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Abstract: Reducing the Bullwhip effect is one of several crucial problems in supply chain management.
In this paper, a centralized Model Predictive Control (MPC) strategy is applied to control inventories in a
4 echelons supply chain. The single MPC controller used in this strategy optimizes globally and finds an
optimal ordering policy for each node. The controller relies on a linear discrete-time state-space model to
predict process output and the prediction can be approached by two multi-step predictors, which depend
on measurability of the controller states. The objective function takes a quadratic form and thus the
resulting optimization problem can be solved via standard quadratic programming. Simulation results
show that centralized MPC strategy can track customer demand and maintain a proper inventory position

level with reduced Bullwhip effect.

Keywords: Model predictive control; Supply chains; Bullwhip effect; Multi-step predictor

1. INTRODUCTION

The last decades witnessed a transition of the production of
industrial goods from the local or national level to facilities
with global outreach that serve international markets. This
development has put substantial stress on the supply chain of
today’s enterprises. Traditionally, supply chain management
(SCM) employed heuristic techniques for the control of its
real process. It is becoming increasingly difficult for the
companies to compete on a global scale with only heuristic
decision-making processes. As a result a systematic SCM
method that maintains the inventory level at each node of
supply chain to satisfy its customer demands by ordering
products from the upstream node is imperative. In this paper
we develop a dynamic model of a supply chain process and
illustrate how centralized model predictive control is suitable
for reducing Bullwhip effect.

The tendency of demand variability to increase as one moves
upward in the supply chain is commonly known as bullwhip
effect. There have been many methods proposed to eliminate
or reduce the bullwhip (Dejonckheere ef al., 2003, Disney
and Towill, 2003, Lin et al., 2004). Most of these works are
based on the analysis of a class of replenishment strategies
known as order-up-to level policies.

Recent work utilizing model predictive control has been
found to provide an attractive solution for SCM. There are
several advantages of using MPC for SCM. MPC can
minimize or maximize an objective function that represents a
suitable measure for supply chain performance. MPC can be
tuned to achieve stability and robustness in the presence of
disturbance and stochastic demand. MPC was first applied to

inventory management by Kapsiotis et al. (1992) for a single
manufacturing site problem. It was developed subsequently
and there were increasing reports on the application of MPC
to SCM in the last decades. Lin er al. (2005) presented a
Minimum Variance Control system with two separate set-
points for the actual inventory level and for the WIP (Work-
In-Process) level. Their MPC control strategy outperformed
classical control in mitigating the Bullwhip effect. Wang et al.
(2008) examined the application of MPC to inventory control
problems arising in semiconductor manufacturing. Maestre et
al. (2009) proposed a distributed MPC algorithm for a two-
node supply chain. Alessandri et al. (2011) combined min-
max optimization and MPC to solve inventory control
problems of multi-echelon, multi-product distribution centre.

Previous work focused on a fully decentralized MPC strategy
(Fu et al., 2012) to update ordering decision for Bullwhip
reduction. One frequently suggested strategy for reducing
Bullwhip effect is to centralize demand information, i.e. to
make customer demand information available to every node
of supply chain. The purpose of this paper is to demonstrate
the applicability of a fully centralized MPC to the problem of
dynamic management of supply networks. With this
implementation, ordering policy for each node of supply
chain member is optimized by a global coordinator. This
control strategy is feasible for the problems where all nodes
belong to one enterprise.

The remainder of the paper is structured as follows. In section
2, the four nodes supply chain process is described and the
discrete time controller model for the overall supply chain
process is developed. Using the centralized model the two
methods for predicting future process outputs are used and
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MPC algorithm is applied in section 3. Simulation results in
section 4 show that an appropriate tuning of the parameters
can be chosen to produce the required performance.

2. SUPPLY CHAIN DYNAMICAL MODEL
2.1 Supply Chain Process Model

Consider a supply chain consisting of all nodes involved in
fulfilling a customer demand. A four nodes supply chain
network is studied in this paper including a factory F,, a

distributor D,, a wholesaler 7, and a retailer R,. For each
ie{F,,D,W,,R} the

exchange with its supplier and customer is depicted in Fig. 1.

node information and material

u["', le‘ u|D‘ dLD‘ ule a’ MyR' dLR’
l—
E, | D, |,z W, | R,
=
3 i d;V” dzke

Fig. 1. A four-node supply chain

It is assumed that decisions of ordering and delivery are taken
within equally spaced time periods (e.g. days, weeks or
months). The duration of base time period depends on the
dynamic characteristics of the network. Each node i< {F,,
D,,W,,R} is characterized by 3 variables [I' (k), IP' (k), Oi(k)],
defined as follows. The inventory level I'(k) is the number
of products at any time instant £ in stock of node i .
Inventory position IP'(k) is defined to better monitor the

change in inventory level and it includes inventory plus
products in transportation from its supplier. Standing order

0. (k) for each node is the amount of order to be processed.

Table 1. Variable mapping for MPC controller

Process variable Supply chain information

Outputs y! Inventory position IP'

Outputs v} Standing order O.

Inputs u! Amount of orders placed by node i
to upstream node i+1

Inputs u! Amount of products delivered to the

downstream node i —1 by node i

Disturbance d Demand of downstream node /-1

Disturbance d: Delivery from upstream node 7 +1

Setpoint 7 Inventory position targets

This supply chain process model is not part of the control
system. Its only purpose is to represent the plant in further
simulations and analytical work.

2.2 Controller Model

The controller model provides a prediction of future supply
chain process outputs as a function of manipulated variables
and estimated disturbances. The controller model is part of
the control system, and its states may be partially or fully

known. In the present work, the MPC controller has the form
of a linear discrete-time state-space model

x(k+1) = Ax(k) + Bu(k) (1)
Y(k)=Cx(k)+ Du(k) (2)

The input vector definition is (k) =[u’ (k) d’ (k) w' (k)

v (k)]", where the input vectors u , d , w, v represent
manipulated variables, load disturbances and 2 unmeasured
disturbances respectively. The unmeasured disturbances are
not considered in this paper but reserved for future extension
of current work. The matrices B, D in controller model can
be partitioned by B=[B, B, B, 0], D=[0 D, 0 D ].

In Fig. 1, a time delay L, is assumed for all delivery actions
together with consideration of the nominal ordering delay
such that products dispatched from node i+1 at time & will
be available to node i at time k+L +1. Take a node
ief{F, D.,W, R} ofsupply chain to analyse its dynamics. A
material balance around any network node involves the
inventory position level at time instances k& and k-1, as

well as the total incoming products from upstream node and
total outgoing products to downstream node and thus

Yi(k) :1_;(4; (k) =l (k) 3)

—-1
z
where z™' represents both of the backward shift operator and
complex variable in z-transformation. Notice that if applied
to time-dependent signal s(k), it is a backward shift operator,

ie z 7 s(k)y=s(k—-L).

Dejonckheere et al. (2003) pointed to 2 types of sequence of
events in supply chain operation and we choose the first type.
The order information can be communicated instantaneously,
but an order placed at time k& can only be processed at time

k +1. Therefore, the standing order y}(k) = O.(k) is defined:

i 1 i i
Y, (k) = ﬁ(dl (k) =14 (K)) “4)
If we assume that there is always enough stock at node i to
meet customer demand then we have u}(k) =z 'y} (k). This is

essentially a linearization assumption to simplify subsequent
analysis. It follows that d/(k) = y;(k) , which means u} (k) =
z7'd/ (k) . These relations between variables indicate that
delivery equals to order from node i —1 with one time period
delay: ui(k)=z"'d/(k)=z"u"(k). Thus model (3) can be
transformed to the following (5). This discrete time model

captures well the basic dynamic features of material and
information flow in our supply chain process.

-1
i z i i
k)= E(ul (k) —d (k) )
These models of the nodes could be reorganised to give the
overall model of supply chain in state-space form (1) and (2)

and it will be used as the nominal controller model. The
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whole supply chain is modelled as a four-input/four-output
system. The manipulated vector corresponds to the orders in
supply chain nodes, while measured disturbance represents
the forecasted demand. The controlled variables/outputs are
the vector of inventory position.

dr df
.
, 3
d,° d, E
7, F, D, o, , A R, R, 2
U » u, ¥ U, W ) b 5

‘ A centralized MPC controller

Fig. 2. Centralized control scheme for supply chain operation

We propose to apply a fully centralized MPC strategy (Fig. 2)
to the supply chain described above (in squared box). If all
the facilities are owned by the same company, inventory
position level and demand may be shared easily. Therefore,
centralized control scheme is appropriate. All available
information is fed to the controller and the ordering decisions

{ue (k),---u* (k)} are determined by a global coordinator.

3. MPC CONTROL STRATEGY

MPC is a control strategy based on the explicit on-line use of
a process model to calculate predictions of the future process
output and to optimize future control actions over a period of
time. The methods for predicting future process output can be
approached by two ways depending on whether the system
states are measurable or not. If the state of controller model is
measurable as in the case of our model, the multi-step
predictor can be developed from state space model per (7).
However, the predictor has to be obtained by state estimation
when the states are not fully measurable. The two approaches
are given in section 3.1 and 3.2 respectively.

3.1 Multi-step Predictor Based on Measured State

Based on the fact that past and present control actions affect
the future output of the process, a receding horizon principle
(De Keyser, 2003) is selected. At each time instant £ process
model (1) (2) is used to predict future output y(k+ j| k),

where j=1,...N; and N, is the prediction horizon.

When the system state can be fully measured we consider
MPC controller model in (1) and (2), which has the following
linear discrete-time state-space form (Lee et al., 1994)

x(k) = Ax(k -1+ B u(k—1)+B,d(k—-1)+ B w(k—1) (6)
y(ky=Cx(k)y+D,d(k)+Dyv(k) (7
The input vectors u, d and w represent ordering decision
for each node, end customer demand forecast as load
disturbance and un-forecasted demand. The output y is a
vector of measured inventory position, which may be
corrupted by measurement noise. It is convenient if we lump
the effect of load disturbance on the system state i.e. D, =0.

The following optimal multi-step prediction equation can be
developed by iterating difference form of model (6) and (7):

Y(k) = S™Ax(k) + I y(k| k)

+ SPAD(k) + S AU(k)
where Y(k)=[y" (k+1|k)
output prediction over the prediction horizon N, based on
measurement at time &k, AUk) =[Au’ (k| k) Au’(k+1|k)

Au"(k+N,-1|k)]" represents the future change of

®)

Y (k+N,| k)" is process

control moves over control horizon N, and we also allow the
flexibility of suppressing the last N, — N, input moves a
priori (i.e. Au(k+N, |k)=---Au(k+N,—-11k)=0 ). The
measured disturbance AD(k)=[Ad” (k) Ad"(k+1|k) ---
Ad"(k+ N, —1] k)]’ corresponds to the forecast of demand
over the control horizon N, . It explains how forecast of

customer demand (measured disturbance) influences the
predicted inventory position (output). In SCM context, taking
use of forecasted demand in the control algorithm is a
significant contributor to improved performance. They relate
to output through the following dynamic matrices:

N, _
SM =[(CA)" (CA” +CA)" Q. 4T,
j=l
[ CB, 0 0 i
N, ) N, -1 )
, | 2.C47'B, > C4”'B, CB,
S = j=1 J= 5
N, ) N, -1 ) Ny-N,+1 _
>.C47'B, Y CAT'B, Y. C47'B,
| J=1 j=1 J=1 |
I7=[1 I 17,
[ CB, 0 0 i
N, ) N, -1 )
w | 2.caTB, Y caTB, CB,
5 =1 j=! Jj=1
N, ) N, -1 ) Ny—N, +1 )
D>.C4B, Y CAB, D>, CATB,
L =1 Jj=1 j=1 i

Here A operator represents the change in the variable from
the previous sampling time (i.e. A * (k) £ #(k) —+(k —1)).

3.2 Multi-step Predictor Based on State Estimation

It is often highly unrealistic to assume all states of the system
and disturbances are measurable. When the measurement of
the whole state vector is unavailable, an estimator must be
used. We assume that future unmeasured disturbances will be
zero and use the nominal model (6) and (7) to estimate the
future state of the process

X(k+1]k)y=Ax(k | k-1 +Bu(k)+ B, d(k)+ Ke(k| k) (9)
Yk k=) =Cx(k | k—-1)+D,d(k) (10)

where X(k+1]|k)is the estimate of the state at future time
period k£ +1 based on information available at period & ,
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P(k| k—1) is the estimate of the process output at time period
k based on information at period k£ —1,é(k | k) is innovation
term of the estimator error é(k | k)= p(k)—p(k| k—1) (F(k)

is the process output) to account for unmeasured disturbances.

K is a constant gain matrix and Lee et al
recommended that is set equal to Kalman filter gain.

(1994)

We have obtained the measurements of the process output
y(k) and the measured disturbance d(k) at the start of time

period & , and calculated the state estimate X(k|k —1) and
estimator error é(k |k) from (9) and (10). The control
problem is to find optimal ordering polices u(k), which will
be sent to the supply chain nodes. In order to determine
whether a given choice of u(k) is the best, we must be able
to predict its effect on plant output. This is done for a
prediction horizon N, sampling periods. The prediction over

the horizon can be approached by (9) and (10). Because the
controller contains models for all nodes and the anticipation
of future demand, good performance can be expected.

The optimal value of the manipulated variables at time period
k+jisu(k+ j|k), where j =0,---N, —1. The future values

of measured disturbances d(k) can be structured wisely.
For simplicity, d(k) and é(k|k) are assumed to be:

ekt jlky=ek|k)y j=1---N, (11)
Under the same condition that we lump the effect of load
disturbance on the system state i.e. D, = 0, then the multistep

prediction equation can be developed by recursively using (9)
and (10) while considering the assumptions (11).

Y(k) = S"Uk) + SRk | k—1)+ S?d(k | k) + S°e(k | k) (12)
where Y(k) is the process output prediction based on the
measurements until time period &, Y(k) =[5 (kK +1|k)

P (k+ N, | k)] and U(k) is a vector of future manipulated
variables, U(k)=[u"(k|k) u'(k+N,—1|k)]" and the
last three terms in (13) are known at the start of period k.
The pulse response matrix S“ and the other matrices S*, S°
are given by the following matrices. Note that S is not

presented here and it has the similar elements as in S with
substitution of B, for B, .

CB, 0 0
CAB, CB,
s =| ca™ B, CB, ,
Ny=N,+1 )
cA™'B, cA"7B, > c47'B,
L J= i
S =[(c” (L) ca™)'r,

€S 4K

k=1

S =[(CK) (C(4+DK)

Taking use of forecasted demand in the output prediction for
supply chain control algorithm is important for achieving
good performance.

3.3 Algorithm Calculation

The predicted process output Y(k) depends on past inputs
and outputs as well as the future control scenario ‘U(k) . The
MPC algorithm tries to calculate this control scenario by
minimizing a specified objective function of any form in
general. At each time period &, the MPC controller for SCM
considers the previous information on inventory position of
each node, actual customer demand, order of each node and
future information on inventory position setpoint, forecasted
demand to calculate a sequence of current and future order
decisions on the basis of the following objective function:

N,
FR(GE Z;||Au(k+ j—1|k)||i(j)

=

min
Auhe+ 1K), j=0, N~

penalty on changes of order

3 v+ 10 =re+ 7 10]

(13)

keep inventory position at setpoint
where r(k + j| k) is the inventory position reference vector
for time k+ j projected at time k, Q(j), P(j) are penalty

weights on control error and move size respectively, which
enable the controller to satisfy inventory position setpoint
tracking, adjust order variability. The small variation of
demand at retailer end will be amplified to the upstream end,
which is known as Bullwhip effect. Penalizing excess change
of the manipulated variables is conducive to reducing the
Bullwhip effect. In addition, suppression of excess movement
of the manipulated variables leads to smoothing ordering
pattern and thus results in reduced variability on factory starts.
The objective function can be described in vector form:

min Vk) =[[yk) —R(k)]HZQ NG (14)
where reference R(k)=[r"(k+1|k), -, r'(k+ N, ;
Q =diaglQ1), ---, Q(N,)] and P =diag[P(1), ---, P(N,)].

The purpose of the control is to guide the process output from
current value ¥(k) to its setpoint w(k) along the reference
trajectory {r(k+j|k),j=1,---N,} over the
horizon. Because the demand is changing every time period
and the inventory position setpoints need to be adapted and
updated to an economic level, where customer’s demand can
be satisfied while inventory holding cost should be reduced.
A 1% order reference trajectory (De Keyser, 2003) is chosen
and the setpoints are updated according to

prediction

w(k) = D' (k) + né* (k) (15)

where D" (k) is an estimate of the mean lead time demand
( D' (k) =(L+1)D(k) ), 6"'(k) is an estimate of the
standard deviation of forecast demand over L+1 period
(6" (k)= JL+16(k)), and n is a constant chosen to meet
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a desired service level. The forecasted demand ﬁ(k) can be

approached by moving average or exponential smoothing
method.

3.4 Optimization Problem Solution

The control of supply chain is now formulated as an
optimization problem in which the control moves U(k) are

computed on the basis of (14) subject to the linear inequality
constraints. Many practical requirements in SCM may be
appropriately posed as constraints on the process variables.

a). Output variable constraints. The controller minimizes the
deviation of inventory position of each node from their set
points. But the inventory position can only stay within high
and low limit due to capacity constraints. To avoid infeasible
solution in the QP, the constraints on output are implemented
as soft constraints in the objective function, which follows a
commonly used technique in practice for addressing this
problem.

Vo (0 < () < Y, (6) (16)
b). Manipulated variable rate constraints. These are hard low
and high bounds for change (move) on order of each node. If
proper constraints on change of order are applied, demand
variation reduction can be expected within supply chain and
thus result in less fluctuation in factory thrash.

|AUK)| < AU, (k) (17)
where AU(k) is defined by AU(k) =R, U(k)—S(k) with

I 0 0 - 0
R, = —:1 1 0 ?,§(k)=[uT(k—1) 0 - 0].
o 0 - I I

¢). Manipulated variable constraints. In addition to the
constraints on change of order, there are some high limits on
the number of order decision due to transportation capacity
limitation.

0<sUtk)<U, (k) (18)

In presence of constraints (16)-(18), the MPC control law can
be solved by standard QP (Fletcher, 1981) methods based on
objective function (14) and prediction equation (8) or (12).

4. SIMULATION EXAMPLE
4.1 End Customer Demand

To illustrate the benefit of centralized MPC as an ordering
decision-making tool we examine it in following simulation.

1-0.6z"
k)= e(k
ek) 1-0.8z7" *)

-6z
¢ -1

Assume that end customer demand takes the form of an
ARMA time series as in eq. (19) with an average of § units

u) (k) = (19)

and the forecasted demand corresponds to ten time periods
moving average of actual demand. They are shown in Fig. 3.

.
W «sni"“* "‘\\
- el
b !

7H W

i i
8 5""‘%5. st P
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0 0 20 3 4 S0 & 70 B 90 100
weeks

Fig. 3. Actual and forecasted customer demand
4.2 MPC Tuning Parameters Design

One of advantages for MPC is the flexibility to tune the
parameters in the controller to meet the required performance.

Orders to suppliers

Inventory positions

120

e

B 7/ e
5 10 15 20 25 30
Weeks Weeks

Fig. 4. Simulation results with move size weights P(i) =0

In this simulation example, the prediction horizon is N, =15

while the control horizon is N, =10, both of which exceed

Inventory positions
Orders to suppliers 00

—»—Retailer

—e—Wholesaler
—e— Distributer
—e— Factory

(] 5§ 10 15 20 25 30 35 40 45 SO 0 5 1 15 20 25 30 35 40 45 50

eeks Weeks
" Orders to suppliers Imventory positions

" ﬂ%

—+— Retailer
—e— Wholesaler
—e— Distributer

! MMH\

9
B
7
6
5 —*— Retaller
4
3
2
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Units

—+— Wholesaler

—=— Distributer

—=— Factory
End dlient

55 @ 65 70 75 80 85 9 9 10 '° 85 60 o5 70 75 80 85 90 95 100
Weeks Weeks

Fig. 5. Simulation results with move size weights P(i) =1

the collective sum of the nominal order and transportation
delays for various nodes in supply chain. The long horizon is
demanded by the centralized decision-making in order to
perform necessary anticipative feed forward actions. The
output weight @ is set to 1 for each controlled variable,
while move suppression 7 is tuned to compare effect of
different weights on Bullwhip effect reduction. No constraint
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on controlled variable and manipulated variable change is
considered in the simulation.

When no penalty is applied on the move size of order in Fig.4,
the ordering decisions are adjusted aggressively at first time
periods and outputs keep a small fluctuation after 40" week.
The results in Fig. 4 only show the first 50 weeks. The move
size weights are equal for each node in Fig. 5. The magnitude
of variance on order is amplified from retailer to factory at
first time periods and from lower figures we can see order
decisions between week 50 and 100 keep a good tracking of
end customer demand variation. The oscillation on inventory
position is mainly caused by tracking the setpoints.

Orders to suppliers

Inventory positions
301

2sf /1

20|

i A . Aa
e

g il
0 10 20 30 40 50 60 70

80 9 100 10 20 30 40 50 60 70 8 90 10C
Weeks

Fig. 6. Simulation results with move size
weights P(G)=[1000;0100;0010;0005].

If we increase the weight on move size of factory order, then
its ordering decision is smoothed and stabilized as shown in
Fig. 6. This order pattern is desired because the factory thrash
will not vary violently caused by demand change from very
large amount to very low amount or vice versa. However, the
suppression on move size of order increases the variability of
inventory positions, which can be seen from week 50 to 100.

Using the definition of Bullwhip effect proposed by Disney
et al. (2003), the comparison among numerical Bullwhip
quantities generated by different weights on move size and
that caused by decentralized MPC strategy ordering policy
and conventional ordering policies (Fu er al, 2012) are
shown in Table 2. They are calculated based on simulation
samples rather than population.

Table 2. Bullwhip for different P(i) and other strategies

Retailer | Wholesal. | Distribut. | Factory

P@H (0000 1.0917 3.6828 3.3682 3.1186
POHIAT1D 0.8019 2.1586 2.3092 2.5338
POHA115) 2.5862 1.9115 0.6803 1.2998
Decentralized 0.9888 2.6820 1.7520 1.5117
OouT 3.4450 3.0731 2.8465 2.7663
Fractional 2.5935 1.9135 1.3073 1.1106

Table 2 shows that the ordering policies based on the MPC
configuration outperform the conventional ordering policies
in the sense of Bullwhip reduction. These results demonstrate
the flexibility through centralized MPC to put different
emphasis on Bullwhip suppression. When larger weight is
put on factory order, it has a smooth order pattern to reduce
variance of factory thrash. There is a trade-off because if a
desired order rate is used then large inventory position
deviations are found. From the simulation results we found
the centralized MPC strategy has better customer satisfaction

level than the other strategies and inventory holding profile is
desired because it is made as close to zero as possible while
is kept to a good level of customer satisfaction.

6. CONCLUSIONS

In this paper a method for determining ordering policy is
derived using centralized MPC scheme. Tuning parameters
play an important role in achieving desired supply chain
operation performance. It has been shown that this control
strategy can be tuned for different performance requirement.
Good performance is observed because centralized structure
has full process knowledge and signal information which
allows it to coordinate the decisions in the supply chains.
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