected
onto the input variable axes.

Evaluation of the soil profiles. Soil profiles were given to
illustrate the behaviour of the models throughout the depth
of the profile. The profiles obtained for the models with
multi- and one-dimensional membership functions showed
similar results. A good correspondence between the profiles
of the fuzzy model and the numerical model was observed.

Evaluation of the additional tests. Since the experimental
time series reach low and moderate water contents, the
influence of the higher errors at the borders of the error
surfaces could not be verified throughout these simula-
tions. Therefore, some artificial additional tests were per-
formed. The results were verified against the results
obtained by the numerical groundwater model under the
same conditions. In general, acceptable results were still
obtained. The fact that the errors generally remain low,
compared to the presence of higher errors in the error sur-
faces, is due to the pathways of water content combinations
followed during wetting and drying phases in a soil profile.
It was found that these pathways stay around the diagonal
going from (0, 0) to (1,1). Only under some initial and
boundary conditions, some points of the pathway deviate
from the diagonal.

Overall evaluation. Despite the presence of high errors at
the borders of the training data set where one of the two
soil cells reaches a high to saturated water content, the per-
formance of the fuzzy groundwater model based on TS
models with an optimal number of rules was relatively
good. Although acceptable results are obtained, and more
complex models are able to reduce the higher errors on the
borders of high water content values, further research will
verify whether or not simple models can be improved if
they are identified on a training data set for which more
data points are placed along the steep slopes of the training
surface.
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[4] Bárdossy A, Bronstert A, Merz B. 1-, 2- and 3-dimensional modeling
of water movement in the unsaturated soil matrix using a fuzzy
approach. Adv Water Resour 1995;18(4):237–51.
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