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Aim and outline of the thesis 

Obesity is a worldwide health problem. One of the systems involved in appetite and weight 

regulation is the cholecystokinin (CCK)-signaling system. In this thesis, we tried to develop a novel 

method to prevent and treat obesity by influencing the CCK-signaling system. CCK, a hormone and 

neuropeptide, is produced by the intestines upon ingestion of food. When it binds to the 

cholecystokinin receptor type 1 (CCK1R), which is localized on vagal afferents in the gastrointestinal 

tract, it induces a feeling of satiety. Bioactive peptides are peptides that can be released from food 

protein following enzymatic hydrolysis and that have an effect on physiological processes. These 

peptides could also be used to exert an effect on the CCK-signaling system, they are promising 

candidates to mimic the effect of CCK. The goal of this thesis is to discover novel bioactive peptides 

with the ability to activate the CCK1R, thereby inducing a feeling of satiety. Such peptides can be 

used as satiating ingredients for the development of functional foods as an aid in the battle against 

obesity. 

To reach this goal, four major steps are crucial: method development to assess in vitro CCK1R 

activity, screening of different protein hydrolysates, purification and identification of the active 

peptides and evaluation of the in vivo effect on food intake. Peptides are produced by enzymatic 

hydrolysis from well-known protein sources such as milk and soy protein and the potential of these 

hydrolysates to activate the CCK1R is measured. The active protein hydrolysates are separated in 

different molecular weight classes and purification and identification of the peptides takes place. 

Also, a new technique for peptide isolation and identification is proposed. Finally, the in vivo effect 

on food intake is assessed with rat experiments.   

The outline of this work is schematically represented in Figure 0.1. More specifically, the goals of this 

work were: 

 To set up a cell-based bioassay using CHO cells expressing the CCK1R to screen for 

compounds  with CCK1R activity. The cell-based bioassay was validated using pure 

compounds such as the natural hormone (CCK), a partial agonist (JMV-180) and an 

antagonist (lorglumide) (Chapter 2).  

 To evaluate the potential of different protein hydrolysates from several food sources to 

activate the CCK1R and compare the reliability and specificity of measurements with a 

fluorescence plate reader and a confocal laser scanning microscope (Chapter 3).  
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 To purify and to identify the active peptides by separation of the hydrolysates showing 

CCK1R activity in different molecular weight fractions using size exclusion gel filtration 

chromatography (Chapter 4).  

 To test the effect of the active peptide fractions on food intake in vivo in rats (Chapter 4). 

 To develop a novel pull-down technique using nanoscale apo-lipoprotein bound bilayer 

particles (NABBs) in which the CCK1R can be incorporated (Chapter 5) to identify CCK1R 

binding peptides 

 

Figure 0.1. Outline of this study. C= chapter. 
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Chapter 1  

Literature review on food intake and obesity in relation to 

CCK and the CCK1 receptor 

 

 

 

 

Parts of this chapter have been published in Staljanssens, D.; Azari, E. K.; Christiaens, O.; Beaufays, J.; 

Lins, L.; Van Camp, J.; Smagghe, G., The CCK(-like) receptor in the animal kingdom: Functions, 

evolution and structures. Peptides 2011, 32, (3), 607-619 and Staljanssens, D.; Smagghe, G.; Van 

Camp, J., Protein-derived bioactives affecting CCK-induced satiety. Agro Food Ind. Hi Tec 2012, 23, 

(2), 6-8 
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Chapter 1 Literature review on food intake and obesity in 
relation to CCK and the CCK1 receptor 

1.1 Introduction 

Obesity, defined as a body mass index (BMI) greater than 30 kg/m², and overweight, defined as a BMI 

greater than 25 kg/m² , is a world-wide epidemic as it was estimated that in 2008 nearly  500 million 

people were obese and in total 1.4 billion people were overweighed. Obesity and overweight form a 

serious health problem, globally being the fifth leading risk for death. Furthermore, obesity and 

overweight are a major risk factor for diabetes type 2, cardiovascular diseases (CVD), musculoskeletal 

disorders and some cancers (293). In recent decades, the mechanisms for appetite regulation and 

their potential interaction points have gained a lot of attention in view of the continuous rise in the 

prevalence of obesity (22). One important mechanism involves the hormone cholecystokinin (CCK) 

and its interaction with the cholecystokinin receptor type 1 (CCK1R), upon activation of this receptor, 

satiation and satiety is induced. (52, 102, 185). 

In this chapter, the scientific literature concerning mechanisms that regulate food intake and 

therapies against overweight and obesity will be briefly described. As cholecystokinin receptor type 1 

(CCK1R) interactions are the main subject of this PhD thesis, the functions, structure, evolution and 

the ligands of this receptor will be pointed out. As a final point, bioactive peptides, protein 

hydrolysates and proteins that influence food intake through the CCK-signaling system will be 

discussed.  

1.2 Mechanisms affecting food intake 

Food intake regulation is based on a complex balance between several mechanisms affecting 

appetite and satiety at short and long term (13, 56, 102, 128). When food is ingested, the stomach 

expands and this physical alteration can be sensed by mechanoreceptors on neurons enervating the 

stomach, giving a signal of satiety to the brain (234). Next to the physical change in our body due to 

ingestion of food, the gastrointestinal tract (GI) constantly produces different hormones depending 

on the presence of nutrients in the stomach and intestines. These hormones, also called gut 

peptides, affect appetite and satiety on the short term (within hours) (298). On the short term, a 

distinction should be made between satiation, the termination of a meal, and satiety, the time after a 

meal when a feeling of fullness is perceived and there is no desire to eat (28). However, even in 

scientific literature this distinction is not always made and the words satiation or satiety are used to 

indicate both satiation and satiety, for example in the study of Moran et al. (185), Verbaeys et al. 
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(284) and Lateef et al. (157). The search on the topic “cholecystokinin AND satiety” yields 1255 

results in ISI Web Of Knowledge, whereas the “cholecystokinin AND satiation” only yields 212 hits, 

therefore in the rest of this work, the word satiety will be used to indicate both terms.  

The production of hormones acting on the long term (within weeks) depends on the amount of 

adipose tissue in the body (265). These short and long term determinants for food intake together 

with stimuli like smell, sight and social context of food are integrated by the hypothalamus which 

finally controls eating behavior (128).  

1.2.1 Central pathways regulating food intake 

A schematic representation of the peripheral and central pathways regulation food intake is shown in 

Figure 1.1. The hypothalamus, and more specifically the arcuate nucleus (ARC) is the most important 

part of the brain for regulation of food intake. It is thought that peripheral signals (like gut peptides) 

can reach the hypothalamus via the median eminence, a circumventricular organ with an incomplete 

blood-brain barrier lying close to the hypothalamus (53). Within the ARC, two distinct groups of 

neurons exist of which one enhances food intake and the other reduces food intake. The group of 

neurons responsible for reducing food intake contains pro-opiomelanocortin (POMC) and cocaine- 

and amphetamine-regulated transcript (CART). The group of neurons that enhances food intake 

contains neuropeptide Y (NPY) and agouti-related peptide (AgRP). POMC is the precursor for α-

melanocyt stimulating hormone (α-MSH) that binds on melanocortin receptors (MC3R and MC4R) to 

suppress food intake. The receptor for CART is unknown (53, 265). NPY acts on Y receptors (Y1 and 

Y5) to increase food intake and AgRP is an antagonist of  MC3R/MC4R. POMC/CART and NPY/AgRP 

neurons project to the paraventricular nucleus (PVN). These neurons also communicate with other 

second order hypothalamic neuropeptide neurons. POMC/CART also projects to the ventromedial 

hypothalamic nucleus (VMN) and NPY/AgRP to the lateral hypothalamic area (LHA) and dorsomedial 

nucleus (DMN) (245, 265). The LHA used to be considered as the hunger centre and the VMN as the 

satiety centre (175). 

The dorsal vagal complex (DVC) within the brainstem comprises the nucleus tractus solitarius (NTS) 

and the area postrema (AP). Peripheral signals  can reach the NTS by crossing the incomplete blood-

brain-barrier in the AP. Vagal afferents from the gut convey information from the gut directly to the 

NTS. It is well established that there are neural connections between the hypothalamus and the brain 

stem to modify appetite (53, 265).  
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Figure 1.1. Simplified representation of central regulation of food intake and integration of signals from the 

periphery. Neurons inducing satiety are shown in red. Neurons inducing hunger are shown in green.  

 : direct stimulatory,  : direct inhibitory,  :  indirect pathways. Redrafted after Badman & Flier 

(13).      

1.2.2 Gut peptides: affecting food intake at short term 

Ghrelin 

To date, ghrelin is the only known gut peptide that induces hunger. It is secreted by endocrine cells in 

the fundus of the stomach. Plasma concentrations are elevated before meals and fall back to low 

levels 60 to 120 min after eating. Ghrelin signals via the growth hormone secretagogue receptor 

(GHS receptor) in the hypothalamus and on vagal afferents. To a limited extent, ghrelin might be 

produced within the hypothalamus itself where it can activate NPY/AgRP neurons and neurons in the 

LHA directly (128). Some evidence exists that antagonists of the ghrelin receptor can inhibit food 

intake and might be useful as therapeutics in the treatment of obesity (9, 128).  
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Peptide YY (PYY) 

PYY is produced by L-cells in the distal small intestine and colon upon stimulation with nutrients, 

especially fat reaching the ileum (55). It may play a role in the “ileal brake”: gastric emptying and 

jejunal motility is slowed down, resulting in enhanced satiety (171). PYY has a high affinity for the Y2 

receptor in the hypothalamus. Central injection of an agonist of the Y2 receptor resulted in reduced 

food intake (18). Gastric bypass (GBP) surgery increases the levels of PYY, suggesting that 

pharmacologically stimulating this effect might be effective to induce weight loss (128).  

Pancreas polypeptide (PP) 

PP is produced in F-cells of pancreatic islets of Langerhals upon ingestion of food, exercise and 

hypoglycaemia (140).  It binds to Y4 receptors in the hypothalamus, AP and adjacent brainstem areas 

(234, 265). PP would cause a moderate food intake reduction by decreasing gastric emptying rate  

through direct interaction with receptors in the brainstem and hypothalamus (140). It might also 

exert its diminishing effect on food intake via the vagus nerve, as vagatomy counteracts the anorectic 

effects of PP (9). Intravenous injection of PP resulted in a 25% reduction in a 24 h food intake in 

humans with a normal weight, but is rapidly degraded in circulation (18).  Y4 agonists might form 

another strategy for the development of anti-obesity therapeutics (265). 

Glucagon-like peptide 1 (GLP-1) 

Like PYY, GLP-1 is secreted by the L-cells of the small and large intestines as a response to nutrients. 

It is also expressed in neurons of the NTS. It is an incretin hormone, meaning that it stimulates insulin 

release after an oral glucose load (128, 265). GLP-1 binds to the GLP-1 receptor which is localized in 

pancreatic islets, the ARC and PVN in the hypothalamus and the AP in the brainstem (53), but might 

also exert its effect through vagal afferents (132). Together with PYY, GLP-1 may induce an ‘ileal 

brake’, enhancing the feeling of fullness and satiety (128). Several studies report that peripheral 

administration of GLP-1 causes a reduction in food intake (287). GLP-1 analogues can be useful in the 

treatment of overweight patients with diabetes type 2, but also promising results concerning a GLP-1 

analogue have been found for the treatment of obese non-diabetic individuals (10, 53). 

Oxyntomodulin (OXM) 

OXM is produced by L-cells in the intestine proportional to the caloric intake. It exerts an anorectic 

effect via the GLP-1 receptor. However, affinity of OXM for GLP-1 receptor is much lower than GLP-1 
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itself, so it is possible that it also signals via another receptor (128, 265). OXM analogues resistant to 

dipetidyl peptidase IV are being developed as anti-obesity therapeutics (67). 

Cholecystokinin (CCK) 

One of the most important hormones for induction of a feeling of satiation and satiety is the 

hormone CCK (69). CCK release, receptor interaction, function and structure are extensively 

discussed later on in this chapter. 

1.2.3 Adiposity signals: affecting food intake at long term 

Leptin 

Leptin is produced by adipocytes, proportional to the amount of fat mass (48). The concentration of 

leptin in the blood does not seem to be dependent on food intake (150). This hormone exerts its 

anorectic effect via leptin receptors on NPY/AgRP (inhibiting effect) and POMC/CART (activating 

effect) neurons in the ARC (265). It informs the brain about changes in energy balance and the 

amount of fat stored in the body (102), therefore having an effect on food intake on the long term. 

Administration of leptin to obese children with leptin deficiency results in a decrease of fat mass (80). 

Still, obesity in humans can also be related to resistant leptin receptors (188). 

Insulin 

Insulin is produced by β-cells of the pancreas. It stimulates glycogen and lipid synthesis (103). It acts 

through receptors in the ARC (265). Administration of insulin to the brain proved to reduce appetite 

in rodents and primates. It also potentiates other satiety factors such as CCK (13). 

1.3 Treatment strategies for overweight and obesity 

1.3.1 Behavioral therapy 

The most obvious treatment for obesity and overweight is lifestyle modification. The diet must be 

adapted and the physical activity must be increased. Total energy intake should be reduced, e.g. a 

deficit of 500 kcal per day results in a weight loss of 0.5 kg after one week (38). An energy intake goal 

must be set dependent on the individual’s baseline weight. Furthermore, it is important that the 

physical activity is increased and to create an exercise routine resulting in an energy expenditure of 

about 1000 kcal/week. To obtain these goals, obese and overweighed people must change their  

eating and exercise behavior and therefore might get help from a healthcare provider (38). 
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1.3.2 Pharmacotherapy 

Although caloric restriction and increased physical activity can induce substantial weight loss, the 

majority of the people relapse in old habits and weight loss is not sustained (13). In the latter case, 

obese individuals might combine lifestyle modification with medication, however not many obesity 

drugs are available on the market. One well-known obesity drug is orlistat; it is a lipase inhibitor and 

therefore reduces fat absorption in the gastrointestinal tract (207). It is marketed under the 

brandnames Alli (over-the-counter, GlaxoSmithCline) or Xenical (under prescription, Roche). After 4 

years, lifestyle modification in combination with orlistat results in 2.7 kg more weight reduction than 

lifestyle modification alone (276). Gastro-intestinal side effects like flatulence and fecal incontinence 

occur often and can be decreased by lowering fat-intake (207).  

Sibutramine, originally developed as an antidepressant, is an appetite suppressant by inhibiting the 

reuptake of norepinephrine and serotonine (38, 207). After one year, on average a weight loss of 5 kg 

is obtained by sibutramine.  Most important side effects are obstipation, insomnia, nausea and dry 

mouth (207). It used to be marketed under various brandnames such as Meridia (Abbott 

Laboratories),  Reductil, and Sibutrex. The FDA (U.S. Food and Drug Administration) asked in October 

2012 to Abbott Laboratories to voluntarily withdraw Meridia from the market because of clinical data 

indicating increased risk of cardiovascular adverse effects (81). In 2010, the EMEA (European 

Medicines Agency) also decided in 2010 to take sibutramine from the market (76) as the risks of this 

medicine were higher than the benefits.  

Another appetite suppressant is rimonabant and was marketed as Acomplia (Sanofi-Aventis). It acts 

centrally and peripherally by antagonizing the cannabinoid-1 receptors which are involved in the 

regulation of energy balance (13). It can induce a weight loss of 4.6 kg compared to placebo 

treatment. Side effects include nausea, dizziness, diarrhea and insomnia (207). The EMEA also 

decided to withdraw the marketing authorization for this product in 2007 (75).  

Novel anti-obesity targets, for example melanocortin receptor agonists, are under development, 

however it can be concluded that the pharmacological approach to treat obesity thus far has not 

been very successful (207, 305). Therefore, natural products form an interesting and safe alternative 

strategy for treatment of obesity (305). 
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1.3.3 Natural products and functional foods 

Natural products might be used for the treatment of obesity via several mechanisms including (i) 

lipase inhibition, (ii) suppression of food intake, (iii) stimulation of energy expenditure, (iv) inhibition 

of adipocyte differentiation and regulation of lipid metabolism (305).  

 (i) Natural products exist that have a similar mode of action as orlistat i.e. the reduction of fat 

absorption by inhibiting lipases in the gastrointestinal tract. Some examples are ellagic acid from 

Acanthopanax senticosus (stem bark) and a crude ethanolic extract from the leaves from Nelumbo 

nucifera. Also different types of tea (e.g. oolong, black and gree tea) are widely studied in this 

context (108, 163, 191, 271, 305), different types of polyphenols showed strong lipase inhibitory 

activity. 

 

(ii) Food intake suppressants alter the peripheral peptide satiety signals and levels of the 

neuropeptides in the CNS (305). Some examples of products that alter satiety probably through 

peripheral signals are soybean beta-conglycinin hydrolysate (122), pea protein hydrolysate (59), 

whey protein (306) and yellow pea protein (255). Hoodia gordonii, a succulent from South African 

countries, is an example of a natural appetite suppressant probably acting at the CNS (282, 283). 

 

(iii) An excess in energy can be dissipated via thermogenesis, in which UCP1 is a key player as it 

discharges the proton gradient that is produced during oxidative phosphorylation, thereby 

transforming energy into heat (305). Important natural components for thermogenesis are caffeine 

(70, 220, 292), capsaicin  ((224), catechins and green tea extract (184, 297). 

 

(iv) Adipogenesis might be inhibited by polyunsaturated fatty acids (167, 206). Furthermore, 

phytochemicals such as resveratrol, esculetin, quercetin, genistein, capsaicin and conjugated linoleic 

acids can induce apoptosis in maturing pre-adipocytes (110, 125, 131, 301, 302). The adipocyte cell 

cycle is thus an important target in the treatment of obesity (305). Also stimulation of lipolysis can be 

useful to combat obesity, however this requires that the released fatty acids are oxidized (155). This 

can be ameliorated by activation of the 3-adrenergic receptor, natural components such as 

flavonoids in the leaves of Nelumbo nucifera can have this effect (205, 305). 

 

An extensive list with natural anti-obesity components can be found in a review by Yun (305). Natural 

products can be used for the development of functional foods and food supplements that enhance 

satiety.  Doyon & Labrecque (66) propose the following definition for a functional food:  
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“A functional food is, or appears similar to, a conventional food. It is part of a standard 

diet and is consumed on a regular basis, in normal quantities. It has proven health 

benefits that reduce the risk of specific chronic diseases or beneficially affect target 

functions beyond its basic nutritional functions.” 

 

Food supplements also contain natural products, but come in the form of pills, tablets, powders, 

ampoules or drop dispensing bottles and other similar forms (274). There is a huge range of weight 

control products available on the market, e.g. products containing herbal extracts as described 

above, fatty acid-based products to reduce abdominal fat, fibre-based supplements to prevent fat 

absorption and various proteins. However these products do not make specific claims on appetite, 

but rather specific health claims that promise consumers that they will feel full longer, stay satisfied, 

reduce hunger and so forth. Considerable appetite-control health claims are submitted to EFSA, but 

only few get approved because most studies fail to meet the requirements to demonstrate sustained 

and enduring effects of foods on appetite (106). 

1.3.4 Bariatric surgery 

Some obese people do not succeed to lose weight via the methods described above. In that case, the 

only way out might be bariatric surgery. Criteria for surgery are having a BMI of at least 40 kg/m² or a 

BMI of at least 35 kg/m² together with sleep apnea, diabetes, CVD or hampered daily functioning 

because of the excess weight (37). Substantial and long term weight loss can be obtained by bariatric 

surgery and it can also reduce diabetes, hypertension, hyperlipidemia and sleeping disorders. 

Although bariatric surgery has proven its positive effect on weight loss, serious risks like 

malabsorption should be taken into account  (13).  
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1.4 The CCK(-like) receptor in the animal kingdom: function, evolution and 

structure 

The cholecystokinin (CCK) receptor is a G-protein coupled receptor (GPCR) with the typical seven 

transmembrane (TM) domains (Figure 1.2), which is mainly expressed in the brain and the alimentary 

tract. 

 

 

Figure 1.2. Signaling pathway of the CCK1R via the Gq type of G-protein coupled to the IP3/DAG cascade 

reaction (modified from Blenau and Baumann (27)). 

Binding of this receptor with its ligand, the neuropeptide hormone cholecystokinin (CCK) and/or 

gastrin, regulates diverse interesting physiological functions. To date most information is collected in 

vertebrates, specifically in humans. Of interest are that the binding of CCK on its receptor induces 

satiety, stimulates gall bladder contraction and bile secretion, plays a role in gastric juice secretion 

and gastrointestinal motility, and it should also pose an effect on nociception, panic, anxiety and 

memory and learning processes (20, 21, 54, 212). Next to vertebrates, Kawada et al. (141) reported 

in another chordate species, namely Ciona intestinalis, a CCK-like receptor (CioR protein) and peptide 

(cionin). Also, a CCK-like peptide has recently been demonstrated in Nematoda and this peptide, 

NLP-12, mediates its activity via a specific receptor as well, namely the CK receptor (133). Moreover, 

in the large phylum of Arthropoda, that is expected to represent 95% of the animal kingdom 

diversity, a peptide with similar structure and function to CCK, called sulfakinin (SK), is present and an 
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orthologous receptor, namely the SK receptor, exists (153). These observations indicate strong 

evidence that it is most likely that the CCK-like signaling system exists throughout the entire animal 

kingdom and this system has probably diverged from one common ancestor of the CCK and gastrin 

family of receptors over chordates, nematodes and arthropods/insects. In this section, a detailed 

overview is provided of the diversity of functions and the tissue-dependent expression of the CCK(-

like) receptors and the natural ligands, supporting the large repertoire of interesting physiological 

mechanisms and interactions of the CCK signaling in animal behavior, growth and development. 

Here, the human (Homo sapiens), a nematode (Caenorhabditis elegans) and the fruitfly (Drosophila 

melanogaster) are employed as representative model organisms for vertebrates (Chordata), 

nematodes (Nematoda) and arthropods/insects (Arthropoda), respectively. Furthermore, the 

evolution of this intriguing family of CCK-like and gastrin receptors, supporting the above given 

hypothesis that the signaling system may have diverged over the animal kingdom from one common 

ancestor receptor, is reviewed in detail. With the recent availability of a large number of genomes in 

these phyla of the animal kingdom (Chordata, Nematoda, Arthropoda, Echinodermata, 

Acanthocephala, Annelida, Brachiopoda, Plathyelmintes, Rotifera etc.), this knowledge can bring new 

insights on the molecular evolution of this interesting family of CCK/SK and gastrin receptors.  

1.4.1 Types, ligands and genetic background 

Table 1.1 provides an overview of the different CCK(-like) receptors with their natural ligand, their 

functions and tissue-dependent expression on the basis of three model organisms, H. sapiens, C. 

elegans and D. melanogaster, respectively, overspanning three important animal phyla as Chordata, 

Nematoda and Arthropoda. Evidently also attention goes to fishes (Pisces with Danio rerio), birds 

(Aves with Gallus gallus), frogs (Amphibia with Xenopus laevis), tunicates (Ascidiacea with C. 

intestinalis), urchins (Echinodermata with Stronglylocentrotus purpuratus) and acorn worms 

(Hemicordata with Saccologussus kowalevskii) as the whole genome of several representatives has 

been sequenced in the last years. CCK (…DYMGWMDFamide) is a well-studied amidated peptide (69) 

of which in this PhD thesis the receptors are of special interest.  

In humans two major types of the CCK receptor exist: namely the CCK1 receptor (CCK1R, previously 

called CCKA receptor, as mainly present in the alimentary tract) and the CCK2 receptor (CCK2R, 

previously called CCKB receptor, as mainly present in the brain). As other vertebrates like rats, 

chimpanzees, rhesus monkeys, dogs, rabbits, cows, birds and fish show good homology with the 

human CCK1R and human CCK2R, ranging between 87%-100% and 89%-100%, respectively, humans 

can be used as a model organism for the Vertebrata group.  
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Recently, Janssen et al. (133) discovered a CCK-like signaling system in nematodes. The C. elegans 

genome has two genes (i.e., T23B3.4 and Y39A3B.5) with high identity to the genes of the vertebrate 

CCK receptors. For the first gene, T23B3.4, the encoded protein did not have the necessary seven TM 

domains to be a GPCR, and so in turn, this gene was not further pursued. The other gene, Y39A3B.5, 

was predicted to encode four isoforms, but actually only 2 isoforms which are a combination of two 

of the predicted isoforms seem to exist and have seven putative TM domains; these two receptors 

are designated CKR-2a and CKR-2b. Then the same authors (133) used the C. elegans CCK-like 

receptors as a fishing hook and could identify two CCK-like neuropeptides: NLP-12a or also called CK-I 

(DYRPLQFamide) and NLP-12b or CK-II (DGYRPLQFamide).  

As representative of arthropods/insects, the D. melanogaster genome contains two genes that have 

been identified as putative drosulfakinin receptors, DSK-R1 and DSK-R2 (35, 121). Kubiak et al. (153) 

cloned the DSK-R1 and brought it functionally to expression; DSK-R2 remains however to be cloned. 

Sulfakinins are a group of peptides which contain the consensus structure XDYGHMRFamide, where X 

is D or E (196). Three D. melanogaster sulfakinins or drosulfakinins (DSK) have been identified in 

recent years: DSK-1, DSK-2 and DSK-0. DSK-1 (FDDYGHMRFamide) was isolated from adult D. 

melanogaster (194) and DSK-2S (sulfated DSK-2; GGDDQFDDY(SO3H)GHMRFamide) has been 

identified in the larval central nervous system (14). A third one, DSK-0 (NQKTMSFamide), has an 

atypical structure and was found inactive to the DSK-R1 (drosulfakinin receptor 1) (153, 199). The 

DSK receptors show a relatively good homology with SK receptors of other insects like the 

mosquitoes Culex quinquifasciatus, Anopheles gambiae and Aedes aegypti, and also the cockroach 

Periplaneta americana, being representatives of the Arthropoda phylum.  Homology percentages 

ranged between 49% and 100%. Finally, it has to be noted that this CCK(-like) receptor seems unique 

for the animal kingdom as it cannot be found in plants or fungi. 



 

 

Table 1.1 Overview of CCK-(like) receptors in Homo sapiens, Caenorhabditis elegans and Drosophila melanogaster: the name of the receptor, the natural ligand, function and tissue 

expression 

 H. sapiens C. elegans D. melanogaster 

Name of 
receptor 

Human-CCK1R Human- CCK2R  Ce_CKR-1 Ce_CKR-2a Ce_CKR-2b  DSK-R1 DSK-R2 

Number of 
gene 

  T23B3.4 Y39A3B.5c/b Y39A3B.5c/d CG32540, CG6881 CG6857 

Acc. Nr. NP_000721.1 NP_795344.1 NP_491918.  ACA81683.1 ACA81684.1 NP_001097023.1 NP_001097021.1 
% similarity to 
human CCK1R  

100 88  75 77 81 81 

Natural ligand Sulfated cholecystokinin 
(CCK-S) 

(Sulfated) gastrin/ 
(sulfated) 
cholecystokinin (CCK-
(S)) 

- CKI (NLP-12a) 
CKII (NLP-12b) 

Sulfated drosulfakinin 
(DSK-S) 

Drosulfakinin? (DSK) 

C-terminal 
structure 

…DY(SO3H)MGWMDF-NH2 …YMGWMDF-NH2/ 
…DYMGWMDF-NH2 

- DYRPLQF-NH2 

DGYRPLQF-NH2 
…DY(SO3H)GHMRF-NH2 …DYGHMRF-NH2 ? 

Function induce satiety; slowing down 
of GI motility; inhibition of 
gastric acid secretion; gall 
bladder contraction; exocrine 
and endocrine pancreas 
secretion; regulation of 
pancreas growth;  

stimulation of 
nociception, memory 
and learning 
processes and 
endocrine pancreas 
secretion; 
stimulation of gastric 
acid secretion, 
induce panic and 
anxiety 

- amylase secretion, fat storage, 
contraction of innervated dorsal and 
ventral Ascaris suum body wall muscle 
preparations 

increase the frequency of 
adult and larval gut 
contractions, increased 
the frequency of larval, 
pupal, and adult heart 
contractions 

increase the frequency 
of adult animal 
foregut and larval 
anterior midgut 
contractions, increase 
the frequency of larval 
heart contractions 

Tissue 
expression 

mainly in GI; chief cells, D-
cells and mucus cells in 
gastric mucosa; glucagon 
secreting cells, smooth 
muscle cells of GI: gall 
bladder, pylorus, intestines, 
sphincter of Oddi; vagal 
afferent fibers;  

mainly in brain; 
parietal, ECL-, D-, and 
chief cells of gastric 
mucosa; glucagon 
secreting cells, 
insulin secreting cells 
and pancreatic acinar 
cells; smooth muscle 
cells of GI 

- (only information available about 
ligand expression) 

(only information 
available about ligand 
expression) 

(only information 
available about ligand 
expression) 

Reference (20, 21, 54, 69, 135, 173, 187, 203, 204, 212, 227, 
231, 244, 270) 

(130, 133, 176, 177, 204) (72, 121, 153, 194, 195, 197, 198, 204) 
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1.4.2 Tissue-dependent expression 

The expression pattern of the CCK receptors in mammals seems to be comparable for different 

species (69). The CCK1R is mainly found in the gastrointestinal tract and, in humans, is expressed in 

chief cells, D-cells and mucus cells of the gastric mucosa, in glucagon secreting cells of the pancreas, 

in smooth muscle cells of the gall bladder, the pyloric sphincter, the intestines and the sphincter of 

Oddi. The CCK1R is also present on vagal afferent fibers and nerve cells of the myenteric plexus. The 

CCK2R is especially located in the brain, including the cerebellum, cerebral cortex, basal ganglia, and 

amygdala, but is also found on parietal, ECL, D and chief cells of the gastric mucosa, on glucagon 

secreting cells, insulin secreting cells and acinar cells of the pancreas and on smooth muscle cells of 

the gastrointestinal tract (69, 158, 203, 225).  

In contrast to CCK receptors, to our knowledge no information is available on the tissue-dependent 

expression of CK and SK receptors in nematodes and insects. Few data are available about the tissue 

expression of the natural ligands for these receptors. Janssen et al. (133) demonstrated the presence 

of CK in nematodes in the ring interneuron DVA (interneuron with cell body in dorsal rectal ganglion 

and process extending to nerve ring) and in the anteriorly directed process of DVA, running along the 

ventral nerve cord, toward and around the circumpharyngeal nerve ring. As in vertebrates, CK 

peptides seem to play a neurotransmitter role.  

In D. melanogaster, sulfakinins are observed in the larval superior protocerebrum, medial 

protocerebrum, thoracic ganglia and the posterior most abdominal ganglion [62]. Also in other 

insects, sulfakinins are found in the brain and the stomatogastric neurons, supporting the role of 

sulfakinins as a neurotransmitter in feeding behavior (45, 65, 72, 73). SK immunoreactivity is also 

found in the CNS of Crustacea (137). As well in vertebrates as in nematodes and arthropods, the 

peptide hormones CCK, CK and SK and their CCK(-like) receptors are present in the ganglia, which 

might illustrate their evolutionary kinship and might point at a neuromodulatory role for these 

peptides and their receptors.  

1.4.3 Functions 

As depicted in Figure 1.2, signaling through the CCK(-like) receptors happens via a Gq type of G-

protein (69, 133, 153). In vitro studies on second messengers revealed the following cascade 

pathway: agonistic binding on the receptor results in activation of phospholipase C. This enzyme 

hydrolyzes phosphatidyl-inositol-4,5-biphosphate into the second messengers: inositol-triphosphate 

(IP3) and diacylglycerol (DAG). IP3 triggers the release of Ca2+ from the endoplasmic reticulum, which 



Chapter 1 

- 16 - 

in its turn together with DAG will activate protein kinase C (PKC). PKC is responsible for the 

phosphorylation of other proteins which leads to different cellular responses (69, 203).  

CCK is produced in the gastrointestinal tract and can exert an endocrine effect via receptors in the 

brain or a paracrine effect via receptors in the gut (20, 261). In humans, CCK which acts through the 

CCK1R can induce satiety, slow down gastrointestinal motility, stimulate secretion of pepsinogen, 

inhibit gastric acid secretion by stimulation of the production of fundic somatostatin, stimulate gall 

bladder contraction and relaxation of the sphincter of Oddi, and induce endocrine and exocrine 

pancreatic secretion. CCK that binds with the CCK2R can stimulate nociception, memory and learning 

processes, panic and anxiety, endocrine pancreas secretion, gastric acid secretion and gastric mucosa 

growth. The CCK receptor can also be involved in the development of cancer (159, 256). Extensive 

reviews about the functions of CCK and its receptors in humans can be found in the recent medical 

literature (20, 54, 69, 203, 212, 227) and an overview of these functions is shown in Figure 1.3. CCK 

would also be partially involved in the regulation of the cardiovascular function (166), and the effects 

of CCK on the exocrine pancreas are mediated by CCK1R on the vagus nerve (160). In general it is 

believed that most of the above mentioned functions are mediated via binding of CCK on the CCK1Rs 

of the vagal afferent fibers (225).  

 

Figure 1.3. Overview of the different biological functions of the CCK1R and CCK2R. In the rectangles, different 

functions of CCK when it binds to the CCK1R or CCK2R are shown. In the ovals, diseases for which agonistic 

(green line) or antagonistic (red line) ligands could be used as therapeutics (20, 21, 54, 173, 212). 
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For invertebrates, Janssen et al. (133) could not show that CK peptides have an influence on the 

myotropic activity in a cockroach hindgut assay. The reason for this discrepancy is most likely that the 

structure of CK peptides is too different from that of sulfakinins to activate the SK receptor. In 

parallel, these authors could not demonstrate any effect of CK peptides on food intake or defecation 

rhythm in C. elegans. However, it should be mentioned that CKR-2 mutated C. elegans displayed a 

decrease in intestinal amylase activity and appear to have a higher fat storage. As a consequence, 

more research is needed to elicit the functions of CK peptides in nematodes and other invertebrates.  

Like CCK, sulfakinins affect several biological processes. In the Arthropoda phylum it is shown that SK 

can induce satiety in e.g. the desert locust, Schistocerca gregaria (289), the German cockroach, 

Blattella germanica (168), the cricket, Gryllus bimaculatus (179), and reduced the carbohydrate 

feeding in the blowfly, Phormia regina (65). Moreover, sulfakinins induced myotropic activity of 

foregut and hindgut in D. melanogaster and cockroaches including B. germanica (168, 195, 218), 

increased the frequency of heart contractions in the American Lobster, Homarus americanus, and D. 

melanogaster (58, 198), and stimulated the secretion of α-amylase in the scallop, Pecten maximus, 

and the red palm weevil, Rhynchophorus ferrugineus (116, 189). In summary, the current 

experiments demonstrated that for vertebrates and arthropods, CCK and SK seem to share similar 

effects on feeding behavior. We believe that the latter phenomenon opens certain interesting 

avenues for research and potential applications in obesity or metabolic syndrome treatment and/or 

pest control. 

1.4.4 Classification and evolution 

The GPCRs can be divided into seven clans named A to F (11, 83, 148). A subfamily of clan A, clan D, E 

and F does not exist in humans. Therefore Fredriksson et al. (85) made a classification of all GPCRs 

present in humans based on five main families. The CCK receptors belong to the β-group of 

rhodopsin receptors in the latter classification or to the subfamily A6 in the A-F classification.  

The predicted phylogenetic relationship of the different CCK(-like) receptors of different species in 

the animal kingdom which were obtained by blasting is shown in Figure 1.4. In this phylogenetic tree, 

five phyla can be distinguished: Chordata, Echinodermata, Arthropoda, Hemichordata and 

Nematoda. In the phylum of Chordata, next to a large selection of vertebrate species expressing CCK 

receptors, the CioR protein in the invertebrate vase tunicate (C. intestinalis) was found. Interestingly, 

a clear separation between the CCK1R and the CCK2R could be made in the vertebrate group. This 

could also be done for the phylum of the Nematoda, but here one group contains proteins which are 

similar to the two splice isoforms CKR-2a and CKR-2b of the C. elegans gene Y39A3B.5, and the other 
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group contains proteins similar to the predicted expression product of T23B3.4 i.e. CKR-1. However, 

as discussed in the introduction, the encoded protein for T23B3.4 did not yield the necessary 7 TM.  

So in the phylum of the Nematoda, one group contains functional receptors and the other one 

probably does not, which implies that only one real group is present in Nematoda. Furthermore, in 

the phylum of Arthropoda, no clear distinction between type 1 or type 2 receptors could be made. 

Remarkably, while blasting the human CCK1R for the echinoderms, the CioR protein was also found 

in the urchin Strongylocentrotus pupuratus. Also for the silkmoth (Bombyx mori) and the 

hemicordata Saccoglossus kowalevskii, atypical proteins were found that are called A9 receptor and 

orexin-like receptor, respectively.  

Even more remarkable is that some well known species showed no good homology or could not be 

found at all by blasting as for example: the hemimetabolous pea aphid Acyrthosiphon pisum 

(Hemiptera; (232); AphidBase; and also own unpublished data), the two holometabolous 

lepidopterans, the silkmoth B. mori ((183); SilkBase) and the African cotton leafworm Spodoptera 

littoralis, the honeybee Apis mellifera ((290); BeeBase) and the waterflea Daphnia pulex (wFleaBase). 

No crustacean SK receptors could be found by blasting, while some studies report about the 

presence of sulfakinins or sulfakinin DNA in Crustacea (58, 88, 137, 275). However, to the best of our 

knowledge, no studies describe SK receptors in Crustacea. So more research will be necessary to 

reveal the receptors for sulfakinins in Crustacea.  

This phylogenetic tree points at the existence of one common ancestor gene for all CCK(-like) 

receptors. In vertebrates, the CCK receptors encoding genes lie on two separate chromosomes (129), 

but the two CCKR-like receptors in D. melanogaster, DSK-R1 and DSK-R2, are encoded by two closely 

linked genes, namely CG6881 and CG6857, that are only about 30 kb apart from each other. 

Therefore, Hewes and Taghert (121) postulated that CG6881 and CG6857 arose from a duplication of 

an ancestor gene rather than independently from two different genes. Moreover, the conservation 

of the same introns in CG6881 and CG6857, as in genes coding for CCK receptors, may indicate that 

these genes are members of the same subgroup (121). Most likely this implies that CCK1R and 

CCK2R, and SK-R1 and SK-R2 evolved from the same duplicated ancestor genes, as has also been 

suggested by Janssen et al. (133).  

In contrast, in nematodes the two different receptors are encoded by two splice isoforms of the 

same gene. So probably the gene duplication happened before the divergence of deuterostomes and 

protostomes (133). This is in concordance with growing evidence that nematodes have split off the 

evolutionary tree before the arthropods (178, 213, 296). In contrast with the above theory, Kawada 
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et al. (141) postulated the hypothesis that sulfakinins and CK peptides do not belong to the CCK 

family because sulfakinins fail to activate the vertebrate CCK receptor and the precursors for CK 

peptides and sulfakinins code for several peptides. The latter authors hypothesize that the cionin 

receptor in the chordate C. intestinalis is the ancestor for both CCK receptors (141). 
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Figure 1.4. Phylogenetic tree of the vertebrate, nematode and insect CCK(-like) receptors, constructed using 

the neighbor-joining method. Bootstrap values as a percentage of 1000 replicates > 50 are indicated on the 

tree. Following sequences were selected by blasting and included in the tree: Aedes aegypti 

(XP_001654357.1), Ailuropoda melanoleuca (XP_002924347.1 and XP_002925026.1), Anopheles gambiae 

(AAR28375.1), Bombyx mori (NP_001127744.1), Bos taurus (NP_001095335.1 and NP_776687.2), Brugia 

malayi (XP_001902606.1), Caenorhabditis brenneri (CBN10364), Caenorhabditis briggsae (XP_002640196.1 

and XP_002642853.1), Caenorhabditis elegans (NP_491918. , ACA81683.1 and ACA81684.1), Caenorhabditis 

japonica (CJA02945), Caenorhabditis remanei (XP_003114892.1 and XP_003103966.1), Callithrix jacchus 

(XP_00274597 and ABQ22347), Canis lupus familiaris (AAX12114.1 and NP_001013868.1), Cavia porcellus 

(Q63931.1), Ciona intestinalis (NP_001027945.1), Culex quinquefasciatus (XP_001866738.1), Danio rerio 

(XP_697493.2), Drosophila erecta (XP_001977700.1), Drosophila melanogaster (NP_001097023.1 and 

NP_001097021.1), Drosophila persimilis (XP_002026777.1), Drosophila pseudoobscura (XP 002134525.1 and 

XP_002134520.1), Equus caballus (XP_001504633.2 and XP_001499250.1), Gallus gallus (NP_001074970.1 

and NP_001001742.1), Harpegnathos saltator (EFN85362.1), Homo sapiens (NP_000721.1 and NP_795344.1), 

Macaca mulatta (XP_001084186.1 and XP_001102094.1), Mastomys natalensis (AB41677.1), Monodelphis 

domestica (XP_001380242.1), Mus musculus (NP_033957.1 and NP_031653.1), Oryctolagus cuniculus 

(NP_001075852.1 and NP_001164594.1), Pan troglodytes (XP_526545.1 and XP_521813.1), Pediculus 

humanus corporis (XP_002433137.1), Periplaneta americana (AAX56942.1), Pristionchus pacificus 

(PPA24381), Pongo abelii (NP_001127690.1 and XP_002814697.1), Rattus norvegicus (NP_036820.1 and 

NP_037297.1), Saccoglossus kowalevskii (NP_001161621.1), Strongylocentrotus purpuratus 

(XP_001193733.1), Taeniopygia guttata (XP_002191034.1), Tetraodon nigroviridis (CAG05857.1), Tribolium 

castaneum (XP_975226.2 and XP_972750.1), and Xenopus laevis (NP_001079277.1). C. elegans NPR-1 

(NP_508816.1), C. familiaris bradykinin receptor (NP_001014306.1), Carassius auratus vasoactive intestinal 

polypeptide receptor (AAB05459.1) and H. sapiens secretin receptor (AAA64949.1) were used as an 

outgroup. 

  

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=10141
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1.5 Structure of CCK and CCK receptor binding 

CCK exists in different lengths with 58, 33, 8 or 4 AA residues as the molecule can be prolonged at its 

N-terminus. It is amidated at the C-terminus. Interestingly, the CCK1R requires (at least) the C-

terminal heptapeptide, and the CCK2R only needs the C-terminal tetrapeptide as a requisite for 

binding and biological activity. The CCK2R also binds to gastrin since this peptide has the same C-

terminal tetrapeptide-amide as CCK (69). The tyrosine in position 2 can be sulfated (79, 228) (See 

Figure 1.5 for indication of the positions). This sulfated CCK (CCK-S) has a 500 to 1000 fold higher 

affinity for the CCK1R than for the CCK2R. The CCK2R binds to gastrin and CCK with the same potency 

and only has a slightly (3- to 10-fold) higher affinity for the sulfated natural ligands (68, 126). 

As depicted in Figure 1.5b, the CCK receptor is a typical GPCR as it has seven TM domains (148). It has 

a conserved disulfide bond linking between the first and second extracellular loop (ECL I and ECL II) 

(181) and it also contains another disulfide bond within its amino terminus (61, 210). According to a 

model primarily based on mutagenesis data (7, 93-95, 142), the two most important interactions 

which account for the selectivity of the CCK1R for sulfated versus nonsulfated CCK are M195 and 

R197 in ECL II of the CCKR1. Other key interactions for binding of CCK with the CCK1R included 

juxtaposition of the N-terminus of CCK with the extracellular residues of the CCK1R on top of TM I 

(W39 en Q40), contacts between D in position 7 of CCK with R336 in TM VI and proximity of the 

amidated C-terminus with N333 in TM VI. This model for the human CCK receptors is reviewed in 

detail by Foucaud et al. (84). An overview of the contact points following this model is given in Figure 

1.5b and c. 
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(a) Asp – Tyr(SO3H) – Met  –    Gly    –    Trp    –   Met    –   Asp   –    Phe     –  NH2 

   1           2                  3             4             5               6             7             8 

 

(b) 

 
(c) 

 
 

Figure 1.5. (a) Sulfated cholecystokinin octapeptide (CCK-8S), numbers under the amino acids 

indicate their position. (b) Detail of primary structure of the human CCK1R with binding sites of 

CCK-9S (RDY(SO3H)MGWMDF-CONH2 in which the two methionine residues are substituted with 

threonine and norleucine to increase stability). Contact points between amino acids of CCK and 

the CCK1R have the same color ECL: extracellular Loop, ICL: intracellular Loop, TM: 

transmembrane domain (7). Side view of the three-dimensional refined model of the active high-

affinity CCK1R binding site. Only the side chains of the identified amino acids of the CCK1R (in 

green) that are in interaction with CCK-8S (orange) are shown (7). 
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Multidimensional NMR studies have also been used in the development of a CCK1R receptor binding 

model (97, 99, 210). Important features included: contacts between D in position 7 of CCK8 and Y338 

of the CCK1R, M in position 6 and N333, W in position 5 and A334, M in position 3 and W39, and Y in 

position 2 and also W39. But these studies are complicated by the use of a nonsulfated CCK ligand. As 

mentioned above, nonsulfated CCK has a low affinity for the CCK1R, and so it is possible that the 

experimental constraints from these studies are not relevant to the high affinity CCK ligand 

complexes.  

Next, it is of interest that another model has been developed based on photoaffinity labeling studies 

(8, 60, 63, 64, 104, 105, 136, 181). In this, binding of CCK-S with the CCK1R involved F107, K105 and 

L99 in ECL I, L199 in ECL II, E344 and R346 in ECL III, and W39 in the N-terminus of the CCK1R. This 

model also showed that R197 is important in the binding of the sulfated tyrosine at position 2 of CCK. 

Fluorescence spectroscopy is another powerful tool to define the occupation of different 

microenvironments of the ligand-bound CCK receptors (112-114). A number of fluorescent CCK and 

gastrin analogues has been developed, some of which pose high affinity to the receptors and 

subsequently exert high biological activity (111, 115). Hence, these data provided evidence for a 

differential docking of CCK in the CCK1R and the CCK2R.  

The first 3D-model of the CCK receptor was created upon the crystal structure of the rhodopsin GPCR 

(6). Recently, in 2009, based on the data of photoaffinity labeling and fluorescence spectroscopy, two 

homology models of the CCK receptor were built with regard to the crystal structures of the β2-

adrenergic receptor and A2a-adenosine receptor (64). Interestingly, these new agonist ligand-

occupied receptor models agree with the existing experimental data. An overview of the different 

contact points between CCK and the CCK1R found in the current literature are given in Table 1.2 and 

is compared to the molecular model built by Archer-Lahlou et al. (7)  (Figure 1.5c). Table 1.2 

demonstrates that these contact points could not or could only be partially confirmed by the use of 

other techniques as multidimensional NMR and photoaffinity labeling. Therefore, it is recommended 

that future research should elucidate these discrepancies to converge to a model covering the 

different sets of data.  
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Table 1.2 Overview of contact points between CCK and CCK1R 

Ligand 
residue 

Contact point in 
receptor  

Place Ref.  Confirmation by molecular model as depicted 
in Figure 1.5c. (7) 

Primarily based on mutagenesis 
N-terminus W39 

Q40 
N-terminus (142) Yes 

Yes 
Sulfated Y2 M195 

R197 
ECL II (94, 95) Yes 

Yes 
Nle 6 
(MetNle) 

L50 
I51 
L53 
C94 
I352 
L356 
M121 

TM I 
 
 
TM II 
TM VII 

(7) 
 
 
 
 
 
(77) 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 

D7 R336 TM VI (93) Yes 
F8 V125 

F218 
W326 
 I329 
F330 
Y360 

TM III 
TM V 
TM VI 
 
 
TM VII 

(77) Yes 
Yes 

Yes 

Yes 

Yes 
Yes 

Amidated C-
terminus 

N333 TM VI (93) Yes 

Primarily based on multi-dimensional NMR 
Y2 W39 N-terminus (97-99) Interaction with N-terminus of ligand 

confirmed 
M3 W39 N-terminus Interaction with N-terminus of ligand 

confirmed 
W5 A334 TM VI No interaction between the ligand and A334 

of the receptor confirmed 
M6 N333 TM VI Interaction with C-terminus of ligand 

confirmed 
D7 Y338 ECL III No interaction between the ligand and Y338 

of the receptor confirmed 
Primarily based on photoaffinity labeling 
Y2 R197 ECL II (8) Yes 
M3 L199 ECL II (64) No interaction between the ligand and L199 of 

the receptor confirmed 
G4 R346 ECL III (105) No interaction between the ligand and R346 

of the receptor confirmed 
W5 L99 

K150 
ECL I 
ICL II 

(63) No interaction between the ligand and L99 of 
the receptor confirmed 

M6 F107 ECL I (64) No interaction between the ligand and F107of 
the receptor confirmed 

F8 W39 N-terminus (104, 136) No interaction between F8 of the ligand and 
W39 of the receptor confirmed 
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1.6 Antagonists and agonists for the CCK receptor 

An overview of diseases which possibly might be treated using CCK1R/CCK2R a(nta)gonists is shown 

in Figure 1.3. Over the years, various CCK receptor antagonists have been developed and are used in 

research (212), although the only drug of this class that has been widely marketed to date is the anti-

ulcer drug proglumide (180). Newer drugs have since been developed which are selective for one or 

other of the CCK receptors; good examples are loxiglumide and dexloxiglumide. Although several CCK 

receptor antagonists have reached different clinical test phases, the complex and versatile 

physiological actions of CCK have slowed down their clinical development (119). CCK antagonists 

might be used against ulcers, pancreatitis, pancreatic disorders pancreatic cancer, irritable bowel 

syndrome, gastric secretion disorders, gastric motility disorders, gastro-oesophagal reflux, anxiety 

disorders, pain, sleeping disorders and eating disorders. Hence, CCK receptor antagonists have a very 

big potency for the treatment of several diseases, but more research is necessary to screen for highly 

selective antagonists with lesser side effects and high bioavailability (119, 212). Lorglumide and 

devazepide are CCK1R antagonists that are often used in in vitro research (26). 

Considering agonists, the first selective molecules were peptides (i.e. A-71378, A7-71623 and AR-

15849), but recently also 1,5-benzodiazepine analogues (i.e. Gl18177X and GW5823) and a thiazole 

derivative (SR14643) have been developed as selective agonists (20). Radiolabeled CCK2R agonists 

can be used to localize CCK2R expressing tumors (101, 174). Another CCK-peptide analogue is JMV-

180. It acts as a partial agonist, but depending on the situation, e.g. tissue expression and species 

involved, it can also behave as a full agonist or dual agonist/antagonist (87, 216, 303). To date it can 

be used to study signaling pathways and activation mechanisms of the CCK1R (5, 253). CCK1R 

agonists can possibly be used in the treatment of eating disorders and obesity (269). Thusfar, no 

CCK1R agonists have been found which can effectively reduce body weight in humans. Monotherapy 

alone with CCKR agonists might not be an effective strategy to treat obesity (138). Also for other 

diseases, as panic disorders and cancer, the same conclusion was drawn that monotherapy with CCK 

antagonists is not an effective treatment (21, 43). Pentagastrin, a CCK2R agonist, can be used to 

evoke panic attacks to study their treatment (33). However, long term administration with various 

CCK2R antagonists (CI-998 and L-356,260) did not lead to the prevention of panic disorders (1, 208, 

257). CCK2Rs are expressed or overexpressed in many human tumors, and it seems that CCK-related 

peptides can cause tumor growth (15, 230). To suppress tumor growth, Chau et al. (43) suggested 

that a combination of different agents might be a more effective strategy to treat cancer, and 

possibly this hypothesis is also valid for the treatment of obesity and panic disorders. However, more 

animal and controlled human intervention studies are necessary to elucidate the putative 
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therapeutic potential of CCK receptor ligands (20, 119) and this also in combination with other agents 

as described above. Hence, molecular models can help to reveal these complex ligand-receptor 

interactions and to develop new lead structures for CCK antagonists and agonists, whereupon, Allen 

and Roth (2) demonstrated the importance of drugs active at GPCRs. 

1.7 Bioactive peptides, protein hydrolysates and proteins affecting CCK-

induced satiety: mechanisms and active components 

In this section, protein-derived food substances that contain the potential to influence satiety 

through the CCK-signaling pathway, will be described. CCK administration to man significantly 

reduces food intake in the short term (144). As depicted in Figure 1.6, the CCK signaling can be 

influenced by affecting CCK release (interaction point 1a and 1b) or by interacting with the CCK1R 

(interaction point 2). 

 

Figure 1.6. Schematic representation of different interaction points to influence the CCK-signaling 

mechanism. (1a) Stimulation of CCK release by enteroendocrine I-cells with nutrients; mechanism is 

represented in green. (1b) Inhibition of luminal trypsin activity in favor of trypsin-sensitive CCK-releasing 

factors (RF); mechanism is represented in red. (2) Direct CCK1R interaction with bioactive peptides; 

mechanism is represented in blue. 
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The level of CCK release can be increased via two major interaction points: stimulation of 

enteroendocrine CCK-releasing I-cells with nutrients (interaction point 1a) and inhibition of luminal 

trypsin in favour of CCK-releasing factors (interaction point 1b). The different interaction points, the 

methods for detection of food components that have potential to influence one of these interaction 

points and the associated proteins and protein hydrolysates will be described in this section. 

1.7.1 CCK release 

1.7.1.1 Mechanism 

CCK is secreted by enteroendocrine I-cells in the proximal small intestine. The apical membrane of 

these cells contains microvilli which are able to sense nutrients and releasing factors in the lumen of 

the intestine (Figure 1.6). When the microvilli are stimulated, CCK is released from the basolateral 

site of the cells into the interstitial space where it can bind to CCK receptors located in the 

gastrointestinal tract (162). CCK release can be enhanced by optimizing the nutrients that stimulate 

the enteroendocrine I-cells to produce CCK (Figure 1.6, interaction point 1a). Furthermore, CCK 

release by enteroendocrine I-cells is also induced by endogenously produced releasing factors, 

including luminal CCK-releasing factor (162), diazepam binding inhibitor (161) and monitor peptide 

(186). These releasing factors are deactivated by trypsin, but this can be avoided by nutrients 

competing for trypsin or trypsin inhibitors (162). Therefore, nutrients enriched in trypsin inhibitors 

form a second opportunity to stimulate CCK release (Figure 1.6, interaction point 1b). 

1.7.1.2 Methods for screening and active food components 

Stimulating CCK release by enteroendocrine I-cells 

The ability of food components to stimulate CCK release can be tested in vitro with STC-1 cells (a 

mice intestinal tumor cell line) (233) where the amount of CCK produced by the cells is measured 

after addition of the product (50). This can also be tested in vivo, where upon ingestion of the 

product the concentration of CCK in the blood is determined (202). An overview of the food 

compounds with an effect on CCK release is given in Table 1.3. Many proteins and protein 

hydrolysates from plant or animal origin showed potential to increase CCK release from 

enteroendocrine I-cells. Intact proteins as well as protein hydrolysates seem to be able to stimulate 

CCK release (202). As the list of proteins and protein hydrolysates having an effect on CCK release is 

rather long (51, 82, 90, 262, 264), this might point to a non-specific nutrient sensing mechanism on 

the CCK-producing cells (82). Still, most studies show a difference in the potential of different 

proteins or protein hydrolysates to stimulate CCK release (51, 90, 262, 264) and Nishi et al. (2003) 
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reported that the peptide fragment VRIRLLQRFNKRS in soybean -conglycinin induces a specific CCK-

releasing and appetite-suppressing effect (201). More research is needed to reveal the exact 

nutrient-sensing mechanisms that induce CCK secretion by enteroendocrine I-cells to be able to 

develop targeted CCK-releasing food compounds. 

Table 1.3 Food components possibly affecting CCK release 

Stimulation of enteroendocrine cells 

Wheat protein (90) 

Pea protein (90) 

Pea protein hydrolysate (82, 90) 

(enzymes used: subtilisin + proline-specific endoprotease) 

Dolicholin peptone (51 kDa protein from country bean) (263) 

Soy protein hydrolysate(82) 

Soybean -conglycinin peptone (202) 

Soybean -conglycinin  51-63 fragment (201)* 

Soybean -conglycinin bromelain (264) 

Potein   (potato extract) (192) 

Potein   hydrolysate (192) 

(enzymes used: pepsin and/or pancreatin) 

Potato protein hydrolysate (82) 

Casein (90) 

Casein protein hydrolysate (82) 

Whey protein hydrolysate (82) 

Egg hydrolysate (90) 

Blue whiting muscle hydrolysate (51) 

(most active molecular weight range: 1000 -1500 Da) 

Brown shrimp head hydrolysate (51) 

(most active molecular weight range: 1000 – 1500 Da) 

Pork thigh meat peptone (262) 

Chicken breast meat peptone (262) 

Inhibition of luminal trypsin 

Potein  (192) 

Potato proteinase inhibitors concentrate (149) 
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Inhibition of luminal trypsin activity to protect releasing factors 

Trypsin inhibitors are especially known as an anti-nutritional factor in legume seeds (241). The 

trypsin inhibitory activity can be measured with a colorimetric reaction in which benzoyl-L-arginine-

p-nitroanilide is used as a substrate (139). An overview of food protein hydrolysates containing 

trypsin inhibitors of which the positive effect on the luminal CCK-releasing factor has been 

demonstrated, is given in Table 1.3. Slendesta  is a patented food ingredient from Kemin Industries 

Inc. (Des Moines, IA) that contains potato proteinase inhibitors claiming satiety induction via this 

mechanism (patent: US6414124). Soy and potato seem to be especially rich in these trypsin inhibitors 

(34, 149). 

1.7.2 CCK1R activation 

1.7.2.1 Mechanism 

The CCK1R present on vagal afferents, is especially involved in inducing satiety. Vagal afferents are 

located in the gastrointestinal muscle layers and within the mucosa in the lamina propria in the 

proximity of the basolateral membrane of the enteroendocrine cells (225). Food-derived peptides 

might be able to reach this receptor and mimic to a certain extent the effect of CCK, therefore being 

called CCK1R agonists, as depicted by interaction point 2 in Figure 1.6. 

1.7.2.2 Methods for screening and active food components 

CCK1R agonists screened with cell-based bioassay 

CCK1R activation can be measured using CHO cells transfected with the CCK1R. This method is 

extensively described in Chapter 2. An overview of protein hydrolysates that activate the CCK1R is 

given in Table 1.4. It should be remarked that these protein hydrolysates require a rather high 

concentration (0.01 – 1 g/l) (82) to show some CCK1R activation compared to CCK itself, which shows 

full CCK1R activation at a concentration of 1 nM (± 1 µg/l). Another difficulty is the fact that the 

bioactive peptides need to cross the epithelium intactly to be able to reach the CCK1R in the lamina 

propria. Oligopeptides containing more than 4 amino acids can be taken up by paracellullar and 

transcellular routes. In a Caco-2 intestinal transport model, transepithelial transport of peptides with 

up to 9 residues has been observed (246), this issue will be further discussed in paragraph 6.3.3.1.  
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Table 1.4 Peptides possibly activating CCK1R 

CCK1R agonists (based on cell-based bioassay) 

Soy hydrolysate (82) 

Potato hydrolysate (82) 

CCK-like peptides (based on radiomimmunoassay) 

Prolastin (fish protein hydrolysate) (214) 

Atlantic cod backbones hydrolysate (250) 

(enzyme used: protamex) 

Cod extracts (223) 

Shrimp extracts (223) 

 

CCK/gastrin-like peptides screened with radioimmunoassay 

Radioimmunoassay to screen for CCK/gastrin-like peptides was performed using synthetic iodine 

125-radiolabeled gastrin and synthetic gastrin as a standard based on the binding competition for 

antibodies (214). Protein hydrolysates from fish or shrimp were screened and proved to contain CCK-

like peptides as can be seen in Table 1.4. In contrast, muscle protein hydrolysate from smooth hound 

did not contain any CCK-like peptides (31). It should be taken into account that although some 

peptides show CCK-like radioimmunoactivity, this is no proof but only an indication for being CCK1R 

agonist as this needs to be confirmed in a CCK1R activation test (as described in the previous 

paragraph). 

An extensive amount of proteins and protein hydrolysates increasing the release of CCK has been 

found. This is in contrast to the few protein hydrolysates that are able to activate the CCK1R, which 

seems to be a more specific process. Thus far, mostly protein hydrolysates have been evaluated for 

their potential to induce satiety via a CCK-involved mechanism, but also non-protein food 

components as shown for thylakoids (147) and for example phenolic compounds might be promising 

compounds in this context (235). Also certain free fatty acids play an important role (109). Next to 

the 3 interaction points for influencing CCK-induced satiety (Figure 1.6), other interaction points 

might exist. For example, it also might be possible that some nutrients increase the production of 

CCK-releasing factors. Next to the screening of CCK1R activating bioactive peptides in this work, 

further research should focus on food ingredients combining an effect on different CCK interaction 

points and even on other weight-regulating mechanisms because an integrated approach might form 

the key to successfully combating obesity. 
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Chapter 2 Time-resolved quantitative analysis of CCK1 
receptor-induced intracellular calcium increase 

2.1 Introduction 

As mentioned in paragraph 1.4.3, the CCK1R is a G-protein-coupled receptor, which upon activation, 

elicits an inositol trisphosphate (IP3)-induced calcium release from the endoplasmic reticulum (69, 

203). This intracellular Ca2+-flux is a measure for the activation of the receptor and can be visualized 

with fluorescent sensor dyes (182). Different cell systems functionally expressing one of the CCKR 

subtypes exist and can be used to screen for ligands with agonistic or antagonistic CCKR binding 

activity (25, 71, 252, 254). However, the use of diverse cell types, fluorescent dyes and measuring 

techniques makes it difficult to compare the results from different studies on the effectiveness of 

several ligands. Here, we established a fully controlled, standardized and sensitive cell-based 

bioassay in 96-well plates to screen and characterize components with CCK1R activity. For validation, 

the changes in fluorescence intensity observed with a population average technique using a 

fluorescence plate reader were compared with a single-cell approach using confocal microscopy. 

Cross-validation of both measuring techniques resulted in a sensitive and specific assay, which can be 

used for high throughput screening of molecules and protein hydrolysates that interact with the 

CCK1R.  

2.2 Materials and Methods 

2.2.1 Cell lines and products 

CHO (Chinese Hamster Ovary) cells functionally expressing the rat CCK1R (CHO-CCK1R) were 

established by Prof. Peter Willems (254) and native CHO-K1 cells were obtained from Prof. Georges 

Leclercq (Ghent University Hospital, Department of Clinic Biology, Microbiology and Immunology, 

Ghent Belgium). Advanced Dulbecco’s modified Eagle’s medium and Ham’s F12 medium (1:1) 

(DMEM-F12), fetal bovine serum (FBS), geneticin (G-418 antibiotic), Fluo-4AM, Pluronic F-127 and 

Hank’s buffered salt solution (HBSS) were purchased from Life Technologies (Paisley, UK), 

probenecid, lorglumide ((±)-4-[(3,4-dichlorobenzoyl)amino]-5-(dipentylamino)-5-oxopentanoic acid 

sodium salt; CR-1409), bovine serum albumin (BSA) and HEPES from Sigma-Aldrich (St.-Louis, MO), 

sulfated cholecystokinin octapeptide (CCK-8S) and thrombin receptor activating protein (TRAP-7) 

from Bachem (Weil am Rhein, Germany), and JMV-180 (Boc-Tyr(SO3H)-Nle-Gly-Trp-Nle-Asp-2-

phenylethylester) from Research Inc. (Barnegat, NJ). Clear black bottom 96-well plates were 

purchased from Greiner (Frickenhausen, Germany). 
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2.2.2 Cell culture 

CHO-CCK1R and CHO-K1 cells were grown at 37 °C and 5% CO2 in advanced DMEM-F12 

supplemented with 1% streptomycin and penicillin, 1% L-glutamine and 10% FBS. The medium of 

CHO-CCK1R cells was supplemented with 10 µl/ml geneticin (50 mg/ml) to maintain a stable 

transfected culture. 

2.2.3 Cell-based bioassay to screen for CCK1R activity 

The determination of the intracellular free Ca2+ concentration was adapted from a method previously 

reported by Foltz et al. [1]. The fluorescent probe that was used in this assay is the hydrophobic Fluo-

4AM, a cell-permeant acetoxymethyl (AM) ester, which is hydrolyzed by cellular esterases and 

becomes fluorescent upon Ca2+-binding. One half of a 96-well plate is seeded with CHO-CCK1R cells 

and the other half with CHO-K1 cells, in both at 40,000 cells per well. Cells were incubated at 37 °C 

and 5% CO2 for 20-24 h to allow attachment. Next, the medium was removed and 50 µl of DMEM-

F12 supplemented with 4 µM Fluo-4AM, 0.02% (w/v) of the surfactant pluronic, 4.55 mg/ml BSA, and 

1.6 mM of the anion transport inhibitor probenecid was added to the wells for 1 h at 19 °C, as was 

determined as the ideal dye loading temperature in preliminary experiments. Subsequently, the 

wells were washed twice with 150 µl of HBSS supplemented with 20 mM HEPES, 2.5 mM probenecid 

and 10 mg/ml BSA and finally 100 µl of modified HBSS was added to the wells. Lorglumide was added 

at a final concentration of 0–40 µM, 30 min before the start of the experiment. Receptor activation 

leads to a rapid increase in intracellular calcium concentration (within 0–30 s). Hence, fluorescence 

intensity was measured kinetically. Two setups were used: a fluorescence plate reader and a confocal 

microscope. In the first setup, an Infinite pro 200 (Tecan, Männedorf, Switzerland) multimode plate 

reader with automated injection system was handled using i-control™ software. Excitation and 

emission wavelengths were set to 480 nm and 520 nm respectively, using Quad4 monochromators™ 

technology. In the second setup, a Nikon A1r confocal laser scanning microscopy system (Nikon 

Instruments Inc., Melville, NY) was used, mounted on a Nikon Ti-E inverted epifluorescence 

microscope and equipped with a microscope incubator, Perfect Focus System and resonant scanner. 

Multiwell dishes were screened, with a Plan Fluor 40 x/0.75 dry objective at full field of view (636 µm 

x 636 µm), resulting in a pixel size of 1.24 µm x 1.24 µm. Fluo-4AM was excited using a 488 nm multi-

line Ar laser and fluorescence was detected through a 525/50 nm bandpass filter. 

On both platforms a similar measurement protocol was applied. Measurement started 30 min after 

washing to allow complete intracellular cleavage of the Fluo-4AM ester. After washing, the plates 

were immediately placed in the plate reader or microscope incubator to equilibrate at the 
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measurement temperature of 31 °C, as determined in preliminary experiments. Each well was 

measured separately. Fluorescence was acquired at 2.5 fps with the plate reader and 3 fps with the 

confocal microscope. Ligands were added in fluxo, i.e. during acquisition: the basal fluorescence of a 

well was measured for 6 s after which 100 µl of the sample (diluted in modified HBSS) was added 

instantaneously while the measurement continued for another 34 s. In the plate reader, sample 

addition was performed automatically, while in the confocal microscopy the sample was added using 

an electronic repeating pipette (Handystep, BrandTech Scientific Inc, Essex, CT). Each sample 

concentration was measured in 5 wells (technical replicates) for both cell types and every experiment 

was repeated 3-4 times (biological replicates).  

2.2.4 Image analysis 

Confocal images were analyzed with ImageJ freeware (National Institute of Health, Bethesda, MD). 

For population average measurements, the average fluorescence intensity (per pixel) over the entire 

image was measured in unprocessed recordings. For single-cell analysis, the following workflow was 

designed: first, images were aligned by means of a rigid registration (translation and rotation) to 

remove superimposed motion e.g. due to thermal drift. Next, an average projection was made of the 

complete time stack to provide a well-contrasted image of all the cells by averaging out the noise. 

This approach of temporal averaging works efficiently even in the absence of an overt calcium flux 

(e.g. in CHO-K1 cells, cfr. Figure 2.1). An extra smoothing step, by means of Gaussian filtering 

(sigma=1) removed the remaining noise and allowed for segmenting the cells in a subsequent 

thresholding step (Huang autothreshold). Touching cells were separated by local maxima finding and 

conditional region growing, resulting in a complete set of regions of interest (ROI), corresponding to 

the cell boundaries. All ROI were inspected and manually corrected, where required. Finally, a 

particle analysis was performed to measure the average pixel intensity per cell ROI (i.e. integrated 

intensity in a cellular ROI, divided by the ROI area in pixels) through time. This metric was selected to 

avoid cell-size dependent variations in signal intensity. Single cell results were processed and 

summarized using Matlab 7.10.0 (R2010a, The Mathworks Inc., Natick, MA). 
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Figure 2.1. Illustration of temporal averaging for image segmentation. (a) original raw image of one single 

time point of a CHO-K1 cell labeled with Fluo-4AM acquired for 40 s at 3fps. (b) average intensity projection of 

the complete time stack (40 s, 150 frames) (c) result of segmentation, displayed as white outlines 

superimposed on the average projection image. Scale bar represents 100 µm. 

2.2.5 Data analysis and statistics  

For calculation of dose-response curves the following procedure was applied. Per time point i, 

fluorescence measurements (Fi) were normalized to the average fluorescence before sample 

addition, which corresponds to the average fluorescence in the first 6 s of the recording (F0), thereby 

correcting for differences in the amount of basal fluorescence, due to variations in cell density, dye 

concentration and/or free calcium concentration. Average normalized fluorescence values of 5 

technical replicates were corrected for non-specific responses and background fluorescence by 

subtracting the average normalized fluorescence values obtained for CHO-K1 cells per time point and 

per condition. Hence, the relative fluorescence (RF) was calculated using the following formula: 

 

 and plotted as a function of time. Subsequently, a single metric was derived from the RF curves: the 

net response was calculated as the sum of relative fluorescence values, from the moment of sample 

addition until the end of the acquisition (net response = ). All net responses were 

expressed as a percentage of the maximal net response of CCK-8S (induced by a concentration of 1 

nM). The inhibiting effect of the antagonist was calculated as 100% minus the net response. From 

these results, sigmoid dose-response curves for the percentage of the maximum 

response/percentage of inhibition versus sample concentration were derived with Prism v4 software 

(GraphPad Prism, La Jolla, CA) and median response concentrations, i.e. effective EC50 and/or 

inhibitory IC50 values, were calculated for the agonists and antagonists, respectively (286). The EC50 
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value represents the agonist concentration at which 50% of its maximum response is reached. The 

IC50 value is the antagonist concentration, which inhibits 50% of the maximum response of CCK-8S (1 

nM). The median response concentrations of agonists and antagonists are the mean of at least three 

independently repeated dose-response curves (biological replicates), which are based on 5 repeated 

measurements (technical replicates) for each concentration.   

Median effect concentrations were statistically compared in S-plus (TIBCO Software Inc., Palo Alto, 

CA) by means of a One-way ANOVA analysis and the significance of individual differences were 

calculated using Tukey post hoc tests. 

2.3 Results 

2.3.1 Optimization 

First, we optimized and benchmarked our assay in terms of sensitivity, stability and specificity. When 

using fluorescent dyes, there is a risk of active dye uptake (e.g. by pinocytosis) leading to 

compartmentalization of the dye in vesicles (170). Indeed, using epifluorescence microscopy, we 

found that the fluorescent dye showed significant compartmentalization when the dye was loaded at 

37 °C. By lowering the loading temperature to 19 °C, we observed a homogeneous cellular 

distribution of the dye indicating passive diffusion into the cell. 

Given that a complete experiment, corresponding to one 96-well plate, takes about one hour to 

screen, it is imperative that the cellular response in different wells remains stable through time. 

When performing pilot experiments using the plate reader, we observed at 37 °C a gradual decrease 

in cell response to a single concentration of CCK-8S (0.1 and 1 nM) from well to well. Conversely, at 

lower temperatures (28 °C) a gradual increase in response was observed. The most stable allover 

response through time was obtained at a measurement temperature of 31 °C (Figure 2.2). 
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Figure 2.2. Temperature and concentration dependence of cell response from well to well. Fluo-4AM CHO-

CCK1R cells in 96-well plates were exposed to 0.1 nM (a) or 1 nM CCK-8S (b) at different measurement 

temperatures. Every well, represented by a single data point in the plot, was treated (and measured) 

sequentially. Trend lines from a linear regression were plotted for demonstrational purposes. The response 

has been expressed relative to that of the first well. 
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To ensure ligand specificity, native CHO-K1 cells were included in the assay as negative controls. 

When stimulated with CCK-8S, CHO-K1 cells did not show a significantly different response from cells 

treated with buffer. However, both CHO-K1 as CHO-CCK1R showed a similar response when 

stimulated with TRAP-7, an agonist for the thrombin receptor (Figure 2.3). This confirmed that CHO-

K1 cells could be used to correct for non-specific responses.  

 

Figure 2.3. Kinetics of normalized fluorescence (Fi/F0) ± SD in Fluo-4AM labeled CHO-CCK1R and CHO-K1 to 

250 µM of TRAP-7. Experiments were carried out in the presence of 50 µM lorglumide to inhibit effects via the 

CCK1R (n=6). 

2.3.2 The plate reader assay allows for sensitive and accurate measurement of agonist 

and antagonist effects on the cell population level 

First, we measured the cellular response to the natural ligand, CCK-8S. The change in fluorescence 

was monitored in time for increasing concentrations of CCK-8S (0.001 nM–1 nM) (Figure 2.4). 

Typically, RF curves (Figure 2.4a) showed strong dose-dependent kinetics in terms of the time point 

and height of the maximum RF, but also in terms of peak persistence.  
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Figure 2.4. Dose-dependent CCK1R-mediated calcium fluxes in cell populations monitored with a plate reader. 

(a) Kinetics of relative fluorescence (RF) of Fluo-4AM labeled CHO-CCK1R cells to increasing concentrations of 

CCK-8S (0.001–1 nM). The curves represent the mean of 5 technical replicates (wells). (b) Representative 

dose-response curve for CCK based on 4 experiments (biological replicates) in which the measurements for 

each concentration were repeated 5 times, expressed as a percentage of the maximum net response, i.e. the 

net response induced by 1 nM CCK. 

The integrated area below the curve incorporates these different parameters and was therefore used 

in the calculations. A significant increase in signal could be detected down to a concentration of 0.01 

nM CCK-8S. Dose-response curves were established from calculating the net response per condition 

(Figure 2.4b) and were used to derive the EC50 values (Table 2.1).  

Table 2.1. Median effect concentrations (EC50 and IC50) for the natural ligand CCK-8S, the partial agonist 

JMV-180 and the antagonist lorglumide, measured with the fluorescence plate reader (population average) 

and the confocal microscope (population average and single-cell). Median effect concentrations for a ligand 

do not significantly differ between measuring techniques, calculated with ANOVA followed by a post hoc 

Tukey test (df = 2; CCK-8S: F = 3.05, p = 0.11; JMV-180: F = 0.48 p = 0.64; lorglumide: F = 0.72, p = 0.52). 

Ligand 

Median effect concentration (EC50 and/or IC50 ± SE) 

Fluorescence plate reader Confocal microscope 

Population average Population average Single-cell average 

CCK-8S 24 ± 4 pM 50 ± 13 pM 47 ± 13 pM 

JMV-180 20 ± 4 nM 31 ± 12 nM 31 ± 12 nM 

Lorglumide 3 ± 1 µM 4 ± 1 µM 5 ± 2 µM 
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Next, the effect of a partial agonist, JMV-180, was determined. The EC50 of JMV-180 was a 1,000-fold 

higher with respect to the natural ligand, pointing at a much lower affinity towards the receptor 

(Table 2.1). Moreover, the maximum response that could be evoked by JMV-180 compared to 1 nM 

CCK-8S was more than halved (mean ± SEM; 38 ± 8%), illustrating the lower potency of this partial 

agonist to activate the CCK1R (Figure 2.5a).  

 

Figure 2.5. Representative dose-response curves for JMV-180 (a,b) and lorglumide (c,d) based on 3 

experiments in which the measurements for each concentration are repeated 5 times, expressed as a 

percentage of the maximum response and the percentage of inhibition from the maximum response, 

respectively. Graphs on the left are the results measured with the fluorescence plate reader (a,c) and on the 

right with the confocal microscope (b,d). 

In addition to the aforementioned agonists, the full antagonist lorglumide was tested for its potential 

to inhibit a CCK-8S-induced response. Increasing concentrations of lorglumide clearly demonstrated a 

dose-dependent inhibition of the response to 1 nM CCK-8S. The IC50 value was 3 ± 1 µM (Figure 2.5c, 

Table 2.1). Full inhibition of 1 nM CCK-8S was obtained at 40 µM lorglumide.  
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2.3.3 Confocal microscopy provides both population as well as single-cell information 

Using confocal microscopy, the same kinetic experiments were performed as with the plate reader. 

First, the population-average response was determined on whole images. Per well, one single region 

was acquired at full field of view (636 µm x 636 µm), corresponding to 100-150 cells, and the average 

pixel intensity was measured over the entire image through time (Figure 2.6a, See supplementary 

Movies 1 and 2 in the online publication (259)). This assay was performed for CCK-8S with and 

without lorglumide and for JMV-180 and resulted in highly similar RF curves, dose-response curves 

and median effective concentration values (EC50 and IC50) as those obtained for the plate reader 

(Figure 2.6b,c; Table 2.1; Figure 2.5b,d). To determine the actual single-cell response, we measured 

fluorescence kinetics in individual cells by means of automated image analysis (Figure 2.7a, Figure 

2.1).  
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Figure 2.6. Dose-dependent CCK1R-mediated calcium fluxes in cell populations monitored with a resonant 

scanning confocal microscope. (a) Montage from in fluxo confocal microscopy, combined from equally 

cropped regions selected from raw time-lapse series, acquired as described in the Materials and Methods 

section. (b) Kinetics of relative fluorescence (RF) of Fluo-4AM labeled CHO-CCK1R cells to increasing 

concentrations of CCK-8S (0.001–1 nM). The curves represent the mean of 5 technical replicates (wells). (c) 

Representative dose-response curve for CCK based on 3 experiments (biological replicates) in which the 

measurements for each concentration were repeated 5 times, expressed as a percentage of the maximum net 

response, i.e. the net response induced by 1 nM CCK. 
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Figure 2.7. Dose-dependent CCK1R-mediated calcium fluxes in individual cells monitored with a resonant 

scanning confocal microscope (a) Boxplot representing the single-cell response of CHO-CCK1R cells to 

increasing concentrations of CCK-8S (0.001–1 nM), measured as the average intensity of individual cells and 

expressed as a percentage of the maximum response, i.e. the average response induced by 1 nM CCK. (b) In 

silico erosion. Per condition, the response was calculated for all cells within one representative image per 

CCK-8S concentration. Next, cells were progressively removed from permutated data sets, one by one, down 

to the single cell and per step the average net response was calculated. This was repeated 100 times per 

condition. Every line represents one complete erosion cycle. (c) From the eroded data sets the covariance 

(CoV) was calculated and plotted as a function of the number of cells and represented on a logarithmic scale 

for visualization purposes. Ten cells reduce the CoV to 5% and 25 cells reduce the CoV to 2.5% (dotted black 

lines). 

The individual fluorescence kinetics in time varied from cell to cell, not only in magnitude and time 

point of the maximum fluorescence intensity but also in fluorescence fluctuation behavior (Figure 

2.8). 
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Figure 2.8. Inter-individual and temporal variation in normalized fluorescence kinetics (Fi/F0) in response to 

CCK-8S, monitored in Fluo-4AM labeled CHO-CCK1R cells with a resonant scanning confocal microscope, 

decreases with increasing concentration: (a) 1E-03 nM, (b) 1E-02 nM, (c) 2.5E-02 nM, (d) 1E-01 nM, (e) 2.5E-

01 nM, and (f) 1n M. (g) 10 randomly selected curves from cells treated with 2.5E-02 nM CCK-8S demonstrate 

the fluorescence fluctuations in individual cells at low concentrations. 

The time lag between the moment of sample addition and the moment of maximum fluorescence 

intensity became progressively shorter with increasing agonist concentration. In parallel, the 

synchrony with which the fluorescence of individual cells changed increased as well. This is reflected 

in the magnitude of the standard deviation of the time point of maximum fluorescence (Figure 2.9). 
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Figure 2.9. Histogram comparing the average peak time (maximum fluorescence) of individual cells of all 

experiments, for increasing concentrations of CCK-8S, JMV-180 and lorglumide. Error bars represent 

standard deviations. 

 Especially at low doses a cellular behavior became evident that was not observed in population 

averages: calcium fluxes show several less intense oscillations after the first primary fluorescence 

peak (Figure 2.8g). These fluctuations were no longer observed from a dose of 0.1 nM CCK or higher. 

At high concentrations, the oscillatory mode changed into one single increase after which no 

oscillations are seen anymore. In brief, fluorescence kinetics In CCK-8S stimulated cells became more 

uniform with increasing concentrations, which is in accordance with earlier observations (295). In 

comparison, fluorescence oscillations were more pronounced in cells treated with JMV-180 and also 

persisted at higher doses (Figure 2.10).  
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Figure 2.10. Inter-individual and temporal variation in normalized fluorescence kinetics (Fi/F0) in response 

to JMV-180, monitored in Fluo-4AM labeled CHO-CCK1R cells with a resonant scanning confocal microscope, is 

more pronounced than after treatment with CCK-8S and persists with increasing concentration: (a) 5.0 nM, 

(b) 12.5 nM, (c) 50 nM, (d) 125 nM, and (e) 500 nM. For comparison, (f) shows the profiles of Fluo-4AM labeled 

CHO-K1 cells treated with 500 nM JMV-180. (g) 10 randomly selected curves from cells treated with 500 nM 

JMV-180 illustrate the persistence of fluorescence fluctuations in individual cells at high concentrations. 

Despite the inherent variability, all doses were significantly different from each other (Figure 2.7a). 

The median effective concentrations (EC50 and/or IC50) based on single-cell analysis were not 

significantly different from those based on the average image intensity nor from those derived from 

the plate reader (Table 2.1).  
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To determine the robustness of the single-cell analysis, we calculated the number of cells required to 

discriminate dose-dependent responses using an in silico approach. To this end, image data sets 

containing all individual cell responses were progressively eroded by omitting one single, randomly 

selected cell at a time (on permutated data sets), down to one single cell, and by calculating the 

average response with each step. This was repeated 100 times to obtain a distribution that 

represents the variability within the data set (Figure 2.7b). The covariance (std/mean) plots of these 

distributions demonstrated that as little as 10 cells are sufficient to determine the population mean 

with 95% accuracy, or 25 cells are sufficient to determine the population mean with 97.5% accuracy 

(Figure 2.7c). In silico erosion was performed for all experiments and confirmed that 10-20 cells are 

sufficient to determine the population mean with 95% accuracy (Figure 2.11).  

 

Figure 2.11. Histogram comparing for all experiments the number of cells required to obtain a coefficient of 

variation of the cell response equal to or smaller than 5%, as calculated from in silico erosion data sets. Error 

bars represent standard deviations. 

2.4 Discussion 

We have established a robust cell-based bioassay to screen for compounds which activate CCK1R or 

inhibit its binding to the natural ligand, and which works on two different platforms. This technology 

was first developed by Foltz et al. (82) for a fluorescence plate reader. We have now optimized this 

technology by making it more sensitive, specific and more robust and by cross-validating this assay 
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on a different platform, namely the confocal microscope. During optimization, we discovered that 

lowering the loading and measurement temperature had an important influence on the sensitivity 

and temporal stability of the cell response. It is conceivable that the degree of cell 

compartmentalization and the decay of the fluorescence through time, which were observed at 

higher temperatures, are due to a higher cell metabolism. At higher temperatures, transport 

mechanisms like endocytosis/pinocytosis (leading to compartmentalization) and exocytosis (leading 

to loss of signal) become more prominent (170) and active breakdown of the fluorescent dye could 

be promoted (62).  

The EC50 measured for CCK-8S in this project with the fluorescence plate reader and the confocal 

microscope were not significantly different, although purely based on the SEM one could say a higher 

accuracy was obtained with the plate reader. This could be due to a different demand for manual 

interaction between both approaches: the measurements with the fluorescence plate reader were 

almost fully automated, whereas the measurements with the confocal microscope were carried out 

manually, thereby introducing pipetting inaccuracies and causing complete experiments to last 

longer and have more fluorescent probe decay. Also, sample mixing in the medium may have 

occurred faster in the plate reader causing cells to react more synchronously. On the other hand, a 

bigger SEM in confocal measurements may be the reflection of the high heterogeneity between 

individual cells, as such providing more accurate information of the true cellular response. In 

addition, the visualization of cells allows immediate verification of cellular health and density. 

Confocal microscopy also allows discrimination of off-target effects like bad solubility and 

background fluorescence of the sample (e.g. when protein hydrolysates are tested). With the 

fluorescence plate reader, background fluorescence of the sample causes a major concern as the 

fluorescence of the entire well is measured, which may obscure more subtle fluorescence increases 

at the level of the cells. In contrast, the confocal microscope only detects the fluorescence in a 

selected focal plane on the bottom of the well, which is predominantly within the cells. Hence, 

confocal microscopy allows measuring a more specific response and testing higher sample 

concentrations.  

Furthermore, experiments carried out with cells in suspension under continuous stirring revealed 10 

to 50-fold higher EC50 values (around 0.19-1.08 nM) for CCK-8S compared to our experiments (Table 

1) and were less sensitive (25, 71, 252). These differences could not be ascribed to large differences 

in medium composition (e.g. BSA concentration) or probenecid concentration, indicating that 

attached cells are a better means to measure Ca2+-fluxes. However, the EC50 of the partial agonist 

JMV-180 measured with cells in suspension (25 nM) was comparable to the EC50 measured in this 
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project (252). Receptor activation can also be measured by inositol trisphosphate (IP3) production. 

Cawston et al. (42) reported an EC50 value for IP3 production of JMV-180 of 18 nM, which is similar to 

the EC50 value of JMV-180 we found for Ca2+ increase (Table 2.1), and at the maximum concentration 

only induce 9% of the IP3 production compared to that of CCK-8S could be induced. The lower 

potency of JMV-180 compared to the natural ligand can be explained by the differential positioning 

of the C-terminal end within the binding site of CCK1R (5). A partial agonist only exerts a subset of 

the biological functions of the natural ligand and therefore has a reduced tendency to evoke side 

effects and cause receptor intolerance. This makes a partial agonist more suitable as a therapeutic 

than the natural ligand (42). In this context, it is also noteworthy that JMV-180 elicited highly 

different fluorescence kinetics compared to CCK-8S. In accordance with previous observations (254, 

273), more pronounced and more frequent oscillations were observed, even at high doses, indicating 

an altered cellular response. These differences could be due to differential coupling of low- and high 

affinity CCK1R binding sites to second-messenger systems and Ca2+ signal transduction pathways, e.g. 

differences in activation of Protein Kinase C and IP3 production (279, 304). Lorglumide is a full 

antagonist of the CCK1R and it is 2,300 times more selective for CCK1R than for CCK2R. It is a potent 

inhibitor in comparison to other glutaramic acid analogues (20); an IC50 value of 0.13 µM was 

reported by Makovec et al. (169) for this antagonist. The latter IC50 value is 15 times lower compared 

to the IC50 measured in this project, which is probably due to the use of a different experimental 

design. Hence it can be concluded that comparison between the median effect concentrations (EC50 

and IC50) of different CCK receptor agonists and antagonists between studies should be made with 

caution, as different cell types, measuring techniques and controls are used. Therefore, we propose 

this standardized procedure to enable comparison of the CCK1R activity of different ligands. 

Moreover, with little adaptations, this assay could be converted into a screening system for ligands 

for the CCK2R, the sulfakinin receptor and other Ca2+-influencing GPCRs. 

In conclusion, the proposed cell-based bioassay can be used to screen for protein hydrolysates and 

molecules with CCK1R activity in a standardized manner. Measurement can be accomplished on two 

platforms. The fluorescence plate reader is more suitable to perform a primary screen, but the 

confocal microscope can be used to validate the activity of the components on the single-cell level, 

especially in a context of strong autofluorescence background. 
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Chapter 3  Screening of soy and milk protein hydrolysates for 
their ability to activate the CCK1 receptor 

3.1 Introduction 

In this chapter,  the performance of the cell-based  bioassay as described in Chapter 2 is evaluated to 

screen more complex formulations such as protein hydrolysates for their ability to activate the 

CCK1R. The potential of the fluorescence plate reader for the screening of such complex matrices 

was investigated and compared with the confocal microscope. We focused on soy and milk proteins, 

well-known and convenient food proteins of which beneficial health effects have been proven (92, 

145, 151, 190), but which differ significantly in source and structure.  

3.2 Materials and Methods 

3.2.1 Products 

Hexane, sodium bisulfite, α-lactalbumin, к-casein, pepsin, trypsin and chymotrypsin were purchased 

from Sigma-Aldrich (Bornem, Belgium/St.-Louis, MO). Soybeans were purchased in the local grocery 

store (Heuschen & Schrouff OFT B.V., Canada). Enzymatic soy hydrolysates E110, AM41, A2SC and 

A3SC were obtained from Organotechnie (La Courneuve, France). Dialysis membranes were 

purchased from Spectra Laboratories Inc. (Rancho Dominguez, CA). 

3.2.2 Preparation of 7S fraction from soy protein 

The 7S fraction from soybean protein (β-conglycinin) was extracted following a method based on pH 

precipitation described by Liu et al. (164). In brief, soybean seeds were ground with a coffee mill and 

defatted with hexane to obtain defatted soybean flour. The soybean flour was extracted twice with 

0.03 M Tris-HCl (pH 8.5) for 1 h at 45 °C in a ratio of 15% (w/v). Subsequently, sodium bisulfite was 

added to the extraction product to a concentration of 0.01 M. The solution was kept overnight at 4 

°C and centrifuged. Next, NaCl was added to a concentration of 0.25 M to the supernatant and the 

solution was centrifuged again. The pH of the obtained supernatant was adjusted to 4.8, which 

caused the 7S protein fraction to precipitate. The precipitate was dialyzed over pure water and 

subsequently freeze-dried. 

3.2.3 Hydrolysis simulating gastrointestinal peptic digestion 

An in vitro gastrointestinal digestion was performed on α-lactalbumin, к-casein and the 7S soy 

proteins as described before (260). Briefly, the lyophilized proteins were dissolved in distilled water 
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(4% w/v), pH was lowered to 2 and pepsin was added in a ratio of 0.4% (w/w) to the sample. The 

solution was kept at 37 °C and shaken for 2 h. Next, the pH was set to 6.5 and trypsin and 

chymotrypsin were added also in a ratio of 0.4% (w/w), and the solution was shaken for 2.5 h at 37 

°C. The reaction was terminated by heating the samples for 15 min to 80 °C. The 7S soy hydrolysate 

was designated 7SH. 

3.2.4 Cell-based bioassay to screen for CCK1R activity 

The determination of the intracellular free Ca2+ concentration was performed as described in chapter 

1. Samples were added in fluxo: after 6 s of acquisition, the protein hydrolysate sample or CCK-8S 

was added instantaneously while the acquisition continued for another 34 s. For each sample 

concentration, measurements were repeated in five wells for both cell types (technical replicates) 

and every experiment was repeated 2-4 times (biological replicates). For inhibition experiments, 

lorglumide was added at a final concentration of 50 µM, 30 min prior to the start of the experiment. 

3.2.5 Data analysis and statistics  

Statistical analyses were performed using one-sample Student’s t-tests, two-sample Student’s t-test 

or non-parametric Wilcoxon rank sum tests. Differences between net responses were considered 

significant for p-values smaller than 0.05. Sigmoid dose-response curves were generated for the net 

response versus sample concentration relationships and the EC50 value (the sample concentration at 

which 50% of the maximum response was reached) was calculated using Prism v4 software 

(GraphPad Prism, La Jolla, CA) (286).  

Specifically for confocal microscopy, the robustness of the single cell analysis was determined using 

an in silico approach, which calculates the minimal numbers of cells to determine the net response 

accurately [20]. To this end, selected image data sets containing all individual cell responses were 

progressively eroded by omitting one single, randomly selected cell at a time, down to one single cell, 

and by calculating the average response with each step. This was repeated 100 times on permutated 

data sets to obtain a distribution that represents the variability within the data set. From these 

distributions, the coefficient of variation (COV= standard deviation/mean) was derived and plotted 

against the number of cells. 
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3.3 Results 

3.3.1 The fluorescence plate reader fails to give accurate results for complex matrices 

of protein hydrolysates 

First, four commercial crude soy hydrolysates E110, AM41, A2SC and A3SC were tested for their 

potential to induce a CCK1R-mediated calcium flux. Measurements were performed with the 

fluorescence plate reader since this setup proved to be a fast and reliable tool for pure compounds, 

as discussed in the previous chapter. A net response was measured for these hydrolysates between 

90 and 300%. However, there was a high variability (25 to 40%) and the fluorescence profiles showed 

atypical kinetics. Upon addition of the protein hydrolysates an immediate (within 0.3 s) increase in 

fluorescence was observed. The increase was 5 to 7 times higher than that observed for CCK-8S and 

this was the case both for CHO-CCK1R and CHO-K1 cells (Figure 3.1a). Moreover the fluorescence 

level remained stable throughout the acquisition period, irrespective of the administered dose (data 

not shown). For comparison, addition of CCK-8S resulted in an exponential increase of the 

fluorescence signal in CHO-CCK1R cells with a delay of minimum 3 s after sample addition and no 

significant signal increase in CHO-K1 cells. This suggested that the crude protein hydrolysates induced 

a non-specific rise in fluorescence, possibly due to the presence of an autofluorescent component. 

 

Figure 3.1. Normalized fluorescence kinetics (Fi/F0) for CHO-CCK1R and CHO-K1 in cell populations 

monitored with a plate reader. Results for sample as well as for 1 nM are shown. The curves represent the 

mean of 5 technical replicates (wells). (a) Representative curve for soy hydrolysate E110 (3 g/l). (b) 

Representative curve for 7SH (1 g/l). 

Since it was difficult to pinpoint the exact origin of the strong (auto-)fluorescence in the complex 

hydrolysates, we decided to measure the fluorescence kinetics in hydrolysates of purified soy and 

milk proteins. The gastrointestinal digested 7S fraction from soy protein (1 g/l), gastrointestinal 
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digested к-casein from milk (3 g/l) and gastrointestinal digested α-lactalbumin (3 g/l) from milk were 

evaluated. The fluorescence profiles of these hydrolysates demonstrated more reliable kinetics than 

those of the crude hydrolysates: the fluorescence increase was lower than that induced by 1 nM 

CCK8S, reached a maximum response after several seconds and gradually faded (Figure 3.1b). In 

addition, the fluorescence increase of CHO-CCK1R was significantly higher than that of CHO-K1 cells. 

For the 7SH, a net response of 13.4±3.0% (n=5, p=0.01) was measured, which was significantly 

different from zero. Net responses were obtained of 7.7±1.4% (n=2, p=0.11) for the к-casein 

hydrolysate and 19.9±4.2% (n=2, p=0.13) for the α-lactalbumin hydrolysate, but these were not 

significantly different from zero. 

3.3.2 Confocal microscopy allows to measure CCK1R activation accurately, excluding 

false positives 

3.3.2.1 Only the 7S soy hydrolysate shows a significant net response 

As described in the previous chapter, we noted that it was important to validate the data from the 

plate reader with a confocal microscope, especially in a context of strong autofluorescence 

background. In addition, especially for crude hydrolysates, highly variable results were obtained with 

the plate reader, as reported above. Therefore, the experiments with the soy and milk protein 

hydrolysates were repeated using confocal microscopy and the population-average response was 

calculated. To this end, the average pixel intensity of an image comprising 150 to 250 cells was 

measured per well. Interestingly, the high responses found with the fluorescence plate reader for the 

crude soy hydrolysates were not reproduced with the confocal microscope. Compared to the CCK8S-

induced response, a delayed and limited increase in fluorescence was observed (Figure 3.2a). CHO-

CCK1R cells and CHO-K1 cells reacted alike, resulting in a low net response for all hydrolysates. The 

net responses for soy hydrolysate E110, AM41, A2SC and A3SC were not higher than 7.7% and none 

were significantly different from zero. Taken together, these results showed that the crude 

hydrolysates failed to induce a CCK1R-mediated Ca2+-flux. 
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Figure 3.2. Normalized fluorescence kinetics (Fi/F0) for CHO-CCK1R and CHO-K1 in cell populations 

monitored with a resonant scanning confocal microscope. Results for sample as well as for 1 nM are shown. 

The curves represent the mean of 5 technical replicates. (a) Representative curves for soy hydrolysate E110 

(3 g/l). (b) Representative curves for 7SH (1 g/l). Dotted lines represent the fluorescence kinetics of the 

experiments performed in the presence of lorglumide. 

As for the hydrolysates from purified proteins, confocal analysis of the 7SH (1 g/l) showed a 

significant net response of 14.3±1.8% (n=4). Moreover, the fluorescence profiles demonstrated 

reliable kinetics. An exponential increase was observed in fluorescence signal, which was significantly 

higher for CHO-CCK1R than for CHO-K1 cells; it reached a maximum and subsequently decreased 

(Figure 3.2b). For this hydrolysate, a dose-response curve was established (Figure 3.3), from which an 

EC50 value was calculated of 0.069 mg/l (95% confidence interval: 0.028-0.170 mg/l; R²=0.79).  

 

Figure 3.3. Dose-dependent CCK1R-mediated calcium fluxes in cell populations monitored with a resonant 

scanning confocal microscope. (a) Representative relative fluorescence kinetics (RF) of increasing 

concentrations of 7SH (0.0039-1 g/l). The curves represent the mean of 5 technical replicates. (b) Dose-

response curve for 7SH based on 2 experiments (biological replicates) in which the measurements for each 

concentration were repeated 5 times, expressed as a percentage of the maximum net response, i.e. the net 

response induced by 1 nM CCK8S. 
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For the milk к-casein hydrolysate, a net response of 10.6±5.1% (n=2) was measured, but it was not 

significantly different from zero (p=0.28). The net response of the milk α-lactalbumin hydrolysate was 

negligible. 

3.3.2.2 Single-cell variations for the 7S soy hydrolysate  

To complement the aforementioned population-average approach and obtain a better insight in the 

actual single-cell response, we measured fluorescence kinetics in individual cells by means of 

automated image analysis. As documented before [20], CHO-CCK1R cells treated with 1 nM CCK-8S 

showed a strong, highly synchronous fluorescence profile. This profile was characterized by a steep 

increase in fluorescence signal, reaching a maximum at 3 s after the sample addition and a 

subsequent gradual decrease. In contrast, CHO-K1 cells showed no significant response to the CCK8S 

stimulation, except for a sporadic non-specific fluctuation in calcium flux. When exposed to varying 

concentrations of the 7SH, CHO-CCK1R cells demonstrated intensity fluctuations with a strong 

intercellular variability, both in magnitude and time point of the maximum fluorescence intensity. 

The time lag between the moment of sample addition and the moment of maximum fluorescence 

intensity became progressively shorter with increasing hydrolysate concentration. In parallel, the 

response of individual cells became more synchronous at higher concentrations. Notably, CHO-K1 

cells also showed pronounced individual cell responses, which were significantly different from 

CCK8S-treated CHO-K1 cells for concentrations of 7SH higher than 6.3E-02 g/l. These fluctuations 

were lower and less abundant than those observed in CHO-CCK1R cells, but much more pronounced 

than basal calcium fluctuations (Figure 3.4).  
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Figure 3.4. Inter-individual and temporal variation of normalized fluorescence kinetics (Fi/F0) in response to 

varying doses of the 7SH and 1 nM CCK8S, monitored in CHO-CCK1R and CHO-K1 cells with a resonant 

scanning confocal microscope. Every plot displays the kinetic fluorescence profiles of all cells of one 

arbitrarily selected recording. 

Despite the inherent variability and fluctuations in both cell types, all doses, except for 3.9E-03 g/l, 

induced a response in CHO-CCK1R cells, which was significantly different from the dose-matched 

CHO-K1 controls (Figure 3.5a). As a measure for the robustness of the single cell analysis, we 

determined the numbers of cells required to obtain an accurate estimate of the average net 

response on representative datasets of the 7SH (Figure 3.5b). When the coefficient of variation of the 

net response was plotted against the numbers of cells that were included (as described in the 

material and methods), a strong exponential decrease was observed for increasing numbers of cells 

(Figure 3.5c). On average, across the entire dataset, 15±2 cells were required to determine the net 

response (±5%) with 95% confidence. 

 



Chapter 3 

- 64 - 

 

Figure 3.5. Dose-dependent calcium-mediated fluorescence fluxes in individual cells monitored with a 

resonant scanning confocal microscope. (a) Boxplot representing the single-cell response of CHO-CCK1R and 

CHO-K1 cells to increasing concentrations of the 7SH (0.0039-1 g/l), measured as the average intensity of 

individual cells and expressed as a percentage of the maximum response, i.e., the net response induced by 1 

nM CCK8S. The boxplots are based on the results of five technical replicates. Stars indicate significant 

differences from the dose-matched CHO-K1 control (3.9E-03 g/l: p= 9.1E-01, 1.6E-02 g/l: p=1.8E-02, 6.3E-02 

g/l: p=1.0E-02, 2.5E-01 g/l p=3.8E-02, 1.0 g/l p=4.8E-05). (b) In silico erosion. Per condition, the response was 

calculated for all cells within one representative image per concentration of 7SH. Next, cells were 

progressively removed from permutated data sets, one by one, down to the single cell and per step the 

average net response was calculated. This was repeated 100 times per condition. Every line represents one 

complete erosion cycle. (c) From the eroded data sets the coefficient of variation (COV) was calculated and 

plotted as a function of the number of cells. The inset shows the same plot represented on a logarithmic scale 

to facilitate discrimination of the exponential part of the plot (cell numbers <20). 
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Finally, single cell analysis on image datasets of the soy hydrolysate E110 showed significant intensity 

fluctuations, which were equally abundant in CHO-CCK1R and CHO-K1 cells. Comparison with the 

fluorescence profiles of background regions (without cells) confirmed that the fluorescence kinetics 

as measured by the population-average method, were predominantly caused by non-specific calcium 

fluxes (Figure 3.6). 

 

Figure 3.6. Normalized fluorescence kinetics (Fi/F0) in response to 3 g/l of the soy hydrolysate E110, 

monitored in CHO-CCK1R (a) and CHO-K1 (b) cells with a resonant scanning confocal microscope. Kinetic 

curves are displayed for one representative recording of each cell type. The left plot shows the average signal 

of the whole image, the middle plot shows the kinetics of the average signal per cell for all cells and the right 

plot displays the average signal of an image region where no cells are present (background). The relative 

stability of the background signal and the pronounced intensity fluctuations of individual cells confirm that 

the measured response across the whole image can mostly be attributed to a cellular component (calcium 

fluxes). 

3.3.2.3 The effect of lorglumide on the 7S soy hydrolysate 

To test the specificity of the CCK1R response elicited by the 7SH (1 g/l), confocal microscopy 

experiments were repeated in the presence of 50 µM lorglumide, a known antagonist of CCK1R. The 

fluorescence profiles of lorglumide-treated CHO-CCK1R cells showed a significant decrease compared 

to the profiles of cells without lorglumide pretreatment. But surprisingly, this decrease was also 
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observed with the CHO-CCK1R cells (Figure 3.3b), and as a result, the net response showed no 

significant change between lorglumide-treated and non-treated cells. 

3.4 Discussion 

In this study, we have screened raw soy hydrolysates and purified soy and milk proteins for their 

potential to activate the CCK1R. First, crude protein hydrolysates were tested, which were 

commercially available. A primary screen was performed with a fluorescence plate reader. However, 

this device produced dubious results. Very high fluorescence responses were measured for the 

complex matrices, which mainly seemed to be attributed to background autofluorescence within the 

sample rather than to a CCK1R-induced Ca2+-increase. Why CHO-CCK1R cells showed a higher non-

specific fluorescence response than CHO-K1, when measured with the plate reader is still unclear. 

Theoretically, the subtraction of the relative fluorescence of the CHO-K1 cells from that of the CHO-

CCK1R cells should correct for non-CCK1R-induced Ca2+ increases and sample autofluorescence. One 

possibility is the presence of technical inconsistencies such as non-linearity effects in the detection of 

strong fluorescence (saturation). Visual inspection of the complex hydrolysates with a widefield 

microscope confirmed that the formulations showed strong autofluorescence (data not shown). 

However, in confocal microscopy the excessive signal increases, caused by the autofluorescent 

components in the sample, were not detected. This is presumably a result of its optical sectioning 

capacity. By reducing the field depth to the bottom of the well, registration becomes mostly 

restricted to signals stemming from the cells. However, in the fluorescence plate reader, 

fluorescence is measured across the entire well, which may obscure more subtle fluorescence 

increases at the level of the cells due to autofluorescence of the sample. Indeed, single cell analysis 

of the crude E110 protein hydrolysate showed that there were cellular responses, even though they 

were non-specific for the CCK1R as they occurred both in CHO-CCK1R and CHO-K1 cells. Hence, 

confocal microscopy allows for measuring a more specific response and testing higher sample 

concentrations when working with autofluorescent samples.  

As for the hydrolysates from purified proteins, the 7SH yielded a significant response with a 

fluorescence profile pointing to a real CCK1R activation. Single cell fluctuations showed resemblance 

to those observed after administration of low concentrations of CCK8S or partial agonists such as 

JMV-180 (Chapter 2), suggesting partial activation of the CCK1R. The EC50 value amounted to 66 mg/l 

which is in the same range as the EC50 value of a commercial soy protein hydrolysate (Quest 

International, Naarden, the Netherlands) described by Foltz et al. (82). Unfortunately there were 

some confounding factors, which complicate the interpretation of the data. First, the 7SH was not 
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completely specific since it induced a less pronounced but significant response in CHO-K1 cells. 

Activation of CHO-K1 cells was also observed for other hydrolysates, albeit to a variable extent, e.g. 

for soy hydrolysate E110. This is in contrast to the results of Foltz et al. who reported no activation of 

CHO-K1 cells upon hydrolysate treatment (82). Our results suggest that not only CCK1R but also other 

receptors might become activated, which induce an intracellular calcium flux. In fact, many receptors 

(other GPCRs, receptor tyrosine kinase-type receptors…) use a similar signaling machinery involving 

Ca2+ as a second messenger (107, 143, 215, 226). Activation of these receptors may complicate 

downstream effects and obscure the envisioned cellular outcome. A second complication was 

discovered after lorglumide treatment. While a decrease was observed in the fluorescence kinetics of 

CHO-CCK1R cells, pointing to a specific CCK1R activation, we also found an unexpected decrease in 

CHO-K1 cells. This indicates that lorglumide might also inhibit other receptors, as was previously 

suggested by Gaudreau et al. for opioid receptors (89). Interestingly, it has been reported that 

hydrolysates and peptides of the 7S fraction of soy protein are also capable of releasing CCK from 

STC-1 cells and reducing appetite in rats (202, 262, 264). Therefore it might be possible that the 

appetite-suppressing effect of the 7S soy hydrolysates described in the latter studies have a double 

mode of action, i.e. stimulation of the release of CCK on the one hand and direct activation of the 

CCK1R on the other hand.  

In conclusion, the fluorescence plate reader seems less suited to measure complex formulations and 

therefore can only be used to perform a rough primary screen. Confocal microscopy is crucial to 

exclude false positive and to distinguish specific from non-specific effects. Moreover, an equally high 

accuracy was obtained with pure compounds (Chapter 2), indicating that the confocal microscope is 

as reliable for measuring complex formulations as it is for pure compounds. Using confocal 

microscopy, we discovered that the gastrointestinal digested 7S fraction from soy protein contains 

CCK1R activity. We also have indications that CCK1R-activating bioactive peptides might be released 

from к-casein in milk, since substantial activity was seen, although not significant at the tested 

concentrations in the current experiments. Further research is needed to increase the in vitro net 

responses of the protein hydrolysates, which includes optimization of hydrolysis and purification of 

the active fractions and peptides. Finally, validation of the effect of the active components in an in 

vivo model is imperative. To our knowledge, this study is the first in which the effect of non-

pharmaceutical CCK1R agonists, i.e. food protein hydrolysates, is analyzed in detail at the cellular 

level. This knowledge may facilitate the screening and discovery of novel products with CCK1R 

activity, thereby contributing to the battle against obesity.  
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Chapter 4 Evaluation of the CCK1R activity of bioactive 
peptides from 7S and 11S soy protein hydrolysate fractions  

4.1 Introduction 

As the gastrointestinal digest of the 7S fraction of soy protein showed good CCK1R activity, also the 

CCK1R activity of the gastrointestinal digest of the other major storage proteins in soybean, namely 

the 11S fraction (glycinin) was characterized. Next, the protein hydrolysates of 7S and 11S were 

separated in different molecular weight fractions to determine which fractions induce the strongest 

activation/response. The potential of the different molecular weight fractions to activate the CCK1R 

was reevaluated and peptides present in the low molecular weight fractions were identified with 

liquid chromatography – mass spectrometry (LC-MS). Working with purified proteins allowed us to 

compare the obtained results with in silico data. Since the amino acid sequence of the proteins 

present in the purified 7S and 11S fractions is known, this enables prediction of the amino acid 

sequence of the active peptide(s). Furthermore, the structure of one predicted active peptide was 

analyzed by superimposition with the natural ligand CCK and subsequently its potency to activate the 

CCK1R was measured. Finally, the effect on food intake by soybean fractions with CCK1R activities, 

was evaluated in vivo using an experiment with rats.  

4.2 Materials and methods 

4.2.1 Animals  and products 

Cytochrome C, substance P, Val-Tyr and Bradford reagens were purchased from Sigma-Aldrich 

(Bornem, Belgium/St.-Louis, MO). Soybeans were purchased in the local grocery store (Heuschen & 

Schrouff OFT B.V., Canada). A HiLoad 16/60 Superdex 30 prep grade, a Superdex peptide 10/300 GL 

column and PD MidiTrap G-10 columns were purchased from GE Healthcare (Freiburg, Germany). 

Sprague-Dawley rats were purchased from Janvier (Le Genest Saint Isle, France) and standard 

laboratory rat food from Carfil Quality (Oud-Turnhout, Belgium). SR146131 was obtained from 

Sanofi-Aventis (Paris, France) (Figure 4.7). 

 

Figure 4.1. Molecular structure of SR146131 (25) 
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4.2.2 Preparation of 11S protein fraction from soybean 

The 11S fraction was extracted as described in paragraph 3.2.2 for 7S, by adapting the pH to 4.8, 

following the method of Liu et al (164). The precipitates were dissolved in water, pH was set to 7.4 

and dialyzed against water for 24 h using a 12-14 kDa molecular weight cut-off (MWCO) membrane. 

The purity of the isolated proteins was evaluated with SDS-PAGE and results were comparable with 

those of Liu et al (164). 

4.2.3 Enzymatic hydrolysis  

A gastrointestinal peptic digestion was performed on the 11S and 7S protein fraction as described in 

paragraph 4.2.3 directly after dialysis (without an additional lyophilisation step). The concentration of 

the 7S and 11S proteins after purification was determined with the Bradford method (32). The 

solution was centrifuged for 15 min at 10,000 g to remove insoluble parts. The 11S hydrolysate will 

accordingly be called 11SH. 

4.2.4 Size exclusion chromatography 

The peptides present in the hydrolyzed 7S and 11S soy protein fractions were separated using size 

exclusion chromatography. The peptides were applied to a HiLoad Superdex 30 pg column in a 

concentration of 50 mg/ml with an injection loop of 5 ml using an Aktä Purifier (GE Healthcare, 

Freiburg, Germany). A flow rate of 1.6 ml/min was applied and fractions of 10 ml were collected from 

an elution volume of 30 to 120 ml. The absorbance was measured at 214 nm. The column was 

calibrated using cytochrome C (12327 Da), aprotinin (6511 Da), substance P (1348 Da) and Val-Tyr (96 

Da). Fractions with a molecular weight higher than 1500 Da (fractions A-E) were dialyzed against 

water and fractions with a molecular weight between 700 Da and 1500 Da (fraction F) were desalted 

with water on PD MidiTrap G-10 columns using gravity flow. Upon completion, the different peptide 

fractions were freeze-dried. 

4.2.5 Peptide identification with LC-MS 

These experiments have been performed in cooperation with Prof. Kris Gevaert (Department of 

Biochemistry, Ghent University).  Peptide fractions were dissolved to a concentration of 1 µg/µl. The 

peptides were analyzed on an Ultimate 3000 HPLC system (Dionex, Amsterdam, The Netherlands) 

with a 30 min gradient of water/acetonitrile on an in-house packed 15 cm column (Reprosil-Pur Basic 

C18-HD 3 µm, Dr. Maisch, Germany), in-line connected to an LTQ Orbitrap XL mass spectrometer 

(Thermo Electron, Bremen, Germany). Per LC-MS/MS analysis, 1 µl of the peptide mixture was 
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consumed. The mass spectrometer was operated in positive mode with data-dependent acquisition, 

automatically switching between MS and MS/MS acquisition for the six most abundant ion peaks per 

MS spectrum. Full scan MS spectra were acquired at a target value of 1E6 with a resolution of 60,000. 

The six most intense ions were then isolated for fragmentation in the linear ion trap. In the LTQ, 

MS/MS scans were recorded in profile mode at a target value of 5,000. Peptides were fragmented 

after filling the ion trap with a maximum ion time of 300 ms and a maximum of 1E4 ion counts. 

Instrument settings for LC-MS/MS analysis and the generation of MS/MS peak lists were as 

previously described (91). MS/MS peak lists were then searched with Mascot using the Mascot 

Daemon interface (version 2.3.0, Matrix Science). The spectra from the soy samples were searched in 

the Glycine max database, downloaded from UniProt on January 10th, 2013. Acetylation on the N-

terminus, pyroglutamate formation of N-terminal glutamine and methionine oxidation to methionine 

sulfoxide were set as variable modifications. The protease was set to none to allow cleavage after 

every amino acid. The mass tolerance on the precursor ion was set to ±10 ppm and on fragment ions 

to ±0.5 Da. In addition, Mascot’s C13 setting was set to 1. Only peptides that were ranked one and 

had an ion score at least equal to the corresponding identity threshold at 99% confidence were 

withheld and further data handling was done in the ms_lims database (118). Alignments between the 

proteins and the CCK-8 sequence (DYMGWMDF) were made using T-coffee Multiple Sequence 

Alignment Tools freeware (Bioinformatics and Genomics Programme Center for Genomic Regulation, 

Barcelona, Spain, (204)). 

4.2.6 Superimposition and electrostatic structure calculations of CCK and PALSWLR  

These experiments were performed in cooperation with Moises João Zotti (Department of Crop 

Protection, Ghent University). The human CCK ligand (CCK-8S, DY(SO3H)MGWMDF-CONH2) and 

PALSWLR were optimized at physiological pH using the modeling tool of Discovery Studio Visualizer 

(Accelrys, San Diego, CA). All structural-electrostatic calculations were performed on a Red Hat Linux 

workstation using the programs DelPhi v. 4 (237), CHARMM (Chemistry at HARvard Macromolecular 

Mechanics) (36), MODELLER release 9v4 (238) and Discovery Studio Visualizer (Accelrys, San Diego, 

CA). Starting from the initial peptides a minimization run was performed using Smart Minimizer 

algorithm and CHARMM as force field. These peptides were subjected to 1,000 minimization steps 

with solvent dielectric constant setup to 80. Thereafter, an alignment was created with Align123 

algorithm, a progressive pairwise alignment algorithm modified from the CLUSTAL W program (272) 

and then the structures were superimposed. The electrostatic potential calculations were performed 

with DelPhi, a program that solves the Poisson-Boltzmann equation on a cubical lattice using the 

finite-difference technique.  
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4.2.7 In vivo: Food intake study with rats 

These experiments have been performed under supervision of Prof. Robrecht Raedt (Department of 

Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University). The in vivo 

experiments with rats were performed as previously described for the CCK1R agonist SR146131 

(Figure 4.1) by Bignon et al. with slight modifications (24). The experimental set-up was validated 

using this agonist and similar results as in the study from Bignon et al. were obtained (24). Male 

Sprague-Dawley rats of 8-12 weeks old and a weight of 225-250 g were housed in separate steel 

cages in an acclimatized room kept at 24 °C with a 12 h dark-light cycle (Figure 4.2). 

 

Figure 4.2. Eating Sprague-Dawley rat given weighed amount of food. No bedding is present in the cage during 

the experiment to be able to measure the spilled food. 

The rats were fed a standard laboratory diet (3.5% fat, 16.5% protein, 39% sugars and starch, 

vitamins, minerals, amino acids and fatty acids) and tap water was freely available. One week before 

the start of the experiment, access to food was only allowed between 10 a.m. and 4 p.m. to get them 

acquainted with the experimental protocol. Before an experiment, rats were fasted between 4 p.m. 

and 10 a.m. The lyophilized peptide fractions D to F of 7SH and 11SH as described above were pooled 

and dissolved in about 0.5 ml of tap water in such way that each rat received an oral dose of 200 mg 

sample per kg body weight (BW) using a metal gavage. Control rats were administered 0.5 ml volume 

of tap water. Half an hour after oral administration of the sample with use of a gavage, the rats were 

given access to a weighed amount of food and food intake was measured by weighing the remaining 

food 1, 3, 6 and 24 h after food access taking spillage into account. The applied study design was a 

balanced crossover design, i.e. the rats were divided in four batches of 3 rats and each batch of rats 

received each intervention (7SH fractions, 11SH fractions or the control diet) once (four biological 

repeats). The fourth batch of rats was not considered here, as they were used for exploratory 

research (results not shown). Between experiments, there was minimally 1 wash-out day. The 
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cumulative food intake per intervention group was expressed as mean ± SEM based on 4 

measurement days with 3 rats each resulting in 12 measurements per intervention group. The 

experiments were approved by the ethics committee for animal experiments of the Faculty of 

Medicine and Health Sciences at Ghent University. Differences between intervention and the 

controls were tested using one-way ANOVA (S-Plus, TIBCO software Inc., Palo Alto, CA). Statistical 

significance was set at P<0.05 and all tests were two-sided.  

4.3 Results 

4.3.1 In vitro CCK1R activity of 7SH and 11SH 

In the previous Chapter, it was reported that the gastrointestinal digest of the 7S protein from 

soybean (7SH) contains significant CCK1R activity. We analyzed the activity of the peptic 

gastrointestinal digest of the other important storage protein in soybean (11SH) in a similar way and 

measured a significant net response of 10.5 ± 0.8% (n=3, p=0.038) for a concentration of 1 g/l. The 

fluorescence kinetics for each cell type are shown in Figure 4.3.  

 

Figure 4.3. Representative normalized fluorescence kinetics (Fi/F0) of 11SH for CHO-CCK1R and CHO-K1 in 

cell populations monitored with a resonant scanning confocal microscope. Results for sample as well as for 1 

nM CCK are shown. 

Upon stimulation with 11SH, CHO-CCK1R cells showed a fluorescent response that was lower and not 

as stable as when stimulated with CCK, but this fluorescence increase was higher and faster as 

compared to the response of CHO-K1 cells being stimulated with 11SH. These results showed that 

11SH contains considerable CCK1R activity and should thus be further pursued. Although the 

difference in response to the hydrolysates between CHO-CCK1R cells and CHO-K1 cells was significant 

for 7SH (Chapter 2) as well as for 11SH, the CHO-K1 cells also showed a response to the hydrolysates 

which was not negligible. This points to non-specific activation of other membrane receptors that 

induce a cytoplasmic calcium release in CHO cells, plausibly due to the presence of peptide 
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components or amino acid motifs, different from those activating the CCK1R. As this possibly might 

lead to in vivo side-effects, it is necessary to remove these non-specific responses by further 

purification of the sample. 

4.3.2 Gel filtration chromatography 

To obtain specific CCK1R responses, without activation of CHO-K1 cells, and to identify the active 

peptides responsible for the CCK1R response, the peptides in the hydrolysates were separated in 

different molecular weight fractions using gel filtration chromatography. The peptide profile for 7SH 

obtained with the Superdex 30 column and the collected fractions can be seen in Figure 4.4a. The 

obtained fractions were applied to a Superdex peptide column to evaluate the fractionation. A good 

separation was obtained between the different molecular weight peptide fractions (Figure 4.4b). 

Similar results were obtained for 11SH (Figure 4.4c and d). An overview of the molecular weights and 

the corresponding number of amino acids of the different peptide fractions A-J is shown in Table 4.1. 

Fully biologically active forms of CCK require a peptide length of at least seven amino acids (162), 

which is why fractions G to J were excluded for further testing as these fractions contain peptides 

with only five or less amino acids. 

Table 4.1 Overview of different molecular weight peptide fractions estimated on gel filtration standards 

Fraction Elution Volume (ml) MW (Da) Estimated number of amino acids 

A 30 - 40 31718 - 67811 240 - 513 

B 40 - 50 14835 - 31718 112 - 240 

C 50 - 60 6939 - 14835 52 - 112 

D 60 - 70 3246 - 6939 24 -52 

E 70 - 80 1518 - 3246 11 - 24 

F 80 - 90 710 - 1518 5 - 11 

G 90 - 100 332 - 710 2 - 5 

H 100 - 110 155 - 332  1 - 2 

I 110 - 120 73 - 155 0 - 1 

J 120 - 130 34 - 73 - 
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Figure 4.4. (a,c) Representative chromatographic profiles of 7SH and 11SH, respectively, obtained with 

Superdex 30 column, different peptide fractions which are collected are indicated. (b,d) Representative 

chromatographic profiles of the collected peptide fractions obtained after reinjection on a Superdex peptide 

column for 7SH and 11SH, respectively. Absorbance was measured at 214 nm.  

4.3.3 In vitro CCK1R activity of different molecular weight fractions 

The CCK1R activity of the different molecular weight fractions was measured and the net responses 

for each fraction (A-F) from every hydrolysate are shown in Table 4.2. The relative fluorescence 

kinetics for each fraction can be found in Figure 4.5a and b, for 7SH and 11SH, respectively. All 

fractions showed a net response that was significantly different from zero, except fraction F from 

7SH due to a high standard error. As the relative fluorescence curve for this fraction is relatively high 

in comparison to the other fractions, it was decided not to exclude this fraction for further 

evaluation. 
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Table 4.2. Net response, expressed as a percentage of the maximum response induced by 1 nM CCK, by 1 g/l of 

the different molecular weight fractions from 7SH and 11SH ± SEM (n=2-4), * indicates that the value is 

significantly different from 0 (p<0.05) 

Net response ± SEM (%) 7SH 11SH 

Frac A 26.2±2.8* 15.6±3.6* 

Frac B 12.5±2.6* 12.9±1.5* 

Frac C 9.7±1.3* 11.6±0.9* 

Frac D 11.8±2.1* 10.2±2.0* 

Frac E 10.8±0.7* 7.96±2.9* 

Frac F 19.6±10.4 5.2±1.1* 

 

 

Figure 4.5. Representative relative fluorescence kinetics (RF=Fi(CHO-CCK1R)/F0(CHO-CCK1R)-Fi(CHO-

K1)/F0(CHO-K1)) for 1 g/l of different molecular weight peptide fractions. (a) Peptide fractions from 7SH. (b) 

Peptide fractions from 11SH. 

 Fraction A, containing the polypeptides with the highest molecular weight, gave the strongest and 

fastest responses for both hydrolysates. Notably, activation of CHO-K1 cells was seen for fraction A 

only (see Figure 4.6 and Figure 4.7 for 7SH and 11SH, respectively), indicating that this fraction 

contains the peptide residues responsible for the non-specific responses that appeared when the 

CCK1R activity of the complete hydrolysate was measured. So despite the high net response, this 

fraction was judged to be less suited for further in vivo evaluation due to the non-specific responses 

seen for CHO-K1 cells. Conversely, fractions B to F for both hydrolysates did not activate the CHO-K1 

cells but did significantly activate the CHO-CCK1R cells, which means that these fractions show 

specific and reliable CCK1R activity and are suitable for in vivo evaluation (see Figure 4.6  and Figure 

4.7 for 7SH and 11SH, respectively). 
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Figure 4.6: Representative normalized fluorescence kinetics (Fi/F0) of different molecular weight peptide 

fractions for 7SH for CHO-CCK1R and CHO-K1 in cell populations monitored with a resonant scanning confocal 

microscope. Results for sample as well as for 1 nM CCK are shown. 
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Figure 4.7: Representative normalized fluorescence kinetics (Fi/F0) of different molecular weight peptide 

fractions for 11SH for CHO-CCK1R and CHO-K1 in cell populations monitored with a resonant scanning 

confocal microscope. Results for sample as well as for 1 nM CCK are shown. 

Considering the in vivo evaluation, peptides with a molecular weight as low as or lower than in 

fraction D (containing 52 amino acids or less, see Table 4.1) were retained for in vivo experiments as 

those peptides might be intactly absorbed through the intestinal wall. Although it is unlikely that 

peptides with a chain length of up to 30-50 amino acids can penetrate the intestinal wall, there are 

some examples supporting this hypothesis such as the significant physiological effect of enteral 

administration of biological active (poly)peptides like insulin (236, 246).  
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4.3.4 Peptide identification 

The peptides present in fraction E and F of 7SH and fraction E of 11SH were analyzed by LC-MS/MS. 

Between 100 and 200 different peptides were found in each fraction, so it is quite impossible to 

directly pinpoint to the exact peptide(s) responsible for the CCK1R activity measured in the fractions 

(an overview of all the identified peptides can be found in Supplementary Table 1). Therefore, an 

attempt was made by screening the proteins in 7S and 11S in silico using amino acid aligment with 

the CCK-8 sequence. In this way, best homology was found for the amino acid motif PALSWLR and 

this sequence appeared in three peptides: NH2-TATSLDFPALSWLR-COOH, present in the 7SH fraction 

E, and NH2-TSLDFPALSWLR-COOH and NH2-PALSWLRL-COOH, both present in 7SH fraction F. 

Therefore, PALSWLR was considered as the best candidate structure to account for CCK1R activity.  

4.3.5 Superimposition, electrostatic potential characterization and evaluation of 

CCK1R activity of PALSWLR 

To evaluate the possible activity of PALSWLR, it was superimposed with CCK (Figure 4.8a) and 

evaluated in vitro for CCK1R activity. We focused on electrostatic potential landscapes, which is 

useful to elucidate the molecular interaction in various chemical and biological systems. We noted 

that aspartic acid located in position 7 of CCK contains a remarkably negative character (Figure 4.8b, 

c and f), while a more positive profile is observed for arginine at position 7 in PALSWLR (Figure 4.8d, 

e and f). This remarkable difference in the potential at this position could hamper the proper 

electrostatic fit of PALSWLR in the binding region (Figure 4.8e). So, despite the homology between 

PALSWLR and CCK-8S, this superimposition indicates that this candidate peptide might show no 

CCK1R activity. At the same time, also the CCK1R activity was tested, and in accordance with the 

sumperimposition and electrostatic potential data, no activity could be measured at a concentration 

as high as 1 mM (data not shown). It is well known that sulfatation of tyrosine in position 2 in CCK 

accounts for a 1,000 fold increase in activity for CCK1R (69, 79) compared to the non-sulfated 

peptide. The tested peptide PALSWLR contains alanine in position 2, and although the electrostatic 

potential landschape is quite similar at this point, we believe that a sulfate group is obligatory for 

activity. In addition, we can also not exclude the possibility that the CCK1R activation by the soybean 

peptide fractions has been induced by a synergistic effect of more than one peptide.  
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Figure 4.8. Superimposition and electrostatical potential of CCK (DY(SO3H)MGWMDF-CONH2) and PALSWLR. 

(a) Superimposition of CCK and PALSWLR to compare peptide backbones and side-chains. The peptides were 

superimposed based on residues alignment (data not shown). CCK is depicted in green and PALSWLR in 

purple. (b,c) Electrostatic potential of CCK. (d,e) Electrostatic potential of PALSWLR (c,d). The color gradients 

of the peptide surfaces range from blue (highest hydrophilic area) to red (highest lipophilic area). The arrows 

indicate the rotation of peptides around their horizontal axis. (f) Mean potential of each residue (values of 

electrostatic potential averaged on the atoms of each residue) derived from electrostatic calculations. 
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4.3.6 In vivo effect on food intake 

Fasted rats were administered the grouped fractions D-F from each hydrolysate as these fractions 

contain peptides with a chain length short enough to penetrate intactly through the intestinal wall 

(<50 amino acids) but long enough to activate the CCK1R (>7 amino acids) (162, 236, 246). Food 

intake was measured 1, 3, 6 and 24 h after a weighted amount of food was introduced into the cage. 

The primary outcome was the food intake at 1 h follow-up, as CCK works at the short term. At 1 h 

follow-up, no significant difference on food intake could be demonstrated compared to the control 

rats (p>0.5). Neither could significant differences be found for the other time points (Figure 4.9) 

(p>0.5). 

4.4 Discussion 

In this study, it was shown that the gastrointestinal digested hydrolysate from the 11S soy protein, as 

shown for the 7S soy protein hydrolysate in Chapter 3, also contains significant CCK1R activity. The 7S 

and 11S soy protein hydrolysate were separated into different molecular weight fractions and these 

fractions also showed significant CCK1R activity. The peptides present in some of the fractions were 

identified, but thus far it remained impossible to determine which peptide(s) exactly were 

responsible for the CCK1R activity. The peptide, PALSWLR, was selected based on homology to CCK 

for further evaluation but it showed no CCK1R activity.  

To assess whether the peptide fractions retain their activity in vivo, the effect on food intake of the 

peptide fractions with a molecular weight between 700 and 7000 Da were evaluated as these are 

most likely to penetrate the intestinal wall. However, no effect on food intake was seen. There are 

several possible explanations for the lack of effect. Firstly, this might be due to application of too low 

doses. However previous studies did report significant reductions in food intake of rats at 

comparable or even lower doses using other bioactive protein hydrolysates (202, 264). A comparable 

dose of -conglycinin bromelain hydrolysate led to a significant reduction (7%) in food intake in rats 

after 1 h (264). Duodenal infusion of a -conglycinin peptone at a low dose (5 mg), led to a significant 

food intake reduction of 17% (202) after 1 h. However, whilst these studies demonstrated that food 

intake can be affected via the CCK-signaling system (Figure 1.6), they differ in that the presumed 

mechanism involved is augmentation of CCK release by stimulation of the CCK-producing 

enteroendocrine cells (202, 264). The novelty of this study is that the peptides are meant to have 

their effect at the level of the CCK1R located on vagal afferents in the intestinal mucosa (225). So as a 

consequence, these peptides need to cross the intestinal wall and therefore higher or more 

concentrated doses might be needed. In addition, it should be noted that CCK1Rs on vagal afferents 
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involved in inducing satiety, would be in the low-affinity state which in turn might even increase the 

needed dose (160). Secondly, it might be possible that the active peptides are not able to cross the 

intestinal wall, as peptide uptake is dependent on the length and hydrophobicity of the peptide 

(246). Thirdly, another explanation for the absence of effect might be that active peptides are 

degraded in the gastrointestinal tract and lose their activity. However, this scenario is unlikely as a 

protein gastrointestinal digestion was already performed on the peptides, which makes these -at 

least in part- resistant to further cleavage by gastrointestinal proteases. Fourthly, the peptides 

present in fraction D en E might be too big to be absorbable through the intestinal wall. A study that 

reports on the absorption of a peptide with a chain length of 50 AA exists (236), however this study 

refers to a very low amount of intestinal absorption of insulin. Generally, a chain length of 8 to 12 AA 

is a more reasonable cut-off for peptide absorption (246). 

 

Figure 4.9. Cumulative food intake of fasted rats after administration of 200 mg/kg BW of 7SH Fraction D-F, 

11SH Fraction D-F or control (tap water). 

In the in vitro tests, CCK gave a maximum response at a concentration of 1 nM in the cell culture 

medium. The concentration of the peptides present in the different molecular weight fractions 

tested varied between 0.2 and 1 mM (calculated based on the estimated molecular weight), which is 

up to one million times more than the concentration of CCK in the in vitro tests. So based on 

molarity, the activity of the peptides present in the different molecular weight fractions is not very 

high. It is plausible that the activity is caused by only a limited number of specific peptides and that 

the abundance of these peptides is very low. At this point it is difficult to identify the peptides 
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responsible for the CCK1R activity. Therefore, it would be useful to develop a technique to “fish out” 

these bioactive peptides from a complex matrix, as is the soybean protein hydrolysate. To this end, a 

new technique will be worked out in the next chapter. 
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Chapter 5 Development of CCK1R-nanoscale apolipoprotein bound 
bilayer particles (NABBs) 

5.1 Introduction 

Nanoscale apo-lipoprotein bound bilayer particles (NABBs) are a unique native-like bilayer 

membrane system for incorporation of GPCRs. They have a diameter of about 12 nm and consist of a 

discoid bilayer of phospholipids, held together by a protein belt structure from engineered zebra fish 

apo-lipoproteins (zap1) (16) (Figure 5.1). The advantage of NABBs over sol-gel entrapped proteins 

and proteins in immobilized membranes (23, 251) is that the GPCR can be incorporated rapidly in the 

NABBs and that it remains in a more natural conformation (16). NABBs containing the CCK1R (CCK1R-

NABBs) could be used as a highly-innovative affinity-selection mass spectrometry technique to fish 

out CCK1R binding peptides.  

 

Figure 5.1. Structure of a NABB particle. They consist of a phospholipid bilayer surrounded by 2 zap1 

molecules in an anti-parallel helical configuration forming a belt-like structure.  

In this chapter, the first step to develop such a technique, i.e. the formation of CCK1R-NABBs, is 

elaborated. To form CCK1R-NABBs, it was necessary to obtain the CCK1R and the belt protein, zap1, 

in a purified form. To produce purified CCK1R, it was heterologously expressed in HEK-293T cells, but 

before purification could start, functional expression of the receptor had to be confirmed. Therefore 

calcium fluxes upon receptor activation were measured, as was done previously for CHO-CCK1R cells. 

Besides calcium fluxes, receptor internalization after ligand binding was assessed. Receptor 

internalization is a cellular mechanism to desensitize the cell for circulating hormones that induce a 

biological response in the cell by reducing the number of cell surface receptors (299). In addition, 

during these experiments, the functionality of a fluorescent labeled CCK analogue (FCCK) was 

evaluated. The CCK1R was purified using immunoprecipitation from the lysed HEK-293T cells. 

Purification of CCK1R was performed both with and without the presence of devazepide, a small 
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molecule CCK1R antagonist, as it has been reported that this stabilizes the receptor (49). Also a small 

amount of cholesterol detergent was added to facilitate CCK1R function (3, 217). Zap1 protein was 

heterologously expressed in E. coli  and purified by affinity and subsequent size exclusion 

chromatography. In the final step, these proteins were combined with lipids and detergents in the 

presence of devazepide, which then self-assembled into NABBs. This is the first report on the 

incorporation of the CCK1R into NABBs. 

5.2 Materials and methods 

5.2.1 Cells, plasmids and reagents 

HEK-293T cells were obtained from the American Type Culture Collection (Manassas, VA) and were 

grown at 37 °C and 5% CO2 atmosphere in Dulbecco’s modified Eagle’s medium (DMEM, 4.5 g/L 

glucose and 2 mM glutamine) , obtained from Life Technologies (Paisley, UK) and supplemented with 

10% fetal bovine serum (FBS), obtained from Atlanta Biologicals (Lawrenceville, GA). pcDNA3.1(+), 

Lipofectamine PLUS, PLUS reagent, Lipofectamine 2000, Optimem medium, gels for SDS-PAGE and 

Dynabeads Protein G were also obtained from Life Technologies. CCK-8S was purchased from 

Bachem (Bubendorf, Switzerland). Black with clear bottom 384-well plates were purchased from 

Corning Life Sciences (Tewksbury, MA). 35 mm² glass dishes were purchased from IBIDI (µ Dish high, 

Planegg, Germany). A FLIPR calcium 4 assay kit was purchased from Molecular Devices (St. Grégoire 

cédex, France). 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC),  were obtained from 

Avanti Polar Lipids (Alabaster, AL). Dodecyl β-D-maltoside (DM), cholecesteryl-hemasuccinate (CHS) 

and 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) were purchased from 

Anatrace, Inc.  (Maumee, OH). Sepharose 2B, poly-D-lysine-hydro-bromide (PDL), 

phenylmethanesulfonyl fluoride solution (PMSF) and devazepide (DVZ)  were obtained from Sigma-

Aldrich. Detergents were obtained from Cisbio (Bedford, MA).  A Micro-Spin column was obtained 

from Pierce (Rockford, IL). An Amicon Ultra 10 kDa cutoff centrifugal filter device and Immobilon, a 

polyvinylidene difluoride (PVDF) membrane, were obtained from Millipore (Billerica, MA). 1D4-

sepharose 2B resin was prepared by the Sakmar lab. 1D5-peptide (TETSQVAPA) was purchased from 

Biobasic Canada Inc. (Markham, ON, Canada). Primary antibodies against the engineered 1D4 

epitope were obtained from the National Cell Culture Center. Horseradish peroxidase (HRP)- 

conjugated α-mouse antibody, an α-His6 tag monoclonal antibody conjugated with HRP-α-mouse,  

reagents for enhanced chemiluminescence, Terrific Broth medium and Sephadex G-50 Superfine 

were purchased from GE Healthcare (Amersham, Freiburg, Germany). A HyBlot CL autoradiography 

film was purchased from Denville Scientific, Inc. (South Plainfield, NJ). His60 Ni resin was purchased 

from Clontech Laboratories, Inc. (Mountain View, CA). Pierce detergent removal resin and BupH 
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phosphate buffered saline packs were purchased from Thermo Scientific (Rockford, IL). A fluorescent 

labeled CCK analog (FCCK, Figure 5.2), designed after the analog described by Harikumar et al. (115) 

with slight modifications, was purchased from Bachem.  

ATTO647N  -  AEEAc  -  Gly  -  Asp  -  Tyr(SO3H)  -  Nle  -  Gly  -  Trp  -  Nle  -  Asp  -  Phe  -  amide 

 

Figure 5.2: Fluorescent labeled CCK analogue (FCCK). ATTO647N: fluorescent dye,  AEEAc: Amino-Ethoxy-

Ethoxy-Acetic acid 

5.2.2 Construction of CCK1R cDNA 

The rat CCK1R cDNA (acc. nr. M88096), with a C-terminal 1D4 epitope of 18 amino acids 

(DEASTTVSKTETSQVAPA) and N-terminal serotonin 5HT3 membrane import sequence was 

constructed by Genewiz. The CCK1R and serotonin 5HT3 membrane import sequence were N-

terminally preceded by a Kozak sequence (CACC) for better expression. A DYV linker was C-terminally 

incorporated after the 5HT3 membrane import sequence. Restriction enzymes used were C-terminal 

EcoRI, BamHI at the C-terminal of the rat CCK1R sequence and N-terminal NotI. The rat CCK1R 

sequence was codon-optimized for expression in mammalian cells by Genewiz. Figure 5.3 gives an 

overview of the construct. The construct was subcloned into pcDNA3.1(+) using either EcoRI and NotI 

(further referred to as E/N) or BamHI and NotI (further referred to as B/N). In the former case, the 

serotonin 5HT3 membrane import sequence was included in the construct, in the latter it was not. 

The serotonin 5HT3 membrane import sequence is used to increase the probability of incorporation 

of the GPCR into the membrane (156). 
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(a)   EcoRI KOZAK  5HT3 membrane import sequenceDYV linker BamHI KOZAK  CCK1R1D4 tag NotI 

 

(b)                   gaattcgccaccatgagactgtgcattccccaggtgctgctggccctgttcctgagcatg 
E  F  A  T  M  R  L  C  I  P  Q  V  L  L  A  L  F  L  S  M 

ctgacaggccccggcgaaggagactatgtcggatccgccaccatgtcccacagccccgct 

L  T  G  P  G  E  G  D  Y  V  G  S  A  T  M  S  H  S  P  A 

aggcaacacctggtggaaagcagcagaatggacgtcgtcgacagcctgctcatgaatggc 

R  Q  H  L  V  E  S  S  R  M  D  V  V  D  S  L  L  M  N  G 

agcaatatcacccccccttgtgaactgggcctcgagaacgagaccctcttctgcctggac 

S  N  I  T  P  P  C  E  L  G  L  E  N  E  T  L  F  C  L  D 

caacctcagccctccaaggagtggcagtccgccctccagatcctgctctacagcatcatc 

Q  P  Q  P  S  K  E  W  Q  S  A  L  Q  I  L  L  Y  S  I  I 

tttctcctgtccgtgctgggcaacacactggtcatcaccgtgctgatcaggaacaagagg 

F  L  L  S  V  L  G  N  T  L  V  I  T  V  L  I  R  N  K  R 

atgagaaccgtgaccaacatcttcctcctctccctggctgtcagcgacctgatgctgtgc 

M  R  T  V  T  N  I  F  L  L  S  L  A  V  S  D  L  M  L  C 

ctgttctgcatgcccttcaacctgatccccaacctcctcaaagattttatcttcggctcc 

L  F  C  M  P  F  N  L  I  P  N  L  L  K  D  F  I  F  G  S 

gccgtgtgtaagaccaccacctacttcatgggaaccagcgtgtccgtcagcacatttaac 

A  V  C  K  T  T  T  Y  F  M  G  T  S  V  S  V  S  T  F  N 

ctggtggccatttccctggagaggtatggcgctatctgtaggcctctgcagtccagggtc 

L  V  A  I  S  L  E  R  Y  G  A  I  C  R  P  L  Q  S  R  V 

tggcagaccaagtcccacgccctcaaggtcatcgccgccacctggtgtctgagctttacc 

W  Q  T  K  S  H  A  L  K  V  I  A  A  T  W  C  L  S  F  T 

attatgaccccctaccctatctacagcaatctggtgcccttcaccaagaacaataaccag 

I  M  T  P  Y  P  I  Y  S  N  L  V  P  F  T  K  N  N  N  Q 

accgccaatatgtgtaggttcctcctcccttccgacgctatgcagcagagctggcagacc 

T  A  N  M  C  R  F  L  L  P  S  D  A  M  Q  Q  S  W  Q  T 

ttcctcctgctgatcctctttctcctgcctggcattgtcatggtggtggcctacggactg 

F  L  L  L  I  L  F  L  L  P  G  I  V  M  V  V  A  Y  G  L 

atcagcctggagctgtatcagggcattaagttcgacgcttcccagaagaagagcgccaag 

I  S  L  E  L  Y  Q  G  I  K  F  D  A  S  Q  K  K  S  A  K 

gagaagaaacccagcacaggcagctccaccaggtacgaggactccgacggctgctacctg 

E  K  K  P  S  T  G  S  S  T  R  Y  E  D  S  D  G  C  Y  L 

caaaaaagcagaccccccaggaagctcgagctccagcaactgagctccggaagcggcgga 

Q  K  S  R  P  P  R  K  L  E  L  Q  Q  L  S  S  G  S  G  G 

agcaggctgaacagaatcagatccagctccagcgccgctaacctcattgccaaaaagagg 

S  R  L  N  R  I  R  S  S  S  S  A  A  N  L  I  A  K  K  R 

gtgatcaggatgctcatcgtgatcgtggtcctgttctttctgtgctggatgcccatcttc 

V  I  R  M  L  I  V  I  V  V  L  F  F  L  C  W  M  P  I  F 

tccgccaatgcttggagggcctacgacaccgtgagcgccgaaaagcacctgagcggcacc 

S  A  N  A  W  R  A  Y  D  T  V  S  A  E  K  H  L  S  G  T 

cccatctccttcatcctgctcctgtcctacaccagctcctgtgtgaaccccattatctac 

P  I  S  F  I  L  L  L  S  Y  T  S  S  C  V  N  P  I  I  Y 

tgtttcatgaataagaggttcagactcggctttatggccacatttccctgctgtcccaac 

C  F  M  N  K  R  F  R  L  G  F  M  A  T  F  P  C  C  P  N 

cctggacctcctggagtgaggggagaggtcggcgaggaggaggatggcaggaccattaga 

P  G  P  P  G  V  R  G  E  V  G  E  E  E  D  G  R  T  I  R 

gccctgctgagcaggtacagctactcccacatgtccacaagcgcccctcctcctgacgag 

A  L  L  S  R  Y  S  Y  S  H  M  S  T  S  A  P  P  P  D  E 

gcgtcgaccaccgtctccaagacagagaccagccaagtggcgcctgcctgaggccagcgg 

A  S  T  T  V  S  K  T  E  T  S  Q  V  A  P  A  -  G  Q  R 

           ccgc 

           P 

 

Figure 5.3. (a) Schematic overview of CCK1R cDNA construct with tag sequence and with (E/N construct) and 

without (B/N construct) the import sequence. (b) DNA sequence (lowercase) and resulting amino acid 

sequence (upper case). Colors of the DNSA sequence correspond to the different parts in the construct shown 

in (a). 

B/N construct 

E/N construct 
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5.2.3 Transfection of HEK-293T Cells. 

5.2.3.1 For receptor purification 

HEK-293T cells were transfected with this plasmid DNA using Lipofectamine PLUS as previously 

described for earlier experiments with rhodopsin receptor (300). In brief, 3.5 µg of plasmid DNA and 

10 µl of PLUS reagent were dissolved in 0.75 ml DMEM and incubated for 15 min at room 

temperature. Next, this mixture was added to 0.5 ml DMEM containing 17 µl of Lipofectamine PLUS 

and incubated for another 15 min after which the total volume was brought to 4 ml with DMEM. 

Subsequently, this solution was added to a 10 cm diameter cell culture dish containing HEK-293T 

cells at 70-80% confluence. After 4 h, 4 ml of DMEM with 20% FBS was added to the cells. The 

transfected cells were incubated at 37 °C with 5% CO2 and harvested after 48h with PBS containing 

1% PMSF. The cell pellets were stored at -20 °C until further use.  

5.2.3.2 For fluorescent measurements 

For fluorescent measurements using a plate reader, HEK-293T were transfected while replating in 

384-well plates (black with clear bottom) with either the E/N or B/N construct. The plates were 

pretreated with 10 µl of 0.1 mg/mL of PDL per well, washed thrice with double distilled water and air 

dried. An amount of 10 ng DNA was mixed with 0.075 µl of Lipofectamine 2000 and 10 µl DMEM per 

well and incubated at room temperature for 20 min. This mixture was added to 10 µl per well of 

DMEM supplemented with 20% FBS, containing 800,000 cells/ml and subsequently plated in the 384-

well plates. Control cells were transfected with the same amount of empty vector DNA 

(pcDNA3.1(+)). Cells were incubated for 48 h at 37 °C with a 5% CO2 atmosphere. 

For fluorescent measurements using  fluorescence microscopy, HEK-293T cells were cotransfected 

with CCK1R B/N and green fluorescent protein (GFP, pEGFP-C1, Genbank Accession #: U55763) while 

replating in 35 mm² glass dishes. The glass dishes were pretreated with 700 µl of 50 ug/mL PDL in 

2mM HEPES for 1h and then washed thrice with nuclease free water and dried overnight. For 1 dish, 

0.8 µg of CCK1R B/N and 0.8 µg of GFP were mixed in 100 µl of Optimem medium and 4 µl of 

Lipofectamine was added to 100 µl of Optimem medium in a separate tube. These two mixtures 

were incubated for 5 min. at room temperature and then combined and further incubated for an 

additional 20 min. After that, 400 µl of DMEM with 10% FBS was added to the DNA-Lipofectamine 

mixture. Meanwhile, HEK-293T cells were diluted to 3.33E5 cells/ml in DMEM with 10% FBS. 

Subsequently, 600 µl of the DMEM containing the DNA-Lipofectamine mixture was mixed with 600 µl 
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of the diluted cell suspension and seeded in a glass dish. For control cells, empty vector DNA instead 

of CCK1R B/N was used. Cells were incubated for 48h at 37 °C with 5% CO2 . 

5.2.4 Calcium-flux measurement in HEK-293T cells expressing the CCK1R construct 

Calcium-flux in HEK-293T cells transfected with the CCK1R B/N construct or the empty vector after 

addition of CCK-8S or FCCK-8S was measured in a 384-well plate using a FlexStation II 384 Plate 

Reader (Molecular Devices). Two days after transfection, cells were incubated for 1 h at 37 °C with 20 

µl dye (FLIPR Calcium 4 Assay Kit) per well. The dye was solved in HBSS-H (Hank’s Balanced Salt 

Solution, with 20mM HEPES buffer, pH 7.4), supplemented with 0.4% BSA (according to the 

manufacturer). Subsequently the plate was allowed to stand for 15 min before the start of the 

measurement in the FlexStation preheated to 37°. The ligands were diluted in HBSS-H supplemented 

with 0.4% BSA. The fluorescence was monitored during 90 s, with a 2.5 s interval and 10 µl of the 

ligands were added in fluxo 20 s after the start of the measurement. The excitation and emission 

wavelength were respectively set to 488 nm and 530 nm. Each sample concentration was measured 

in 3 wells (technical replicates) for both transfections and every experiment was repeated 3-4 times 

(biological replicates). The difference between the maximum fluorescence signal and the baseline 

( max-min) was calculated for each cell type and subsequently that of the control cells was 

subtracted from that of the cells transfected with CCK1R to correct for background fluorescence of 

the fluorescent labeled ligand. From these results, sigmoid dose-response curves for ( max-min)CCK1R 

- ( max-min)control versus sample concentration were derived with GraphPad Prism and EC50 values 

were calculated. The EC50 values are the mean of at least three independently repeated dose-

response curves (biological replicates), which are based on triplicates (technical replicates) for each 

concentration.   

5.2.5 Receptor internalization 

These experiments were performed in collaboration with Prof. Thomas Huber. Visualization of 

receptor internalization was performed on HEK-293T cells in glass dishes cotransfected with GFP and 

the CCK1R B/N construct or the empty vector using a Zeiss AxioVert 200M inverted microscope (Carl 

Zeiss MicroImaging, Inc., Thornwood, NY). Two days after transfection, the medium in the glass 

dishes was exchanged with the assay medium (DMEM-F12 containing 15 mM HEPES and 

supplemented with 10% FBS and 1% L-glutamine). The dishes were kept at room temperature. 

Subsequently, half of dishes were incubated for 15 min in assay medium supplemented with 1 µM of 

devazepide (DVZ), a CCK1R antagonist. The ligands were dissolved in DMSO and diluted in the assay 

buffer in such a way that the concentration of DMSO in the assay medium was 1% (v/v). The medium 
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was removed from the dishes and replaced with 1 ml of assay medium containing FCCK for 30 s. In 

the case of pretreatment with devazepide, assay medium containing FCCK and 1 µM devazepide was 

used. Then the medium was removed and after 45 s, the dishes were washed with 1 ml of assay 

medium. The washing step was repeated two more times. The dishes were kept at 4 °C and re-

equilibrated to room temperature for 20 min before imaging. Per dish, 7x7 regions were imaged 

using a motorized x,y-stage with CRISP aligned to the glass/media interface using an X-Cite 120 lamp 

(Lumen Dynamics, Mississauga, Canada)  with an intensity of 4 to 5. Three types of images were 

acquired for each position: 500 ms of brightfield exposure, 5 ms of epifluorescence with a 18 nm 

bandpass centered at 482 nm to visualize the GFP, and 2500 ms of epifluorescence with a 14 nm 

bandpass centered at 640 nm to visualize FCCK, using 20 x gain on a electron multiplying-charge 

coupled device (EM-CCD), eVolve 512 (Photometrics, Tucson, AZ). The emission filter is a quadruple 

bandpass (centered at 446, 523, 600, and 677 nm, Semrock, Rochester, NY). 

5.2.6 Solubilization and purification of heterologously expressed CCK1R 

The cell pellets of the transfected HEK-293T cells were lysed with 1 ml of lysis buffer (DPBS 

containing 19.6 mM DM, 1.96 mM CHS-Tris), 50 mM Tris-HCl (pH 6.8), 50 mM NaCl, 1 mM CaCl2 and 

protease inhibitors) per 10 cm dish for 1 h on a nutator and subsequently centrifuged at 1000 g for 

15 min at 4 °C to remove the cell debris. Next, 100 µl of 1D4-sepharose resin was added to the 

cleared lysate and incubated on a nutator for 16 h at 4 °C. The resin was spun down at 1,000 g for 10 

min and the supernatant was removed. It was subsequently washed thrice for 15 min with wash 

buffer (DPBS containing 1.96 mM DM, 0.196 mM CHS-Tris). Then the resin was put into a Micro-Spin 

column and the receptor was eluted by incubating the beads with 100 µl of 1D5-peptide solution 

(0.36 mg/ml in wash buffer) per plate on ice for 30 min and subsequent centrifugation for 5 min at 

10,000 g. The elution was repeated twice and analyzed with sodium-dodecyl-sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE) followed by western blot. Experiments were performed both with 

and without 5 µM devazepide. 

5.2.7 Western Blot 

Western Blot analysis was performed as described before (146). First, samples were resolved by SDS-

PAGE (NuPage Novex 4-12% Bis-Tris Gel) and subsequently transferred onto a  PVDF membrane using 

a semi-dry transfer cell (Biorad). To detect the CCK1R, a primary antibody against the 1D4 epitope 

(1:5000) and HRP (horseradish peroxidase)- conjugated anti-mouse (1:10000) as secondary antibody 

were used. Zap1 was probed with an α-His6 tag monoclonal antibody conjugated with HRP-α-mouse. 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide
http://en.wikipedia.org/wiki/Gel_electrophoresis
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The membrane was treated with enhanced chemiluminescence reagents and the signal was 

visualized on a HyBlot CL autoradiography film. 

5.2.8 Production and purification of zap1 

These experiments have been performed in collaboration with Carlos Rico and other members of the 

Sakmar lab. Recombinant zebra apo-lipoprotein (zap1) was produced and purified as described 

previously by Banerjee et al. (16) with slight modifications. BL21-DE3 cells, a rosetta2 strain of E. coli, 

were transformed with pE28-zap1. A starter culture was grown overnight in LB medium 

supplemented with 50 µg/ml kanamycin and chloramphenicol. The next day, this starter culture was 

diluted 1:100 in 1 liter of Terrific Broth medium. When the OD600 (optical density at 600 nm) reached 

0.8, expression of zap1 (see Figure 5.4 for protein sequence) was induced with 1 mM isopropyl-β-D-

thiogalactopyranoside.  

M G S S H H H H H H S S G L E V L F Q G P H M A S Q A D A P T Q L E H Y K A A A L V Y L N Q V K D Q A 
E K A L D N L D G T D Y E Q Y K L Q L S E S L T K L Q E Y A Q T T S Q A L T P Y A E T I S T Q L M E N T K Q 
L R E R V M T D V E D L R S K L E P H R A E L Y T A L Q K H I D E Y R E K L E P V F Q E Y S A L N R Q N A E 
Q L R A K L E P L M D D I R K A F E S N I E E T K S K V V P M V E A V R T K L T E R L E D L R T M A A P Y A 
E E Y K E Q L V K A V E E A R E K I A P H T Q D L Q T R M E P Y M E N V R T T F A Q M Y E T I A K A I Q A  

 

Figure 5.4. Protein sequence of recombinant zap1. The sequence contains a hexa-histidine-tag (His6), 

indicated in bold. 

 

After 2 h of incubation, the cells were harvested by centrifugation and the cell pellet was 

resuspended in 50 ml storage buffer (40 mM Tris pH 8, 0.3 M NaCl, 5 mM 2-mercaptoethanol, 1x 

aprotinin, complete EDTA-free protease inhibitor tablets (1 tablet per 50 ml), 2 mM PMSF) and 

stored at -80 °C. 

The resuspended cells (50 ml) were thawed on ice and 500 µl of 100% Triton and 50 µl of DNAse 

were added to the cells and incubated on ice for 30 min. Then, 25 mL of the sample was mixed with 

10 ml of Tris-buffer (25 mM Tris pH 8, 0.3 M NaCl) and sonicated for 15 min with intervals of 5 s (5 s 

“on”, 5s “off”) with an output level of 24 W or greater. Next, the zap1 protein was purified using 

affinity chromatography. 2 ml of His60 Ni Superflow Resin was equilibrated by adding 20 ml of 

equilibration buffer (50 mM sodium phosphate, 300 mM sodium chloride, 20 mM imidazole, pH 7.4) 

on ice. Then, the resin was spun down (1,500 g, 5 min, 4 °C) and the supernatant was removed. Next, 

25 ml of the sample was applied to the resin and put on a nutator for 1 h at 4 °C. The resin was spun 

down (1,500 g, 5 min, 4 °C) again and the supernatant containing the cell debris was removed. Next, 

20 ml of equilibration buffer and 20 ml of wash buffer (50 mM sodium phosphate, 300 mM sodium 



Development of CCK1R-nanoscale apolipoprotein bound bilayer particles (NABBs) 

- 97 - 

chloride, 40 mM imidazole, pH 7.4) were applied to the column (resin was spun down and 

supernatant was removed after each step). Then,  10 ml of elution buffer (50 mM sodium phosphate, 

300 mM sodium chloride, 300 mM imidazole, pH 7.4) was added to the resin to elute the 

recombinant zap 1. Again the resin was spun down and the supernatant containing the recombinant 

zap1 was concentrated using a 10 kDa MWCO centrifugal filter. The buffer was exchanged with Tris-

HCl pH 8, 1 mM EDTA buffer to get rid of the imidazole. This sample was applied to a Microcon-MC 

0.45 µm microporous membrane spin filter unit to remove protein precipitate. The sample was 

further purified by SEC using a Superdex 200 10/30 GL column connected to an Äkta purifier at a flow 

rate of 0.5 ml/min buffer G (10 mM Tris pH 8, 0.15 M NaCl, 0.5 mM TCEP). Fractions of 0.5 ml were 

collected. The fractions containing the sample were combined and concentrated using a 10 kDa 

MWCO centrifugal filter. The quality of the purification of each step was analyzed with SDS-PAGE. 

5.2.9 Incorporation of CCK1R into NABBs 

The method as described by Knepp et al. (146) with slight modifications was followed to make 

NABBs. A ratio of 1/75 belt protein zap1/lipids was used. For NABBs containing the CCK1R (CCK1R-

NABBs), 50 µl of the CCK1R elution was combined with 2.5 nmol of zap1, 187.5 nmol of POPC (14.25 

µl of 1% (w/v) POPC/CHAPS), 0.33% DM-CHS  buffer (196 mM DM, 19.6 mM CHS-Tris), 1.5% sodium 

cholate and brought to 150 µl with buffer S (20 mM Tris-HCl (pH 7), 100 mM (NH4)2SO4 and 10% 

glycerol) and incubated on ice for 30 min.  Subsequently, this mixture was put on 1 ml of Pierce 

Detergent Removal resin which was pre-equilibrated with 2  column volumes (CV) of buffer S. The 

elution was done under gravity flow by addition of buffer S. Five fractions of 150 µl were collected 

and the protein content was determined by monitoring the absorbance at 280 nm. To make empty 

NABBs (NABBs without receptor), the same recipe was followed but the 50 µl of CCK1R elution was 

replaced by 50 µl of PBS without Ca2+ and Mg2+ supplemented with 0.1% of DM-CHS buffer. 

Experiments were performed with or without 5 µM devazepide. 

5.2.10 Binding of FCCK to CCK1R-NABBs 

CCK1R-NABBs were further purified using a Sephadex G-50 Superfine SEC column with a column 

volume (CV) of 2 ml to remove the 1D5-peptide from receptor purification. To prepare the column, 

the Sephadex G-50 resin was first blocked with 5 CV of 10 mg/ml BSA in BupH (0.1 M Na3PO4, 0.15 M 

NaCl, pH 7.2) and subsequently washed twice with 5 CV of BupH. Then, 300 µl of CCK1R-NABBs from 

the combined third and fourth elution obtained after detergent removal was applied to the column 

and 5 fractions of 300 µl were collected on ice by addition of buffer S on the column. In the mean 

time, Dynabeads labeled with 1D4-antibody were prepared as followed; 25 µl of Dynabeads Protein 
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G were washed twice in 100 µl of BupH and subsequently incubated with 100 µl BupH supplemented 

with 1 mg/ml 1D4-antibody for 10 min at room temperature. Next, the labeled beads were washed in 

100 µl Buffer S and incubated for 1 h on ice with 200 µl of CCK1R-NABBs from the third fraction 

resulting from the Sephadex G-50 SEC, to capture the CCK1R-NABBs on the beads via the 1D4-tag in 

the CCK1R. The unbound fraction was washed away with 100 µl of buffer S. 

Then, a solution of 1 nM FCCK  and a solution of 1 nM FCCK and 10 µM CCK-8S were prepared in 

buffer S. Next, 20 µl of each solution together with 2 µl of the CCK1R-NABBs captured on 1D4-beads 

was added to a 384-well plate and fluorescence was acquired with a Zeiss AxioVert 200M inverted 

microscope using similar settings as described in 5.2.5. 

5.3 Results 

In preliminary experiments, the expression of both constructs, i.e. CCK1R E/N and CCK1R B/N, after 

transfection in HEK-293T cells was compared on western blot. The HEK-293T cells transfected with 

CCK1R B/N construct yielded higher receptor expression as well as higher calcium flux. Therefore it 

was decided that all further experiments would be performed using the latter construct.  

5.3.1 Functionality of heterologously expressed CCK1R and fluorescently labeled CCK 

analogue (FCCK)  

The functionality of the CCK1R after heterologous expression in HEK-293T cells after transfection 

with CCK1R cDNA was evaluated with two different assays: 1) measuring the calcium flux after 

activation of the receptor and 2) assessing receptor internalization after ligand binding. The calcium 

flux was measured for both the natural ligand CCK-8S and FCCK (as depicted in Figure 5.2).  

5.3.1.1 Calcium-flux measurement 

The calcium flux induced by FCCK in HEK-293T expressing the CCK1R was compared to that induced 

by the natural ligand CCK-8S. Ligand concentrations ranging from 0.002 to 1000 nM were tested, and 

HEK-293T cells transfected with the empty vector were used as a negative control. The control cells 

exhibited no increase in fluorescence, except for the highest concentrations of FCCK, which is 

probably due to background fluorescence of the ligand itself. Therefore it was decided to subtract 

the fluorescence increase of the control cells from that of CCK1R expressing cells. Sigmoid dose-

response curves were generated for the corrected calcium flux ( max-min)CCK1R - ( max-min)) versus 

sample concentration and EC50 values were calculated (Figure 5.5). They amounted to 7.0 ± 4.5 nM 

(SEM, n=3) and 69 ± 41 pM (SEM, n=3) for FCCK and CCK-8S respectively. The EC50 value of FCCK is a 
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100-fold compared to that of CCK-8S, pointing at lower affinity of FCCK towards the CCK1R which can 

arise from steric hindrance of the dye. However, the full agonism of FCCK seems to be retained as the 

highest calcium flux that can be obtained is similar for both ligands. Furthermore, the EC50 value 

found for CCK-8S in this experiment for HEK-293T cells is not significantly different from the results 

obtained for CHO-CCK1R cells (24 ± 4 pM) as described in Chapter 2.  
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Figure 5.5. Representative dose-dependent CCK1R-mediated calcium fluxes in HEK-293T cells for increasing 

concentrations of CCK -8S and FCCK (0.002 – 1000 nM) based on 3 experiments (biological replicates) in 

which the measurements for each concentration were repeated 3 times (technical replicates). 

5.3.1.2 Receptor internalization 

HEK-293T cells were cotransfected with GFP and the CCK1R cDNA at a ratio of  1:1.  The cells were 

incubated for 30 s with FCCK, with or without preincubation with devazepide. Subsequently, receptor 

internalization was visualized by monitoring the fluorescence of FCCK. Three different 

concentrations, 10 nM, 100 nM and 1000 nM of FCCK were tested, but only the highest 

concentration enabled visualization of the internalization of FCCK-bound CCK1R (Figure 5.6). To 

confirm that FCCK binds specifically to the CCK1R and that the observed internalization of FCCK is not 

due to non-specific endocytosis, the experiment was repeated in the presence of 1 µM devazepide, 

an antagonist. When treated with devazepide, no more fluorescence from FCCK could be seen. Also 

the control cells that were transfected with GFP and the empty vector only showed fluorescence for 

GFP and no fluorescence for FCCK. These experiments demonstrate specific binding of FCCK to the 

CCK1R. From the calcium flux assay and the receptor internalization experiment, it can be concluded 

that the CCK1R is functionally expressed in the CCK1R and that FCCK is functional as a full agonist, 

based on the equal amount of calcium that can be released by CCK-8S and FCCK, for this receptor. 
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Figure 5.6. Image of HEK-293T cells transfected with either GFP and CCK1R or GFP and the empty vector after 

incubation with 1 µM FCCK, with or without treatment with 1 µM devazepide (transmission). For each image 

(82 µm squares) the fluorescence of GFP (excitation/emission wavelength 488/507 nm) and of FCCK 

(excitation/emission wavelength 488/507 nm) are shown. 

Transmission Ex 488/Em 507 nm (GFP) Ex 644/Em 649 nm (FCCK) 
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5.3.1 Solubilization and purification of the recombinant CCK1R 

HEK-293T cells heterologously expressing the CCK1R were lysed and the CCK1R was captured via its 

1D4-tag on 1D4-sepharose resin. It was subsequently eluted using 1D5-peptide. On the coomassie 

stained gel after SDS-PAGE it can be seen that the cell lysate contains a wide range of proteins which 

can no more be detected in the elutions containing the purified receptor (Figure 5.7). The CCK1R 

including the 1D4-tag has a MW of 51.3 kDa. On the western blot (Figure 5.7), the CCK1R shows up as 

a band around 60 kDa, which is higher than the calculated MW, but this is probably due to 

glycolysation of the receptor. Treatment of the sample with PNGaseF to remove the N-glycans 

resulted in a decrease in MW (own research data). The band around 60 kDa is clearly enriched for the 

CCK1R elutions in comparison to the cell lysate, showing that the purification of the CCK1R was 

successful. The band around 20 kDa seen in the CCK1R elution lane can be 1D4-antibody that came 

off the 1D4-beads. For the cell lysate, also a band around 150 kDa and 37 kDa appears, the former 

can be dimerized receptor and the latter is probably truncated receptor, which are removed during 

purification as they stick to the 1D4-beads. As a reference, 10 ng of purified rod-outer-segment (ROS) 

rhodopsin was loaded on the gel. So approximately, 50 ng of CCK1R is present in the 6.5 µl of CCK1R 

elution loaded on the gel. This means that about 3 µg of purified CCK1R can be obtained per 10 cm 

diameter culture dish of HEK-293T cells transfected with 3.5 µg of pcDNA.  

 

Figure 5.7. Coomassie stained gel and western blot against 1D4 for recombinant CCK1R purification. 6.5 µl of 

cell lysate and combined CCK1R elutions were loaded on the gel. 
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5.3.2 Production and purification of recombinant zap1 

The zap1 protein was expressed in BL21-DE3 and purified using affinity chromatography (AC) and 

subsequent SEC (Figure 5.8). From the coomassie stained gel obtained with SDS-PAGE in Figure 5.8a 

it can be seen that after elution of the His60 Ni Superflow Resin for AC, the band of zap1 (MW 30 

kDa) is enriched but that impurities are still present. Therefore this sample was applied on a 

Superdex 200 10/30 column for further purification using SEC (Figure 5.8b). 

(a) 

 

 
(b) 

 

Figure 5.8. Purification of zap1. (a) Coomassie stained gels obtained with SDS-PAGE after AC and SEC. 6.5 µl of 

sample was loaded in each lane. (b) Size exclusion chromatographic profile using Superdex 200 column of 

sample after AC (absorbance at 280 nm).  
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Fractions of 0.5 ml were collected and the purity was assessed with SDS-PAGE (Figure 5.8a), a clear 

band around 30 kDa can be seen with less impurities compared to before SEC. Fractions 22 to 36 

were combined and concentrated using a 10 kDa MWCO centrifugal filter. In total, 800 µl of purified 

zap 1 having a concentration of 9.48 g/l, determined with UV-VIS, was obtained. This means that the 

yield for this purification method was 18 mg recombinant zap1 for 1 liter of cell culture. 

5.3.3 Formation of NABBs 

NABBs with and without the CCK1R were made, by combining the belt protein and the lipids in the 

presence of detergent. Measurement of the protein concentration in the different fractions obtained 

after detergent removal using the pierce detergent removal resin, indicated that most of the protein 

was present in fractions 3 and 4. These fractions were combined and analyzed with western blot 

against the 1D4- and His6-tag (Figure 5.9) of the CCK1R and zap1 protein respectively. For empty 

NABBs, only a band for zap1 can be seen. However, for CCK1R-NABBs a band for zap1 and for the 

CCK1R is present, indicating the formation of CCK1R-NABBs. 

 

Figure 5.9. Western blots indicating formation of NABBs with and without receptor. Western blots were 

performed against the 1D4 tag of the CCK1R and the His-tag of zap1. 20 µl of NABBs were loaded on the gel. As 

a reference, 1 µl of the CCK1R elution and 25 ng of zap1 were also loaded on the gel. 

5.3.4 Binding of FCCK to CCK1R-NABBs 

An experiment to check binding of FCCK to CCK1R-NABBs was performed without the presence of 

devazepide as a stabilizing agent for the receptor, as no benefit of adding devazepide could be 
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proven in preliminary experiments. To evaluate whether the CCK1R incorporated into the NABBs was 

functional, it was tried to visualize binding to the CCK1R in NABBs with FCCK. Therefore, 1 nM of 

FCCK was added to the CCK1R-NABBs with or without coincubation of 10 µM of CCK-8S as a 

competitor. It was expected to see less fluorescence on the beads when the sample was coincubated 

with CCK-8S. However, the opposite occurred. The sample where no competitor was used showed no 

fluorescence (Figure 5.10). In contrast, the sample that was coincubated with a competitor did show 

fluorescence and even single molecules could be observed (Figure 5.10). Apparently, FCCK loses its 

fluorescence when bound to the receptor. When a competitor is present, the FCCK is free floating or 

sticking to the NABBs and thus visible. This suggests functional binding of FCCK to the CCK1R in 

NABBs. 

 

Figure 5.10. Dynabeads that hold CCK1R-NABBs in presence of 1 nM FCCK with or without coincubation with 

10 µM of CCK-8S.  

5.4 Discussion 

From the calcium flux and receptor internalization assay, it could be confirmed that the CCK1R is 

functionally expressed in the HEK-293T cells. The necessary concentration to visualize receptor 

internalization, 1 µM of FCCK was very high in comparison with the EC50 of the calcium flux (7 nM) of 

this ligand. This is in agreement with a study of Wu et al. (299) where a concentration of 1 µM CCK-8S 

was used to visualize internalization of labeled CCK1R receptor, while the EC50 value for calcium flux 

was around 0.3 nM. As FCCK appeared to be able to fully activate the CCK1R with only a 100-fold 

lower affinity than CCK-8S, this ligand can be used in future experiments for the examination of 

ligand-receptor binding.  

Furthermore, the purified zap1 protein and the CCK1R were sufficiently clean to be further 

incorporated into NABBs. The western blot showing bands of both CCK1R and zap1 for CCK1R-NABBs, 
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and only a band of zap1 for empty NABBs indicates the formation of CCK1R-NABBs. In a study of 

Szecowka et al. (268) on the purification of the CCK1R from pancreas, it is reported that after 

solubilization, the CCK1R does retain its affinity and specifity for its ligands. At this point, there is 

some evidence that the CCK1R in NABBs retains its functionality as it appears to be able to bind to 

FCCK. However, the evidence is indirect because FCCK appears to lose its fluorescence when bound 

to the receptor. We hypothesize that the fluorophore gets quenched and therefore is no longer 

fluorescent when bound to the receptor. The experiment should be repeated using a fluorescent 

labeled CCK1R ligand with another fluorophore.  

In continuation of this project, bioactive peptides that bind to the CCK1R can be purified using the 

CCK1R-NABBs. The CCK1R-NABBs can be incubated with the peptide mixture and unbound peptides 

can be washed away. Consequently the bound peptides will be eluted using high-affinity CCK1R 

ligands, such as CCK-8S, and can be identified in the eluens by mass spectroscopy (MS). This 

procedure will need to be optimized in terms of ligands and buffers used for elution. CCK is very well 

suited to elute the bound peptides, however it might interfere with MS-identification. Therefore, 

small molecule ligands are the preferred choice for elution, as they are structurally distinct from 

peptides and will greatly simplify MS identification. Nevertheless, it should also be taken into account 

that these might have allosteric binding sites and therefore might not be able to elute the peptides. 

Also, if the peptides are rather hydrophobic, they might stick to the NABBs themselves, as was seen 

for FCCK. A lot of process optimization in terms of buffers and ligands used for elution is still 

necessary. 

 A similar concept has been previously described by Borch et al. (29) to identify proteins that interact 

with membrane glycolipids. This technique can not only  be used to screen for bioactive peptides 

binding to the CCK1R, but can also be applied to other (pharmaceutical) components. Next to the use 

of CCK1R-NABBs as a selective screening tool for ligands, they can also be used to further elucidate 

the 3D structure of this receptor.  
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Chapter 6 Conclusions, general discussion and future 
perspectives 

6.1 Main outcomes of this work 

This PhD thesis contains 4 corner stones, i.e. method development for in vitro detection of CCK1R 

activation, screening of protein hydrolysates for CCK1R activity, purification and identification of the 

bioactive peptides and in vivo evaluation of the active peptides. These 4 parts will be briefly 

summarized below. 

6.1.1 In vitro method development for calcium flux measurement using pure 

compounds 

In vitro CCK1R activation was measured in CHO cells functionally expressing this receptor. When the 

CCK1R is activated, an intracellular calcium flux is induced which can be visualized with a cell 

permeable fluorescent dye. We found that the best homologous distribution of the fluorescent dye 

was obtained when it was incubated with the cells at 19 °C. Performing the experiment at a lower 

temperature (31 °C) than 37 °C, slowed down the metabolism of the fluorescent dye and allowed to 

perform stable calcium flux measurements within 80 min after incubation. For quantification of this 

calcium flux, a population average technique using a fluorescence plate reader was optimized and 

subsequently compared with a single-cell approach using confocal microscopy. With both strategies, 

dose–response curves were generated for the natural agonist CCK-8S, the partial agonist JMV-180 as 

well as the antagonist lorglumide. Significant differences were found between the ligands and a 

strong correspondence was observed between both methods in terms of maximum response and 

median effect concentrations. Both methods were highly sensitive and proved to be complementary: 

whereas the plate reader assay allowed faster, high-throughput screening, the confocal microscopy 

identified single-cell variations and revealed factors that reduce specificity and sensitivity, such as 

background fluorescence of the sample. Calcium fluxes were monitored kinetically during 34 s after 

sample addition. It was observed that increasing concentrations of the agonists resulted in higher 

calcium peaks and faster response times. CCK-8S had an EC50 value between 20 to 50 pM, while that 

of the partial agonist JMV-180 was 1000-fold higher and the calcium fluxes induced by the latter 

compound were decreased to less than 40% in  comparison with CCK-8S. The calcium flux induced by 

JMV-180 appeared to be exemplary for the protein hydrolysates. A concentration of 40 µM of the 

antagonist lorglumide completely inhibited the calcium flux of 1 nM (concentration at which a 

maximum calcium flux was observed). Therefore this antagonist could be used as an extra control to 
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ensure whether true CCK1R-induced calcium fluxes are measured. The CHO-K1 cells showed no 

response to any of these compounds. 

6.1.2 In vitro screening of protein hydrolysates with CCK1R activity 

Four commercial crude soy hydrolysates as well as hydrolysates from purified soy and milk proteins 

were screened for CCK1R activity using the cell-based bioassay. Only the 7S and 11S soy hydrolysate 

showed a significant increase of the net fluorescence response. Interestingly, also the CHO-K1 cells 

showed a fluorescence increase when stimulated with these hydrolysates. This points at non-CCK1R-

specific calcium fluxes, which might be induced by activation of other receptors such as receptor 

tyrosine kinase-type receptors or the thrombin receptor, on these cells (57, 215, 226). Ca2+ is often 

used as a second messenger in GPCR signaling (143).  Furthermore, the tests were also repeated in 

the presence of the antagonist lorglumide and it was expected that the fluorescence increase of the 

CHO-CCK1R would fall back to the same level as that of CHO-K1 cells. The fluorescence increase of 

the CHO-CCK1R was reduced by lorglumide, however that of the CHO-K1 cells too. This might be an 

indication that lorglumide also inhibits other receptors. Fluorescence measurements were first 

performed using a fluorescence plate reader. When testing the commercial soy hydrolysates, very 

high background fluorescence of the hydrolysates themselves obscured the true values. Less 

background fluorescence was seen when testing hydrolysates from purified proteins, however it was 

decided to use confocal microscopy for further measurements to obtain more reliable results. The 

fluorescence plate reader was not suited to measure calcium induced fluorescence by complex 

matrices and can only be used to make a rough primary screen of more purified hydrolysates. The 

optical sectioning capacity of the confocal microscope allowed to measure true fluorescence 

increases at the cellular level by circumventing the autofluorescence of the sample and therefore 

became the preferred technique. 

6.1.3 Purification and identification of bioactive peptides with CCK1R activity 

The peptides present in the 7S and 11S hydrolysates were further purified by separating them in 

different molecular weight classes using gel filtration chromatography. All obtained peptide fractions 

showed significant in vitro CCK1R activity and peptides present in some of the most active fractions 

were identified. The electrostatic structure of one peptide (PALSWLR) showing best homology with 

CCK was analyzed and subsequently synthesized, but it showed no significant CCK1R activity.   

In total, about 1000 peptides with a chain length from 7 to 32 amino acids have been identified in the 

soy protein hydrolysate fractions. It was tried to further purify the fractions after gel filtration using 
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RP-HPLC and the fractions with the highest absorbance were tested for CCK1R activity, but no activity 

could be measured. However this could be expected as the remaining quantities to perform the 

analysis were very low. Despite several attempts to identify the active peptide(s) using subsequent 

chromatographic techniques, the active peptide sequence(s) remained unknown. Therefore, a 

different approach to identify the active peptide(s) was developed. It was urged to embed the CCK1R 

in NABBs -a native-like bilayer membrane system kept together by a belt protein, zap1- for 

incorporation of GPCRs, as a means to selectively pull-down CCK1R-binding peptides from a peptide 

mixture. To this end, CCK1R and zap1 were purified after expression in HEK-293T cells and E. coli 

respectively using several different techniques. Western blot indicated incorporation of the CCK1R in 

the NABBs and preservation of functionality of the receptor was shown by binding with a fluorescent 

labeled CCK analog. 

6.1.4 In vivo screening of 7S and 11S soy protein hydrolysate fractions 

The set-up of the rat experiment as described in 4.2.7 was validated during preliminary experiments 

with the synthetic CCK1R agonist SR146131 (24) (Figure 4.1), using this compound it was confirmed 

that the set-up of the experiment was suited to measure an effect on food intake. The effect on food 

intake by the peptide fractions with a MW between 700 and 7000 Da from the 7S and 11S soy 

protein hydrolysates was evaluated in rats in vivo. As we could not demonstrate a significant 

difference in food intake between test and control groups, we speculate that the bioactive peptides 

may not reach their targets intact due to further breakdown or insufficient amounts needed for 

activity or low bioavailability. Furthermore it’s also possible that, as food intake is regulated by 

different systems, that the effect on the CCK-signaling system was compensated by other systems.  

6.2 Critical reflections 

6.2.1 Screening CCK1R-activating peptides 

Thus far, very promising in vitro data showing that bioactive peptides can activate the CCK1R has 

been obtained. In vitro calcium fluxes of CHO-CCK1R cells after stimulation with various protein 

hydrolysates have been monitored kinetically with a confocal microscope and per experiment (= 

addition of one sample in one well), 130 chronological images containing 100 to 150 cells were 

captured. This means that a tremendous amount of data has been collected. A critical issue in this 

project was to decide on how to process and summarize the data and which parameters to use to 

describe these data in such a way that a clear and distinct view would be obtained on how and to 

what extent CCK1R activation happens. All data were compared relative to the response of 1 nM 
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CCK-8S and corrected for background and non-specific responses by subtracting the response of 

CHO-K1 cells. This resulted in kinetic curves representing the relative fluorescence response, i.e. a 

fluorescent response truly evoked by CCK1R activation. Different parameters in terms of peak time, 

peak height, persistence of the signal and shape of the curve could be used to characterize the 

fluorescent response. The area under the relative fluorescence curves was considered as the most 

complete parameter to describe these curves as it contains information on peak height, peak time 

and signal persistence. However, a computer model describing the curves in terms of all the 

aforementioned parameters subsequently scoring these curves might suit even better and could be 

developed in continuation of this project.  

6.2.2 Purification and identification of CCK1R-activating peptides 

A major issue in this work is that thus far we have not been able to purify and identify the structure 

of the active peptide. In an attempt to identify the active peptide(s), as a sulfated tyrosine is very 

important for CCK1R activity and also the amino acid before and after tyrosine are important, (Figure 

1.2 (bottom)) all peptides listed in Supplementary Table 1 containing a structure homologous to DYM 

(where D is replaced by E, S or T and M by C, I, L or T) were superimposed (using a sulfated tyrosine) 

with CCK-8S. However, no plausible candidate peptides could be found. This indicates that the active 

peptide(s) might have a completely different structure from CCK and/or even have another binding 

site on the receptor, which can explain the observed partial agonism. The development of the 

CCK1R-NABBs is a huge step to finally identify the active peptide, however, at first, more 

optimization of this technique is needed. 

6.2.3 In vivo results and bioavailability 

Since peptide mixtures clearly showing in vitro CCK1R activity have been obtained, it was decided to 

test the effect on food intake of these mixtures in vivo, but no effect on food intake was observed. 

Evidence exists that vagal afferents respond to amino acids and hydrolyzed protein (234), indicating 

once more that CCK1R-activating peptides might induce satiety through vagal afferents. The reason 

why no effect on food intake is seen in this project might be due to poor bioavailability of the 

peptides. The exact definition of bioavailability depends on the scientific context (294), but here it is 

meant as the fraction of a dose that reaches the CCK1R in the GI after oral administration. In this 

work we tried to induce satiety by mainly targeting the CCK1Rs located on vagal afferents in the GI. 

This means that the bioactive peptides may not be broken down in the GI after oral intake and need 

to be able to cross the intestinal wall intact, which might be a major obstacle. A clear cut-off value on 

the maximum peptide length that can cross the intestinal wall cannot be set, as this is dependent on 
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the chemical nature of the amino acids present in the peptide (246). Di- and tripeptides can be 

absorbed intact via a peptide-specific transport system e.g. PepT1, using an electrochemical proton 

gradient force. Peptides with a longer chain length can cross the epithelial wall via passive transport 

or actively through endocytosis or they even might pass between the tight junctions between two 

cells (246). We expect that a peptide that can activate the CCK1R will be at least eight amino acids 

long, as this is also for CCK the minimum required chain length for CCK1R activation. Despite a study  

that reports that biologically active peptides of up to 50 amino acids can be absorbed through the 

epithelial wall in small quantities, as shown for insulin (236), the cut-off chain length for food-borne 

peptides to be able to cross the epithelial wall is probably rather 8 to 12 amino acids (246, 248). 

When active peptides have been found, their ability to penetrate intact through the intestinal wall 

will have to be assessed.  

Previously, the CCK1R has been targeted with pharmaceutical components, like SR146131 (25) from 

Sanofi-Aventis (Figure 4.1), which have good oral bioavailability. In vitro experiments showed that 

SR146131 is a highly potent (EC50 = 1.38 ± 0.06 nM) and selective CCK1R agonist. After oral 

administration to test animals, strong and significant reduction of food intake was seen. For example, 

after 3h a significant drop in the cumulative food intake of test rats compared to control rats was 

seen starting from the dose of 0.1 mg/kg, with an ED50 of 0.43 mg/kg BW. After 23 hours, the 

cumulative food intake of the test rats was still significantly reduced for doses starting from 0.3 

mg/kg BW onwards and a maximum reduction of 63% at a dose of 3 mg/kg BW was obtained.  

Despite these promising results, severe side effects were seen in the different test animals. Mice 

showed a significant decrease in locomotor activity and increased turning behavior (24). To validate 

our set-up of the rat experiment to measure an effect on food intake as described in 4.2.7, we did 

some preliminary experiments with SR146131. Next to a significant reduction in food intake, 

decreased locomotor activity, increased turning behavior, back-arching and stretching were seen. To 

monitor these side effects, the test animals can be video filmed as mentioned before (221). Other 

physiological effects of CCK, like gall bladder emptying and gastric acid secretion should also be 

assessed. There are good indications that SR146131 is able to penetrate the blood-brain barrier (24), 

which is probably the explanation for the adverse effects seen. The advantage of using bioactive 

peptides as CCK1R agonists instead of pharmaceutical compounds is that they most likely will not 

show these side effects as they won’t be able to cross the blood-brain barrier, if they even get there 

at all. No adverse effects were seen during the rat experiment in this study. It should also be taken 

into account that proteins from the Leguminosae family are a major source of food allergens, 

however these get mostly deactivated through hydrolysis (40, 211). 
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A difficulty in this project is that the CCK signaling system only induces satiety at the short term (185) 

and it is not sure yet that by influencing this system persistent weight loss can be measured in in vivo 

tests. For example, the pharmaceutical CCK agonist GI181771X significantly delays gastric emptying 

of solids and increases fasting gastric volumes in humans (41), however it appeared not to cause 

weight loss in overweight or obese human subjects (138). If this would be the case, research should 

focus on developing a combination of ingredients that affect several weight regulating mechanisms 

to tackle balancing out of one mechanism by the other. 

6.3 Future perspectives 

6.3.1 In vitro screening of more protein hydrolysates  

More protein hydrolysates and peptides still need to be screened for their CCK1R-activating 

potential. A good candidate protein can be protein from pea, because like soy, pea is also a member 

of the Leguminosae family. Preliminary data support the hypothesis that the pea protein hydrolysate 

contains CCK1R activity to a similar extent as the soy protein (Figure 6.1). When using proteins from 

legumes, it has to be taken into account that these proteins might possess food allergens (200). 

Preliminary experiments have also been carried out with whey protein hydrolysate, but this 

hydrolysate showed no significant CCK1R activity. Other candidate proteins are proteins from staple 

food such as potato and cassava. Potato proved to be very satiating (123) and contains up to 4% of 

protein (39). Potato proteins represent up to 25% of the waste stream of starch factories and 

therefore might form an interesting protein source for this research (222). The protein in cassava is 

especially present in the leaves and amounts up to 40%, however extraction is difficult and the yield 

is low due to the presence of tannins  (281). 
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Figure 6.1. Fluorescence kinetics and dose-response curve for pea protein isolate hydrolyzed for 1 min with 

Promod 278P (Biocatalysts, Cardiff, UK representing CCK1R-mediated calcium fluxes in cell populations 

monitored with a resonant scanning confocal microscope). (a) Normalized fluorescence kinetics (Fi/F0) for 

CHO-CCK1R and CHO-K1. Results for sample as well as for 1 nM are shown. The curves represent the mean of 

5 technical replicates. (b) Dose-dependent representative relative fluorescence kinetics (RF) of increasing 

concentrations of pea protein hydrolysate (0.01–1 g/l). The curves represent the mean of 5 technical 

replicates. (c) Dose–response curve for pea protein hydrolysate based on 2 experiments (biological 

replicates) in which the measurements for each concentration were repeated 5 times, expressed as a 

percentage of the maximum net response, i.e. the net response induced by 1 nM CCK-8S. The pea hydrolysates 

were obtained from Wageningen University and Research Centre, Food & Biobased Research, Group Bioactive 

Ingredients.  

 

6.3.2 Development of QSAR 

A rough 3D-model of the CCK1R (7), in which CCK-8S has been docked, exists. It could be tried to 

dock all the identified peptides into the CCK1R binding cavity as was done for sulfakinin (258) and 

select the peptide with the lowest binding energy for subsequent synthesis and in vitro evaluation. 

When the active peptides are identified and their in vitro activity is assessed, these data can be used 

to establish a QSAR (quantitative structure-activity relationship) from which possible new CCK1R 

agonistic structures might be deduced. However, before this strategy can be followed, the 3D model 

of the CCK1R has to be refined. This can be done using computer-assisted molecular modeling, 
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however the accuracy of such models remains a major issue (7). The crystal structure of the CCK1R 

would be very useful to this end and the list of known crystal structures from GPCRs is steadily 

growing, however GPCR-mediated signaling remains very complex. To gain a better understanding of 

this process, novel techniques and different approaches, e.g. color-coding of different proteins with 

different fluorescent probes and subsequent measurement by SMD-TIRF (small molecule detection – 

total internal reflection fluorescence), will be necessary (127). 

6.3.3 Bioavailability of the bioactive peptides 

6.3.3.1 Assesment of intestinal permeability 

Several in vitro techniques exist to evaluate intestinal permeability. They can roughly be divided into 

two experimentally different categories: one based on uptake of the components into the system 

and a second one based on transport of the component through the system. Three different 

approaches for the latter category will be discussed here. One is the use of an everted intestinal sac, 

a small piece of intestine is cut off, one end is  tied off and subsequently the “sac” is everted and 

filled with buffer containing the compound. Next, the serosal fluid (inside the sac) can be analyzed 

after a certain incubation period (280). The intestinal membrane of a frog seems to be very well 

suited as a model for human absorption (278). A second approach is based on the use of Ussing 

chambers or similar models, in which small sections of intestine are clamped between two glass 

chambers that are filled with buffer and appropriate nutrients, and supplied with 95% O2. Transport 

of the compound through the tissue is then measured as a function of time (280). In a third 

approach, cultured cells are used to study intestinal permeation. Caco-2 cells, a cell line derived from 

a colon cancer adenocarcinoma, are widely used as they resemble to mature human enterocytes 

(246). They can be grown on porous filter supports and the permeation experiments can be directly 

performed in the original culture chambers. Caco-2 cells are very well suited for high-throughput 

screening with high reproducibility, but the disadvantage is that a caco-2 cell monolayer might be 

less permeable than human intestine (280). In the context of bioactive peptides, everted intestinal 

sacs might be the preferred method as this method is relatively inexpensive and simple to perform 

(280). For example, the effect of chain length on absorption of soy peptides was compared using rat 

everted intestinal sacs (44). Also, in silico methods for prediction of intestinal absorption are being 

developed and might be a great help to avoid peptide synthesis and reduce screening time and cost. 

These include computational models in which the physicochemical characteristics of the different 

peptides are taking into account. Recognition of key physicochemical properties then allows 

predictive screening (4). 
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6.3.3.2 Improvement of bioavailability 

To improve the permeability of the intestinal wall, permeability enhancers such as surfactants, fatty 

acids, glycerides, steroidal detergents, acyl-carnitines and acyl-cholines, N-acetylated amino acids, 

and chitosans and other mucoadhesive polymers (12) can be added to the peptides. These 

compounds controllably and transiently open the tight-junctions between cells allowing the peptides 

to cross the epithelial wall via the transcellular route. However it should be avoided that toxic and 

unwanted compounds are being absorbed (4). The peptides can also be structurally or chemically 

modified to avoid enzymatic breakdown and to have a longer lifetime by pegylation, lipidation, 

glycosylation, addition of fatty acids or isoprenoids, N-methylation, amino acid substitution and 

formation of disulfide bonds (246). Furthermore, microencapsulation is a technique that is gaining 

general acceptance for improvement of bioavailability of bioactive compounds. It can be used to 

protect the peptides from harsh conditions in the GI and it allows controlled release of the peptides. 

Microencapsulation can also be used to mask the bad taste of the peptides (152). 

6.3.4 In vivo screening 

After in vitro (cell-based bioassay) and ex vivo (intestinal wall permeability) evaluation of the 

bioactive peptides, their effect on food intake and possible side effects can be evaluated in vivo. In a 

first phase, this will be done with rat experiments on the short and long term, and in a second phase 

with human intervention studies. 

6.3.4.1 Short term experiments and evaluation of involved appetite regulating mechanism 

During short term experiments, the effect of the bioactive compounds on food intake within one day 

is measured by measuring the amount of food that disappeared from the cage. Also other 

parameters like meal frequency and meal duration can be monitored (291). Video recording of the 

rats is possible and can be a very useful aid in assessing these data (221). As discussed before, 

appetite regulation is a  complex process in which different mechanisms are involved. So when an 

effect on food intake is seen, despite the in vitro and the ex vivo results indicating that the CCK1R 

might be activated, it is unsure which appetite regulation mechanism(s) is/are altered. E.g. food 

intake might be reduced by stimulation of CCK production or even through another gastro-intestinal 

hormonal pathway. Therefore, some extra controls have to be built in. First, when the sample is 

given to the rats, the concentration in the blood of the different gut peptides and especially CCK 

should be measured within 10 to 30 min after sample addition and compared with the values of the 

control rats. The concentration of the gut peptides in the blood of the test rats should not be 
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different from that of the control rats. If this is the case, than CCK release is also at least partially 

involved. Secondly, to be sure that food intake reduction is induced via activation of CCK1Rs, the 

experiments should be repeated in combination with a CCK1R antagonist such as lorglumide (219). In 

summary, when no augmentation of CCK or other gut peptides in comparison to the control rats is 

seen after sample addition and the food intake reduction can be inhibited by a CCK1R antagonist, it 

can be concluded that the food intake reduction is caused by true CCK1R activation of the bioactive 

peptides. Also, the possibility that the CCK1R is activated in combination with an effect on other 

appetite regulation mechanisms should not be excluded. Furthermore, dose-response experiments 

will have to be carried out to determine the concentration for which an effect can be seen. 

6.3.4.2 Long term effect on weight 

It is well known that CCK affects appetite on the short term, i.e. within hours after a meal (69). The 

short term experiments reveal information about the effect of bioactive peptides on appetite within 

this time frame, but provide no information on what happens at the longer term. The long term goal 

is to see a decrease in weight or weight gain in the test animals compared to the control animals. 

These experiments can also be performed with standard laboratorium rats such as Sprague-Dawley 

or Long-Evans rats. An obesity-prone environment can be created for the rats by offering them fresh 

wet cookies, bread and sugar water in addition to standard laboratory chow (243). Interestingly, in a 

report of Swartz et al. (2010), obesity-prone rats seemed to reduce food intake more after 

intraperitoneal injection of CCK, compared to obesity-resistant rats. An explanation for this 

phenomenon might be the increased expression of CCK1Rs in these rats (266). However, these 

results are not conclusive (165). The rats should receive during a certain amount of time, e.g. 15 

weeks, every day a certain dose of bioactive peptides and subsequently their  body weight should be 

monitored on a day-to-day or week-to-week basis (247). Also during long term experiments, adverse 

effects should be monitored by daily inspection of the rats for signs of toxicity by e.g. measuring 

body temperature. Also the use of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, having a defect 

in the gene coding for the CCK1R, could be considered to evaluate the effect of product on CCK-

induced satiety (193). 

6.3.4.3 Human intervention studies and functional food matrix 

The ultimate goal of this study is to attain a significant amount of weight loss in humans by oral 

uptake of CCK1R activating bioactive peptides. So after the in vivo experiments with animals, human 

intervention studies should be carried out. The designated experimental set-up to measure an effect 

of a product on food intake is the preload study design using within subject repeated measurements 
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and double-blind controlled conditions (28).  The product under research can be administered to 

human subjects less than half an hour up to several hours before serving an accurately monitored 

test meal after which their spontaneous food intake and appetite ratings can be compared to the 

control group having received a placebo or no preload (28, 59, 122, 154, 255, 306). Appetite ratings 

can be validated using e.g. visual analogue scales (209). Also, instead of using test meals, subjects 

may self-report their food intake (28). This study can be preceded by a pilot study in which only a 

limited number of human subjects are included to confirm the effect on appetite and/or food intake, 

to estimate the desired dose and to calculate the sample size of the main intervention study (based 

on the magnitude of the effect on appetite/food intake and the standard deviation). Furthermore, 

the physiologically active dose should  be reasonably ingestible (e.g. a couple of grams per day). 

Also at this point, the food matrix (e.g. a yoghurt) in which the bioactive peptides will be 

incorporated for oral uptake has to be considered. It should mask the bitter taste of the peptides if 

any and it also may not interfere with the functioning of the peptides. The food matrix influences the 

bioaccessibility, i.e. the fraction which is released from the ingested matrix upon ingestion and which 

is available for absorption (240). The composition of the food matrix, the synergisms and 

antagonisms of the different compounds, but also physicochemical properties such as temperature, 

pH and texture of the matrix have an influence on the bioaccessibility. Also, the volume and the 

energy content of the food matrix affects physiological conditions in the GI which causes changes in 

the bioaccessibility of digested compounds. In the context of peptides, the hydrophilic or 

hydrophobic character of the peptides of interest will determine the composition of the food matrix 

(229).  

6.3.5 Broader applications and opportunities 

In this project, all the techniques used were focused on bioactive peptides, the CCK1R and satiety. 

The in vitro cell-based bioassay and the CCK1R-NABBs can also be used to screen for other food 

components. The CCK1R-activating potential of plant phenols can be investigated, as it has been 

indicated that plant constituents might influence the CCK1R signaling pathway (147). More generally, 

the in vitro cell-based bioassay and the CCK1R-NABBs can be used to screen for pharmaceutical 

CCK1R agonists, which do not necessarily need to have a(n) (sole) effect on satiety but which can also 

act on other CCK1R-mediated conditions such as gall stones and diabetes mellitus (see higher). 

Furthermore, this screening system might be applied in a parallel set-up to look for agonists and 

antagonists of the CCK2R and even for all kinds of other GPCRs too. Especially the use of NABBs in 

which a certain GPCR is incorporated as a pull-down system to identify components binding to the 

involved GPCR is a very innovative and promising technique.  
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6.4 Regulatory issues and social context 

6.4.1 EFSA guidelines concerning marketing of bioactive peptides and safety thereof 

The final application of this project is to market a functional food that can claim enhanced satiety. A 

claim that implies a relationship between consumption of a food product and health is called a 

“health claim”. Such claim is subjected to the “Nutrition and health claims regulation”, which came 

into legislation in January 2007 by the EU (Regulation (EC) No. 1924/2006 (78)). The food constituent 

on which the claim is made should have a beneficial physiological effect and claims should not:  

- be ambiguous, false or misleading 

- cause doubt on the safety and/or nutritional value of other foods 

- give rise to excess consumption 

- imply that a varied and balanced eating pattern is not sufficient to provide appropriate 

nutrient quantities 

- mention changes in body functions that might frighten consumers 

Health claims referring to an amount or rate of weight loss are not allowed, but claims related to 

appetite changes do are allowed and fall under article 13.1c of the nutrition and health claims 

regulation (96). These claims should be based on generally accepted scientific evidence, which is 

assessed and studied by EFSA. To review the evidence, EFSA addresses a number of questions (74): 

- Studies performed on claimed food constituent? Food constituent well-defined and 

characterized? 

- Design and quality of the study allows scientific substantiation of the claim?  

- Study group representative of the population group? 

- Study uses the appropriate outcome measure? 

If the claim meets these criteria, EFSA evaluates the evidence to determine whether a cause-effect 

relationship is established. In vitro studies and animal studies can be used as supporting evidence 

and to explain plausible mechanisms, but profound human intervention studies on the target 

population are necessary in order to have a claim on appetite ratings approved and these need to 

show a sustained effect when the food is continuously consumed. It is also important that the dose 

of the active compound in the functional food on which the claim is made is in concordance with the 

dose used during the human-intervention studies. So after evaluation of the scientific evidence, EFSA 

provides an opinion whether a claim is sufficiently scientifically substantiated to the European 

Commission. The European Commission, together with member states representatives, makes the 
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final decision whether the health claim should be approved or rejected. No pre-established formula 

on what kind and to what extent studies have to be performed to substantiate a health claim, so 

each claim is assessed separately. This uncertainty concerning criteria in order to have a health claim 

approved is a big concern for the industry. (74, 96). 

The safety of protein hydrolysates, protein hydrolysate fractions or bioactive peptides has to be 

assessed by the company trying to market that product. A special legislation exists that has to be 

applied when a company wants to market a ‘novel food’ (Regulation (EC) No 258/97 (47)).  ‘Novel 

foods’ or ‘novel food ingredients’ are defined as ‘foods and food ingredients that have not been used 

for human consumption to a significant degree in the EU before 15 May 1997 and are divided into 

several categories of which the following might be applicable to protein hydrolysates, fractions 

thereof or bioactive peptides:  

‘foods and food ingredients consisting of or isolated from plants and food ingredients 

isolated from animals, except for foods and food ingredients obtained by traditional 

propagating or breeding practices and having a history of safe food use;  

foods and food ingredients to which has been applied a production process not currently 

used, where that process gives rise to significant changes in the composition or structure of 

the foods or food ingredients which affect their nutritional value, metabolism or level of 

undesirable substances.’ (47) 

When a new food product is developed, the safety assessment is generally based on the comparison 

with comparable traditional foods that have a documented history of safe use. When the safety of 

protein hydrolysates and fractions thereof is evaluated, following characteristics appear to form an 

appropriate benchmark (242): 

- the documented history of safe consumption 

- the data from safety studies and safety-related data from efficacy studies 

- the amount of protein intake 

- the amount of free amino-acid intake 

- the safety aspects of the production processing, e.g. processing aids 

6.4.2 Evaluation of regulatory issues in relation to CCK1R activating peptides 

An example of a claim on a food product e.g. a yoghurt containing satiety-inducing CCK1R activating 

peptides could be the following:  
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“Soy peptides help to control excessive food intake”. 

It is clear that it is beneficial to constrain excessive food intake. To have this claim approved by EFSA, 

it is important to “sufficiently” define and characterize the active components. It is not clear however 

when a characterization is considered as sufficient. In the active soy protein hydrolysate fractions, a 

lot of peptides have been characterized and amino acid composition can be determined, but it is not 

clear whether it is necessary to identify the sequence of the active peptide.  

Some examples for antihypertensive peptides and protein hydrolysates illustrating the extent of 

characterization exist. Lactotripeptides IPP and VVP (Evolus, Valio, Finland and AmealPeptide, 

Calpis Co., Japan) (134) are the subject of the health claim itself and thus are fully identified. 

However, dried bonito (117) and C12 peption (DMV, The Netherlands) (277) are protein 

hydrolysates of which only a certain amount of peptides have been identified. The main activity was 

attributed to the identified peptides and so EFSA considered these products as sufficiently 

characterized (120). From this it can be concluded that to get a claim approved, it is most likely that 

all the peptides  contributing to the most activity will have to be identified. 

Furthermore, a human-intervention study on overweight and/or obese people showing that 

continuous consumption of the food constituent causes a persistent reduced sense of hunger and/or 

reduced food intake is needed as described in paragraph 6.3.4.3. It seems appropriate to perform the 

study on overweight and/or obese subjects, however, the NDA still needs to decide whether 

extrapolation is possible to the (general) healthy population. Biological markers such as CCK blood 

concentration can be measured to support explanation of behavioral changes. 

Also the safety of the protein hydrolysates will have to be assessed. A lot of data about the safety of 

protein hydrolysates exists, because they have been widely studied and used as a replacement for 

food protein causing allergy (124). Protein hydrolysates have also a wide history of use in patients 

with digestive disturbances and in sports nutrition (172, 242). Partially and extensively hydrolyzed 

proteins from a good quality source (e.g. soy, egg and milk) have a long history of safe use and no 

unacceptable side effects have been reported (242). Following Schaafsma (2009) (242), based on the 

safe replacement of protein by protein hydrolysates, protein hydrolysate intake levels are safe up to 

126g/day. Concerning the amino acid uptake, an upper limit of 2.9% of methionine in the protein 

hydrolysates has been set, as too much methionine can cause undesirably high plasma levels of 

homocysteine, which might lead to hyperhomocysteinemia (30, 239). This ‘average’ content is 

comparable to the amount of methionine present in a 2:1 casein:soy mixture (239). Proteolytic 

enzymes (such as pepsin, trypsin and so on) are allowed in food and even do not need to be labeled 
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when they are considered as processing aids (46). So depending on the criteria described above, the 

isolated soy protein fractions would not fall under the novel foods legislation.  

6.4.3 Social relevance of satiety-enhancing food products 

Approximately 68% of the US population is overweight  and more than 33% of the population suffers 

from obesity. In Europe, 32% of the population is overweight and 17% is obese (100). The average 

BMI value for adults in Flanders is 24.9 and lies on the border of overweight, 43% of the Flemish 

population is overweight and 11% is obese (19). The revenues of the European market for drugs 

against obesity totaled $ 668.1 million in 2008, these revenues are predicted to reach $1158,1 million 

in the year 2015. Moreover, the market for anti-obesity products is still growing, as the prevalence of 

obesity keeps on rising (86). Consumers are increasingly concerned about their health and are willing 

to pay extra for food with a health benefit. The sales of functional foods  accounted for  $ 26.4 

million in 2005 (17). However, consumer acceptance of functional foods cannot be taken for granted 

and the trustworthiness of the health claim, taste and price of the product play an important role 

(249, 285). There’s also variation in the consumer acceptance based on the type of food and the 

geographic context, so to assess the marketing possibilities of functional foods, these should be 

studied as being separate products within various food categories rather than as a homogenous 

group (249). Currently, the benefits of satiety-enhancing products for consumers remain under 

researched (106). 

People who are on a diet experience malignancies such as preoccupation with eating and food, poor 

concentration, increased emotionality, irritability, dysphoria and deprivation. These factors might 

undermine diet compliance. A vast majority of food products having altered macronutrient 

composition, food structure, sensory impact or containing functional ingredients have proven their 

effect on short-term appetite regulation. However the sustainability of these effects to contribute to 

weight management remains a critical issue. This is also the case for functional foods increasing 

satiety. They might be a useful stepping stone for people to persist in their diet, but it is not clear 

what consumers expect from satiety-enhancing products. For example, the management of appetite 

in itself without a focus on weight management can be legitimate for consumers who find it hard to 

resist to the temptation of unhealthy food. Other consumers expect weight control from satiety-

enhancing products, as it is assumed that changes in appetite result in long-term benefits for weight 

management (106).Nonetheless the clear demand for products helping consumers to manage their 

body weight (106), more efforts should be made in communicating that to successfully obtain and 

maintain a healthy weight, a healthy lifestyle and a balanced diet are necessary. Especially regular 

physical activity and a high intake of fibre are the main protective factors against obesity (267). 
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Supplementary data 

Supplementary Table 1: Overview of identified peptides in Fraction E and F of 7SH and fraction F of 11SH. All 

peptides were identified with >99% reliability (see M&M paragraph 4.2.5). Ace: acetylation of the N-terminus. 

The more space the peptide comprises in the table, the more often it has been identified.  

Accession number Start position of peptide End position of peptide Peptide 

7SH Frac E 

P33784 1 7 Ace-MLNIIHR-COOH 

P13916 

113 127 NH2-QEEEHEQREEQEWPR-COOH 

152 165 NH2-QFPFPRPPHQKEER-COOH 

192 
208 

NH2-NKNPFLFGSNRFETLFK-COOH 

194 NH2-NPFLFGSNRFETLFK-COOH 

198 206 NH2-FGSNRFETL-COOH 

221 232 NH2-NQRSPQLQNLRD-COOH 

224 

231 NH2-SPQLQNLR-COOH 

232 NH2-SPQLQNLRD-COOH 

233 NH2-SPQLQNLRDY-COOH 

234 NH2-SPQLQNLRDYR-COOH 

246 255 NH2-LLPNHADADY-COOH 

267 277 NH2-SLVNNDDRDSY-COOH 

278 286 NH2-RLQSGDALR-COOH 

285 293 NH2-LRVPSGTTY-COOH 

287 
305 

NH2-VPSGTTYYVVNPDNNENLR-COOH 

294 
NH2-YVVNPDNNENLR-COOH 

306 
NH2-YVVNPDNNENLRL-COOH 

295 NH2-VVNPDNNENLRL-COOH 

319 339 NH2-FESFFLSSTEAQQSYLQGFSR-COOH 

323 
333 NH2-FLSSTEAQQSY-COOH 

334 NH2-FLSSTEAQQSYL-COOH 

350 360 NH2-FEEINKVLFSR-COOH 

356 370 NH2-VLFSREEGQQQGEQR-COOH 



Supplementary data 

- 150 - 

358 
NH2-FSREEGQQQGEQR-COOH 

373 NH2-FSREEGQQQGEQRLQE-COOH 

359 

370 NH2-SREEGQQQGEQR-COOH 

371 NH2-SREEGQQQGEQRL-COOH 

373 NH2-SREEGQQQGEQRLQE-COOH 

371 
385 

NH2-LQESVIVEISKEQIR-COOH 

377 NH2-VEISKEQIR-COOH 

397 

409 

NH2-KTISSEDKPFNLR-COOH 

398 NH2-TISSEDKPFNLR-COOH 

400 NH2-SSEDKPFNLR-COOH 

410 422 NH2-SRDPIYSNKLGKF-COOH 

422 

429 NH2-FFEITPEK-COOH 

434 NH2-FFEITPEKNPQLR-COOH 

423 

433 NH2-FEITPEKNPQL-COOH 

434 NH2-FEITPEKNPQLR-COOH 

435 NH2-FEITPEKNPQLRD-COOH 

424 434 NH2-EITPEKNPQLR-COOH 

441 

455 

NH2-SIVDMNEGALLLPHF-COOH 

445 NH2-MNEGALLLPHF-COOH 

446 
NH2-NEGALLLPHF-COOH 

459 NH2-NEGALLLPHFNSKA-COOH 

448 
455 

NH2-GALLLPHF-COOH 

450 NH2-LLLPHF-COOH 

464 474 NH2-VINEGDANIEL-COOH 

525 
536 NH2-FAIGINAENNQR-COOH 

537 NH2-FAIGINAENNQRN-COOH 

526 
536 

NH2-AIGINAENNQR-COOH 

527 NH2-IGINAENNQR-COOH 

537 568 NH2-NFLAGSQDNVISQIPSQVQELAFPGSAQAVEK-COOH 

557 

565 NH2-LAFPGSAQA-COOH 

568 NH2-LAFPGSAQAVEK-COOH 

569 NH2-LAFPGSAQAVEKL-COOH 
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575 
584 

NH2-ESYFVDAQPK-COOH 

578 NH2-FVDAQPK-COOH 

P11827 

110 118 NH2-QPHQEEEHE-COOH 

188 204 NH2-DKESQESEGSESQREPR-COOH 

208 
217 NH2-NKNPFHFNSK-COOH 

218 NH2-NKNPFHFNSKR-COOH 

219 224 NH2-FQTLFK-COOH 

223 231 NH2-FKNQYGHVR-COOH 

239 

247 

NH2-RSQQLQNLR-COOH 

240 NH2-SQQLQNLR-COOH 

240 
248 NH2-SQQLQNLRD-COOH 

249 NH2-SQQLQNLRDY-COOH 

251 
261 

NH2-ILEFNSKPNTL-COOH 

254 NH2-FNSKPNTL-COOH 

262 272 NH2-LLPHHADADYL-COOH 

283 293 NH2-TLVNNDDRDSY-COOH 

295 302 NH2-LQSGDALR-COOH 

310 
321 NH2-YVVNPDNDENLR-COOH 

322 NH2-YVVNPDNDENLRM-COOH 

344 

353 NH2-LAIPVNKPGR-COOH 

354 
NH2-LAIPVNKPGRF-COOH 

345 NH2-AIPVNKPGRF-COOH 

354 374 NH2-FESFFLSSTQAQQSYLQGFSK-COOH 

358 369 NH2-FLSSTQAQQSYL-COOH 

359 368 NH2-LSSTQAQQSY-COOH 

375 
384 NH2-NILEASYDTK-COOH 

390 NH2-NILEASYDTKFEEINK-COOH 

378 385 NH2-EASYDTKF-COOH 

386 393 NH2-EEINKVLF-COOH 

391 

405 

NH2-VLFGREEGQQQGEER-COOH 

393 NH2-FGREEGQQQGEER-COOH 

394 406 NH2-GREEGQQQGEERL-COOH 

406 416 NH2-LQESVIVEISK-COOH 
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432 
441 

NH2-KTISSEDKPF-COOH 

433 NH2-TISSEDKPF-COOH 

445 

453 NH2-SRDPIYSNK-COOH 

454 NH2-SRDPIYSNKL-COOH 

456 NH2-SRDPIYSNKLGK-COOH 

457 NH2-SRDPIYSNKLGKL-COOH 

447 456 NH2-DPIYSNKLGK-COOH 

477 485 NH2-VDMNEGALF-COOH 

 528 NH2-QQQEEQPLEVR-COOH   

518 

518 529 NH2-QQQEEQPLEVRK-COOH 

559 

570 

NH2-FAFGINAENNQR-COOH 

560 NH2-AFGINAENNQR-COOH 

561 NH2-FGINAENNQR-COOH 

599 605 NH2-DIENLIK-COOH 

604 612 NH2-IKSQSESYF-COOH 

606 
620 NH2-SQSESYFVDAQPQQK-COOH 

624 NH2-SQSESYFVDAQPQQKEEGN-COOH 

609 620 NH2-ESYFVDAQPQQK-COOH 

611 624 NH2-YFVDAQPQQKEEGN-COOH 

612 
620 NH2-FVDAQPQQK-COOH 

624 
NH2-FVDAQPQQKEEGN-COOH 

613 NH2-VDAQPQQKEEGN-COOH 

P25974 

24 37 NH2-LKVREDENNPFYFR-COOH 

62 
70 

NH2-RSPQLENLR-COOH 

63 

NH2-SPQLENLR-COOH 

71 NH2-SPQLENLRD-COOH 

72 NH2-SPQLENLRDY-COOH 

126 144 NH2-IPAGTTYYLVNPHDHQNLK-COOH 

134 143 NH2-LVNPHDHQNL-COOH 

231 243 NH2-KTISSEDEPFNLR-COOH 
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232 NH2-TISSEDEPFNLR-COOH 

244 255 NH2-SRNPIYSNNFGK-COOH 

269 292 NH2-DLDIFLSSVDINEGALLLPHFNSK-COOH 

279 289 NH2-INEGALLLPHF-COOH 

318 

329 

NH2-QKQEEEPLEVQR-COOH 

320 NH2-QEEEPLEVQR-COOH 

371 

382 

NH2-NFLAGEKDNVVR-COOH 

373 
NH2-LAGEKDNVVR-COOH 

383 NH2-LAGEKDNVVRQ-COOH 

374 382 NH2-AGEKDNVVR-COOH 

387 
402 

NH2-QVQELAFPGSAQDVER-COOH 

391 
NH2-LAFPGSAQDVER-COOH 

403 NH2-LAFPGSAQDVERL-COOH 

407 420 NH2-QRESYFVDAQPQQK-COOH 

409 427 NH2-ESYFVDAQPQQKEEGSKGR-COOH 

P04776 

37 

51 

NH2-NALKPDNRIESEGGL-COOH 

39 NH2-LKPDNRIESEGGL-COOH 

44 NH2-RIESEGGL-COOH 

51 62 NH2-LIETWNPNNKPF-COOH 

111 120 NH2-FEEPQQPQQR-COOH 

192 206 NH2-FLKYQQEQGGHQSQK-COOH 

193 
205 NH2-LKYQQEQGGHQSQ-COOH 

206 
NH2-LKYQQEQGGHQSQK-COOH 

194 NH2-KYQQEQGGHQSQK-COOH 

209 221 NH2-HQQEEENEGGSIL-COOH 

222 233 NH2-SGFTLEFLEHAF-COOH 
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225 NH2-TLEFLEHAF-COOH 

233 241 NH2-FSVDKQIAK-COOH 

323 332 NH2-HNIGQTSSPD-COOH 

343 356 NH2-TATSLDFPALSWLR-COOH 

355 361 NH2-LRLSAEF-COOH 

371 383 NH2-VPHYNLNANSIIY-COOH 

375 388 NH2-NLNANSIIYALNGR-COOH 

401 411 NH2-VFDGELQEGRV-COOH 

409 
417 NH2-GRVLIVPQN-COOH 

418 NH2-GRVLIVPQNF-COOH 

435 

452 NH2-KTNDTPMIGTLAGANSLL-COOH 

445 NH2-KTNDTPMIGTL-COOH 

481 

492 

NH2-KFLVPPQESQKR-COOH 

483 NH2-LVPPQESQKR-COOH 

485 NH2-PPQESQKR-COOH 

P04405 

34 

48 

NH2-NALKPDNRIESEGGF-COOH 

36 NH2-LKPDNRIESEGGF-COOH 

49 59 NH2-IETWNPNNKPF-COOH 

78 
87 NH2-RPSYTNGPQE-COOH 

89 NH2-RPSYTNGPQEIY-COOH 

88 
97 NH2-IYIQQGNGIF-COOH 

98 NH2-IYIQQGNGIFG-COOH 

90 97 NH2-IQQGNGIF-COOH 

108 

117 

NH2-YQEPQESQQR-COOH 

108 NH2-YQEPQESQQR-COOH 

109 NH2-QEPQESQQR-COOH 

139 
147 NH2-IAVPTGVAW-COOH 

159 

NH2-IAVPTGVAWWMYNNEDTPVVA-COOH 

148 NH2-WMYNNEDTPVVA-COOH 

149 NH2-MYNNEDTPVVA-COOH 

160 

168 NH2-VSIIDTNSL-COOH 

169 NH2-VSIIDTNSLE-COOH 

172 NH2-VSIIDTNSLENQL-COOH 

177 NH2-VSIIDTNSLENQLDQMPR-COOH 

162 
172 

NH2-IIDTNSLENQL-COOH 

166 

NH2-NSLENQL-COOH 

175 NH2-NSLENQLDQM-COOH 

177 

NH2-NSLENQLDQMPR-COOH 

167 NH2-SLENQLDQMPR-COOH 

169 NH2-ENQLDQMPR-COOH 
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172 NH2-LDQMPR-COOH 

180 

188 NH2-YLAGNQEQE-COOH 

189 NH2-YLAGNQEQEF-COOH 

192 NH2-YLAGNQEQEFLKY-COOH 

190 204 NH2-LKYQQQQQGGSQSQK-COOH 

217 225 NH2-ILSGFAPEF-COOH 

226 

233 NH2-LKEAFGVN-COOH 

234 NH2-LKEAFGVNM-COOH 

235 NH2-LKEAFGVNMQ-COOH 

228 238 NH2-EAFGVNMQIVR-COOH 

260 267 NH2-RVTAPAMR-COOH 

312 322 NH2-RQNIGQNSSPD-COOH 

335 342 NH2-TSLDFPAL-COOH 

345 351 NH2-LKLSAQY-COOH 

389 398 NH2-ERVFDGELQE-COOH 

391 
401 NH2-VFDGELQEGGV-COOH 

402 NH2-VFDGELQEGGVL-COOH 

401 
408 

NH2-VLIVPQNF-COOH 

402 NH2-LIVPQNF-COOH 

414 425 NH2-SQSDNFEYVSFK-COOH 

425 
435 

NH2-KTNDRPSIGNL-COOH 

426 NH2-TNDRPSIGNL-COOH 

443 

454 

NH2-NALPEEVIQHTF-COOH 

446 NH2-PEEVIQHTF-COOH 

449 NH2-VIQHTF-COOH 

473 481 NH2-LVPPQESQR-COOH 

P11828 

81 90 NH2-RPSYTNAPQE-COOH 

91 
100 NH2-IYIQQGSGIF-COOH 

101 NH2-IYIQQGSGIFG-COOH 

111 
117 NH2-FEEPQQK-COOH 

119 NH2-FEEPQQKGQ-COOH 

163 

172 NH2-IDTNSFQNQL-COOH 

175 NH2-IDTNSFQNQLDQM-COOH 

177 
NH2-IDTNSFQNQLDQMPR-COOH 

169 NH2-QNQLDQMPR-COOH 

190 
202 NH2-LQYQPQKQQGGTQ-COOH 

205 NH2-LQYQPQKQQGGTQSQK-COOH 

439 450 NH2-NALPEEVIQQTF-COOH 

471 477 NH2-PPKESQR-COOH 
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P02858 

38 52 NH2-NALEPDHRVESEGGL-COOH 

92 98 NH2-IIIAQGK-COOH 

112 
120 NH2-FEEPQEQSN-COOH 

121 NH2-FEEPQEQSNR-COOH 

126 

137 NH2-SQKQQLQDSHQK-COOH 

139 NH2-SQKQQLQDSHQKIR-COOH 

138 

146 NH2-IRHFNEGDV-COOH 

147 NH2-IRHFNEGDVL-COOH 

171 

180 NH2-LDTSNFNNQL-COOH 

185 NH2-LDTSNFNNQLDQTPR-COOH 

186 NH2-LDTSNFNNQLDQTPRV-COOH 

177 

185 NH2-NNQLDQTPR-COOH 

186 NH2-NNQLDQTPRV-COOH 

187 200 NH2-FYLAGNPDIEYPET-COOH 

198 208 NH2-PETMQQQQQQK-COOH 

237 247 NH2-FLAQSFNTNED-COOH 

238 
246 NH2-LAQSFNTNE-COOH 

247 NH2-LAQSFNTNED-COOH 

260 
269 

NH2-KQIVTVEGGL-COOH 

261 NH2-QIVTVEGGL-COOH 

276 284 NH2-WQEQQDEDE-COOH 

362 
369 NH2-RPRQEEPR-COOH 

371 NH2-RPRQEEPRER-COOH 

412 

419 NH2-NSLTLPAL-COOH 

420 NH2-NSLTLPALR-COOH 

421 
NH2-NSLTLPALRQ-COOH 

414 NH2-LTLPALRQ-COOH 

485 
497 

NH2-FVVAEQAGEQGFE-COOH 

486 
NH2-VVAEQAGEQGFE-COOH 

498 NH2-VVAEQAGEQGFEY-COOH 

502 511 NH2-KTHHNAVTSY-COOH 

517 

523 NH2-RAIPSEV-COOH 

528 NH2-RAIPSEVLAHSY-COOH 

517 
528 

NH2-RAIPSEVLAHSY-COOH 

518 NH2-AIPSEVLAHSY-COOH 

529 537 NH2-NLRQSQVSE-COOH 

531 538 NH2-RQSQVSEL-COOH 

539 
555 NH2-KYEGNWGPLVNPESQQG-COOH 

557 NH2-KYEGNWGPLVNPESQQGSP-COOH 
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558 
NH2-KYEGNWGPLVNPESQQGSPR-COOH 

545 NH2-GPLVNPESQQGSPR-COOH 

548 
557 NH2-VNPESQQGSP-COOH 

558 NH2-VNPESQQGSPR-COOH 

P04347 

54 64 NH2-IETWNSQHPEL-COOH 

93 99 NH2-IIVVQGK-COOH 

113 122 NH2-FEKPQQQSSR-COOH 

127 

137 NH2-SQQQLQDSHQK-COOH 

139 NH2-SQQQLQDSHQKIR-COOH 

171 
185 NH2-LDTSNFNNQLDQNPR-COOH 

186 NH2-LDTSNFNNQLDQNPRV-COOH 

177 
185 NH2-NNQLDQNPR-COOH 

186 NH2-NNQLDQNPRV-COOH 

242 251 NH2-NTNEDTAEKL-COOH 

468 
476 NH2-KTHHNAVSS-COOH 

477 NH2-KTHHNAVSSY-COOH 

495 
502 NH2-NLGQSQVR-COOH 

503 NH2-NLGQSQVRQ-COOH 

504 

516 

NH2-LKYQGNSGPLVNP-COOH 

505 NH2-KYQGNSGPLVNP-COOH 

P0C7L3 26 33 Ace-ADDLAAIP-COOH 

Q00184 20 27 NH2-PSKLLPVL-COOH 

7SH Frac F 

P33784 1 7 Ace-MLNIIHR-COOH 

P13916 

152 165 NH2-QFPFPRPPHQKEER-COOH 

190 197 NH2-HKNKNPFL-COOH 

192 
198 NH2-NKNPFLF-COOH 

202 NH2-NKNPFLFGSNR-COOH 

198 
203 NH2-FGSNRF-COOH 

206 NH2-FGSNRFETL-COOH 

203 
208 NH2-FETLFK-COOH 

213 NH2-FETLFKNQYGR-COOH 

214 219 NH2-IRVLQR-COOH 

224 
231 NH2-SPQLQNLR-COOH 

232 NH2-SPQLQNLRD-COOH 

267 277 NH2-SLVNNDDRDSY-COOH 

278 286 NH2-RLQSGDALR-COOH 

285 
293 NH2-LRVPSGTTY-COOH 

294 NH2-LRVPSGTTYY-COOH 

294 305 NH2-YVVNPDNNENLR-COOH 

294 306 NH2-YVVNPDNNENLRL-COOH 
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319 339 NH2-FESFFLSSTEAQQSYLQGFSR-COOH 

323 334 NH2-FLSSTEAQQSYL-COOH 

379 385 NH2-ISKEQIR-COOH 

397 

409 

NH2-KTISSEDKPFNLR-COOH 

398 NH2-TISSEDKPFNLR-COOH 

416 422 NH2-SNKLGKF-COOH 

422 

429 NH2-FFEITPEK-COOH 

434 NH2-FFEITPEKNPQLR-COOH 

446 

455 

NH2-NEGALLLPHF-COOH 

448 NH2-GALLLPHF-COOH 

450 NH2-LLLPHF-COOH 

525 
536 

NH2-FAIGINAENNQR-COOH 

526 NH2-AIGINAENNQR-COOH 

537 568 NH2-NFLAGSQDNVISQIPSQVQELAFPGSAQAVEK-COOH 

569 574 NH2-LLKNQR-COOH 

575 584 NH2-ESYFVDAQPK-COOH 

P11827 

117 125 NH2-HEQKEEHEW-COOH 

156 162 NH2-EEEKHEW-COOH 

208 
217 NH2-NKNPFHFNSK-COOH 

218 NH2-NKNPFHFNSKR-COOH 

218 
224 

NH2-RFQTLFK-COOH 

219 
NH2-FQTLFK-COOH 

231 

NH2-FQTLFKNQYGHVR-COOH 

223 NH2-FKNQYGHVR-COOH 

224 NH2-KNQYGHVR-COOH 

239 

247 

NH2-RSQQLQNLR-COOH 

240 

NH2-SQQLQNLR-COOH 

249 NH2-SQQLQNLRDY-COOH 

250 NH2-SQQLQNLRDYR-COOH 

295 302 NH2-LQSGDALR-COOH 

345 354 NH2-AIPVNKPGRF-COOH 

354 374 NH2-FESFFLSSTQAQQSYLQGFSK-COOH 

358 
368 NH2-FLSSTQAQQSY-COOH 

369 NH2-FLSSTQAQQSYL-COOH 

378 

385 

NH2-EASYDTKF-COOH 

379 NH2-ASYDTKF-COOH 

380 NH2-SYDTKF-COOH 

386 393 NH2-EEINKVLF-COOH 

432 441 NH2-KTISSEDKPF-COOH 

445 
452 NH2-SRDPIYSN-COOH 

453 NH2-SRDPIYSNK-COOH 
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456 NH2-SRDPIYSNKLGK-COOH 

447 453 NH2-DPIYSNK-COOH 

480 489 NH2-NEGALFLPHF-COOH 

485 493 NH2-FLPHFNSKA-COOH 

509 517 NH2-VGIKEQQQR-COOH 

518 528 NH2-QQQEEQPLEVR-COOH 

559 

570 

NH2-FAFGINAENNQR-COOH 

560 NH2-AFGINAENNQR-COOH 

561 NH2-FGINAENNQR-COOH 

571 577 NH2-NFLAGSK-COOH 

604 
611 NH2-IKSQSESY-COOH 

612 NH2-IKSQSESYF-COOH 

606 624 NH2-SQSESYFVDAQPQQKEEGN-COOH 

P25974 

25 

37 

NH2-KVREDENNPFYFR-COOH 

26 NH2-VREDENNPFYFR-COOH 

28 NH2-EDENNPFYFR-COOH 

62 
70 

NH2-RSPQLENLR-COOH 

63 
NH2-SPQLENLR-COOH 

73 NH2-SPQLENLRDYR-COOH 

117 125 NH2-NLHPGDAQR-COOH 

133 143 NH2-YLVNPHDHQNL-COOH 

244 

252 NH2-SRNPIYSNN-COOH 

253 NH2-SRNPIYSNNF-COOH 

255 
NH2-SRNPIYSNNFGK-COOH 

246 NH2-NPIYSNNFGK-COOH 

371 382 NH2-NFLAGEKDNVVR-COOH 

P04776 

91 97 NH2-IYIQQGK-COOH 

111 120 NH2-FEEPQQPQQR-COOH 

135 
141 NH2-NFREGDL-COOH 

151 NH2-NFREGDLIAVPTGVAWW-COOH 

193 206 NH2-LKYQQEQGGHQSQK-COOH 

233 241 NH2-FSVDKQIAK-COOH 

345 356 NH2-TSLDFPALSWLR-COOH 

350 357 NH2-PALSWLRL-COOH 

358 
366 

NH2-SAEFGSLRK-COOH 

361 NH2-FGSLRK-COOH 

370 383 NH2-FVPHYNLNANSIIY-COOH 
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422 430 NH2-ARSQSDNFE-COOH 

476 481 NH2-NNNPFK-COOH 

P04405 

41 48 NH2-RIESEGGF-COOH 

49 59 NH2-IETWNPNNKPF-COOH 

78 
87 NH2-RPSYTNGPQE-COOH 

89 NH2-RPSYTNGPQEIY-COOH 

88 97 NH2-IYIQQGNGIF-COOH 

88 98 NH2-IYIQQGNGIFG-COOH 

89 
97 NH2-YIQQGNGIF-COOH 

98 NH2-YIQQGNGIFG-COOH 

90 97 NH2-IQQGNGIF-COOH 

108 117 NH2-YQEPQESQQR-COOH 

134 148 NH2-REGDLIAVPTGVAWW-COOH 

139 
147 NH2-IAVPTGVAW-COOH 

159 NH2-IAVPTGVAWWMYNNEDTPVVA-COOH 

148 

157 NH2-WMYNNEDTPV-COOH 

159 NH2-WMYNNEDTPVVA-COOH 

158 NH2-WMYNNEDTPVV-COOH 

160 

172 NH2-VSIIDTNSLENQL-COOH 

177 
NH2-VSIIDTNSLENQLDQMPR-COOH 

169 NH2-ENQLDQMPR-COOH 

180 

188 NH2-YLAGNQEQE-COOH 

189 NH2-YLAGNQEQEF-COOH 

192 NH2-YLAGNQEQEFLKY-COOH 

219 225 NH2-SGFAPEF-COOH 

226 
233 NH2-LKEAFGVN-COOH 

234 NH2-LKEAFGVNM-COOH 

227 233 NH2-KEAFGVN-COOH 

335 344 NH2-TSLDFPALWL-COOH 

340 347 NH2-PALWLLKL-COOH 

345 
351 

NH2-LKLSAQY-COOH 

346 NH2-KLSAQY-COOH 

360 366 NH2-FVPHYTL-COOH 

361 370 NH2-VPHYTLNANS-COOH 

414 425 NH2-SQSDNFEYVSFK-COOH 

449 455 NH2-VIQHTFN-COOH 

P11828 

91 
100 NH2-IYIQQGSGIF-COOH 

101 NH2-IYIQQGSGIFG-COOH 

92 100 NH2-YIQQGSGIF-COOH 

147 159 NH2-YWMYNNEDTPVVA-COOH 
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190 196 NH2-LQYQPQK-COOH 

P02858 

38 45 NH2-NALEPDHR-COOH 

56 
64 

NH2-WNSQHPELK-COOH 

57 NH2-NSQHPELK-COOH 

83 90 NH2-PSYSPYPR-COOH 

92 98 NH2-IIIAQGK-COOH 

112 120 NH2-FEEPQEQSN-COOH 

138 147 NH2-IRHFNEGDVL-COOH 

156 167 NH2-WTYNTGDEPVVA-COOH 

177 
185 NH2-NNQLDQTPR-COOH 

186 NH2-NNQLDQTPRV-COOH 

302 308 NH2-RPSHGKR-COOH 

398 404 NH2-ADFYNPK-COOH 

422 428 NH2-FQLSAQY-COOH 

433 443 NH2-KNGIYSPHWNL-COOH 

438 
445 NH2-SPHWNLNA-COOH 

447 NH2-SPHWNLNANS-COOH 

502 511 NH2-KTHHNAVTSY-COOH 

517 528 NH2-RAIPSEVLAHSY-COOH 

538 
547 

NH2-LKYEGNWGPL-COOH 

539 NH2-KYEGNWGPL-COOH 

548 558 NH2-VNPESQQGSPR-COOH 

P04347 

93 99 NH2-IIVVQGK-COOH 

177 

185 NH2-NNQLDQNPR-COOH 

186 NH2-NNQLDQNPRV-COOH 

468 
477 

NH2-KTHHNAVSSY-COOH 

469 NH2-THHNAVSSY-COOH 

476 482 NH2-SYIKDVF-COOH 

494 
502 NH2-YNLGQSQVR-COOH 

503 NH2-YNLGQSQVRQ-COOH 

495 
502 NH2-NLGQSQVR-COOH 

503 NH2-NLGQSQVRQ-COOH 

Q9X2V9 494 499 NH2-ILNLYR-COOH 

Q46731 362 367 NH2-RLLQLR-COOH 

11SH Frac E 

P13916 

197 206 NH2-LFGSNRFETL-COOH 

224 231 NH2-SPQLQNLR-COOH 

267 

274 NH2-SLVNNDDR-COOH 

277 NH2-SLVNNDDRDSY-COOH 

278 NH2-SLVNNDDRDSYR-COOH 

278 286 NH2-RLQSGDALR-COOH 

294 
305 NH2-YVVNPDNNENLR-COOH 

306 NH2-YVVNPDNNENLRL-COOH 
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319 
333 NH2-FESFFLSSTEAQQSY-COOH 

337 NH2-FESFFLSSTEAQQSYLQGF-COOH 

320 
333 

NH2-ESFFLSSTEAQQSY-COOH 

323 NH2-FLSSTEAQQSY-COOH 

397 
409 

NH2-KTISSEDKPFNLR-COOH 

398 NH2-TISSEDKPFNLR-COOH 

422 

429 NH2-FFEITPEK-COOH 

432 NH2-FFEITPEKNPQ-COOH 

434 
NH2-FFEITPEKNPQLR-COOH 

423 NH2-FEITPEKNPQLR-COOH 

525 
536 

NH2-FAIGINAENNQR-COOH 

526 NH2-AIGINAENNQR-COOH 

575 584 NH2-ESYFVDAQPK-COOH 

P11827 

93 103 NH2-EEDEGEQPRPF-COOH 

110 120 NH2-QPHQEEEHEQK-COOH 

239 
247 

NH2-RSQQLQNLR-COOH 

240 NH2-SQQLQNLR-COOH 

251 
259 NH2-ILEFNSKPN-COOH 

261 NH2-ILEFNSKPNTL-COOH 

263 270 NH2-LPHHADAD-COOH 

280 
293 

NH2-AILTLVNNDDRDSY-COOH 

283 NH2-TLVNNDDRDSY-COOH 

294 
302 

NH2-NLQSGDALR-COOH 

295 NH2-LQSGDALR-COOH 

344 
353 

NH2-LAIPVNKPGR-COOH 

345 NH2-AIPVNKPGR-COOH 

354 366 NH2-FESFFLSSTQAQQ-COOH 

358 368 NH2-FLSSTQAQQSY-COOH 

375 384 NH2-NILEASYDTK-COOH 

385 393 NH2-FEEINKVLF-COOH 

406 416 NH2-LQESVIVEISK-COOH 

432 
441 

NH2-KTISSEDKPF-COOH 

433 NH2-TISSEDKPF-COOH 

445 

453 NH2-SRDPIYSNK-COOH 

456 NH2-SRDPIYSNKLGK-COOH 
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518 528 NH2-QQQEEQPLEVR-COOH 

530 540 NH2-YRAELSEQDIF-COOH 

560 570 NH2-AFGINAENNQR-COOH 

599 605 NH2-DIENLIK-COOH 

606 

620 

NH2-SQSESYFVDAQPQQK-COOH 

609 NH2-ESYFVDAQPQQK-COOH 

612 NH2-FVDAQPQQK-COOH 

P25974 

28 37 NH2-EDENNPFYFR-COOH 

62 

70 

NH2-RSPQLENLR-COOH 

63 

NH2-SPQLENLR-COOH 

72 NH2-SPQLENLRDY-COOH 

73 NH2-SPQLENLRDYR-COOH 

117 125 NH2-NLHPGDAQR-COOH 

126 
144 

NH2-IPAGTTYYLVNPHDHQNLK-COOH 

134 NH2-LVNPHDHQNLK-COOH 

158 
172 NH2-YDDFFLSSTQAQQSY-COOH 

176 NH2-YDDFFLSSTQAQQSYLQGF-COOH 

159 172 NH2-DDFFLSSTQAQQSY-COOH 

186 194 NH2-HSEFEEINR-COOH 

205 215 NH2-QQEGVIVELSK-COOH 

231 243 NH2-KTISSEDEPFNLR-COOH 

232 240 NH2-TISSEDEPF-COOH 

232 243 NH2-TISSEDEPFNLR-COOH 

244 

253 NH2-SRNPIYSNNF-COOH 

255 NH2-SRNPIYSNNFGK-COOH 

320 329 NH2-QEEEPLEVQR-COOH 

332 348 NH2-AELSEDDVFVIPAAYPF-COOH 

371 
382 

NH2-NFLAGEKDNVVR-COOH 

374 NH2-AGEKDNVVR-COOH 

387 402 NH2-QVQELAFPGSAQDVER-COOH 

407 420 NH2-QRESYFVDAQPQQK-COOH 

409 425 NH2-ESYFVDAQPQQKEEGSK-COOH 

P04776 

44 51 NH2-RIESEGGL-COOH 

51 62 NH2-LIETWNPNNKPF-COOH 

91 97 NH2-IYIQQGK-COOH 

111 120 NH2-FEEPQQPQQR-COOH 
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193 206 NH2-LKYQQEQGGHQSQK-COOH 

207 
221 

NH2-GKHQQEEENEGGSIL-COOH 

209 NH2-HQQEEENEGGSIL-COOH 

222 
233 

NH2-SGFTLEFLEHAF-COOH 

225 NH2-TLEFLEHAF-COOH 

233 
238 NH2-FSVDKQ-COOH 

241 NH2-FSVDKQIAK-COOH 

242 

254 NH2-NLQGENEGEDKGA-COOH 

255 NH2-NLQGENEGEDKGAI-COOH 

256 NH2-NLQGENEGEDKGAIV-COOH 

257 NH2-NLQGENEGEDKGAIVT-COOH 

253 NH2-NLQGENEGEDKG-COOH 

263 
271 NH2-SVIKPPTDE-COOH 

278 NH2-SVIKPPTDEQQQRPQE-COOH 

264 271 NH2-VIKPPTDE-COOH 

321 

332 

NH2-LRHNIGQTSSPD-COOH 

322 NH2-RHNIGQTSSPD-COOH 

323 

NH2-HNIGQTSSPD-COOH 

334 NH2-HNIGQTSSPDIY-COOH 

335 NH2-HNIGQTSSPDIYN-COOH 

340 NH2-HNIGQTSSPDIYNPQAGS-COOH 

341 NH2-HNIGQTSSPDIYNPQAGSV-COOH 

342 NH2-HNIGQTSSPDIYNPQAGSVT-COOH 

323 
344 NH2-HNIGQTSSPDIYNPQAGSVTTA-COOH 

343 NH2-HNIGQTSSPDIYNPQAGSVTT-COOH 

333 
342 NH2-IYNPQAGSVT-COOH 

344 NH2-IYNPQAGSVTTA-COOH 

357 
365 NH2-LSAEFGSLR-COOH 

366 NH2-LSAEFGSLRK-COOH 

401 
410 NH2-VFDGELQEGR-COOH 

411 
NH2-VFDGELQEGRV-COOH 

403 NH2-DGELQEGRV-COOH 

411 423 NH2-VLIVPQNFVVAAR-COOH 

435 

443 NH2-KTNDTPMIG-COOH 

445 
NH2-KTNDTPMIGTL-COOH 

436 NH2-TNDTPMIGTL-COOH 
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444 
451 NH2-TLAGANSL-COOH 

452 NH2-TLAGANSLL-COOH 

483 492 NH2-LVPPQESQKR-COOH 

485 491 NH2-PPQESQK-COOH 

P04405 

33 
41 

NH2-LNALKPDNR-COOH 

34 NH2-NALKPDNR-COOH 

41 48 NH2-RIESEGGF-COOH 

42 

59 

NH2-IESEGGFIETWNPNNKPF-COOH 

49 NH2-IETWNPNNKPF-COOH 

78 

86 NH2-RPSYTNGPQ-COOH 

87 NH2-RPSYTNGPQE-COOH 

88 NH2-RPSYTNGPQEI-COOH 

89 NH2-RPSYTNGPQEIY-COOH 

88 
97 NH2-IYIQQGNGIF-COOH 

98 NH2-IYIQQGNGIFG-COOH 

90 97 NH2-IQQGNGIF-COOH 

90 98 NH2-IQQGNGIFG-COOH 

98 107 NH2-GMIFPGCPST-COOH 

108 117 NH2-YQEPQESQQR-COOH 

133 
147 NH2-FREGDLIAVPTGVAW-COOH 

139 NH2-FREGDLI-COOH 

134 
147 

NH2-REGDLIAVPTGVAW-COOH 

139 NH2-IAVPTGVAW-COOH 

148 

157 NH2-WMYNNEDTPV-COOH 

159 NH2-WMYNNEDTPVVA-COOH 
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149 NH2-MYNNEDTPVVA-COOH 

150 NH2-YNNEDTPVVA-COOH 

160 

167 NH2-VSIIDTNS-COOH 

168 NH2-VSIIDTNSL-COOH 

169 NH2-VSIIDTNSLE-COOH 

172 NH2-VSIIDTNSLENQL-COOH 

162 

168 NH2-IIDTNSL-COOH 

169 NH2-IIDTNSLE-COOH 

172 

NH2-IIDTNSLENQL-COOH 

163 NH2-IDTNSLENQL-COOH 

166 

NH2-NSLENQL-COOH 

175 NH2-NSLENQLDQM-COOH 

177 

NH2-NSLENQLDQMPR-COOH 

169 NH2-ENQLDQMPR-COOH 

178 
191 

NH2-RFYLAGNQEQEFLK-COOH 

179 NH2-FYLAGNQEQEFLK-COOH 

180 

188 NH2-YLAGNQEQE-COOH 

189 
NH2-YLAGNQEQEF-COOH 

181 

NH2-LAGNQEQEF-COOH 

191 NH2-LAGNQEQEFLK-COOH 

192 NH2-LAGNQEQEFLKY-COOH 

182 189 NH2-AGNQEQEF-COOH 

207 218 NH2-QQEEENEGSNIL-COOH 

216 

225 

NH2-NILSGFAPEF-COOH 

217 NH2-ILSGFAPEF-COOH 

219 

NH2-SGFAPEF-COOH 

226 NH2-SGFAPEFL-COOH 

227 NH2-SGFAPEFLK-COOH 

226 

233 NH2-LKEAFGVN-COOH 

234 NH2-LKEAFGVNM-COOH 

235 NH2-LKEAFGVNMQ-COOH 

227 233 NH2-KEAFGVN-COOH 
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235 NH2-KEAFGVNMQ-COOH 

228 238 NH2-EAFGVNMQIVR-COOH 

239 251 NH2-NLQGENEEEDSGA-COOH 

312 

322 NH2-RQNIGQNSSPD-COOH 

324 NH2-RQNIGQNSSPDIY-COOH 

334 

NH2-RQNIGQNSSPDIYNPQAGSITTA-COOH 

313 NH2-QNIGQNSSPDIYNPQAGSITTA-COOH 

323 
NH2-IYNPQAGSITTA-COOH 

333 NH2-IYNPQAGSITT-COOH 

335 342 NH2-TSLDFPAL-COOH 

367 
378 

NH2-NANSIIYALNGR-COOH 

369 NH2-NSIIYALNGR-COOH 

389 

395 NH2-ERVFDGE-COOH 

396 NH2-ERVFDGEL-COOH 

398 
NH2-ERVFDGELQE-COOH 

391 
NH2-VFDGELQE-COOH 

402 NH2-VFDGELQEGGVL-COOH 

401 
407 NH2-VLIVPQN-COOH 

408 
NH2-VLIVPQNF-COOH 

402 NH2-LIVPQNF-COOH 

414 

424 NH2-SQSDNFEYVSF-COOH 

425 NH2-SQSDNFEYVSFK-COOH 

425 

434 NH2-KTNDRPSIGN-COOH 

439 NH2-KTNDRPSIGNLAGAN-COOH 

441 NH2-KTNDRPSIGNLAGANSL-COOH 

435 NH2-KTNDRPSIGNL-COOH 

426 

438 NH2-TNDRPSIGNLAGA-COOH 

439 NH2-TNDRPSIGNLAGAN-COOH 

441 NH2-TNDRPSIGNLAGANSL-COOH 

435 NH2-TNDRPSIGNL-COOH 

440 

454 

NH2-SLLNALPEEVIQHTF-COOH 

443 NH2-NALPEEVIQHTF-COOH 

446 NH2-PEEVIQHTF-COOH 

466 

481 

NH2-NNNPFSFLVPPQESQR-COOH 

473 NH2-LVPPQESQR-COOH 

475 NH2-PPQESQR-COOH 

P11828 

81 
90 NH2-RPSYTNAPQE-COOH 

91 NH2-RPSYTNAPQEI-COOH 

91 
100 

NH2-IYIQQGSGIF-COOH 

93 NH2-IQQGSGIF-COOH 

139 145 NH2-IAVPTGF-COOH 
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163 
172 NH2-IDTNSFQNQL-COOH 

175 NH2-IDTNSFQNQLDQM-COOH 

169 177 NH2-QNQLDQMPR-COOH 

190 196 NH2-LQYQPQK-COOH 

241 251 NH2-KLQGENEEEEK-COOH 

309 
328 NH2-HNIGQTSSPDIFNPQAGSIT-COOH 

330 NH2-HNIGQTSSPDIFNPQAGSITTA-COOH 

445 451 NH2-VIQQTFN-COOH 

P02858 

38 
45 NH2-NALEPDHR-COOH 

52 
NH2-NALEPDHRVESEGGL-COOH 

45 NH2-RVESEGGL-COOH 

57 
63 NH2-NSQHPEL-COOH 

64 NH2-NSQHPELK-COOH 

92 98 NH2-IIIAQGK-COOH 

112 
120 NH2-FEEPQEQSN-COOH 

121 NH2-FEEPQEQSNR-COOH 

138 147 NH2-IRHFNEGDVL-COOH 

140 146 NH2-HFNEGDV-COOH 

158 167 NH2-YNTGDEPVVA-COOH 

177 
185 NH2-NNQLDQTPR-COOH 

186 NH2-NNQLDQTPRV-COOH 

188 

197 

NH2-YLAGNPDIEY-COOH 

189 NH2-LAGNPDIEY-COOH 

260 
266 NH2-KQIVTVE-COOH 

269 

NH2-KQIVTVEGGL-COOH 

261 NH2-QIVTVEGGL-COOH 

276 284 NH2-WQEQQDEDE-COOH 

290 

301 

NH2-DEDEQIPSHPPR-COOH 

292 NH2-DEQIPSHPPR-COOH 

315 330 NH2-DEDEDKPRPSRPSQGK-COOH 

486 

496 NH2-VVAEQAGEQGF-COOH 

497 NH2-VVAEQAGEQGFE-COOH 

498 NH2-VVAEQAGEQGFEY-COOH 

487 497 NH2-VAEQAGEQGFE-COOH 

502 511 NH2-KTHHNAVTSY-COOH 
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503 NH2-THHNAVTSY-COOH 

517 523 NH2-RAIPSEV-COOH 

531 538 NH2-RQSQVSEL-COOH 

545 558 NH2-GPLVNPESQQGSPR-COOH 

548 
557 NH2-VNPESQQGSP-COOH 

558 NH2-VNPESQQGSPR-COOH 

P04347 

54 64 NH2-IETWNSQHPEL-COOH 

93 99 NH2-IIVVQGK-COOH 

113 

119 NH2-FEKPQQQ-COOH 

120 NH2-FEKPQQQS-COOH 

122 NH2-FEKPQQQSSR-COOH 

172 

185 

NH2-DTSNFNNQLDQNPR-COOH 

176 NH2-FNNQLDQNPR-COOH 

177 NH2-NNQLDQNPR-COOH 

188 

200 NH2-YLAGNPDIEHPET-COOH 

201 NH2-YLAGNPDIEHPETM-COOH 

208 NH2-YLAGNPDIEHPETMQQQQQQK-COOH 

189 
200 NH2-LAGNPDIEHPET-COOH 

201 
NH2-LAGNPDIEHPETM-COOH 

190 NH2-AGNPDIEHPETM-COOH 

251 

257 NH2-LRSPDDE-COOH 

258 NH2-LRSPDDER-COOH 

275 283 NH2-WQEQEDEDE-COOH 

327 336 NH2-PSRPEQQEPR-COOH 

468 
477 

NH2-KTHHNAVSSY-COOH 

469 NH2-THHNAVSSY-COOH 

494 
502 

NH2-YNLGQSQVR-COOH 

495 NH2-NLGQSQVR-COOH 

504 
513 NH2-LKYQGNSGPL-COOH 

516 NH2-LKYQGNSGPLVNP-COOH 

505 
513 NH2-KYQGNSGPL-COOH 

516 

NH2-KYQGNSGPLVNP-COOH 

506 NH2-YQGNSGPLVNP-COOH 

507 NH2-QGNSGPLVNP-COOH 
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Summary 

Obesity is a world-wide health problem with tremendous health care costs (288). Weight 

maintenance is a complex system in which different mechanisms are involved (13). One of these 

mechanisms involves the cholecystokinin receptor type 1 (CCK1R). The CCK1R is a GPCR (G-protein 

coupled receptor) localized in the gastrointestinal tract that induces a feeling of satiety upon 

activation by its natural hormone cholecystokinin (CCK). Bioactive peptides, which can be released 

from food protein, can mimic the effect of CCK and have an influence on satiety. Such peptides could 

be used as a satiating ingredient in the development of new functional foods for the prevention and 

treatment of obesity. 

We set up a cell-based bioassay in 96 well-plates to screen for such bioactive peptides that can 

activate the CCK1R, based on the fluorescent visualization of a Ca-flux when the receptor is activated. 

Fluorescence measurements were done using a plate reader and a confocal microscope and the 

assay was benchmarked with CCK-8S (sulfated octapeptide), JMV-180 and lorglumide. The confocal 

microscope appeared to be the preferred measuring device when complex samples had to be 

measured, as measurements with the plate reader could easily be biased by background 

fluorescence of the sample. Screening of different food protein hydrolysates showed that some food 

protein hydrolysates , such as soy protein hydrolysates, possess significant CCK1R activity.  

The peptides in the active soy protein hydrolysates were separated by use of size exclusion 

chromatography, the CCK1R activity of the resulting fractions was re-evaluated and significant in vitro 

CCK1R activity was found. The effect on food intake of the active fractions with a physiological 

relevant molecular weight was evaluated in vivo with rats, but no significant effect could be 

measured. The amino acid sequences of the peptides present in some promising fractions was 

identified, however it remained not possible to identify which particular peptide(s) accounted for the 

CCK1R activity as more than 100 peptides were still present in the fractions. Hence, a highly-selective 

tool to extract and identify the active peptides was necessary. Therefore, a first onset was made to 

incorporate the CCK1R into NABBs (nanoscale apo-lipoprotein bound bilayer particles), a unique 

native-like bilayer membrane system for incorporation of GPCRs, as such nanoparticles could be used 

as an affinity-selection-mass spectrometry technique to identify CCK1R-binding peptides. Functional 

incorporation of the CCK1R in NABBs was shown by binding with a fluorescent labeled CCK analog.  
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Samenvatting 

Obesitas is een wereldwijd gezondheidsprobleem met enorme kosten voor de gezondheidszorg 

(288). Gewichtsbehoud is een complex systeem waarin verschillende mechanismen betrokken zijn 

(13). Eén van deze mechanismen heeft betrekking tot de cholecystokinine receptor type 1 (CCK1R). 

De CCK1R is een GPCR (G-proteïne gekoppelde receptor) gelokaliseerd in het maag-darmkanaal, die 

een gevoel van verzadiging induceert na activatie door het natuurlijke ligand cholecystokinine (CCK). 

Bioactieve peptiden, die vrijgesteld kunnen worden uit voedingseiwit, zouden het effect van CCK 

kunnen nabootsen en zo een  invloed hebben op verzadiging. Dergelijke peptiden kunnen worden 

gebruikt als een verzadigend ingrediënt in de ontwikkeling van nieuwe functionele voedingsmiddelen 

voor de preventie en behandeling van obesitas. Om te screenen naar peptiden die de CCK1R kunnen 

activeren werd een cell-based bioassay opgezet in 96-well platen. Activatie van de CCK1R 

veroorzaakt een Ca-flux in de cel die kan gevisualiseerd worden als een fluorescent signaal. 

Fluorescentie metingen werden gedaan met behulp van een plaatlezer en een confocale microscoop 

en de assay werd gestandaardiseerd met CCK-8S (gesulfateerd octapeptide), JMV-180 en lorglumide. 

De confocale microscoop bleek het meest aangewezen toestel voor meting van complexe stalen 

aangezien de metingen met de plaatlezer bemoeilijkt werden door de achtergrondfluorescentie van 

het staal. Verschillende hydrolysaten van voedingseiwit werden gescreend en sommigen, zoals soja-

eiwit hydrolysaten, vertoonden significante CCK1R activiteit. De peptiden in de werkzame soja-eiwit 

hydrolysaten werden gescheiden door middel van gelpermeatiechromatografie, de CCK1R-activiteit 

van de verkregen fracties werd opnieuw getest en deze vertoonden significante in vitro CCK1R 

activiteit. Het effect op de voedselinname van de actieve fracties met een fysiologisch relevante 

moleculaire massa werd in vivo onderzocht bij ratten, maar geen significant effect kon worden 

aangetoond. De aminozuursequentie van de peptiden in enkele veelbelovende fracties werd 

geïdentificeerd, maar het was niet mogelijk om die/dat peptide(n) dat  verantwoordelijk is voor de 

CCK1R activiteit te identificeren, aangezien nog meer dan 100 peptiden  aanwezig waren in de 

fracties. Daarom werd een eerste aanzet gedaan tot het incorporeren van de CCK1R in NABBs (apo-

lipoproteïne gebonden bilayer nanopartikels), een unieke natieve bilayer voor incorporatie van 

GPCRs. Zulke nanodeeltjes kunnen gebruikt worden om CCK1R-bindende peptiden te identificeren 

door selectie op basis van affiniteit gekoppeld aan massaspectrometrie. De functionele incorporatie 

van de CCK1R in NABBs werd aangetoond door binding met een fluorescent gemerkt CCK analoog. 
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