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1
Introduction

Since the seminal Gale and Shapley (1962) paper, the field of matching theory has seen a lot of

research on theoretical and empirical topics by economist, mathematicians and computer scien-

tist alike. This dissertation aims to shed light on a relatively little discussed matching problem,

the partnership problem, which is a very general type of matching problem that allows for a wide

range of preference structures. In its current form, as it is used in this dissertation, it was first

introduced by Fleiner (2010).

There are two main contributions of this dissertation to the current state of the literature. First,

in the second chapter, we look at an application of a partnership problem, a network formation

model with a heterogeneous cost function. We show the existence of a unique stable outcome

for this application and give an illustration of its relevance in predicting real life matching out-

comes. Besides contributing to the matching theory literature, it also contributes to the network

1



CHAPTER 1. INTRODUCTION 2

formation literature by introducing a cost function which allows for a high degree of heterogene-

ity. Second, in the third and fourth chapter, we consider known results from simpler matching

problems and extend them to the partnership problem. As such, the main take away from these

last two chapters is that, while the partnership problem is a more complicated problem with a

much richer preference structure, structurally it is still very similar to the more simple matching

problems. In essence, we are dealing with complex matching problems which have a surprisingly

simple basic structure.

This introduction serves two purposes. First, we introduce the concept of a matching problem by

looking at some examples and we define the partnership problem, highlighting the key ways in

which it is more general than most known matching problems. Second, we give an overview of

the main results and contributions of this dissertation which can be found in Chapters 2, 3 and 4.

1.1 Matching problems

A matching problem is a resource allocation game where agents have to decide with whom to

form meaningful relationships, with the restriction that both parties have to agree on forming a

relationship. Gale and Shapley (1962) describe some examples of a matching problem:

[Marriage.] A certain community consists of n men and n women. Each person

ranks those of the opposite sex in accordance with his or her preferences for a mar-

riage partner. We seek a satisfactory way of marrying off all members of the com-

munity (Gale and Shapley, 1962, p.11).

[Roommates.] An even number of roommates wishes to divide up into pairs of

roommates (Gale and Shapley, 1962, p. 12).

[College admission.] A set of n applicants is to be assigned among m colleges where

qi is the quota of the i-th college. Each applicant ranks the colleges in the order of

his preferences.[. . .] Each college similarly ranks the students who have applied to

it in order of preferences. [. . .] We wish to determine an assignment of applicants
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to colleges in accordance with some agreed-upon criterion of fairness (Gale and

Shapley, 1962, p. 9).

An example that will be discussed in the second chapter of this dissertation is the following.

[Risk sharing.] A certain community consists of n households. In order to miti-

gate the adverse effects of downward risk, households will try to form one or more

bilateral relationships to informally share risk.

Now, any of those matching problems can be defined by a combination of three elements. First,

there is the group of agents. For example in the marriage problem, this group of agents is a group

of men and women. In this dissertation, we denote the group of agents by the set V . Second,

there is the set of potential relationships, E. If, say, agents u and v have an interest in forming the

relationship e between them, then e is a potential relationship; e has the potential to be formed.

Returning to the example of the marriage problem, if u and v are both male then e will not be a

potential relationship, as u and v are looking for a mate of the other sex. Visually, the set of agents

and the set of potential relationships can be represented by an undirected graph (V,E), with V

the vertices and E the edges between the vertices. A matching is then a subset of E, a collection

of relationships. The third element is the set of preferences of each agent v in V over the set of

potential relationships that involve this agent v, E(v). These preferences can be modeled through

a choice function Cv(.), a function that maps an option set – the set of potential relationships – to

a choice set – a set of chosen relationships. By using any possible subset of E(v) for this function,

we can map out the complete preference structure of v. Using this notation, an undirected graph

(V,E) and a set of choice functions C = {C1, . . . ,C|V |}, we can define all matching problems by

imposing restrictions on E and C.

Stability In this dissertation, we assume that agents are myopic and that they do not act strate-

gically with respect to the revelation of their preferences. The first implies that agents are not

able to foresee the reactions of other agents on their actions – they are short-sighted. The second

implies that all agents will always act according to their true preferences, that is, no agent will
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try to strategically manipulate the problem by misrepresenting her preferences. As such, a key

concept, which will be the focus of much of this dissertation, is the notion of a stable matching.

A stable matching is a matching which fulfills two conditions. First, it is individually rational

in the sense that no agent has a relationship that it does not want to maintain, given the other

relationships the agent is involved in. Second, there does not exist a blocking relationship, a

relationship that is not part of the matching, but that both agents involved wish to form given

the relationships in the matching. Hence, a stable matching can be considered an equilibrium

situation, as no agent is capable of improving her current situation.

1.1.1 Types of problems

The example problems given in the first paragraph of this section are different from each other

in two respects (see table 1.1.).

two-sided one-sided

one-to-one Marriage Roommate

many-to-many College admissions Risk sharing

Table 1.1: Examples of different types of matching problem.

First, there is the distinction between two-sided and one-sided matching problems. In a two-

sided matching problem, V can be split up in two subsets such that E contains only relationships

between agents of a different subset. In a one-sided problem, this division cannot be made as

there are no a priori restrictions on the set of potential relationships. The stable marriage problem

and the college admissions problem are two examples of a two-sided problem as men (women)

cannot be matched with other men (women) and colleges (applicants) cannot be matched with

other colleges (applicants). In contrast, the stable roommate problem and the example of the

informal risk sharing are one-sided in that anyone can form a relationship with anyone. The

distinction between one-sided and two-sided problems is important as Gale and Shapley (1962)

showed that it defines the boundary between matching problems for which a stable matching will
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always exist – a two-sided problem – and problems for which a stable matching might not exist

– a one-sided problem. Thus, for one-sided problems we always have to take into account that a

stable matching might not exist.

A second feature of a matching problem is how many different relationships an agent is willing

to be involved in. For example, in the marriage and roommate problem all agents only want to be

paired up with one other agent – there is no polygamy. These problems are examples of one-to-

one matching problems. If agents want to form multiple relationships we are in a many-to-many

matching problem. The college admissions problem and the risk sharing example are examples

of a many-to-many matching problem. Other than in the stable marriage/roommate problem,

colleges are now willing to take in more than one student at a time,1 and households may want

to share risk with more than one other household.

The distinction between one-to-one and many-to-many problems is important because of the

possible preference structures. Let us assume that all preferences have to satisfy the weak axiom

of revealed preferences (WARP). In the context of choice sets, WARP means that if X is the

set of chosen options while a set Z is also available, then Z is never the set of chosen options

whenever X is also available. Formally, if Cv(Y ) = X , such that X ⊂ Y and Z ⊂ Y , then there

does not exist another option set Y ′ such that X ⊂ Y ′ and Z ⊂ Y ′ while Cv(Y ′) = Z. Then, for

one-to-one problems, if WARP has to hold, all choice functions Cv can be characterized by a

strict ordering of edges in E(v). The choice of v for a subset X of E(v) is then the first element

of X in the ordering of E(v). For many-to-many problems, this strict ordering of edges does not

cover all possible preference structures that satisfy WARP. Hence, within the class of many-to-

many matching problems, there are different types of problems depending on the assumptions

on the preference structure. The many-to-many matching problem closest in nature to a one-to-

one problem is the stable b-matching problem. In this problem, it is assumed that agents have

a capacity b and a strict preference ordering of the potential relationships they are involved in.

Agents then choose the b first relationships in their ordering. An example of such a problem is

the college-admissions problem and the one-sided stable b-matching problem (Cechlarova and

1Technically this is a many-to-one matching problem as students can only attend one college.
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Fleiner, 2003). Another problem, which will be discussed in chapter 3, is the partnership problem

with linear preferences which maintains the strict preference ordering but is more general than

the stable b-matching problem as the capacity for each agent is not fixed. When we drop the

assumption of a strict preference ordering, we are dealing with the partnership problem, the

most general of all problems discussed in this chapter.

1.1.2 The Partnership problem.

A partnership problem (Fleiner, 2010) is a one-sided, many-to-many matching problem where

the choice functions have two restrictions, substitutability and increasingness.

Substitutability The first restriction, substitutability, means that when a relationship e is cho-

sen from an option set X(v), then v will still choose option e when some other options are no

longer available in X(v). Formally,

SUB A choice function, Cv, is substitutable if, for e 6= f and e∈Cv(X(v)), then e∈Cv(X(v)\ f ).

Increasingness The second restriction, increasingness, means that if k relationships are chosen

from a set, then in a superset of that set, at least k relationships will be chosen.

INCR A choice function, Cv, is increasing if Y ⊆ X implies |Cv(Y )| ≤ |Cv(X)|.

While the restriction of substitutability is straightforward when we assume that relationships are

substitutes – rather than compliments, the restriction of increasingness is less straightforward.

There are, however, two arguments for imposing increasingness. First, if we again assume that

all preferences have to satisfy WARP, then substitutability alone does not suffice. For example, if

E(v) = {e1,e2,e3} then Cv(e1,e2,e3) = e1, Cv(e1,e3) = {e1,e3} and Cv(e1,e2) = {e1,e2} implies

a substitutable choice function – for which increasingness is violated – that does not satisfy

WARP. In contrast, increasingness together with substitutability implies WARP. Increasingness

guarantees that removing an unchosen option from an option set has no impact on the choice set,

thereby guaranteeing WARP. The second argument is of a more technical nature. The restriction
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of increasingness is necessary to prove existence of a stable matching in a two-sided problem

(Fleiner, 2003)2 or the existence of a stable half-matching – a structure that generalizes the

notion of a stable matching (Fleiner, 2010).

A special case of the partnership problem is the partnership problem with linear preferences

which has, besides substitutability and increasingness, a third restriction on the choice functions,

linearity. Linearity states that if an option e is chosen from an option set X while another available

option f is not, then it can never be that e and f are in an option set Y and f is chosen while e is

not.

LIN A choice function Cv is linear if, for e 6= f , there exists an X(v) containing both e and f

such that e ∈Cv(X(v)) and f 6∈Cv(X(v)), then there does not exist a Z(v) containing both e and

f , such that e /∈Cv(Z(v)) while f ∈Cv(Z(v)).

Any choice function Cv(.) satisfying substitutability, increasingness and linearity implies a strict

preference ordering of the set of potential relationships E(v).

1.2 Results and contributions.

We will now briefly touch on the content of the following chapters, discussing the main results

and their contribution to the literature.

The second chapter looks at a particular partnership problem with a cardinal utility framework

as the payoffs that agents can derive from forming relationships are assumed to be measurable.

This payoff is a concave function of the number of relationships that an agent forms. Hence,

new relationships increase the payoff for the agent, but do so at a decreasing rate. In addition,

the formation of these relationships is costly, as time and effort has to be invested to create and

monitor the relationship. The cost function is driven by two factors. The first cost factor is

distance which can be interpreted as social distance. As the social distance between two agents

2Fleiner (2003) used a weaker restriction than increasingness (if Cv(X) ⊆ Y ⊆ X then Cv(X) =Cv(Y )) to prove

existence.
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increases, the costs to create and monitor the relationship increase. The second cost factor is

agent quality and relates to the attractiveness of the potential partner, which is assumed to be

objectively measurable, i.e. every agent has the same perceived quality of another agent. A

higher quality of the potential partner decreases the cost for the agent. To sum up, every agent v

has a payoff function of the following form given a matching M:

v(|M(v)|)− ∑
uv∈M(v)

d(u,v)−θ(u),

with v(.) a concave function, d(u,v) the distance between u and v and θ(u) the quality of agent

u.

As a result, we get a preference structure where agents can rank other agents in terms of distance

and quality. The number of relationships an agent wishes to form is determined by the marginal

benefit of adding an extra agent versus the cost that has to be invested to form a relationship with

this agent.

The chapter contributes to two different fields. First, it contributes to the matching literature by

providing an application of a partnership problem with linear preferences. Second, it contributes

to the network formation literature as the model presented in the chapter can also be viewed as

a network formation model where the payoffs of each agent are only determined by her direct

network, the links an agent has. The innovation in the model is the introduction of a high degree

of heterogeneity in the cost function. Earlier network formation models have very restricted cost

functions, which do not allow for a lot of heterogeneity over agents and potential partners. The

network stability concept used in the chapter is strong pairwise stability which, for this particular

model, is equivalent to the concept of a stable matching.

There are two sets of results. First, it is shown that the model has a unique stable matching. This

unique stable matching implies a hierarchy over agents. The set of relationships of an agent in

the stable matching is his desired set of relationships when taking into account the choices of

the agents above her in the hierarchy. For example, for the agent at the top of the hierarchy, her

stable matching relationships will be exactly her desired set of relationships. This knowledge is

then used to devise an algorithm that produces the unique stable matching.

Second, we consider an informal risk sharing network as an illustration of the model. In a risk
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sharing network, households are looking for partners to informally share risk with. Results from

the empirical literature on these networks suggest that they are well suited examples for the

model discussed in this chapter. We then illustrate the relevance of this model by using data

from a risk sharing network in Nyakatoke, Tanzania. First, we show that our model, and the

underlying formation structure, has some relevance in predicting the existence of risk sharing

relationships. Second, our model is also able to capture most features of risk sharing networks

observed in real life.

The third chapter investigates a very simple idea. When looking at matching problems in

practice we see that in many applications centralized matching institutions are present that ensure

that a stable outcome is reached. For those applications that lack a centralized institution, Roth

and Vande Vate (1990) observed however that in many cases a stable outcome was also reached;

the myopic actions of the individual agents involved created a decentralized matching process

that eventually converged to stability. The question is now for what type of matching problems

we can guarantee the convergence of a decentralized process to stability. In this dissertation we

show convergence for a partnership problem with linear preferences.

This result – for a partnership problem with linear preferences, a decentralized matching process

will converge to a stable outcome with probability one – is an extension of the result by Roth and

Vande Vate (1990) for the stable marriage problem and the result by Diamantoudi et al. (2004)

for the stable roommate problem. Another study, Kojima and Ünver (2008), shows convergence

for a two-sided matching problem with similar restrictions on the choice functions. Our matching

problem and Kojima and Ünver (2008)’s matching problem are non-nested matching problems,

such that they both hold as most general matching problems for which convergence was shown.

As we mentioned above, for one-sided problems, a stable matching might not exist. For these

problems with no stable matchings, we can ask where the decentralized matching process leads

to. As a second result, we extend a result by Iñarra et al. (2008) for the stable roommate problem

and show that any decentralized matching process eventually leads to a set of matchings that are

related to a stable half-matching, a generalized notion of a stable matching. However, this set of

matchings is not absorbing in the sense that, when in this set, it is possible that a decentralized
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matching process leads to a matching not in this set. Hence, whether we can extend Iñarra et al.

(2010)’s result on absorbing sets for the stable roommate problem remains an open question.

The fourth chapter digs deeper into the structure of the partnership problem and the structure

of a stable matching in particular. Extending results from Gusfield (1988) and Borbelova and

Cechlarova (2010), we expose the common structure of all stable matchings in a given problem.

The results can be summarized as follows.

As a first result, we show that Fleiner (2010)’s extension of Irving (1985)’s algorithm that pro-

duces a stable matching for the partnership problem when one exists, can be used to find all

stable matchings for a given problem. This already hints that stable matchings share a common

structure. The second set of results shows what this structure is.

The second result shows that any stable matching can be linked to a set of rotations. A rotation

is what Irving (1985) dubbed an all-or-nothing cycle. It is a looping sequence of relationships

such that either none of the odd-labeled elements are part of a stable matching or all of them are

part of some stable matching but then there exists a stable matching such that all even-labeled

elements of the sequence are part of it. Hence, by deleting the odd-labeled elements of a rotation

that is exposed at some step in Fleiner (2010)’s algorithm, we are sure to get closer to a stable

matching. This process is denoted the elimination of a rotation. Now, this chapter shows that if

we take account of all rotations that are eliminated en route to a stable matching, then there is

a one-one correspondence between this set of rotations and this stable matching. One particular

stable matching can only be produced by eliminating one particular set of rotations and no set of

rotations can produce two different stable matchings. Hence, any stable matching is linked to a

unique set of rotations. Now, as a second part of this second result it is shown that these sets of

rotations are very similar. There exist rotations which are part of all sets of rotations – they are

always eliminated – and if a rotation π is part of one set A but not of another B, then B contains a

rotation π′ that is a dual of π, a rotation that contains the same elements of π but deletes another

set of relationships when eliminated. Hence, the common structure of a stable matching can be

linked to (1) the fact that these stable matchings can all be linked to some set of rotations and (2)

the fact that these sets of rotations are very similar to each other as the only difference between
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them is which type of a rotation is eliminated.

The third set of results then shows the implications of this common structure on the level of the

relationships. As there are rotations that are always eliminated, there are relationships that are

always part of a stable matching and these will be the relationships that are part of these rotations

but not deleted – the even-labeled elements of the rotation. Relationships that are part of some

stable matchings but not all, are part of rotations that are sometimes eliminated but not always.

Hence, the structure of a stable matching mimics the structure of the eliminated rotations.

In sum, this dissertation explores a very general matching problem by taking three different

routes. The fourth chapter is the widest in scope, aiming to shed some light on the structure

of stable matchings in a given partnership problem, uncovering the similarities between them.

The third chapter zooms in to one particular question and tries to answer if and how these stable

matchings will be reached in the absence of a centralized matching institution. The second

chapter is most focused and looks at one particular application of a partnership problem, using a

cardinal utility framework to model the preference structure.
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2
Network formation with heterogeneous agents and

absolute friction1

2.1 Introduction and motivation

We present a model of strategic network formation with absolute friction and heterogeneity

among agents. We show that our model always has a unique network that is strong pairwise

stable. We provide an algorithm to compute this network and we illustrate its use by applying it

to a data set of a risk sharing network in small village in Tanzania.

1This chapter is the result of joint work with Thomas Demuynck. Another version of this chapter is forthcoming

in the Journal of Computational Economics (published online in january 2012).
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Overview Social networks are among the most valuable contributors to apprehend modern

human life. They determine, among others, communication, friendship, trust, marriage, trade,

risk sharing and wealth. In order to understand these phenomena it is crucial to study how

these networks are formed and what a stable network looks like when agents are able to form

and/or cut links. This insight has lead to an enormous growth of scientific research analyzing the

development, stability and empirical regularities of social networks.

In this research we present a model of strategic network formation. Our model has three impor-

tant features. First, the model assumes that link formation is only possible under mutual consent.

This means that in order to establish a link, two agents have to agree to form this link, while

every agent can unilaterally decide to cut a pre-existing link (see Jackson and Wolinsky (1996)).

This feature distinguishes our research from models of unilateral link formation.2 In models of

unilateral link formation, any agent can unilaterally decide to link with another agent. In addi-

tion, our model does not allow for transfers between agents, where it is possible that one agent

compensates another agent for the formation a link between them.3 Second, our model allows

for a wide range of heterogeneity in the determination of the link-costs. The link-cost is the cost

that each agent incurs when adding a certain link. Third, we restrict ourselves to networks with

absolute friction. This means that the benefits of a certain link only attribute to the two agents

that form this link, excluding any spillover to other agents. In this section, we discuss each of

these three features in more detail. This will allow us to position and distinguish our research

from other research in the network formation literature.

Bilateral link formation We assume that links can only be formed under mutual consent. In

particular, no agent can form a link with another agent without the agreement of this agent but

any agent can unilaterally decide to cut an existing link (see Myerson, 1977, 1991; Jackson

and Wolinsky, 1996). We say that a network is stable if there is no coalition of agents that

2See, among others, Bala and Goyal (1997); Dutta and Jackson (2000); Bala and Goyal (2000a,b); Haller and

Sarangi (2005); Galeotti, Goyal, and Kamphorst (2006); Feri (2007); Feri and Meléndez-Jiméz (2009); Hojman and

Szeidl (2008).
3See, among others, Dutta and Mutuswami (1997); Dutta, van den Nouweland, and Tijs (1998); Slikker and van

den Nouweland (2000, 2001); Jackson (2005); Bloch and Jackson (2007).
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can alter the network in such a way that at least one agent in the coalition benefits from the

change without any agent in the coalition losing from the change.4 This definition hinges on two

further specifications. First, we need to specify which coalitions are allowed to alter the existing

network, and second, we need to specify in which manner these coalitions may alter the current

network.

Depending on the specifications of coalition size and alterations, different stability concepts can

be established. At the one extreme we may allow for coalitions of arbitrary size that can modify a

given network by creating any link between two agents within the coalition and cut any number of

links that involves at least one agent from the coalition. This corresponds to the notion of strong

stability as introduced by Dutta and Mutuswami (1997) and Jackson and van den Nouweland

(2005). At the other end of the spectrum we may consider the pairwise stability concept where

deviating coalitions h"ave size at most two and these coalitions can change the network by either

creating the link between the two agents in the coalition or either cut a single link involving

an agent in this coalition (see Jackson and Wolinsky (1996); Jackson and Watts (2001)). An

intermediary stability concept which we will discuss, is the concept of strong pairwise stability,

introduced by Belleflamme and Bloch (2004). In this case, the maximal coalition size is two,

as for the pairwise stability concept, but all types of alterations available to the agents in the

coalition are allowed, as for the strong stability concept. Hence, a pair of agents may cut as

many links as they like and simultaneously form a link between them. We show that our model

always has a unique strongly (pairwise) stable network.

Heterogeneity in the payoff structure Within this model of network formation under mutual

consent, we define the payoff structure for the various agents. The payoff from being part of a

given network consists of a benefit part and a link-cost part, reflecting the idea that agents have

4This definition abstains from various forms of farsightedness (see for example Watts (2002); Deroïan (2003);

Dutta, Ghosal, and Ray (2005); Page, Wooders, and Kamat (2005); Page and Wooders (2009b); Herings, Mauleon,

and Vannetelbosch (2009) or evolutionary dynamics (see, for instance, Watts (2001); Jackson and Watts (2002);

Dutta et al. (2005); Tercieux and Vannetelbosch (2006); Carayol and Roux (2006); Feri (2007); Page and Wooders

(2009a)).
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to incur costs to establish a link. Agents have to invest time and effort to build a relationship

and agree on the conditions of the link. We assume that this link-cost can be split into two parts.

The first part is a pairwise component which we will call distance d and is symmetric — i.e. for

all agents i, j in a population N the distance from i to j is equal to the distance from j to i.

Distance reflects the idea that the better the ex-ante relationship between agents is, the less time

and effort needs to be invested, because of a pre-established level of trust and understanding or

better monitoring possibilities. The second part is an agent-specific, idiosyncratic, component

which we will call quality θ. The assumption is made that increased quality of the linking partner

reduces link-costs.5

All other studies of network models with bilateral link formation use more restrictive forms for

the cost topology. Among others, Jackson and Wolinsky (1996); Goyal and Joshi (2006); Calvó-

Armengol (2004) analyze models with homogeneous costs, i.e. the setting where linking costs

are constant for all pairs of agents. Johnson and Gilles (2000) assume that costs are described

by a line cost topology. In this model, agents are situated on a line and the linking-cost between

two agents is determined by the Euclidean distance between them. Carayol and Roux (2006)

uses a circle-cost topology, where agents are situated on a circle and the linking-cost between

two agents is determined by their shortest distance. Finally, Jackson and Rogers (2005) impose

an island cost topology. In this setting, agents are allocated to a finite number of islands and the

linking-cost between two agents may take on one of two values conditional on the requirement

that the link-cost between two agents on the same island is less costly than the link-cost between

agents on distinct islands.

More general models of heterogeneity were investigated for models with non-bilateral link for-

mation. In particular, Galeotti, Goyal, and Kamphorst (2006) investigate a model of one sided-

link formation where costs can vary freely. Finally, Brueckner (2006) and Haller and Sarangi

(2005) use the same heterogeneity concepts as we do — distance and quality — in a network

formation model with probabilistic graphs. In probabilistic graph models, link formation may fail

with a certain probability(Bala and Goyal, 2000b). More specifically, Brueckner (2006) assumes

5This impact may be indirect in that a higher quality may be reflected in an extra benefit, which increases the

willingness to link, effectively reducing link-cost in an additive framework.
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that this probability depends on the effort — costs — made by the agents involved. Hence, a ma-

jor contribution of our model is that it is the first model which combines bilateral link formation

with such general forms of heterogeneity.

Absolute friction In addition, and contrary to previously mentioned studies of bilateral link

formation, our model assumes absolute friction. Absolute friction states that the benefits from

the network to a certain agent only depend on the agents that are directly linked to this agent. A

model with less than absolute friction assumes that the benefits are decreasing in the length of the

path while a model with no friction assumes that the length of the path does not matter in defining

the benefits. The assumption of absolute friction is necessary to keep our model tractable. Indeed,

the restrictive nature of the cost heterogeneity used in the literature with models of bilateral link

formation(see above) strongly indicates that models with moderate levels of friction are only

tractable by imposing more stringent restrictions on the cost topology.

The assumption of absolute friction is defendable for networks of informal insurance, trust or

trade. Fafchamps and Lund (2003) show that risk sharing is not frictionless due to transaction

costs, imperfect commitment, asymmetric information or other processes that limit exchange.

This finding is corroborated by De Weerdt and Dercon (2006) who indicate that direct network

partners may be most relevant for understanding risk sharing. In addition, we could also assume

that agents are shortsighted because they do not know the complete structure of the network and

only take into account the benefits from their direct partners, while assuming other benefits to be

non-existent. In this case, the network that emerges looks like the network that would emerge in

the case of absolute friction, so that the absolute friction assumption is valid in this setting.

When we do not assume shortsightedness the assumption of absolute friction may be more dif-

ficult to maintain. For example in communications networks, an agent with many connections

may be appealing to link to because she may pass on to you the information she got from her

connections. Likewise, in a collaboration network an agent with many connections may be less

attractive since his time is taken by many agents, leaving less time to work together.6 In these

6See, among others, the connections and co-author models in Jackson and Wolinsky (1996), the job contact

network in Calvó-Armengol (2004) and the local spillover game in Goyal and Joshi (2006).
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cases, the indirect network matters. Thus, we conclude that the validity of our assumption of

absolute friction depends on the context and the additional assumptions made.

Main results This paper contributes to the present literature by providing a tractable model

of two-sided network formation with few restrictions on linking costs, while considering a wide

range of stability concepts. We show that for our model, there always exists a unique stable

network which is both strong pairwise and strongly stable.

Besides the existence and uniqueness result, we provide an algorithm that reproduces this stable

network. In this algorithm, starting from the complete network, we let a sequence of agents cut

the links they do not want to maintain, given the cutting actions of the agents before them in the

sequence. The stability of the outcome of the algorithm hinges on the order of the agents in the

sequence. We can show that for the resulting network, in every iteration of the algorithm there

will always be at least one agent whose set of links she would like to maintain in that network

will be equal to her set of links in the unique stable network. Hence, the sequence of agents

is such that in every iteration exactly those agents are selected. Naturally, an agent cannot be

selected twice and is deleted from the selection pool once selected. This algorithm is one of the

key innovations in this paper. Once we know the structure of the cost functions, and the form for

the benefit functions, we can compute the particular sequence of agents and the emerging stable

network, observe its general features and relate these features to these structures.

We illustrate the use of our algorithm by applying it to a data set on an informal risk sharing

network drawn from the village of Nyakatoke in rural Tanzania.7 Although our approach is rather

crude in the measurement of the cost structure, implying that our exercise can be considered as

an illustration at best, we find that our algorithm outperforms a random network formation model

where probabilities were fitted from a logit regression which uses the same data.

Section 2 introduces the model and provides the definition of a stable network. Section 3 contains

and discusses the main result relating to the uniqueness and existence of the stable network.

Section 4 provides the empirical illustration and section 5 concludes.

7This data set is also used in the research of Comola (2008); De Weerdt (2004); De Weerdt and Dercon (2006);

Comola and Fafchamps (2009).
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2.2 The model

Models of network formation Consider a set of agents N = {1, . . . ,n}. An undirected network

g is given by a collection of two-element sets {i, j} where i, j ∈N and i 6= j. For ease of notation,

we will write i j instead of {i, j}. If i j ∈ g, we say that agents i and j are linked in the network g.

The set of links adjacent to i in the network g, will be denoted the direct network,

g(i) = {h j ∈ g| j ∈ N,h = i}.

We denote the complete network —the network where every agent is linked to every other

agent— by gN , i.e. gN = {i j|i, j ∈ N, i 6= j}. We denote by Gn the collection of all networks

on a set of n agents. To each agent i ∈ N, we endow a payoff function πi from the set Gn to the

set R defining the payoff, πi(g) that agent i receives when the network g is established. A payoff

structure {πi}i≤n consists of a finite number, n, of agents and payoff functions πi for every agent

i≤ n. We denote by S the set of all payoff structures.

Stability concepts A stability concept, Π, is a correspondence from the set of payoff structures,

S , to the set of all networks
⋃

n Gn such that for all payoff structures, {πi}i≤n ∈ S ,

Π({πi}i≤n)⊆ Gn.

The set Π({πi}i≤n) determines the set of stable networks corresponding to the payoff structure

{πi}i≤n and stability concept Π.

We begin by defining two particular stability concepts. In order to model these concepts, we

borrow the idea of a linking game as introduced by Myerson (1991). For the moment let us

fix a payoff structure {πi}i≤n and the set of agents N = {1, . . . ,n}. For an agent, i ∈ N, his/her

strategy set Si consists of all subsets of N−{i}. This definition includes the empty set, /0. The

interpretation is that j ∈ si if i proposes to j to form a link and j /∈ si if i is not willing to link with

j. For a given strategy profile, (s1, . . . ,sn), a link between i and j will be formed if j∈ si and i∈ s j.

In other words, i and j will be linked if i proposes to form a link to j and j proposes to form a

link to i. We denote by g(s1, . . . ,sn) the network that is formed when agent i∈N chooses strategy
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si ∈ Si. In particular, we will have that i j ∈ g(s1, . . . ,sn) if and only if j ∈ si and i ∈ s j. Observe

that, in general, there are several strategy profiles that may lead to the same network, i.e. there

will exist distinct profiles (s1, . . . ,sn) and (s′1, . . . ,s
′
n) such that g(s1, . . . ,sn) = g(s′1, . . . ,s

′
n). One

notable exception is the complete network, gN , where g(s1, . . . ,sn)= gN if and only if si =N−{i}

for all i ∈ N. For every coalition C ⊆ N and strategy profile s ∈ S, we also write s = (sC,sN−C),

where sC is the strategy profile s restricted to agents within the coalition C. We call sC a coalition

strategy profile.

The first stability concept is strong stability as developed in Dutta and Mutuswami (1997) and

Jackson and van den Nouweland (2005). A network is strongly stable if for all possible coalitions

C⊆N of agents there does not exist a deviation of the strategy profile by members of C such that

at least one agent within the coalition strictly gains from the deviation, and no agent within the

coalition loses from this rearrangement. Formally,8

Strong Stability A network g is strongly stable if there exists a strategy profile (s∗1, . . . ,s
∗
n) such

that g = g(s∗1, . . . ,s
∗
n) and for all nonempty coalitions C, there does not exist a coalition strategy

profile sC such that for all i ∈C, si ∈ Si and

πi(g(sC,s∗N−C)≥ πi(g(s∗C,s
∗
N−C)),

with at least one inequality being strict.

For a given payoff structure {πi}i≤n, we denote by Πss({πi}i≤n) the (possibly empty) collection

of strongly stable networks.

For our purposes, we also consider a second stability concept, strong pairwise stability as defined

in Belleflamme and Bloch (2004), which restricts the size of deviating coalitions to at most two.

Strong Pairwise Stability A network g is strongly pairwise stable if there exists a strategy pro-

file (s∗1, . . . ,s
∗
n) such that g = g(s∗1, . . . ,s

∗
n) and for all nonempty coalitions C of size less than or

8We follow the definition as stated in Jackson and van den Nouweland (2005), since this definition is compatible

with pairwise stability.
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equal to 2, there does not exist a coalition strategy profile sC such that for all i ∈C, si ∈ Si and

πi(g(sC,s∗N−C))≥ πi(g(s∗C,s
∗
N−C)),

with at least one inequality being strict.

For a given payoff structure {πi}i≤n, we denote by Πsps({πi}i≤n) the (possibly empty) collection

of strongly pairwise stable networks. In the following section we will show that our model allows

for a unique strong pairwise stable network that is also strongly stable.

For completeness we also give the definition of pairwise stability and we denote for a given

payoff structure {πi}i≤n, the collection of pairwise stable networks by Πps({πi}i≤n).

Pairwise stability A network g with strategy profile s is pairwise stable if

• for all i, j ∈ N such that j ∈ si and i ∈ s j we have that πi(g(si/ j,s−i)) ≤ πi(g(s)) and

π j(g(s j/i,s− j))≤ π j(g(s)).

• for all i, j ∈ N such that j 6∈ si or i 6∈ s j we have that if πi(g∪{i j}) > πi(g) then π j(g∪

{i j})< π j(g).

The main difference between strong pairwise stability and pairwise stability lies in the fact that

the former allows for simultaneous cutting and forming of a link while the latter does not.

Model specification We are now ready to define a specific functional structure of the payoff

functions πi. We assume that the payoff for i of a network g, πi(g), can be decomposed in two

parts. A first part provides the benefit that i obtains from the network g and a second part provides

the costs that i incurs from the formation of the network g.

For the benefit part, we impose the assumption of absolute friction, meaning that agents do not

have any advantage or disadvantage of the presence of indirectly connected agents. In particular,

each agent i ∈ N is endowed with an agent specific utility function vi : N→ R representing the

utility that i derives from her number of direct links ni(g),

ni(g) = |g(i)|.
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By making the assumption that only the number of direct links matter, we impose homogeneity

on the benefit side, i.e. all potential partners are deemed to be equal in terms of linking gains.

Furthermore, we assume that the change in utility is strictly decreasing in the number of links

and that the additional benefit of adding an extra link becomes arbitrarily small or negative if the

number of links is large enough. Formally, for all l ∈ N:

a) vi(l +2)− vi(l +1)< vi(l +1)− vi(l) and,

b) for all ε > 0, there exists a number l(ε) ∈ N such that for all l ≥ l(ε),vi(l +1)− vi(l)≤ ε.

Establishing and maintaining a link is costly. We introduce the notion of a link-cost function

to model these linking costs. As mentioned in the introduction, we assume that this link-cost

function depends on two factors: a distance factor and a quality factor. We can think of social

networks where, if the social distance between agents is large, they will have to incur more

costs to overcome this distance and establish a link. For every pair of agents i and j, we define

a number d(i, j) representing the distance between i and j. We assume that this function is

symmetric. Formally,

c) for all i, j ∈ N: d(i, j) = d( j, i).

Besides this distance function, we assume that the cost of link formation is also determined by

a component idiosyncratic of the partner agent which we call the quality of the agent. For each

agent we consider a number θ(i) that represents this quality. The larger θ(i) the higher the quality

of agent i. For i to link to j, the quality of agent j, θ( j), has a decreasing impact on link-costs.

Hence, we assume that the cost of i from linking with j, c(i, j), can be written as a difference

between these two parts:

c(i, j) = d(i, j)−θ( j).

At the end of section 3, we show that our model can be adapted to include alternative forms for

this cost function.

Finally, in order to obtain our uniqueness result, we impose two additional assumptions:

d) for all i, j and k ∈ N: c(i, j) 6= c(i,k) and,
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e) for all l ∈ N and all i and j ∈ N, v(l +1)− v(l) 6= c(i, j).

The first assumption states that every agent can perfectly order the other agents in terms of link-

ing costs, without there being any indifference between potential linking partners. The second

assumption implies that no agent can ever be indifferent between having a certain link or not.

These requirements are generic in the sense that any violation of them will be undone for a small

perturbation in the distance or quality functions. No other assumptions are made with respect to

the cost structure. Note that this makes it possible that c(i, j)< 0.

Bringing together the cost and benefit sides, we get that the payoff of i derived from the network

g is given by,

πi(g) = vi (ni(g))− ∑
j:i j∈g(i)

c(i, j)

= vi (ni(g))− ∑
j:i j∈g(i)

(d(i, j)−θ( j)).

2.3 Stable networks

Having outlined the various concepts of stability and the specific payoff structure of our model,

we proceed by showing existence and uniqueness of the strong pairwise stable network. We

also give some additional insights into the configuration of this stable network. In particular, we

provide an algorithm that allows the computation of the stable network from information on the

individual benefit functions vi(.) and cost structure c(i, .). In this section, we restrict ourselves

to providing the necessary definitions and concepts to understand our main results and the main

idea behind the algorithm. We illustrate this algorithm by an example. The formal proof of our

result can be found in the appendix.

Consider four agents, N = {1,2,3,4}. The distance, quality and cost functions are given below in

table 2.1 together with the benefit function vi which is assumed to be identical for all i = 1, . . . ,4.

Observe that the cost function, c(i, j), is constructed using the formula, c(i, j) = d(i, j)−θ( j).

The algorithm, given in figure 1, selects for each iteration t = 0,1,2, . . . a set of agents At ⊆ Nt –

with Nt a subpopulation of N– who are allowed to change their strategy. This change in strategy
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d(i, j)

i\ j 1 2 3 4

1 / 49 76 23

2 49 / 58 16

3 76 58 / 62

4 23 16 62 /

θ(i)

i

1 10

2 5

3 20

4 15

c(i, j)

i\ j 1 2 3 4

1 / 44 56 8

2 39 / 38 1

3 66 53 / 47

4 13 11 42 /

v(n)

n

0 0

1 100

2 150

3 180

Table 2.1: Overview

changes a given network gt to the network gt+1. More specific, we allow the agents in At to delete

the links in network gt they do not want to maintain. We start with the complete network g0 = gN

and the grand population N0 = N. The algorithm guarantees that for each iteration t = 1,2, . . . ,

gt ⊆ gt−1, Nt = Nt−1−At ⊆ Nt−1 and Nt 6= Nt−1. We end the algorithm when Nt = /0, lets say at

iteration T , which is guaranteed to happen in finite time.

We now discuss each step in the algorithm, for a certain iteration t, and we relate it to our

numerical example above.

Assume that we arrive at step t of the algorithm with network gt and subpopulation Nt ⊆ N. In

order to determine At we take the following steps.

In a first step, we compute for every i ∈ Nt and j ∈ N for which i j ∈ gt , the number of agents, k,

in N such that ik ∈ gt and c(i,k)≤ c(i, j). We denote this number by r(i, j,gt).

Definition For all i, j ∈ N and g ∈ Gn,

r(i, j,g) = |{k ∈ N|ik ∈ g and c(i,k)≤ c(i, j)}| .

Considering our numerical example, we have that, for example, r(1,3,g0) = 3: there are three

agents, namely 2, 3 and 4, who are linked to 1 in g0 and have linking-costs less than or equal to

c(1,3) = 56.

In a second step, we compute for each i ∈ Nt and j ∈ N with i j ∈ gt the maximal number t(i, j)
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I. Initiate t = 0, N0 = N and let (s0
1, . . . ,s

0
n) be such that g0 = gN = g(s0

1, . . . ,s
0
n).

1. Let At = {i ∈ Nt |∀ j ∈ Nt : ρi(gt)−θ(i)≤ ρ j(gt)−θ( j)}

2. For all i ∈ At , define st+1
i by:

j ∈ st+1
i if and only if c(i, j)≤ ρi(gt).

For all j /∈ At define st+1
j = st

j.

3. Set Nt+1 = Nt−At and gt+1 = g(st+1
1 , . . . ,st+1

n ).

4. If Nt+1 = /0 go to step II, else, increase t by one (t := t +1) and go to step I–1.

II. Set gA = g(st+1
1 , . . . ,st+1

n ) and end the algorithm.

Figure 2.1: Stable network algorithm.

such that vi(t(i, j))−vi(t(i, j)−1)≥ c(i, j) if it exists. If it does not exist (i.e. vi(l)−vi(l−1)<

c(i, j) for all l = 1,2, . . .), we set t(i, j) = 0.

Definition For all i, j ∈ N,

t(i, j) = max{{l ∈ N|vi(l)− vi(l−1)≥ c(i, j)};0} .

The existence of t(i, j) is guaranteed by assumption b. For our example, we have t(1,3) = 1.

Given the first and second step above, we can form, for each pair of agents (i, j) (i ∈ Nt , j ∈ N)

the pair (r(i, j,gt), t(i, j)). These pairs are shown in the first four columns of table 2.2 below.

In a third step, we look for all pairs of agents (i, j) with i ∈ Nt and j ∈ N with i j ∈ gt for which

r(i, j,gt) ≤ t(i, j). These are indicated in bold in the first four columns of table 2.2. The set of

all these agents j ∈ N will be equal to the set of ‘acceptable’ agents for i in network gt . We

collect these in the set Λi(gt). This set of acceptable agents for agent i can be interpreted as the

best response for agent i in the network gt : the set Λi(gt) gives the agents that are linked to i in

network gt and with whom i does not want to cut his link.
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(r(i, j,g0), t(i, j)) Λi(g0) ρi(g0) ρi(g0)−θ(i)

1 2 3 4

1 / (2,2) (3,1) (1,3) {4,2} 44 34

2 (3,2) / (2,2) (1,4) {4,3} 38 33

3 (3,1) (2,1) / (1,2) {4} 47 27

4 (2,3) (1,3) (3,2) / {2,1} 13 -2

Table 2.2: Summary table for t=0

Definition For all i ∈ N and g ∈ Λn,

Λi(g) = { j ∈ N|i j ∈ gt and r(i, j,gt)≤ t(i, j)}.

For the example, both agents 2 and 4 are acceptable for agent 1 in network g0. Hence, Λ1(g0) =

{4,2}. Observe that it is possible that Λi(g) is empty for some i and g. For our example, the set

of acceptable agents in the first iteration is given in table 2.2 (second column).

Given that we have constructed the best responses for each agent i in Nt . What is left to determine

now is the set of agents At who will change their strategy to their best responses strategy, i.e. who

will be the agents in Nt that will effectively delete all links i j ∈ gt for which j /∈ Λi(gt) while

keeping all other links of i in gt .

Therefore, we consider in the fourth step, for each i ∈ Nt and each j ∈ Λi(gt), the cost c(i, j) and

we retain the highest value. We call this the critical cost for i in gt and we denote it by ρi(gt).

If Λi(gt) is empty, we set ρi(gt) = 0. For our example, we have that c(1,2) > c(1,4), hence

ρ1(g0) = c(1,2) = 44 is the critical cost for agent 1 in g0.

Definition For all i, j ∈ N and all g ∈ Gn, the critical cost for i in g is given by,

ρi(g) = max{{c(i, j)| j ∈ Λi(g)}} , if Λi(g) 6= /0 and ρi(g) = 0 otherwise.
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Now, we compute for all agents i ∈ Nt the value ρi(gt)−θ(i) and we identify the collection of

agents i∈Nt for which ρi(gt)−θ(i) is smallest. This collection determines At . For our numerical

example, we obtain A0 = {4}.

The intuition behind the particular choice of At is the following. We know that any agent i ∈ Nt

would like to cut all links i j ∈ gt for which c(i, j)> ρi(gt) (or equivalently, j /∈ Λi(gt)) and keep

all links with c(i, j) ≤ ρi(gt) (or equivalently j ∈ Λi(gt)). Now consider an agent i ∈ At and let

c(i, j)≤ ρi(gt). Then,

c( j, i) = d(i, j)−θ(i)

= c(i, j)−θ(i)+θ( j)

≤ ρi(gt)−θ(i)+θ( j)

≤ ρ j(gt).

The first and second equalities follow from the definition of c( j, i) and c(i, j). The first inequality

follows from the fact that c(i, j)≤ ρi(gt) while the last inequality follows from the definition of

At . As such, we see that c( j, i) ≤ ρ j(gt) or equivalently i ∈ Λ j(gt), i.e. i is an acceptable agent

for j in gt . As such, j will not have an incentive to cut his link with i in network gt or in any

other network gs with s > t, as is shown in the proof of theorem 1.

We are now ready to update the algorithm to the next step. To construct gt+1 from gt we take the

collection of agents obtained from the previous step, At , and we let them cut the links with all

agents j not in Λi(gt). Considering our particular example, we have that A0 = {4} and Λ4(g0) =

{2,1}, hence, g1 = g0/{{3,4}}. Next, we construct the set Nt+1 = Nt−At , giving N1 = {1,2,3}.

Finally, we go back to step 1 of the next iteration.

For our example, we see that in the next iteration, A1 = {2,3} and that g2 is formed by deleting

the link between 1 and 2 and between 1 and 3 (see table 2.3). Note that since agent 4 has deleted

his link with agent 3, agent 2 became a member of the set of acceptable agents of agent 3, Λ3(g1).

Finally, we end with N2 = {1} in round 2, see table 2.4. No link is deleted in round 2. This is

a general feature of our algorithm: any link that is not deleted in a certain iteration t will not

be deleted further in the algorithm (see lemma 2.6.2 in the appendix). As such, we may end

the algorithm as soon as Nt is a singleton. We see that g3 is the final network in the algorithm
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(s(i, j,g1),k(i, j)) Λi(g1) ρi(g1) ρi(g1)−θ(i)

1 2 3 4

1 / (2,2) (3,1) (1,3) {4,2} 44 34

2 (3,2) / (2,2) (1,4) {4,3} 38 33

3 (2,1) (1,1) / / {2} 53 33

Table 2.3: Summary table for t=1

(s(i, j,g2),k(i, j)) Λi(g2) ρi(g2) ρi(g2)−θ(i)

1 2 3 4

1 / / / (1,3) {x4} 8 -2

Table 2.4: Summary table for t=2

because N3 = /0. We obtain g3 = {{1,4},{2,3},{2,4}}. The full algorithm is summarized in

figure 1.

The following theorem shows that a strong pairwise stable network always exists, in the form of

the output of figure 2.1, and that it is always unique. The proof can be found in the appendix.

Theorem 2.3.1 The set of strong pairwise stable networks Πsps({πi}i≤n) is a singleton. The

unique element of Πsps({πi}i≤n), gsps, is reproduced by the output of the algorithm in figure 2.1.

Allowing for the simultaneous formation and cutting of a link, as presented in the definition of

a strong pairwise stable network, is essential for uniqueness of the stable network. Indeed, it is

possible that there are multiple pairwise stable networks (see definition 2.2). To see this, consider

an example with three agents i, j and k and assume that both j and k are willing to link with i but
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not with each other. Further assume that i would benefit from linking to either j and k, but not to

both. This happens if, for example,

c( j, i)< v j(1)− v j(0)< c( j,k), c(k, i)< vk(1)− vk(0)< c(k, j),

vi(1)− vi(0)> c(i,k),c(i, j) and vi(2)− vi(1)< c(i,k),c(i, j).

Assume that c(i, j)< c(i,k) and let g = {ik}. Since i and k have no other links, neither of them

will have an incentive to cut the link ik. Agent j may propose to form a link with i. In the

pairwise stability framework, where i cannot cut and form a link at the same time, i will decline

j’s proposal although i would like to cut his link with k and link with j because this would give

him a positive net benefit of c(i,k)−c(i, j). In this setting, the concept of pairwise stability does

not lead to a unique stable network as both networks g = {i j} and g = {ik} are pairwise stable.

On the other hand, if we impose the strong pairwise stability concept, we see that, in this case,

i will cut his link with k and accept the proposal to link with j at the same time leaving only

g = {i j} to be strong pairwise stable.

As for the strongly stable network, we show in the following proposition that the unique strong

pairwise stable network is also strongly stable. This implies that if we would impose no re-

strictions on the actions available to the agents and the size of the deviating coalition the strong

pairwise stable network would still be stable.

Proposition 2.3.2 The unique strong pairwise stable network gsps is strongly stable:

Πss({πi}i≤n) = Πsps({πi}i≤n)

The uniqueness of the weakly and strongly stable network hinges on the following property of

the payoff structure: if c(i, j) < c(i,k) and c( j,k) < c( j, i), then c(k, j) < c(k, i) — if i prefers

j to k and j prefers k to i, then k will prefer j to i. Hence the preferences of k are such that

the objective of two players (j and k) are aligned. This rules out any cycles in the preference

structure and uniqueness ensues.

We finalize this section by giving an alternative cost structure for which above existence and

uniqueness result remains to hold. In the basic model, we assumed that c(i, j) could be written
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as the difference between a symmetric distance function d(i, j) and an agent specific quality

function θ( j). On the other hand, we could also specify c(i, j) as the ratio of a symmetric

distance function d(i, j) and an agent specific (non-zero) quality function θ( j) : N→ R++:

c(i, j) =
d(i, j)
θ( j)

.

All the results of this section are valid for this cost function with a minor adjustment in the

definition of the set, At , which is used in step I–1 in the algorithm of figure 2.1, which changes

to,

At ∈
{

i ∈ Nt

∣∣∣∣∀ j ∈ Nt :
ρi(gt)

θ(i)
≤

ρ j(gt)

θ( j)

}
.

2.4 Empirical Illustration

Using data from a risk sharing network in Nyakatoke, Tanzania, we verify whether our model

is able to predict the existence of such risk sharing links and whether it can capture the fea-

tures of risk sharing networks observed in real life. Informal risk sharing networks — networks

where linking partners have an informal mutual agreement to help each other when one partner

incurs a negative shock — are particularly well suited examples of the payoff structure under

consideration.

In the literature on informal risk-sharing networks, for example, De Weerdt (2004) finds that kin-

ship, geographical proximity, clan membership and religious affiliation are strong determinants

in the formation of risk-sharing networks. This result is corroborated by the results of Fafchamps

and Gubert (2007) who find that geographic proximity, kith and kin relationships are strong deter-

minants of link formation within an informal insurance network in the rural Philippines. Hence

we can think of the pairwise component d(i, j) as a notion of social and geographical distance.

Households who live close by or know each other well through friendship or kinship ties can link

to each other at lower costs.

In addition, empirical studies on risk-sharing networks reveal that some agents are more desirable

linking partners than others because they have more wealth or status. For example, Comola

(2008) and De Weerdt (2004), find that the probability of being linked to a household rises with
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the wealth of this household, that the rich have a denser network than the poor and that a pair

with a rich person in it has more chance of being linked. Hence, households are more willing

to link to a household of higher wealth which is incorporated in our model by the agent-specific

component θ(.).

We keep this illustration as simple as possible, using the geographical distance between two

households as a proxy for our distance measure d(i, j), while the value of livestock owned by

a household serves as a proxy for our quality measure θ(i). Various empirical studies 9 on risk

sharing networks identify geographical proximity as one of the important determinants of risk

sharing links. For the case of livestock, Comola (2008) argues that livestock is a real wealth

dimension, more so than land ownership.

At the time of the survey in 2000, Nyakatoke consisted of 119 households, 116 for which data are

fully available. All households were asked the following question: Can you give a list of people

[...], who you can personally rely on for help and/or that can rely on you for help in cash, kind

or labour? The 116 households mentioned a total of 960 intra-village network partners, which

amounts to 480 risk sharing links. However, the degree (i.e. the number of network partners)

is unevenly distributed, ranging from 1 to 32 partners. Furthermore, the Nyakatoke risk sharing

network has features corresponding to other empirical regularities of large social networks, as

noted by Comola (2008): there is only one component which has an average path length of

2.5 steps, clustering is higher than would be expected if the formation process would be totally

random and clustering tends to be negatively correlated with degree.10 The key characteristics

of the Nyakatoke network are shown in the first column of table 2.6 below.

As a measure of predictive power we look at the fraction of existing links in the Nyakatoke net-

work that also exist in the stable network produced by the algorithm, as well as the fraction of

non-existing links in the Nyakatoke network that do not exist in the stable network. In order to

get a sense of how accurate the predictions based on the model are, we compare our results with

predictions based on using fitted link probabilities from a logit regression model using geograph-

9See Fafchamps and Lund (2003), Fafchamps and Gubert (2007), De Weerdt (2004) and Comola (2008).
10Another empirical regularity is a positive correlation in degree of connected households for which we could not

find evidence in the Nyakatoke risk sharing network.
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ical distance and/or livestock values. Since both predictions rely on the same set of information

— geographical distance and livestock value — we are able to filter out the contribution of

our network formation model by comparing the two prediction fractions. We fully realize we use

very crude measures of distance and quality and in this respect this exercise should not be viewed

as an empirical application but rather as a way of showing that the network formation process

presented in this paper might have some validity when it comes to predicting the existence of

links.

First, we focus on distances only, simply inputting geographical distances between any pair while

assuming θ(i) = 0 for all i ∈ N. The payoff function is of the form

πi(g) = α∗ni(g)
2/3− ∑

j:i j∈g
d(i, j),

with the scale parameter α chosen such that the total number of links in the network is as close to

480 (the total number of links in the real-life network) as possible. For this exercise, α = 0,454,

with a total number of 479 links. The exponent for the benefit function is fixed at 2
3 . Simulations

with other values within the range of [2
5 ,

4
5 ] yielded similar results.

The prediction results are given in the first row of table 2.5. Keeping in mind that our handling

of the data is rather raw, the results are mixed. Somewhat less than one third of all existing links

is predicted in our model. Earlier simulations — not shown here — show that if we randomly

select 480 pairs to be linked, we get a prediction rate for linked pairs between 3 and 13% and

between 92,5 and 93,2% for unlinked pairs. Hence, we get prediction rates well above what we

would expect from a non-informative model.

In order to filter out the contribution of our model to predicting the Nyakatoke network, we

compare the results from the first row of table 2.5 with the prediction results from the fitted prob-

ability model as shown in the second row. In this model, we fitted the following logit regression

with standard errors in parentheses:

ln
(

Pr(i j ∈ g)
1−Pr(i j ∈ g)

)
=−1,3

(0,09)
− 2,9

(0,22)
∗distancei j

Then, networks are simulated where the probability that a link exists between a pair is equal

to the fitted probability from the logit regression. The numbers shown in the table are the [5-



CHAPTER 2. NETWORK FORMATION 34

Fraction of Correct predictions Linked Unlinked

Model (only distance) 0,313 0,947

Fitted Probability (only distance) [0,088 - 0,133] [0,926 - 0,936]

Model (distance and quality) 0,333 0,948

Fitted Probability (distance and quality) [0,098 - 0,146] [0,927 - 0,937]

Table 2.5: Prediction results

95] percentiles, obtained over 100 000 simulations. The prediction rates for our model are above

these intervals, indicating that the network formation process as described in this paper is relevant

to explaining the existence or absence of certain links in the Nyakatoke risk sharing network.

The simulation with the quality measure is a bit more complex. The quality measure θ(i) is the

value of livestock of i. First, since the livestock value is of a different magnitude than the geo-

graphical distance measure,11 we scale it down using the ratio of coefficients from the following

logit regression:

ln
(

Pr(i j ∈ g)
1−Pr(i j ∈ g)

)
=−1,4

(0,09)
− 3

(0,22)
∗distancei j + 1∗10−6

(1,3∗10−7)
∗ ∑

k=i, j
livestockk

which turns out to be 3
1000000 . Second, adding quality adds a weighting parameter β to the net

benefit function:

πi(g) = α∗ni(g)
2/3− ∑

j:i j∈g
((β∗d(i, j)− (1−β)∗θ( j)).

For different values of β — between 0 and 1 with steps of 0,02 — we calibrate α such that the

total number of links is approximately 480. The third row of table 2.5 gives the prediction results

for the {β,α}-combination which yielded the best prediction results, {β = 0,48,α = 2,49}.

Again, comparing these results with the results from the fitted probability model with distance
11Distance is expressed in kilometers with values ranging from close to 0 to 1,8, while livestock can take on

values to over 1,5 million.
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and quality as shown in the fourth row indicates that our model can help explain the existence

of links in the Nyakatoke network, although prediction fractions do not improve markedly when

adding quality.

Nyakatoke Model (distance) Model (distance and quality)

[Min Median Max] [1 7 32] [1 8 16] [3 8 10]

Char. Path length 2,54 4,23 3,64

Clustering 0,19 0,62 0,52

Corr. Clust. - Degree -0,21 -0,043 -0,39

Corr. Degree linked agents 0,04 0,70 0,49

Table 2.6: Key statistics of networks: The clustering coefficient used is the overall clustering coefficient

(see Jackson (2008)).

As far as the features of the simulated networks, shown in table 2.6, are concerned, we can say

that they match at some points the features of networks observed in real life — high degree of

clustering, negative correlation between clustering and degree and positive correlation in degree

of connected agents. At other points — the uneven distribution of degree as well as the low

characteristic path length — the model fails to replicate, which can be attributed to the usage of

the raw distance and quality measures. For example, geographical distance is a measure which

is a metric, satisfying triangle inequality12, hence producing high characteristic path lengths. If

we would introduce more accurate social distance measures, which would not necessarily satisfy

triangle inequality, characteristic path length may be lower. The inaccuracy of the data may also

explain the fact that we did not obtain an uneven degree distribution. Additionally, we assumed

identical benefit functions for every household. Introducing some heterogeneity on the benefit

side may lead to a more uneven degree distribution.

12d(i, j)+d( j,k)≥ d(i,k)
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2.5 Concluding remarks

In an endogenous network formation setting where only the direct network matters for utility, this

paper introduced general forms of heterogeneity on the cost side. The costs are characterized by

the distance between agents and individual quality. The only restrictions we impose is that the

distance is symmetric, that each agent has a perfect ordering of linking costs without indifference

and that agents are never indifferent between maintaining and cutting a link. Using an algorithm

we were able to identify the unique strong pairwise stable network. Agents will try to link with

agents with the lowest linking costs so as to maximize the net gains from the direct network. Not

everyone will succeed in doing this however, as some desirable network partners may refuse to

form a link with them.

The algorithm provides an elegant way to determine the emerging unique stable network. Differ-

ent structures will give rise to different configurations and hence, using the framework, it might

become possible to relate differences in features of networks to differences in the underlying cost

structure.

The uniqueness result of the stable network can be attributed to two factors. Firstly there are

the assumptions made regarding the cost function — perfect preference ordering and symmetric

distance function — as well as on the actions available to the agents — the fact that agents can

simultaneously cut and form a link. Relaxing the assumptions would invalidate the uniqueness

result by including some history dependence in the model. However, the basic configuration of

the emerging stable networks will be little affected by this relaxation, so that we can consider

this kind of randomness as irrelevant to the model.

A second set of factors which leads to uniqueness of the stable network are the specific structure

of the link-costs — with a pairwise and a agent-specific component — which precludes prefer-

ence cycles and the assumptions made with respect to the utility function — absolute friction and

concavity. Hence, relaxing the assumptions with respect to the link-costs even further as well as

imposing more intermediate forms of friction may be an important direction for future research.
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2.6 Appendix

2.6.1 Proofs

Preliminary results

Before proving theorem 2.3.1, we introduce some lemmata.

Lemma 2.6.1 If i ∈ At , i j ∈ gt+1 and s≥ t, then i j ∈ gs+1.

Proof Assume that i ∈ At and i j ∈ gt+1. Further, let j ∈ Ap. If p < t, we have, by gt+1 ⊆ gp+1,

that i j ∈ gp+1. As there is no iteration between t and s where i j could be cut, we conclude that

i j ∈ gs+1

Therefore assume that p ≥ t. Observe that it suffices to show that c( j, i) ≤ ρ j(gp) because this

guarantees that j will not cut the link i j in iteration p of our algorithm. From i∈ At and i j ∈ gt+1,

we conclude that,

c( j, i) = c(i, j)−θ(i)+θ( j)≤ ρi(gt)−θ(i)+θ( j)≤ ρ j(gt).

This implies,

r( j, i,gt)≤ t( j, i),

and from gp ⊆ gt , we derive,

r( j, i,gp)≤ r( j, i,gt)≤ t( j, i),

Hence, c( j, i)≤ ρ j(gp).

An important corollary of lemma 2.6.1 is that for all iterations t of the algorithm and i ∈ At , if

i j ∈ gt+1, then i j ∈ gA (here gA is the output of the algorithm).

Lemma 2.6.2 If the network g is strong pairwise stable and g⊆ g′, then for all i j ∈ g′, if c(i, j)≤

ρi(g′) and c( j, i)≤ ρ j(g′), then i j ∈ g.
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Proof Assume that c(i, j)≤ ρi(g′) and c( j, i)≤ ρ j(g′). If i j /∈ g, then by strong pairwise stability

of g it follows that (using assumption e),

vi(ni(g)+1)− vi(ni(g))< c(i, j) or v j(n j(g)+1)− v j(n j(g))< c( j, i).

Otherwise we would have that both i and j would benefit from creating the link i j. This shows

that either t(i, j) < ni(g)+ 1 or t( j, i) < n j(g)+ 1. Assume without loss of generality that the

first of the two holds. From c(i, j)≤ ρi(g′), it follows that

r(i, j,g′)≤ t(i, j)≤ ni(g).

As g⊆ g′, i j ∈ g′ and i j /∈ g, it follows that there must be an agent, k, which is linked to i in g and

for which c(i,k)> c(i, j). This shows that i would benefit by cutting the link with k and creating

the link with j. g is strong pairwise stable, hence, it must be that this is not beneficial for j, i.e.

v j(n j(g)+1)− v j(n j(g))< c( j, i).

This implies t( j, i)< n j(g)+1. Parallel to the previous case, we conclude that there must be an

agent h such that jh ∈ g and c( j,h)> c( j, i).

Conclude that both i and j can benefit from linking with each other and cutting their link with

respectively k and h. Therefore, g cannot be strong pairwise stable.

Proof of theorem 2.3.1

We only show uniqueness. The property that the output of the algorithm gA is strong pairwise

stable follows from the proof of proposition 2.3.2 as every strongly stable network is also strong

pairwise stable.

Therefore, assume that there exists a strong pairwise stable network gsps. We need to show that

gA = gsps. We work by induction on the iterations in the algorithm. In particular we show that

for all t = 0,1, . . . ,T −1,

1. if i ∈ At and i j ∈ gt+1, then i j ∈ gsps,

2. gsps ⊆ gt+1.
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If these two conditions hold, then from lemma 2.6.1 it follows that gsps = gT = gA.

First of all, observe that gsps ⊆ g0 = gN . Consider the case t = 0. Now, let i ∈ A0 and i j ∈ g1. It

follows that c(i, j)≤ ρi(g0). As such,

c( j, i) = c(i, j)−θ(i)+θ( j)≤ ρi(g0)−θ(i)+θ( j)≤ ρ j(g0).

It follows, from lemma 2.6.2 that i j ∈ gsps. In addition, consider i ∈ A0 and ih /∈ g1. It follows

that c(i,h)> ρi(g0) or equivalently

vi(ni(g1))− vi(ni(g1)−1)< c(i,h).

Assume that ih ∈ gsps. Since all i j ∈ gt+1 are part of gsps, it must be that ni(g1)< ni(gsps). Then,

vi(ni(gsps)− vi(ni(gsps)−1)< c(i,h).

As such, i will benefit from cutting his link with h in gsps. Hence, gsps cannot be a stable network.

We have that ih /∈ gsps and gsps ⊆ g1.

Assume that the induction holds for all iterations up to t−1 and consider iteration t. Let i ∈ At

and i j ∈ gt+1, then

c( j, i) = c(i, j)−θ(i)+θ( j)≤ ρi(gt)−θ(i)+θ( j)≤ ρ j(gt).

Again, using lemma 2.6.2, it follows that i j ∈ gsps. This shows the first requirement. We still

need to show the second requirement. Towards this end, assume on the contrary that for some

i ∈ At , ni(gt)≥ ni(gsps)> ni(gt+1). From lemma 2.6.1 one can easily deduce that for all i ∈ At ,

ρi(gt) = ρi(gt+1). Hence for i j ∈ gsps,gt and i j /∈ gt+1,

c(i, j)> ρi(gt+1) or equivalently vi(ni(gt+1))− vi(ni(gt+1)−1)< c(i, j).

From ni(gsps)> ni(gt+1), we deduce that,

vi(ni(gsps)− vi(ni(gsps)−1)< c(i, j).

As such, i will benefit from cutting his link with j in gsps and gsps cannot be a stable network.

Now, we have that gsps ⊆ gt , ni(gsps) ≤ ni(gt+1) for all i ∈ At and i j ∈ (gt − gt+1) only if i or

j ∈ At . Conclude that gsps ⊆ gt+1.
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Proof of proposition 2.3.2

Take any C ⊆ N and let gA be the output of the algorithm. We prove that there will always be at

least one agent i ∈C who loses by any rearrangement of the linking pattern among the members

of C, under the condition that links are formed under mutual consent. Consider an agent, i,

defined by:

i ∈ { j ∈C| j ∈ At and ∀k ∈C if k ∈ Ap, then t ≤ p},

Agent i is a the member of C who, in our algorithm, cuts links first.

Let gA be the output of the algorithm and let g′ be a network where only links within C are

rearranged and perhaps links with at least one agent in the coalition are cut. Further, assume on

the contrary, that all agents within C benefit from changing from gA to g′. Let A = gA(i)\g′(i)

and B = g′(i)\gA(i). A is the set of agents who are linked to i in network gA but not in g′ and B

is the set of agents who are linked to i in g′ but not in gA. We assume that at least one of the sets

A or B is nonempty. Otherwise, i is indifferent between network gA and g′. In that case, we may

exclude i from the set C and consider the smaller set C−{i}. Now, for all j ∈N, if i j ∈ gt+1, then

it follows (from lemma 2.6.1) that i j ∈ gA. This implies that whenever j ∈ A then c(i, j)≤ ρi(gt).

On the other hand, because i is the first agent to choose in the algorithm, it must be that for all

j ∈ B, c(i, j)> ρi(gt). Conclude that for all j ∈ A and k ∈ B: c(i, j)< c(i,k). We have that:

πi(gA)−πi(g′) = vi(ni(gA))− vi(ni(g′))−∑
j∈A

c(i, j)+ ∑
j∈B

c(i, j).

If |A| = |B|, the proof follows from the facts that c(i, j) < c(i,k) for all j ∈ A and k ∈ B and

ni(gA) = ni(g′). We distinguish two other cases.

(1) If |B|> |A|, we can write:

πi(gA)−πi(g′) =
|B|−|A|−1

∑
k=0

(vi(ni(gA)+ k)− vi(ni(gA)+ k+1))−∑
j∈A

c(i, j)+ ∑
j∈B

c(i, j).

Now, select |A| agents from B and call the remaining set B′, then:

πi(gA)−πi(g′)>
|B|−|A|−1

∑
k=0

(vi(ni(gA)+ k)− vi(ni(gA)+ k+1))+ ∑
j∈B′

c(i, j).
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For all k ≥ 0 and j ∈ B, it is also the case that:

vi(ni(gA)+ k+1)− vi(ni(gA)+ k)< c(i, j).

Hence,

πi(gA)−πi(g′)>− ∑
j∈B′

c(i, j)+ ∑
j∈B′

c(i, j) = 0.

(2) Now, consider the case where |A|> |B|. Then we can write:

πi(gA)−πi(g′) =
|A|−|B|+1

∑
k=0

(vi(ni(gA)− k)− vi(ni(gA)− k−1))−∑
j∈A

c(i, j)+ ∑
j∈B

c(i, j).

Select |B| agents from A and call the remaining set A′. This gives:

πi(gA)−πi(g′)>
|A|−|B|−1

∑
k=0

(vi(ni(gA)− k)− vi(ni(gA)− k−1))− ∑
j∈A′

c(i, j).

For all k ≥ 0 and j ∈ A, it is also the case that:

vi(ni(gA)− k)− vi(ni(gA)− k−1)> c(i, j).

Hence,

πi(gA)−πi(g′)> ∑
j∈A′

c(i, j)− ∑
j∈A′

c(i, j) = 0.

Conclude that i has higher payoffs in gA than in g′ contradicting the assumption that gA is not

strongly stable.
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3
Paths to stability in the partnership problem

3.1 Introduction

We study a decentralized matching process for partnership problems with linear preferences,

which is a one-sided many-to-many matching problem. It is shown that such a process converges

to a stable matching with probability one, by establishing that for every unstable matching there

is a sequence of myopic blockings that leads to a stable matching.

In a matching problem, agents within a group are faced with the decision to form bilateral re-

lationships with other agents in that group, based on the preferences that they might have over

other agents or over subsets of agents. Depending on the restrictions imposed on the possible

bilateral relationships and the preference structure, different matching problems exist. Two fa-

mous examples (both by Gale and Shapley (1962)) of matching problems are the stable marriage

46
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problem where a group of men and a group of women are looking for a mate of the other sex

and the stable roommate problem, where a group of students is looking for someone to share a

dorm room with. The former problem is an example of a two-sided problem; the population is

partitioned into two groups and there is no within-group relationship possible. The latter exam-

ple is one-sided, without any such restriction on the set of possible relationships. Both problems

are examples of one-to-one matching, where agents do not wish to be involved in multiple rela-

tionships – there is no desire for polygamy and dorm rooms have only two beds. The matching

problem that will be discussed in this paper, the partnership problem (due to Fleiner (2010)), is

more general than those two simple problems in that agents may want to be involved in mul-

tiple relationships; it is a many-to-many matching problem. In addition, they may want to be

involved in multiple relationships with the same agent.1 Examples of one-sided many-to-many

matching problems include peer-to-peer networks (Lebedev et al., 2006); the stable crews prob-

lem (Cechlarova and Ferkova, 2004), where a pilot and co-pilot are assigned to a flight; informal

risk sharing networks (Vandenbossche and Demuynck, 2012), where households have informal

bilateral agreements to help each other out in bad times; or the scheduling of non-conference

games in US college sports.

Now, a collection of bilateral relationships constitutes a matching. A matching is stable when no

agent wishes to disband a relationship and when no pair of agents wishes to form a previously

non-existing relationship between them. One of the many great contributions of matching theory

to the more applied side of economics has been the design and study of various algorithms

that produce a stable matching when one exists, for a certain type of matching problem.2 For

example, these algorithms were implemented as centralized market clearing institutions in entry

level labor markets in medicine, psychology, law and business with considerable success (Blum

et al., 1997). In some matching markets, however, a centralized organization of the market may

1That is why we will not speak of a match between two agents, as it implies that there can be only one such

match for every pair of agents.
2Examples are the deferred acceptance algorithm (Gale and Shapley, 1962) for the stable marriage problem,

Irving (1985)’s algorithm and Tan and Hsueh (1995)’s algorithm for the stable roommate problem and Fleiner

(2010)’s extension of Irving’s algorithm for the partnership problem.
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not be feasible or desirable. Blum et al. (1997) point out that “centralized market institutions will

turn out to be rarer in senior labor markets than in entry level markets." Moreover, as Roth and

Vande Vate (1990) point out, a matching market often does not need a central institution to obtain

a stable outcome, indicating that some decentralized matching process – like an invisible hand

– drives the market towards its stable outcome. The question then becomes for what types of

matching problems convergence towards stability can be assured. This paper contributes to the

literature by showing that, when a stable matching exists, convergence is the case for partnership

problems with linear preferences, a one-sided many-to-many matching problem that is more

general than the stable marriage or roommate problem.

We follow the approach taken first by Roth and Vande Vate (1990) and consider the following

decentralized matching process: a pair of myopic agents is selected at random, with positive

probability for each possible pair. If the pair is a blocking pair — they are both willing to form

a relationship between them, possibly giving up on previously existing relationships — the new

matching will result by satisfying the blocking pair. If the pair is not a blocking pair, then the

new matching is identical to the old matching. In this way, a path of blocking pairs – an im-

proving path – develops. If convergence is assured and a stable matching exists, eventually this

process should end in a stable matching, rather than going on indefinitely in a cycle. To prove

convergence, it suffices to show that, starting from any unstable matching, at least one improving

path exists such that it ends in a stable matching. If one such path exists for any unstable match-

ing, then as each pair is selected with positive probability, the process must eventually converge

towards a stable matching; in the long run the probability that such an improving path is taken

tends to one. Hence, the approach for the proof is to construct an improving path for which it

could be proven that it ends in a stable matching. For the stable marriage problem, Roth and

Vande Vate (1990) constructed one such improving path such that the matching at the end of the

path was stable. In later years, several studies extended the results from Roth and Vande Vate

(1990). For a two-sided, many-to-many matching problem, Kojima and Ünver (2008) showed

that a path to stability exists when one side has substitutable preferences and the other side has

responsive preferences. For the roommate problem, Diamantoudi et al. (2004) showed that for

all instances of the roommate problem where a stable matching exists, “the process of myopic
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blockings leads to a stable matching," hence generalizing the Roth and Vande Vate (1990) result

to one-sided matching problems.

The main contribution of this paper extends the findings of Roth and Vande Vate (1990) and

Diamantoudi et al. (2004) and shows the existence of an improving path towards a stable match-

ing for any unstable matching in the partnership problem with linear preferences. As mentioned

before, the partnership problem is one-sided, implying no restrictions on the possible bilateral

relationships, as opposed to the two-sided nature of the stable marriage problem. In addition, the

preference structure is such that agents may want to have more than one relationship, as opposed

to the one-to-one nature of the stable roommate problem. The preference structure, which reveals

the preference of one subset of relationships over another subset, is modeled by means of a choice

function, a function that maps an option set – a set of possible relationships – to a choice set –

a set of chosen relationships. These choice functions are assumed to satisfy three restrictions.

First, there is substitutability; if a relationship is chosen from a set, then it is also chosen from a

subset of that set. Second, we have increasingness; if k relationshisp are chosen from a set, then

in a superset of that set at least k relationships will be chosen. Finally, we also assume linearity;

if a relationship is chosen from a set while another relationship is not, then there does not exist

a set where the reverse holds. Defined like this, the partnership problem with linear preferences

is more restrictive than the partnership problem as defined by Fleiner (2010), which does not

assume linearity, but less restrictive than the stable roommate problem and the stable b-matching

problem (Irving and Scott, 2007), a many-to-many matching problem where each agent has a

fixed capacity, b, and choses the first b elements in a linear preference list. In our problem, the

capacity may vary over different option sets, within the limits of the restriction of increasing-

ness. Note that the partnership problem with linear preferences and the two-sided many-to-many

matching problem as presented in Kojima and Ünver (2008) are non-nested matching problems.3

3Recall that Kojima and Ünver (2008) assumes substitutable preferences on one side and responsive preferences

on the other. Our problem is more general in the sense that it is one-sided and that responsive preferences as defined

by Kojima and Ünver (2008) imply substitutability, increasingness and linearity while the reverse does not hold.

Kojima and Ünver (2008)’s problem is more general in the sense that substitutability alone is more general than

substitutability, together with increasingness and linearity.
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The partnership problem with linear preferences along with the key concepts of the model are

defined in more detail in section 3.2. Section 3.3 provides us with the main result, the conver-

gence towards a stable outcome if a stable outcome exists, and gives an outline of the proof. The

proof of the main theorem builds on Fleiner (2010)’s stable partnership algorithm. As we will

show, this algorithm, which is a generalization of Irving’s algorithm (Irving, 1985), gives us a

lot of intuition as to what an improving path towards stability should look like. The proof itself

is given in the appendix.

The main theorem, Theorem 3.3.1, presented in section 3.3 implies convergence towards stability

for problems that are solvable, i.e. problems for which a stable matching exists. However, Gale

and Shapley (1962) pointed out that, for one-sided matching problems, a stable matching might

not exist. In section 3.4, we provide a discussion on convergence for non-solvable problems. In

particular, we extend the results from Iñarra et al. (2010) and Biro and Norman (2012) and show

that from an unstable matching there is an improving path towards a set of matchings, denoted

instances, that can be associated to a stable half-matching, which is a structure that generalizes

the notion of a stable matching (see Tan (1991) for the roommate problem and Fleiner (2010) for

the partnership problem.) Section 3.5 presents some concluding remarks.

3.2 The model

We will introduce a matching problem, a partnership problem with linear preferences, which

is a special version of a partnership problem (Fleiner, 2010). Any matching problem can be

defined by a set of possible relationships and preferences over that set of relationships for each

agent, where preferences are given by a choice function. The set of possible relationships and

the restrictions on the choice function determine the type of matching problem. Further in this

section, we define the concept of stability.

Potential relationships. Let V be a set of agents. Agents in V wish to establish bilateral

relationships with other agents in V , given certain preferences. A set of relationships among

agents in V will be denoted a partnership. The problem can be represented by means of a finite
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undirected graph (V,E) with V the set of vertices - agents - and E the set of edges. A relationship

between an agent u and an agent v will be defined by an edge e = uv.4 The set E contains all

potential edges, where an edge uv is potential if there exists a situation – a partnership – where

both u and v are willing to form this edge. A partnership M is then a subset of the set of potential

edges E, M ⊆ E. Further, for a subset X of E and vertex v in V let us denote by X(v) the set

of edges that are incident with v, the set of relationships in which v is involved. Finally, note

that we are not restricting the model to simple graphs5; it may be that edges e1 and e2 in E

involve the same pair of agents. In the context of a matching problem this means that multiple

distinct relationships are possible between the same pair of agents. For example, if u and v in

V are scientists and an edge stands for writing a paper together, then ea = uva could be writing

a paper on subject a, while eb = uvb could be writing a paper on subject b. Hence, in non-

simple graphs different types of relationships are possible within the same matching problem;

the problem could be how does a group of friends spend the weekend together but the (bilateral)

relationships could be play a game of chess or have dinner together. As such, the maximal size

of the set of potential edges is essentially determined by the number of agents and the number of

different types of relationships, whereas for simple graphs the maximal size would be |V |∗|V−1|
2 .

Therefore, it is important to note that the set of potential edges will be determined by which

edges agents find desirable; some agents may not know the rules of chess and the edge play a

game of chess will therefore never be adjacent to those agents.

The example given in Figure 3.1 illustrates the preceding paragraph. For example, the set of

potential edges adjacent to agent u consists of uv, ux and two edges between agent u and agent

w, labeled uwa and uwb.

Preferences. The preferences of every agent v are given by a choice function Cv : 2E(v)→ 2E(v)

that maps any subset X(v) of edges incident with v – the option set – to a subset of X(v) that v

chooses from X(v) – the choice set. The edges in X(v) that are not chosen will be denoted by

Cv(X(v)) = X(v)\Cv(X(v)). The inverted choice set for an agent v is the set of edges incident to

4Note that an edge is a set of pairs {u,v}= {v,u} but for notational simplicity, we write it as uv.
5See footnote 6 for a problem with the interpretation of stability when dealing with non-simple graphs.
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Figure 3.1: A four-agent example. This particular example is a stable b-matching problem: the capacity for each

agent is given between parentheses, the preference ordering is indicated by the numbers on the edges

close to the vertices, with 1 representing the edge that is first in the preference order, 2 representing

the edge that is second and so on.

v that are in the choice set of others for a subset X of E. Formally,

C−v (X) = {uv ∈ X(v)|uv ∈Cu(X(u))}.

For an edge e ∈Cv(X(v)), the X(v)-replacement of e is the set Cv(X(v)\e)\Cv(X(v); if an option

e is in the choice set of an option set X(v) incident to v and is deleted from that option set, then

the new elements in the choice set without e will be the X(v)-replacements of e; they replace e

in the choice set.

For example in Figure 3.1, the choice function is given by a preference list (the numbers on the

edges) and a capacity (the number between parentheses). If X = {uv,uwa,ux,vw,vx,wx}, then

Cu(X(u)) = {ux} and Cu(X(u)) = {uwa,uv}. The edge uwa is the X(u)-replacement of ux. The

inverted choice set of u for X , C−u (X), contains only uv.

With this notation, every matching problem can be represented by a finite graph (V,E) with

V = {1, . . . , |V |} the set of agents (vertices) and E the set of potential relationships (edges) and a

set of choice functions C =
(
C1(.), . . . ,C|V |(.)

)
. We write {(V,E),C}. We say that a partnership

M is contained in the partnership problem {(V,E),C}, or equivalently, M is contained in E, if

M ⊆ E.

The partnership problem with linear preferences. We discuss a one-sided matching problem

where agents may want to form multiple relationships. The latter implies that choice sets may
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contain more than one element. One-sidedness implies that there are no restrictions on the set of

potential edges E. As mentioned in the previous paragraph, the preferences over E(v) for each

agent v are modeled by the choice function Cv, which is assumed to satisfy three restrictions:

substitutability (SUB), increasingness (INCR) and linearity (LIN). First, substitutability means

that when e is chosen from an option set X(v), then v will still choose option e when some options

are no longer available in X(v). In other words, if e is in the choice set of an option set X(v),

then e is in the choice set of any option set that is a subset of X(v).

SUB A choice function, Cv, is substitutable if, for e 6= f and e∈Cv(X(v)), then e∈Cv(X(v)\ f ).

Fleiner (2010, Theorem 2.1) finds that a choice function Cv on a finite groundset is substitutable

if and only if Cv is monotonous; if an option e is not chosen from an option set Y (v), then it will

not be chosen either when the option set is expanded:

MON The function of non-chosen options Cv, is monotonous if Y (v)⊆X(v) implies that Cv(Y (v))⊆

Cv(X(v)).

Another corollary of SUB is that if an edge uv ∈ E — that is, uv is a potential edge — then

uv ∈ Cu(uv)∩Cv(uv); if an edge is potential, then it is always chosen by both agents involved,

when no other options are available.

Second, increasingness means that if extra options are added to an option set Y (v), then v chooses

at least as many options in the expanded option set as in Y (v); if more options are available, then

more options will be chosen. Formally,

INCR A choice function, Cv, is increasing if Y ⊆ X implies |Cv(Y )| ≤ |Cv(X)|.

INCR, together with SUB, guarantees that the X(v)-replacement of an edge e ∈Cv(X(v)) will be

at most one element, which will be important for the rest of the analysis.

Third, a choice function satisfies linearity if for any pair of edges e and f such that there is an

option set X(v) incident to v where e is chosen, while f is not, it holds that that whenever f is

part of a choice set for an option set Z(v), then e will also be chosen if e is added to that option

set Z(v). If an option e is chosen while another available option f is not chosen, then there does

not exist an option set where the reverse holds. Formally,
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LIN A choice function Cv is linear if for e 6= f , there exists an X(v) such that e ∈Cv(X(v)) and

f ∈Cv(X(v)), then there does not exist an Z(v) containing both e and f , such that e ∈Cv(Z(v))

while f ∈Cv(Z(v)).

Note that the restriction of linearity, together with INCR and SUB, implies an ordering of the

edges in E(v) for each v – hence the term linearity. If an option e is chosen while another

available option f is not chosen, then e can be assumed to be placed before f in this implicit

ordering.

We can then define the partnership problem with linear preferences as follows:

P A partnership problem with linear preferences P is a matching problem {(V,E),C} such that

any Cv ∈C = (C1, . . . ,C|V |) satisfies SUB, INCR and LIN.

This matching problem is related to two other one-sided many-to-many matching problems.

First, a more restrictive version of the partnership problem with linear preferences is the sta-

ble b-matching problem. In the stable b-matching problem, every agent v has a strict preference

list of E(v), along with a fixed capacity b(v), indicating the number of relationships she is will-

ing to form. The matching problem discussed here is similar in the sense that, as shown above,

LIN and INCR, also imply a preference ordering. However, it is more general than a stable

b-matching problem as the capacity is not fixed but governed by the assumption of increasing-

ness. For example, it is possible that for an option set {uv,uw,ux}, the choice set is {uv,uw},

containing two edges, but for an option set {uv,ux}, the choice set may be {uv} containing only

one edge. Hence, in this example, the capacity depends on the option set considered, which is

not possible in a stable b-matching problem. The examples that will be discussed in this paper

will be examples of stable b-matching problems to make the illustration easier. Second, a more

general version is the partnership problem as defined by Fleiner (2010), which also assumes

INCR together with substitutability (SUB) but does not impose linearity. In the remainder of this

paper, we will speak of the partnership problem meaning the partnership problem with linear

preferences unless otherwise mentioned.
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Stability For a partnership problem P = {(V,E),C}, a partnership M is individually rational if

no agent v∈V has an edge uv∈M such that uv∈Cv(M(v)); no agent wishes to cut a relationship

it has in M. In addition, a blocking edge uv of M is such that uv 6∈M and uv ∈Cu(M(u)∪uv)∩

Cv(M(v)∪uv); both u and v wish to form uv in M. For example, in Figure 3.1, if M = {uwb,wx},

then M is not individually rational as wx ∈ Cw(M(w)). An example of a blocking edge for M

would be uv. A partnership that is individually rational and has no blocking edge is denoted a

stable partnership. Formally,

Stable partnerships A partnership S is stable for the problem P = {(V,E),C} if S satisfies:

• Individual rationality: for any agent v we have Cv(S(v)) = S(v), and

• Absence of a blocking edge: There does not exist an edge e = uv 6∈ S such that both

e ∈Cu(S(u)∪{e}) and e ∈Cv(S(v)∪{e}) holds.

A partnership problem that has at least one stable partnership will be denoted solvable. Until

Section 3.4, we will only consider solvable partnership problems as they are intuitively most

appealing to investigate the concept of a path to stability. The example of Figure 3.1 is solvable

and has a unique stable partnership, {ux,vw,vx}.

3.3 Main result.

The central question of this paper is whether a decentralized matching process, as described

by Roth and Vande Vate (1990) for the stable marriage problem, always converges to a stable

partnership, when such a partnership exists. Consider a partnership M for a given problem P .

The starting assumption is that M is individually rational, as each agent can unilaterally decide

whether to cut a relationship or not. The decentralized process à la Roth and Vande Vate (1990)

then randomly selects a pair of agents with positive probability for each possible pair; as if all

agents are in a room together and randomly bump into each other. When a pair is selected, they

review their relationship. If their relationship is part of the partnership, nothing happens and each
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agent involved goes his own way, leaving the relationship intact. If they do not have a relation-

ship in the current partnership, each agent checks his willingness to form that relationship. If one

of them objects, again, nothing happens and the relationship is not formed. If both of them are

willing – the relationship is a blocking edge – the relationship is formed. In addition, each agent

involved in the blocking edge simultaneously cuts relationships that she no longer wants because

of the formation of the blocking edge, so as to make the resulting partnership individually ra-

tional. The process of forming a blocking edge uv and simultaneously deleting edges that are

no longer wanted, is called satisfying a blocking edge.6 In Figure 3.1, vx is a blocking edge for

M = {uv,vw} and satisfying vx leads to M′ = {uv,vx}, cutting vw in the process. By satisfying

blocking edges we obtain an improving path, a finite sequence of partnerships where the next

partnership in the sequence is obtained by satisfying a blocking edge in the previous partnership

(see Jackson and Watts (2002)):

Improving path An improving path from an individually rational partnership M to a partnership

M′ is a finite sequence of partnerships {Mt}T
t=0 such that M = M0 and M′ = MT and for all

t = {1,2, . . . ,T}, Mt is obtained from Mt−1 by satisfying a blocking edge.

Now, starting from M, multiple improving paths may exist. For example, for Figure 3.1 and

M = {uv,vw}, besides vx, ux is also a blocking edge and satisfying it would create an alternative

improving path. By the assumption that any pair of agents may be selected with positive prob-

ability, any improving path is a possible path for the decentralized matching process. As such,

if we want to prove that a decentralized matching process converges to some stable partnership

with probability one, it suffices to show that, for any M, an improving path exists that ends in a

stable partnership. This gives our main theorem.
6When dealing with non-simple graphs, the interpretation of satisfying a blocking edge becomes a bit problem-

atic. The problem is that satisfying a blocking edge, say uva, may imply the simultaneous deletion of an edge uvb

by agent v, such that it is possible that agent u is worse off from satisfying uva. Hence, we can then ask whether uva

was really a blocking edge, as one of the agents ended up in a worse situation. A possible solution is to assume that

u could not foresee agent v’s actions. However, u can also see the edge uvb so he must have known that there was a

possibility that satisfying uva implies the deletion of uvb, leaving the question of whether a blocking edge as defined

here is an appropriate concept in the case of non-simple graphs.
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Theorem 3.3.1 Consider a partnership problem with linear preferences P and a partnership

M. There always exists an improving path from M to a partnership S such that S is a stable

partnership of P .

Proof See appendix 3.6.1.

An example of an improving path towards stability in our example starting from M = {uv,vw} is

the following:

M0 = M,M1 = {ux,vw},M2 = {ux,vx,vw},

where the edges in bold are the blocking edges that were satisfied to reach that partnership. Note

that the theorem is an extension of the theorema in Roth and Vande Vate (1990) and Diamantoudi

et al. (2004). In the next two subsections, we will give an outline of the proof. First, as the proof

builds on Fleiner (2010)’s algorithm that produces a stable partnership if one exists, the algorithm

will be presented. Second, we provide an outline of the proof by means of a simple example.

3.3.1 Finding a stable partnership.

Fleiner (2010) extended Irving’s algorithm (Irving, 1985) to a two-phase algorithm that produces

a stable partnership if one exists.7 The proof of Theorem 3.3.1 will build on this algorithm as

the algorithm can be shown to implicitly draw out a path towards stability. Starting from a

partnership problem P = {(V,E),C}, the idea is to delete edges of E such that after a number of

rounds we end up with a stable partnership of P .

Phase 1. First, consider an edge uv ∈ E such that uv ∈ Cv(C−v (E)∪ uv); we say that uv is

dominated by the inverted choice set of v for E. Those type of edges, edges dominated by the

inverted choice set, can be shown to be never part of a stable partnership of P . The fact that

such an edge is dominated by the inverted choice set, the set of incident edges others are always

7Fleiner (2010, Section 4.) points out that there is a more efficient one-phase algorithm that is more similar to

Irving’s algorithm. However, to keep the analysis and the proofs more transparent, we use the two-phase algorithm

presented in Fleiner (2010).
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willing to form, implies that unformed edges in the inverted choice set will be blocking edges for

any partnership that contains a dominated edge.

To see this, consider a partnership M such that uv ∈M and

uv ∈Cv(C−v (E)∪uv). (3.1)

Can such an M be a stable partnership? A first requirement of stability is that M is individually

rational, implying that uv ∈ Cv(M(v)). Second, M does not have a blocking edge. This means

that any edge vw ∈ T = C−v (E)\M(v), should be such that vw ∈Cv(M(v)∪ vw); as vw is in the

choice set of w by the definition of the inverted choice set, it must be that it is not in the choice

set for v. By MON, it then follows that T ⊆Cv(M(v)∪T ). As INCR states that the choice set of

M(v)∪T should contain at least as many edges as M(v), this then implies that Cv(M(v)∪T ) = T

and uv ∈ Cv(M(v)∪ T ), contradicting statement (3.1) by MON. Hence, M cannot be a stable

partnership. Indeed, deleting edges dominated by the inverted choice set does not eliminate a

stable partnership from the set of stable partnerships for a given partnership problem. Phase 1

of the algorithm, therefore, aims to reduce the partnership problem to a partnership problem that

has no edges dominated by the inverted choice set, a reduced partnership problem:

Reduced partnership problem A partnership problem P = {(V,E),C} is reduced if for all uv∈

E, uv ∈Cv(C−v (E)∪uv).

The reduced version of a partnership problem P = {(V,E),C}will be denoted by P ′= {(V,E ′),C}.

The example in Figure 3.1 is not a reduced partnership problem, as uwb ∈Cu(C−u (E)∪uwb) with

C−u (E) = uv. The reduced problem of the example is given in Figure 3.2. Formally, Phase 1

entails an iteration of the following step.

Phase 1 While there exists uv ∈Cv(C−v (E)∪uv) for some v, set E = E\uv.

Phase 2. After applying Phase 1 for a partnership problem P , we get a reduced problem P ′.

For such a problem, we can define a rotation. First, define an edge-pair as an ordered set of two

edges (a = uv,(a)r = vw) such that uv ∈Cv(E ′(v))\Cu(E ′(u)) and vw is the E ′(v)-replacement
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Figure 3.2: A reduced version of the partnership problem given in figure 3.1.

of uv; an edge that is in exactly one choice set and its replacement, form an edge-pair. Second,

an edge-pair (uv,vw) leads to another edge-pair (wx,xz) if wx = Cw(C−w (E
′)∪ vw).8 Then, a

rotation π is a sequence of edge-pairs

π = (a1,(a1)
r,a2,(a2)

r, . . . ,am,(am)
r)

such that (ai,(ai)
r) leads to (ai+1,(ai+1)

r), for any i = 1, . . . ,m, modulo m – that is, (am,(am)
r)

also leads to (a1,(a1)
r).

Fleiner (2010) showed that any reduced partnership problem {(V,E ′),C} such that E ′ is not a

stable partnership, has at least one rotation. There are two types of rotations. First, the number

of different edges in the rotation may be odd – we are dealing with an odd rotation. A stable

partnership does not exist if and only if a problem has an odd rotation (Fleiner, 2010, Corollary

2.7.).9 Second, the number of unique edges may be even – we are dealing with an even rotation.

As we are only considering solvable partnership problems for now, every rotation will be even.

Phase 2 then prescribes selecting an (even) rotation and deleting the first edge in every edge-pair

of that rotation.
8A small note on the definition of leading: it is possible for uv ∈Cv(E ′(v)) and vw, the E ′(v)-replacement of uv,

that Cv(C−v (E ′)∪vw) 6= /0. However, in the definition of leading, we always look for the edge-pair such that the first

element is in Cw(C−w (E ′)∪ vw).
9This also explains why a stable matching always exists in two-sided matching problems. In that case, an odd

rotation is impossible as edges go from one type of agent to another type. If you start from an edge-pair (uv,vw) and

end with an edge-pair (xy,yu) such that it leads to (uv,vw), then this sequence will always contain an even number

of different edges.
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Phase 2 For a reduced problem P ′, pick a rotation π and eliminate the first edge in every edge-pair

of π.

The unique rotation for the reduced problem in Figure 3.2 is

π = (uv,vw,wx,xu)

Applying Phase 2 would then imply deleting uv and wx. The following argument provides an

intuition for why deleting uv and wx is a good idea when searching for a stable partnership.

Assume uv is deleted from E ′. In that case, we know that, as vw is the E ′(v)-replacement of uv,

vw ∈ Cv(E ′(v)\uv). This, in turn, makes that wx = Cw(C−w (E
′\uv)), by which it can never be

part of a stable partnership if uv does not exist. Hence, deleting wx makes sense if uv is deleted.

Moreover, xu ∈Cx(E ′(x)\wx) such that uv =Cu(C−u (E
′\wx)). Hence, if either of uv or wx is not

part of a stable partnership S, then they are both not part of S. In addition, Fleiner (2010, Lemma

3.6.) showed that if there exists a stable partnership, S1, such that {uv,wx} ⊂ S1, then there exists

another stable partnership S2, such that {vw,xu} ⊂ S2. So to sum up, by deleting uv and wx we

are sure to get closer to a stable partnership because, either uv or wx is never part of a stable

partnership, and then they are both never part of a stable partnership, or if there exists a stable

partnership that contains uv and wx, there exists another stable partnership that is not eliminated

by deleting uv and wx.10

After having applied Phase 2, we may end up in a partnership problem that is not reduced. Hence,

Phase 1 should be re-applied, and if an even rotation exists for the new reduced problem, Phase

2 should also be re-applied. Running Phase 1 and Phase 2 consecutively, by the arguments in

the previous paragraphs we are bound to end up in a partnership problem {(V,S),C}, that has no

even rotations, which in the case of solvable partnership problems means that S itself is a stable

partnership.

10This is where the original term of a rotation, an all-or-nothing cycle, due to Irving (1985) stems from; either all

first elements of the edge-pairs are in the stable partnership, or none of them.
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Figure 3.3: A six-agent stable b-matching problem P .

3.3.2 Outline of the proof.

Before giving the outline, we note that from now on, we are only dealing with improving paths

starting from individually rational partnerships. It is straightforward to see that there always

exists an improving path from a partnership M that is not individually rational towards an indi-

vidually rational partnership M′, simply by letting agents v in some order delete matches in M

that are not in their choice set over M. In addition, there can never be an improving path from an

individually rational partnership towards a partnership that is not individually rational. Hence,

partnerships that are not individually rational are not relevant for the remainder of the proof and

are therefore ignored in what follows.

Fleiner (2010) showed that a stable partnership, if it exists, can be found by repeatedly running

Phase 1 and Phase 2. These two processes are repeated until the set of even rotations is empty,

giving us a stable partnership. The algorithm turns out to be very useful to prove Theorem

3.3.1 as it implicitly maps out an improving path towards a stable partnership. The proof of the

theorem has two claims, which suffice to prove that an improving path to stability exists. We will

illustrate these claims by means of a six-agent partnership problem, which is essentially a stable

b-matching problem, given in figure 3.3.

Claim 1 states that if we apply Phase 1 to a partnership problem, deleting a set of edges Q1,

then for any partnership that contains edges in Q1, there exists an improving path towards a

partnership that does not contain such edges:
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Figure 3.4: Reduced partnership problem P ′ of P , the edges deleted when reducing P are given by a

dotted line. The arrows indicate the unique even rotation, with the label of the edge between

parentheses if it is the second element in an edge-pair in the rotation.

Claim 1 In a partnership problem P = {(V,E),C} and its reduced problem P ′ = {(V,E ′),C},

there exists an improving path from any individually rational partnership M⊆ E to a partnership

M′ such that M′ ⊆ E ′.

Consider the partnership problem P in Figure 3.3. Applying phase 1 leads to a reduced partner-

ship problem P ′ depicted in Figure 3.4, a problem without ux and vy. Edge ux was deleted since

the inverted choice set of agent u for P contains uv and ux, and ux was dominated by this inverted

choice set, i.e. ux ∈ Cu(C−u (E)∪ ux). The deletion of ux leads to an intermediate problem P ′′,

where Cx(E(x)\ux) = {wx,vx}. Hence, while vy ∈ Cv(C−v (E)∪ vy) with C−v (E) = /0, it is the

case that vy ∈Cv(C−v (E\ux)∪ vy) with C−v (E\ux) = vx. Edge vy is also deleted and we get the

reduced problem P ′.

Consider an individually rational partnership M0. If Q1∪M0 = /0, then Claim 1 trivially holds as

M0 itself does not contain deleted edges. Hence, assume that Q1∩M0 6= /0. To prove claim 1, we

show that an improving path exists from M0 such that edges in Q1∩M0 are deleted in the order

in which they are deleted in Phase 1. That is, if e and f are two edges in M0 that are deleted

in Phase 1 with e deleted before f , then there exists an improving path from M0 such that e is

deleted before f on this path. The partnership at the end of such an improving path is such that

it does not contain any edge in Q1. For our running example, consider M0 = {ux,wx,yza} and

Q1 = {ux,vy}. Edge ux can be deleted because no edge deleted before ux in Phase 1 is in M0 –
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in fact ux was deleted first in phase 1 – and ux ∈Cu(C−u (E)∪ux). This implies, by MON, that

ux ∈Cu(M0(u)∪C−u (E)) =Cu(M0(u)∪uv).

However, by individual rationality of M0, ux ∈ Cu(M0(u)), which implies, by INCR that uv ∈

Cu(M0(u)∪ uv). Together with uv ∈ C−u (E), this implies then that uv is a blocking edge and

satisfying it will delete ux, giving M1 = {uv,wx,yza} with Q∩M1 = /0. The crucial element of

the proof is the fact that we know that uv∈Cv(M0(v)∪uv), as no elements that are deleted before

ux in Phase 1 are in M0. Hence, M0 will be a subset of the edge set that is reached in Phase 1

just before deleting ux, and as uv is in the inverted choice set of u for that edge set, we know that

uv ∈Cv(M0(v)∪uv) by SUB.

Hence, by Claim 1 we know that from any partnership that is not contained in the reduced

partnership problem, there exists an improving path towards a partnership that is contained in

that problem. Claim 2 is similar but pertains to Phase 2. We apply Phase 2 to a reduced problem

with a non-empty set of even rotations, Πe. Consider any individually rational partnership M

contained in this reduced problem. Then, there always exists a rotation π ∈ Πe such that an

improving path exists from M to a partnership that does not contain any of the edges that would

be deleted if we eliminate π. The partnership that is reached, is contained in the post-Phase 2

partnership problem when eliminating π:

Claim 2 Consider a reduced partnership problem P ′, the set of even rotations Πe and denote

Qπ, the set of deleted edges from eliminating an even rotation π ∈ Πe. For every individually

rational unstable partnership M such that M ⊆ E ′, there exists a rotation π ∈ Πe such that an

improving path exists from M to M′ ⊆ E ′\Qπ.

The partnership problem in Figure 3.4, P ′, has a unique even rotation:

π = (yza,zu,uv,vw,wx,xy). (3.2)

Applying Phase 2 and eliminating π would lead to the deletion of Qπ = {yza,uv,wx}. Consider

the partnership M1 = {uv,wx,yza} = Qπ. By Claim 2 there exists an improving path from M1

towards a partnership M2 such that Qπ∩M2 = /0. To see this, note that there exists an edge-pair
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(vx,xy) with xy the E ′(x)-replacement of vx and such that yza =Cy(C−y (E
′)∪ xy); the edge-pair

(vx,xy) leads to (yza,zu) which is in the even rotation π. Now vx 6∈ M1. Whenever we find

such a pattern – an edge pair (vx,xy) that leads to an edge-pair (yza,zu) such that vx 6∈M1 while

yza ∈M1 – an improving path can be constructed towards a partnership M′1 such that both vx and

yza are not in M′1. As vx 6∈ M1 and xy is the E ′(x)-replacement of vx, xy ∈ Cx(M1(x)∪ xy). In

addition, LIN implies that xy ∈Cy(M1(y)∪xy), such that xy is a blocking edge. As M1(y)∪xy =

M1(y)∪C−y (E
′)∪xy, MON implies that yza ∈Cy(M1(y)∪xy) and satisfying xy deletes yza. This

leads to a partnership M′1 = {uv,wx,xy} where we again have the same pattern – an edge-pair

(yza,zu) that leads to (uv,vw), such that yza 6∈ M′1 while uv ∈ M′1. The previous argument can

now be repeated; zu is a blocking edge and satisfying it deletes uv and we reach a partnership

M′′1 = {uz,wx,xy}. Finally, we have (uv,vw,wx,xy) with uv 6∈M′′1 and wx ∈M′′1 . Satisfying the

blocking edge vw, deletes wx and we reach M2 = {uz,vw,xy} with Qπ∩M2 = /0. Hence, the idea

behind claim 2 is that, in a sequence of edge-pairs that leads to a rotation, there always exists an

edge-pair such that its first element is not part of the partnership. This enables us to delete the

first element of the next edge-pair. Repeating this argument, we can clear out all edge pairs of

the rotation, deleting the first elements of all edge-pairs.

We started from M0, a partnership that was contained in E but not in E ′. Claim 1 states that

there is an improving path from M0 towards M1 with M1 being contained in E ′. However, M1

is not contained in the post-Phase 2 set of potential edges for any rotation that is eliminated.

Claim 2 then states that there is an improving path from M1 towards M2 where M2 is contained

in the post-Phase 2 set of potential edges after deleting some rotation π. The associated reduced

partnership problem, P ′′, is depicted in Figure 3.5. In this case M2 is already contained in E ′′ as

yzb 6∈M2. Incidentally, M2 is also contained in the post-Phase 2 set of potential edges if we chose

to delete the rotation π′ = (vx,xz,zw,wv). Applying Phase 2, deleting π′, leads to the following

problem PS = {(V,S = {uz,vw,xz,xy}),C}. It can be verified that S is a stable partnership for P

– the algorithm terminates and we have found a stable partnership. M2 is contained in S, and by

the individual rationality of S, there exists an improving path from M2 towards S by satisfying

the blocking edge xz.

Hence, to sum up, by Claims 1 and 2, every time we apply Phase 1 or Phase 2, we know that
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Figure 3.5: Reduced partnership problem P ′′. The arrows indicate the two rotations, (vx,xz,zw,wv) and

(xz,zw,wv,vx).

partnerships that contain a deleted edge will have improving paths towards partnerships that do

not contain deleted edges, which eventually points out an improving path towards a partnership

M2 contained in S. As S is individually rational by the definition of a stable partnership, we know

that there exists an improving path from M2 towards S, by satisfying all edges in S\M2. One fi-

nal remark: Theorem 3.3.1 implies that an improving path exists from an unstable partnership

towards a stable partnership, rather than towards any stable partnership. The reason why conver-

gence towards any stable partnership might not always hold, can be found in Claim 2. Claim 2

does not exclude the possibility that there exists a rotation π in the reduced partnership problem,

with associated deleted edge set of Qπ, such that there does not exist an improving path from

a partnership M towards a partnership that does not contain edges in Qπ. Hence, from M there

might not exist an improving path towards the stable partnership that is reached when deleting

this particular rotation π.

3.4 Convergence for non-solvable partnership problems.

So far we have only considered solvable partnership problems, problems that have a stable part-

nership. Since Gale and Shapley (1962), it is well known that for one-sided matching problems,

like the partnership problem, the set of stable matchings may be empty. For non-solvable partner-

ship problems, we extend the results from Iñarra et al. (2008) and Biro and Norman (2012) and

show that there exists an improving path towards an instance of a stable half-partnership, that is,
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a partnership associated with a stable half-partnership, which is itself a generalization of a stable

partnership (see Tan (1991) for the roommate problem and Fleiner (2010) for the partnership

problem).

A stable half-partnership consists of a set of edges S and a partition of that set of edges {S1,S2, . . . ,Sk}

such that any element in the partition contains an odd number of edges.11 As in the definition of

stable partnerships, there are two parts in the definition of half-stability.

First, there is a weaker version of individual rationality, which states that for every element Si

in the partition the following must hold. If |Si| = 1, then assuming Si = {uv}, uv ∈Cu(S(u))∩

Cv(S(v)); keeping an edge that is a singleton element of the partition must be individually ratio-

nal in the original sense. If |Si|> 1, then edges in Si can be ordered, say (vmv1,v1v2, . . . ,vm−1vm),

such that v jv j+1 is the S(v j)-replacement of v j−1v j. For any such v jv j+1, this implies that

v jv j+1 ∈ C−v j
(S)\Cv j(S(v j)). In addition, it also follows that v jv j+1 ∈ Cv j(C

−
v j
(S)) such that

Cv j(C
−
v j
(S)) = /0. Hence, it is no longer the case that for any agent v we have Cv(S(v)) = S(v), as

in the definition of individual rationality. However, those edges uv for which uv ∈Cv(S(v)) are

in C−v (S) and Cv(C−v (S)) =C−v (S). Second, in the case of half-stability, a weak blocking edge is

an edge uv ∈ E\S such that uv ∈ Cu(C−u (S)∪ uv)∩Cv(C−v (S)∪ uv). Hence if there is no weak

blocking edge then this means that for every uv ∈ E\S it must be that uv is not chosen in the

option set C−u (S)∪uv or C−v (S)∪uv. Formally,

Stable half-partnerships For the problem P = {(V,E),C}, a stable half-partnership, (S;S1, . . . ,Sk)

is such that S1, . . . ,Sk is a partition of S⊆ E with every Si containing an odd number of elements

and,

• Weak individual rationality: For any Si,

– if |Si|= 1, then Si = uv ∈Cu(S(u))∩Cv(S(v)),

– if |Si| = m > 1, then there exists an ordering (vmv1,v1v2, . . . ,vm−1vm) such that any

v jv j+1 is the S(v j)-replacement of v j−1v j.
11A stable half-partnership can also be defined without the requirement of an odd number of edges. However, a

stable half-partnership in which an element in the partition has an even number of edges can always be reduced to a

stable half-partnership with a partition that has no even-numbered elements (see Tan (1991)).
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Figure 3.6: A five-agent example. This particular example is a stable b-matching problem: the capacity for each

agent is given between parentheses, the preference ordering is indicated by the numbers on the edges

close to the vertices.

• Absence of a weak blocking edge: There does not exist e = uv 6∈ S such that both e ∈

Cu(C−u (S)∪{e}) and e ∈Cv(C−v (S)∪{e}) holds.

Note that if a stable partnership exists, then that stable partnership is a stable half-partnership

as well. For the example in figure 3.1, it can be verified that {ux,vw,vx} is equivalent to the

stable half-partnership ({ux,vw,vx};{ux},{vw},{vx}). Figure 3.6 depicts a five-agent stable b-

matching problem where a stable partnership does not exist. However, this particular problem

has a stable half-partnership,

(S = {uv,wua,vw,vx,xy};S1 = {vx},S2 = {xy},S3 = {uv,vw,wua}),

depicted in figure 3.7.

In the words of Iñarra et al. (2008), a stable half-partnership can be interpreted as stability over

the partition of S. Another way to interpret the stability of a half-partnership is to follow Biro

et al. (2008) and assume that agents can assign weights to edges – indicating for example the

amount of time or effort spent on a particular relationship. Consider a situation where an edge

can have weight 0, 1
2 or 1. It is as if agents can opt to form half-time relationships; for example,

if relationship uv means u and v spend one hour together, then there is also the possibility of

spending half an hour together. Then, to return to our example, if we assume that edges not in

S have weight 0, that edges in singleton elements of the partition have weight 1 and that edges
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Figure 3.7: Stable half-partnership (S;S1,S2,S3) of the example in figure 3.6. Dotted edges are not in S, S1

and S2 are depicted by solid edges, while S3 is depicted by dashed edges.

in non-singleton elements have weight 1
2 , (S;S1,S2,S3) can be considered stable in the sense of

Definition 3.2. First, no agent can improve by reducing the amount of time she spends on a

relationship (individual rationality). Second, no pair of agents can jointly improve by increasing

the amount of time spent on a relationship (absence of a blocking edge). For example, agent v

may want to increase the time spent on uv and decrease the amount of time spent on vw. However,

u will never agree to spend more time on uv, as this will either violate individual rationality, or

she will have to decrease time spent on uwa, which is preferred over uv. Likewise, w will not

agree to increase the time spent on uwa, because she prefers to spend more time on vw, while v

does not want to do this because she prefers to spend more time on uv. In addition, if we look

at edges with weight 0, it is clear that no pair of agents will jointly agree to increase time spent

on those edges. For example, agent w will not want to increase time spent on wx as this would

imply decreasing time spent on uwa or vw, both of which are preferred over wx.

Instances of a stable half-partnership. In the absence of a stable partnership, the set of edges

S of a stable half-partnership (S;S1, . . . ,Sk) is not an individually rational partnership. However,

we can define a set of individually rational partnerships, denoted instances, that are associated

with a particular stable half-partnership. For a stable half-partnership (S;S1, . . . ,Sk), an instance

I is a subset of S such that it contains all edges that are singleton elements of the partition. If such

an edge would not be in I, then by the condition of weak individual rationality, it would always be
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a blocking edge for I. In addition, for an element Si such that it is not a singleton, with ordering

(vmv1,v1v2, . . . ,vm−1vm), I contains m
2 −1 edges of Si such that no two consecutive edges in the

ordering are both in I. For example, if we have the following element Si = (v5v1,v1v2, . . . ,v4v5),

then I ∩ Si can be {v1v2,v3v4}. Another possibility would be {v5v1,v2v3}. Hence, for a stable

half-partnership there are multiple instances, depending on which edges in the Si’s are formed.

The set of all such instances will be called the instance set. Formally,

Instance For a stable half-partnership (S;S1, . . . ,Sk) of a partnership problem P , an instance

I ⊆ S is such that, for all Si:

• if |Si|= 1, then Si ⊆ I,

• if |Si|= m > 1 with the relevant ordering (vmv1,v1v2, . . . ,vm−1vm),

– if v j−1v j ∈ I, then v jv j+1 6∈ I,

– |Si∩ I|= m
2 −1.

The instance set, I(S;S1,...,Sk), is the set of all instances of (S;S1, . . . ,Sk).

The stable half-partnership in Figure 3.7 has three instances: {xy,vx,uv}, {xy,vx,vw} and {xy,vx,uwa}.

Note that every instance contains all edges that are in singleton elements of the partition of S,

while they contain exactly one edge of S3.

In the absence of a stable partnership, we can view the instance set of a stable half-partnership as

the closest we can get to stability. Consider an instance I for a stable half-partnership (S;S1, . . . ,Sk)

and let B be the set of blocking edges for I. If B = /0, then clearly, as I is individually rational,

I is a stable partnership, and the instance set for (S;S1, . . . ,Sk) is {I}. Hence, if the set of stable

partnerships is empty, B 6= /0. Assume e = uv ∈ B such that e 6∈ S. By the absence of a weak

blocking edge in the stable half-partnership, it must be, w.l.o.g., that

uv ∈Cu(C−u (S)∪uv). (3.3)

Hence, by LIN, Cu(I(u)∪ uv) = I(u)∪ uv. Now, if |I(u)| = |Cu(S(u))|, then this is a viola-

tion of INCR, hence |I(u)| < |Cu(S(u))|. This implies that there must exist an Si with ordering
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(uv1,v1v2, . . . ,vm−1u) such that both uv1 and vm−1u are not in I. In that case, however, uv1 is also

a blocking edge by SUB, as uv1 ∈Cv1(S(v1)) and uv1 ∈Cu(S(u)\vm−1u). In addition, by (3.3),

u will prefer to form uv1 over uv.This means that whenever there is a blocking edge which leads

to a partnership outside the instance set, there is a more preferred blocking edge that leads to a

partnership within the instance set. Hence, the instance set can be viewed as almost stable in that,

provided the agents can take optimal decisions on which blocking edge to satisfy, the improving

path will not lead to partnerships outside the instance set.12

Path to the instance set. We can extend the results from Iñarra et al. (2008) and Biro and Nor-

man (2012) and show that for a partnership problem with linear preferences, from any unstable

partnership the instance set of a stable half-partnership can be reached by means of an improving

path. When the set of stable partnerships is non-empty, this result boils down to Theorem 3.3.1.

Theorem 3.4.1 Consider a partnership problem with linear preferences P and a partnership M.

There always exists an improving path from M to a partnership I such that I is an instance of a

stable half-partnership (S;S1, . . . ,Sk) of P .

Proof See appendix 3.6.2.

3.5 Concluding remarks

In this work, we have presented an extension of the result of Diamantoudi et al. (2004) for

solvable partnership problems with linear preferences. Theorem 3.3.1 establishes that from any

unstable partnership an improving path can be constructed towards a stable partnership. This

implies that the decentralized matching process described in Roth and Vande Vate (1990) con-

verges to a stable partnership with probability one. The improving path towards stability was

constructed on top of Fleiner (2010)’s algorithm that produces a stable partnership if one exists.

This is an intuitively appealing – and maybe not so surprising – result as it uncovers the close

relation between an improving path towards stability in a decentralized matching process and the

12For a further discussion on this, we refer to the concluding remarks.
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centralized algorithm used to find a stable half-partnership. Starting from the same partnership,

the decentralized matching process will follow essentially the same route, albeit possibly with

detours, as the central planner to get to a stable partnership.

We have focused on partnership problems that are solvable. Intuitively, in a decentralized match-

ing context, when talking about paths to stability these are the most interesting problems. For

problems that do not have a stable partnership, the concept of a path to stability seems less clear

and ill-defined. In the absence of a stable partnership, one can ask what alternative solution con-

cept should be used. We have extended the result from Iñarra et al. (2008) and Biro and Norman

(2012) and have shown that there exists an improving path towards an instance set of a stable

half-partnership, a set of partnerships associated to one particular stable half-partnership. This

result becomes only meaningful when we assume a different decentralized matching process is

in order, one where agents, when selected, can approach the other agent involved in their most

preferred blocking edge. In this situation, the instance set is never left by an improving path once

reached and the concept of a path to (almost) stability becomes meaningful. However, when we

resort to the traditional decentralized matching process from Roth and Vande Vate (1990), it is

possible that an improving path exists towards a partnership not in the instance set.

An alternative solution concept is the absorbing set. Following the definition of Iñarra et al.

(2010), an absorbing set is a set of partnerships such that (i) there exists an improving path

between any two partnerships in this set and (ii) there is no improving path from a partnership

in the set to a partnership outside the set. Iñarra et al. (2010) and Klaus et al. (2010) showed

that a close connection exists between stable half-partnerships and absorbing sets, with the latter

being characterized in terms of the former, and it might be interesting to see whether Iñarra et al.

(2010)’s result also translates to the partnership problem. Related to this question, Theorem

3.4.1 does not shed light on which particular instance set can be reached from a give unstable

partnership – or more particular, which stable partnership can be reached when we are dealing

with solvable partnership problems. Further research should try to tackle both questions: (1) Do

Iñarra et al. (2010)’s results also hold for the partnership problem and (2) can we say something

about which instance set can be reached from a given partnership by means of an improving

path?
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One final remark pertains to the restriction of linearity imposed on the partnership problems

discussed in this paper. Assuming LIN greatly simplified the analysis. Stepping away from

the assumption of linearity, the partnership problem allows for a much wider range of possible

preference structures. The question whether the result presented here extends towards non-linear

partnership problems is important in its own right. However, investigating convergence towards

stability for the partnership problem is also interesting for an additional reason. Relaxing either

SUB or INCR leads to a matching problem for which examples can be constructed in which

our main result does not hold. Hence, if the result should hold for the partnership problem, this

would be the most general matching problem in which convergence is guaranteed.

3.6 Appendix

3.6.1 Proof of Theorem 3.3.1.

Proof of Claim 1 Consider the set QM = M\E ′. Pick the edge uv∈QM such that uv was deleted

in Phase 1 before any other edge of QM. Assume that the partnership problem right before

deleting uv in Phase 1 is {(V,T ),C} with E ⊆ T ⊂ E ′. There exists an improving path towards a

partnership such that uv is not in this partnership: First, uv is deleted in Phase 1, indicating that

uv ∈Cv(C−v (T )∪uv). MON then implies that

uv ∈Cv(M(v)∪C−v (T )). (3.4)

By INCR, it follows that there exists vw ∈ C−v (T )\M(v) such that vw ∈ Cv(M(v)∪C−v (T )), as

otherwise the number of edges in the choice set of M(v)∪C−v (T ) is less than the number of edges

in the choice set of M(v). By SUB,

vw ∈Cv(M(v)∪ vw). (3.5)

Now, as uv was deleted in Phase 1 before all other elements in QM and because vw ∈ T , M(w)∪

vw⊆ T . By vw ∈C−v (T ) and SUB, this means then that

vw ∈Cw(M(w)∪ vw). (3.6)
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Statements (3.5) and (3.6) imply that vw is a blocking edge for M. Satisfying vw leads to a new

partnership, say M1. If uv ∈M1, the above argument can be repeated and, again, we know that

a blocking pair vx ∈C−v (T ) exists. By (3.4), it is clear that at some point, say after satisfying h

blocking edges, uv will be deleted, i.e. uv 6∈Mh.

Note that the blocking edges on the improving path towards Mh were all in T and were not equal

to uv. So the new edges of Mh, in Mh\M, are either in E ′ or they were deleted after uv in Phase

1. Hence, if we again define QMh = Mh\E ′ and look for the first edge in QMh that was deleted in

phase 1, say yz, then yz was deleted after uv was deleted in Phase 1. Apart from that, everything

is the same such that the above argument can also be applied here: there exists an improving path

towards a partnership Mh′ such that yz 6∈Mh′ .

Repeating this argument, the newly selected edges will be deleted at later rounds of Phase 1.

Since the number of deleted edges in Phase 1 is finite, we are bound to end up with a partnership

M′ where QM′ = /0, proving the claim.

Before giving the proof of Claim 2, we present a result from Fleiner (2010) which will be used

in the proof. It states that if you have an E ′(v)-replacement, vw, of some edge uv, then exactly

one edge in the inverted choice set will be dominated by the union of the inverted choice set with

vw.

Lemma 3.6.1 (Fleiner (2010, Lemma 3.4.)) For a reduced partnership problem P ′, if vw is the

E ′(v)-replacement of uv, then Cw(C−w (E
′)∪ vw) contains exactly one edge, say wx. Moreover,

xw ∈C−w (E
′).

Proof of Claim 2 We make two assumptions. First, we assume that M is such that

{uv ∈ E ′|uv ∈Cu(E ′(u))∩Cv(E ′(v))} ⊂M, (3.7)

that is, M contains all edges uv that are in the choice set of both u and v when E ′(u), resp. E ′(v) is

the option set. These edges are always blocking if they are not part of a partnership and are never

deleted when satisfying a blocking edge; as such they are not relevant for the proof. Second, if

M∩Qπ = /0 for some π∈Πe, the claim holds. Hence, for the remainder of the proof, assume that

M∩Qπ 6= /0 (3.8)
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for any π ∈Πe.

Define an edge-pair (uv,vw) as empty in M if uv 6∈M. Note that by the definition of an edge-pair,

uv∈Cv(E ′(v))\Cu(E ′(u)). As E ′ contains rotations, E ′ is not individually rational, implying that

such an edge-pair will exist. Start from an empty edge-pair, (uv,vw). By Lemma 3.6.1 we know

that this edge-pair leads to another edge-pair (wx,xy). The same argument goes for (wx,xy) such

that there exists an infinite sequence of edge-pairs leading to other edge-pairs, indicating that we

are bound to end up in a loop. That loop is a rotation, say π = (a1,(a1)
r, . . . ,am,(am)

r). Hence,

we get a sequence of edge-pairs τ that starts with the empty edge-pair (uv,vw) and ends with π:

τ = (a′1 = uv,(a′1)
r = vw, . . . ,a′k,(a

′
k)

r,π).

Denote by nπ(M) the number of empty edge-pairs in the rotation π for a partnership M. We will

show that for any M, it is possible to construct an improving path towards a partnership M′ such

that nπ(M)< nπ(M′). As the number of empty edge-pairs in the rotation is bounded from above

by m, the number of edge-pairs in the rotation, this implies that there exists an improving path

towards a partnership M′′ such that nπ(M′′) = m. In this case, M′′∩Qπ = /0, proving the claim.

First, assume nπ(M) = 0; there are no empty edge-pairs in π. Find the empty edge-pair, (uv,vw),

that is closest to π in the sequence τ; any edge-pair after (uv,vw) in τ is not empty. Assume

(uv,vw) leads to (wx,xy). Our immediate objective is to construct an improving path towards

a partnership that does not contain wx, thereby reaching a partnership that has an empty edge-

pair closer to π in τ. Now, if vw 6∈ M, then it is a blocking edge for M: As uv 6∈ M and as

vw is the E ′(v)-replacement of uv, vw ∈ Cv(M(v)∪ vw). If vw is not a blocking edge, then

vw ∈Cw(M(w)∪ vw). By INCR, this implies that wx ∈Cw(M(w)∪ vw), which is a violation of

LIN, as wx ∈Cw(C−w (E
′)∪ vw) while vw ∈Cw(C−w (E

′)∪ vw). Hence, vw is a blocking edge for

M. If vw 6∈M, satisfy vw to reach a partnership M′. If vw ∈M, set M′ = M. Now, there are two

possible situations:

A. wx ∈Cw(M(w)∪ vw): This implies that by satisfying vw, wx will be deleted, i.e. wx 6∈M′,

reaching our immediate objective.
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B. wx ∈Cw(M(w)∪ vw): In this case, wx ∈M′. Consider the following set:

B =Cw(M′(w)∪C−w (E
′))\M′; (3.9)

the edges in the inverted choice set of w that are in the choice set of the union of M′(w)

with this inverted choice set. An edge wy ∈ B will be a blocking edge of M′, by SUB

and since wy ∈C−w (E
′). Moreover, by the same argument, after satisfying any edge in B,

all remaining edges in B are still blocking in the new partnership. Note that it might be

possible that uv ∈ B, if u = w. We satisfy all blocking edges in B, except uv, reaching

M′′. If uv 6∈ B, then B ⊂M′′. If vw 6∈M′′, then, as uv 6∈M′′, it was deleted by w. Hence,

vw ∈ Cw(M′(w)∪C−w (E
′)), which by LIN implies that wx ∈ Cw(M′(w)∪C−w (E

′)) and

wx 6∈M′′. If vw ∈M′′, then by

wx ∈Cw(C−w (E
′)∪ vw) (3.10)

and MON, wx 6∈M′′. Now, assume uv ∈ B, then it might be that {vw,wx} ⊂M′′. However,

satisfying uv deletes wx, by (3.10) and MON, such that we reach a partnership that does

not contain wx.13

Hence, there always exists an improving path towards a partnership that has an empty edge-pair

closer to π in the sequence τ. Repeating this argument, there exists an improving path towards

a partnership that has an empty edge-pair in π, i.e. a partnership M such that nπ(M) > 0. Next,

we will show that there exists an improving path towards M′ such that nπ(M′) > nπ(M). By

(3.8), nπ(M) < m and there exists at least one non-empty edge-pair (wx,xy) that succeeds an

empty edge-pair (uv,vw) in π. If situation A applies, then vw blocks wx and satisfying vw leads

to a partnership M′ such that nπ(M′) = nπ(M) + 1. Now, consider situation B applies with,

again, the set B as defined in (3.9). Note that B cannot contain edges that are in Qπ. To see

this, consider the following edge-pairs in π: (z1z2,z2w) leads to (wz,zz3). This implies that

Cw(C−w (E
′)∪ z2w) = wz. However, (3.10) also holds, such that we get a situation where LIN is

13It is important to satisfy uv as the last one of the edges in B, as it might otherwise be that by satisfying uv, v

deletes vw before wx is deleted.
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violated as there exists a partnership, C−w (E
′)∪ z2w where wx is in the choice set while wz is not,

and a partnership, C−w (E
′)∪vw where wz is in the partnership while wx is not. Hence, B∩Qπ = /0

and in the process of satisfying edges in B, no edge in Qπ is ever satisfied. Hence, we reach a

partnership M′ such that nπ(M′)> nπ(M).

3.6.2 Proof of Theorem 3.4.1.

The proof consists of two parts. First, we prove that Claims 1 and 2 also apply to the case

of non-solvable partnership problems. This shows that, from any partnership M, there exists

an improving path towards a partnership M′ such that M ⊆ S for some stable half-partnership

(S;S1, . . . ,Sk). Second, we prove that there exists an improving path from M′ to an instance of

(S;S1, . . . ,Sk).

As for Claim 1, it is clear that it also applies to the case of non-solvable partnership problems.

Claim 2 might not directly apply here because, as you might recall from the proof of Claim 2

for solvable partnership problems, it hinged on the existence of an empty edge-pair that leads

towards an even rotation. From the argument in the proof, it is clear that an empty edge-pair still

exists for any reduced partnership problem. However, it may be that all empty edge-pairs lead

to an odd rotation. Hence, we have to show that in a reduced partnership problem, there always

exists an empty edge-pair in M, that does not lead to an odd rotation.

The key to proving the previous statement is to prove the following lemma which states that

the incident edge set E ′(v) for an agent v that is incident to an edge in an odd rotation, can be

partitioned in a set of incident edges that are in the choice set of both agents involved and in a set

of exactly two edges that are in that particular odd rotation.

Lemma 3.6.2 Consider an odd rotation π in P ′. If (uv,vw) is an edge-pair in π, then E ′(v)\{Cv(E ′(v))∩

C−v (E
′)}= {uv,vw}.

Proof Consider the following sequences of edge-pairs in the odd rotation π,

(az,zu,uv,vw,wx,xy)
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Then, as the set of first elements of the edge-pairs in π equals the set of second elements in π,

there also exists a sequence in π, (zu,uv,vw,wx). As such, vw is both the E ′(v)-replacement of

uv and vw =Cv(C−v (E
′)∪uv). Now, assume that there exists vb ∈ E ′(v) such that vb ∈Cv(E ′(v))

and vb 6= vw. Then,

vb ∈Cv(E ′(v)\uv). (3.11)

In addition, since P ′ is a reduced partnership, vb ∈ Cv(C−v (E
′)∪ vb). By INCR and LIN, this

implies that vw ∈ Cv(C−v (E
′) ∪ vb), violating LIN by (3.11). Hence, no such vb can exist,

and E ′(v)\Cv(E ′(v)) = vw. In addition, Fleiner (2010, Lemma 3.2.) states that |Cv(E ′(v))| =

|C−v (E ′)|, which implies that Cv(E ′(v))\C−v (E ′) = uv, proving the lemma.

This lemma has two important corollaries: First, there does not exist an agent v such that v is

both incident to an edge in an edge-pair not in an odd rotation and to an edge in an edge-pair in

an odd rotation. As such, no edge-pair that is not in an odd rotation leads to an edge-pair that is

in an odd rotation. Second, for an agent v that is incident to an edge in an edge-pair (uv,vw) in

an odd rotation, as Cv(E ′(v))∩C−v (E
′)⊂M, either uv ∈M or vw ∈M but never both.

Now, by the first corollary, if there does not exist an empty edge-pair in M that is not in an

odd rotation, then either individual rationality is violated or we have already reached a stable

half-partnership. Hence, we prove that if M is individually rational, then E ′ is the edge set

of a stable half-partnership. Define V ′ as the set of agents that are not incident to any edge

of an odd rotation and note that, for an agent v ∈ V ′, Cv(E ′(v)) ⊆ M(v), because otherwise

there exists an empty edge-pair outside an odd rotation. If Cv(E ′(v)) ⊂ M(v), then individual

rationality is violated, hence Cv(E ′(v)) = M(v). However, this holds for all agents v ∈ V ′, such

that Cv(E ′(v))∩C−v (E
′) = Cv(E ′(v)) for all v and no edge-pair exists outside an odd rotation.

If this is the case, then we have reached a stable half-partnership. Edges uv such that uv ∈

Cv(E ′(v))∩Cu(E ′(u)) are then singleton elements of the partition of E ′. The elements in an

odd rotation, form a non-singleton element of the partition. Hence, if we assume that we have

not reached a stable half-partnership, then there exists an empty edge-pair that is not in an odd

rotation.

Now, by claims 1 and 2, from any partnership there is an improving path towards a partnership M
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such that the problem P has a stable half-partnership (S;S1, . . . ,Sk) with M ⊆ S and with Si ⊆M

if |Si| = 1. Now, consider S , the set of all elements of the partition of S, (S1, . . . ,Sk), such that

Si ∈ S if |Si| > 1. We will call such an element ready in a partnership M, if for the relevant

ordering (vmv1,v1v2, . . . ,vm−1vm),

• if v j−1v j ∈M, then v jv j+1 6∈M,

• |Si∩M|= m
2 −1.

Since every Si such that |Si| > 1 will be an odd rotation and since Cv(S(v))∩C−v (S) ⊂M(v) for

all v ∈ V , the second corollary of lemma 3.6.2 implies that the definition of a ready element Si

can be simplified to: an element such that |Si∩M|= m
2 −1. If all elements Si ∈ S are ready then

M is an instance of (S;S1, . . . ,Sk) and we are done with the proof. Assume that this is not the

case. Pick a non-ready element Si ∈ S such that |Si∩M|= n. Then, we can show that there exists

an improving path towards a partnership M′ such that |Si∩M′|> n.

As Si is not ready in M, n < m
2 − 1 with m the number of unique edges. Hence, there exists

an edge-pair (uv,vw) such that both uv and vw are not in M. Hence, vw is a blocking edge

for M. Assuming (uv,vw) leads to (wx,xy), there are two possibilities. First, if wx 6∈ M, then

satisfying vw leads to a partnership M′ = M ∪ vw and |Si ∩M′| > n. Second, if wx ∈ M, then

satisfying vw deletes wx by the second corollary of lemma 3.6.2. Hence, we reach a partnership

M′ = M\wx∪ vw such that |Si∩M′| = n. However, if wx ∈M, then xy 6∈M and we can repeat

the argument for M′. As |Si∩M′| < m
2 − 1, we are eventually bound to end up in a partnership

M′′ that was reached by satisfying an edge that did not delete another edge: |Si∩M′′|> n.

On this improving path towards M′′, we only satisfied edges in Si, thereby possibly deleting other

edges of Si. Hence, for all other elements S j ∈ S , |S j∩M|= |S j∩M′′|. Repeating this argument,

there exists an improving path towards a partnership, say M′, such that |Si ∩M′| = m
2 − 1 and

Si is ready for M′. The set of ready elements has increased and repeating the process, we can

construct an improving path such that all elements of S are ready.
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4
The structure of the partnership problem

4.1 Introduction

Building on the work of Gusfield (1988) and Borbelova and Cechlarova (2010), we study the

partnership problem, a very general type of matching problem that encompasses most studied

matching problems. We explore the structure of stable matchings for these problems, uncovering

their close connection with the concept of a rotation for the partnership problem.

A matching problem consists of a set of agents that wishes to establish some meaningful rela-

tionships among each other, based on the preferences that they might have over other agents or

subsets of other agents. Within matching theory, a great deal of attention is given to the study

of stable matchings, where a stable matching is a matching in which nobody wishes to drop a

relationship and in which no pair of agents wishes to establish a relationship.
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Since 1962, the publication year of the seminal Gale and Shapley (1962) paper, many different

matching problems have been defined and analysed. Types of matching problems are mostly

defined by two properties. First, there is the distinction between two-sided and one-sided match-

ing problems. In two-sided matching problems the set of agents is partitioned into two subsets.

Agents do not wish to establish a match with other agents of the same subset. In one-sided

matching problems, no such restriction is imposed. This distinction, one-sidedness versus two-

sidedness, draws the boundary between problems for which a stable matching always exists

(two-sided problems) and problems for which this might not be the case (one-sided problems).1

Second, agents may prefer to establish only one relationship – one-to-one – or they may prefer

to establish multiple relationships – many-to-many.2

As such, a whole spectrum of problems can be defined. The most restrictive and most popular

such problem is the stable marriage problem (Gale and Shapley, 1962) with a group of men and a

group of women wishing to find a mate of the other sex. Here, a stable matching will always exist

and it is relatively straightforward to find all stable matchings for any given problem. Dropping

the property of two-sidedness, we find the stable roommate problem – also by Gale and Shapley

(1962) – where any student in a group of n students wishes to find a suitable roommate for n
2

available dorm rooms. The roommate problem is already more complex in that a stable matching

may not exist and in that the stable marriage algorithm does not always work for the stable

roommate problem. Irving (1985) proposed an extended algorithm that decided on the existence

of a stable matching and produced one in the case of existence. Irving’s algorithm revolved

heavily around the notion of so-called even rotations, which can be more or less considered as

preference cycles involving an even number of relationships. Later, Gusfield (1988) showed that

Irving’s algorithm is able to find all stable matchings and presented an efficient enumeration

method, showing a close connection between the set of stable matchings and the structure of the

set of rotations in the process.

1Recently, Ostrovsky (2008) extended the two-sided matching framework to a supply chain context with three

subsets – producers, intermediaries and consumers.
2For two-sided matching problems, a hybrid class of problems exists where one side prefers to establish multiple

relationships while the other side only prefers to form one – many-to-one.
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When we no longer assume that agents do not wish to establish multiple relationships, an ad-

ditional difficulty becomes the modeling of the underlying preferences. In one-to-one matching

problems, it suffices to impose a strict preference ordering,3 as agents can only have preferences

over individual agents. For many-to-many matching problems, we must model the preference

of an agent for one subset of agents over another subset of agents. The most straightforward

way of modeling preferences, is to stick to the strict preference ordering assuming that agents

have a capacity b and that agents wish to establish a relationship with the b first agents in their

ordering. This is the approach taken by Gale and Shapley (1962) for the two-sided case, dubbed

the college-admission problem (which is essentially a many-to-one problem) and by Cechlarova

and Fleiner (2003) for the one-sided case, later dubbed the stable b-matching problem. For the

stable b-matching problem, Borbelova and Cechlarova (2010) — following Gusfield (1988) for

the stable roommate problem — further explored the structure of rotations and extended the re-

sults on the connection between sets of stable matchings and sets of rotations to the case of stable

b-matching problems.

This paper extends these results from Gusfield (1988) and Borbelova and Cechlarova (2010),

exploring the structure of stable matchings and uncovering their connection with sets of rota-

tions for the partnership problem, a many-to-many one-sided matching problem, first presented

in Fleiner (2010), with less restrictive assumptions on the preferences. In the partnership prob-

lem, the assumption of linear preferences is dropped. Instead, preferences are modeled through

choice functions; functions that map an option set – a set of possible relationships – to a choice

set – a set of chosen relationships. These choice functions are assumed to satisfy substitutability

and increasingness. Substitutability means that if an agent, when confronted with an option set A

of agents, chooses a relationship with agent v, then that agent will also choose that relationship

with v when confronted with a subset of A. Increasingness (also known as the law of aggregate

demand) states that if k relationships are chosen from a set, then in a superset of that set at least

k relationships are chosen; if more options are available, at least as many options will be chosen.

Though more complex than the traditional matching problems, Fleiner (2010) showed that Irv-

3Not assuming strictness poses a whole different set of problems (see Irving and Manlove (2002)).
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ing’s algorithm could be extended to find a stable partnership, if one exists.4 As the partnership

problem is a one-sided matching problem, a stable partnership might not exist. However, in this

paper, as we are specifically studying the set of stable partnerships, only problems having a stable

partnership are discussed.

The aim of this paper is to build further on the work of Fleiner (2010) and show that the results

presented in Gusfield (1988) for the stable roommate problem and Borbelova and Cechlarova

(2010) for the stable b-matching problem can be extended to the partnership problem. In partic-

ular, there are three main results which show that stable partnerships share a common structure

on three levels. First, it is shown that, for any given problem, all possible stable partnerships can

be found by the algorithm presented in Fleiner (2010). Fleiner (2010)’s algorithm, like Irving

(1985)’s algorithm, revolves around eliminating even rotations. Hence, the first result implicitly

uncovers a relationship between a stable partnership and the set of rotations that are eliminated

on a run of the algorithm producing that particular partnership. The second result shows that

there is a one-to-one correspondence between the stable partnership and a set of rotations. That

is, if a run of the algorithm eliminates a set of rotations φ, then this run can only produce one

particular stable partnership and that stable partnership can only be produced by a run of the

algorithm that eliminates that set of rotations φ. Related to that, it is shown that these sets of

rotations are in itself similar in the sense that if a rotation π is in one set but not in another,

then this other set has a rotation π′ that is very similar to that π. This second set of results then

uncovers the structure of a stable partnership on the relationship level – our third result. As an

extension of a result from Borbelova and Cechlarova (2010) and due to our second set of results,

we can identify relationships that will be part of all stable partnerships, as well as relationships

that belong to some stable partnership.

These three sets of results are important in their own right, because they tell us a great deal

about stable partnerships, showing that they are structurally the same as stable matchings in a

more simple stable roommate context. In addition, extending the original results is not a trivial

exercise and by proving these results for the partnership problem, other findings from Gusfield

4Fleiner (2010) devised the algorithm to show that, though a stable partnership might not exist, a stable half-

partnership will always exist, thus generalizing the findings of Tan (1991) for the stable roommate problem.
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(1988) and Borbelova and Cechlarova (2010) can be easily extended as well.

The structure of the paper is as follows. The partnership problem and the extension of Irving’s

algorithm, here dubbed SP, are presented in Section 4.2. The main results are presented in

Section 4.3: first it is shown that any stable partnership can be found by a run of SP (Theorem

4.3.1). Then, some lemmata are presented which are used to prove Theorems 4.3.5 and 4.3.6,

which pertain to the connection between stable partnerships and rotations. The section concludes

with the results on relationships in a stable partnership (Theorem 4.3.7). Section 4.4 has some

concluding remarks.

4.2 The model.

A partnership problem is a one-sided matching problem in which multiple relationships – even

between the same pair of agents – are allowed. In this section, we define the partnership problem

and the concept of stability. In Section 4.3, we will present some results on stable partnerships.

As their structure is closely related to the concept of rotations, which form the backbone of

Fleiner (2010)’s algorithm to find a stable partnership, this section will also explain the algorithm.

4.2.1 The partnership problem.

This paper studies the partnership problem as defined in Fleiner (2010), a one-sided matching

problem that allows for multiple relationships for an agent. Let V be a set of agents. Agents in

V wish to establish bilateral relationships with other agents in V , given certain preferences. A

relationship between an agent u and an agent v will be defined by an edge e = uv.5 The set E

contains all potential edges, where an edge uv is potential if there exists a partnership where both

u and v are willing to form this edge. A partnership M is then a subset of the set of potential

edges E, M ⊆ E. Further, for a subset X of E and vertex v in V let us denote by X(v) the set of

edges that are incident with v, the set of relationships in which v is involved. Finally, note that

we are not restricting the model to simple graphs; it may be that edges e1 and e2 in E involve the

5Note that uv = {u,v}= {v,u} but for notational simplicity, we write it as uv.
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same pair of agents.

The preferences of every agent v are given by a choice function Cv : 2E(v)→ 2E(v) that maps any

subset X(v) of edges incident with v – the option set – to a subset of X(v) that v chooses from

X(v) – the choice set. The edges in X(v) that are not chosen will be denoted by Cv(X(v)) =

X(v)\Cv(X(v)). The inverted choice set for an agent v is the set of edges incident to v that are in

the choice set of others for a subset X of E. Formally,

C−v (X) = {uv ∈ X(v)|uv ∈Cu(X(u))}.

For an edge e ∈Cv(X(v)), the X(v)-replacement of e is the set Cv(X(v)\e)\Cv(X(v); if an option

e is in the choice set of an option set X(v) incident to v and is deleted from that option set, then

the new elements in the choice set without e will be the X(v)-replacements of e; they replace

e in the choice set. With this notation, every matching problem can be represented by a finite

graph (V,E) with V = {1, . . . , |V |} the set of agents (vertices) and E the set of potential matches

(edges) and a set of choice functions C =
(
C1(.), . . . ,C|V |(.)

)
. We write {(V,E),C}.

A partnership problem is a matching problem with two defining characteristics. First, there are

no restrictions on the set of potential relationships, i.e. any number of relationships is possible

between any pair of agents. Second, the preferences over E(v) for each agent v are modeled

by the choice function Cv which is assumed to satisfy substitutability (SUB) and increasingness

(INCR). Substitutability means that when a relationship e is chosen from an option set X(v), then

v will still choose option e when some other options are no longer available in X(v). In other

words, if e is in the choice set of an option set X(v), then e is in the choice set of any option set

that is a subset of X(v).

SUB A choice function, Cv, is substitutable if, for e 6= f and e∈Cv(X(v)), then e∈Cv(X(v)\ f ).

Fleiner (2010, Theorem 2.1) finds that a choice function Cv on a finite groundset is substitutable

if and only if Cv is monotonous; if an option e is not chosen from an option set Y (v), then it will

not be chosen either when the option set is expanded:

MON The function of non-chosen options Cv is monotonous if Y (v)⊆X(v) implies that Cv(Y (v))⊆

Cv(X(v)).
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Another corollary of SUB is that if an edge uv ∈ E — that is, uv is a potential edge — then

uv ∈ Cu(uv)∩Cv(uv); if an edge is potential, then it is always chosen by both agents involved,

when no other options are available.

Increasingness means that if extra options are added to an option set Y (v), then v chooses at least

as many options in the expanded option set as in Y (v); if more options are available, then more

options will be chosen. Formally,

INCR A choice function, Cv, is increasing if Y ⊆ X implies |Cv(Y )| ≤ |Cv(X)|.

INCR, together with SUB, guarantees that the X(v)-replacement of an edge e ∈Cv(X(v)) will be

at most one element.

A partnership problem can be defined formally as follows:

P A partnership problem P is a matching problem {(V,E),C} such that any Cv ∈C =(C1, . . . ,C|V |)

satisfies SUB and INCR.

Stability For a partnership problem P = {(V,E),C}, a partnership M is individually rational if

no agent v∈V has an edge uv∈M such that uv∈Cv(M(v)); no agent wishes to cut a relationship

it has in M. In addition, a blocking edge uv of M is such that uv 6∈M and uv ∈Cu(M(u)∪uv)∩

Cv(M(v)∪uv); both u and v wish to form uv in M. A partnership that is individually rational and

has no blocking edge is denoted a stable partnership. Formally,

Stable partnerships A partnership S is stable for the problem P = {(V,E),C} if S satisfies:

• Individual rationality: for any agent v we have Cv(S(v)) = S(v), and

• Absence of a blocking edge: There does not exist an edge e = uv 6∈ S such that both

e ∈Cu(S(u)∪{e}) and e ∈Cv(S(v)∪{e}) holds.

A partnership problem that has at least one stable partnership will be denoted solvable. We will

only discuss solvable partnership problems.
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4.2.2 Finding a stable partnership.

Fleiner (2010) constructed an algorithm which was proven to produce a stable partnership for a

solvable partnership problem. The algorithm is an extension of Irving’s algorithm (Irving, 1985),

which also forms the basis for Gusfield (1988).6

Phase 1 Consider an edge uv ∈ E such that uv ∈Cv(C−v (E)∪uv); we say that uv is dominated

by the inverted choice set of v for E. Edges that are dominated by the inverted choice set for a

problem {(V,E),C} can never be part of a stable partnership as their presence in a partnership

implies the presence of a blocking edge in the inverted choice set for that problem. Phase 1 of

the algorithm aims to reduce the partnership problem to a partnership problem that has no edges

dominated by the inverted choice set, a reduced partnership problem.

Reduced partnership problem A partnership problem P = {(V,E),C} is reduced if for all uv∈

E, uv ∈Cv(C−v (E)∪uv).

The reduced version of a partnership problem P = {(V,E),C}, reached by applying Phase 1, will

be denoted by P ′ = {(V,E ′),C}. Formally, Phase 1 entails an iteration of the following step.

Phase 1 While there exists uv ∈Cv(C−v (E)∪uv) for some v, set E = E\uv.

Edges that are deleted in Phase 1 because they are dominated by an inverted choice set of T

with E ′ ⊂ T ⊆ E at some round of Phase 1, will also be dominated by an inverted choice set of

E ′ (Property 1). In addition, edges dominated by an inverted choice set can never be part of a

stable partnership; if a dominated edge uv is in a partnership, then there exists a blocking edge

6Two remarks. First, the algorithm consists of two phases. However, as Fleiner (2010, Section 4.) points out,

there is a more efficient one-phase algorithm that is even more similar to Irving’s algorithm. However, to keep the

analysis and the proofs more transparent, we also use the two-phase algorithm presented in Fleiner (2010). Second,

Fleiner (2010)’s algorithm is designed to find stable half-partnerships which is a more general concept than a stable

partnership. Stable half-partnerships are especially interesting when we are dealing with partnership problems that

are not solvable. However, for solvable partnership problems, the set of stable half-partnerships is equal to the set

of stable partnerships and the algorithm produces stable partnerships in this case.
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in the inverted choice set of u or v. Hence, Phase 1 weeds out those dominated edges as we can

be sure that they are never part of a stable partnership. In addition, a result from Fleiner (2010,

Lemma 3.1.) shows that applying Phase 1 does not lead to a reduced problem with new stable

partnerships, i.e. partnerships that were not stable in the original problem but are stable in the

reduced problem. Hence, the set of stable partnerships is left unchanged when going from the

original problem to its reduced version (Property 2).

Property 1 For a partnership problem P = {(V,E),C} and its reduced problem P ′= {(V,E ′),C},

if uv ∈ E\E ′ then uv ∈Cu(C−u (E
′)∪uv) or uv ∈Cv(C−v (E

′)∪uv).

Proof See appendix 4.5.1.

Property 2 (Lemma 3.1. in Fleiner (2010)) For a partnership problem P = {(V,E),C} and its

reduced problem P ′ = {(V,E ′),C}, S is a stable partnership of P if and only if S is a stable

partnership of P ′.

Phase 2. After applying Phase 1 for a partnership problem P , we get a reduced problem P ′.

For such a problem, we can define a rotation. First, define an edge-pair as an ordered set of two

edges {a = uv,(a)r = vw) such that uv ∈Cv(E ′(v))\Cu(E ′(u)) and vw is the E ′(v)-replacement

of uv. That is, an edge that is in exactly one choice set and its replacement, form an edge-pair.

Second, an edge-pair (uv,vw) leads to another edge-pair (wx,xz) if wx = Cw(C−w (E
′)∪ vw).7

Now, Fleiner (2010, Lemma 3.3.) shows that any uv ∈ Cv(E ′(v))\Cu(E ′(u)) will be part of an

edge-pair. In addition, Fleiner (2010, Lemma 3.4.) also finds that any edge-pair will lead to

exactly one other edge-pair. Hence, there exists an infinite sequence of edge-pairs leading to

other edge-pairs. However, as the set of edges in E ′ is not infinite, this sequence is bound to

loop, and this loop will be a rotation. A rotation π is a sequence of edge-pairs

π = (a1,(a1)
r,a2,(a2)

r, . . . ,am,(am)
r)

7A small note on the definition of leading: it is possible for uv ∈Cv(E ′(v)) and vw, the E ′(v)-replacement of uv,

that Cv(C−v (E ′)∪vw) 6= /0. However, in the definition of leading, we always look for the edge-pair such that the first

element is in Cw(C−w (E ′)∪ vw).
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such that (ai,(ai)
r) leads to (ai+1,(ai+1)

r), for any i = 1, . . . ,m, modulo m, that is (am,(am)
r)

leads to (a1,(a1)
r). A sequence of edge-pairs that leads to a rotation π but is not part of π is

called the tail of π. Consider a sequence of edge-pairs

(b1,(b1)
r, . . . ,bl,(bl)

r,a1,(a1)
r, . . . ,am,(am)

r)

with π = (a1,(a1)
r, . . . ,am,(am)

r) a rotation of P ′. Then, τ = (b1,(b1)
r, . . . ,bl,(bl)

r) is the tail

of π.

Now, if E ′ is not a stable partnership, P ′ has at least one rotation. There are two types of rotations.

First, the number of different edges in the rotation may be odd – we are dealing with an odd

rotation. If a problem has an odd rotation, then a stable partnership does not exist. Second, the

number of different edges may be even – we are dealing with an even rotation. As we are only

considering solvable partnership problems, every rotation will be even (Fleiner, 2010, Corollary

2.7.). Phase 2 then prescribes selecting an (even) rotation out of the set of even rotations Πe
P ′ for

the reduced problem P ′ and deleting the first edge in every edge-pair of that rotation – eliminating

a rotation. Note that for solvable problems Πe
P ′ = ΠP ′ .

Phase 2 For a reduced problem P ′, pick a rotation π ∈Πe
P ′ and delete the first edge in every edge-

pair of π.

Property 3, a combination of two lemmata from Fleiner (2010), gives some insights into why

eliminating a rotation brings us closer to a stable partnership. It states that if there exists a stable

partnership S such that it contains an edge that is deleted when eliminating π, then (i) S contains

all deleted edges of π and (ii) there exists another stable partnership, S′, that does not contain any

of the deleted edges but contains all of the remaining edges of the rotation π. Hence, either no

edge deleted when eliminating π is part of a stable partnership, or they are all part of a particular

stable partnership, but then there exists another stable partnership which contains none of those

edges; eliminating π brings us closer to a stable partnership.

Property 3 (Adapted from lemmata 3.5. and 3.6. in Fleiner (2010)) Consider a reduced prob-

lem P ′ and a rotation π = (a1,(a1)
r, . . . ,am,(am)

r) ∈ Πe
P ′ . Assume S is a stable partnership. If

ai ∈ S for some i≤ m,
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(i) a j ∈ S for all j ≤ m,

(ii) S′ = S\
⋃

k≤m ak∪
⋃

k≤m(ak)
r is also a stable partnership.

After having applied Phase 2, we may end up in a partnership problem that is not reduced.

Hence, Phase 1 should be re-applied, and if an even rotation exists for the reduced problem,

Phase 2 should also be re-applied. Running Phase 1 and Phase 2 consecutively, we are bound

to end up in a partnership problem {(V,S),C}, that has no even rotations, which in the case of

solvable partnership problems means that S itself is a stable partnership. The algorithm, dubbed

SP, is summarized in figure 4.1.

i. Consider the problem P = {(V,E),C} and set t = 0 and Et = E.

ii. Apply Phase 1 for the problem Pt = {(V,Et),C}, obtaining the reduced problem P ′t =

{(V,E ′t ),C}.

iii. Compute the set of even rotations, Πe
P ′t

.

1. If Πe
P ′t

= /0, end SP and set S = E ′t .

2. If Πe
P ′t
6= /0, apply Phase 2 obtaining Pt+1 = {(V,Et+1),C}. Set t = t +1 and go back

to step ii.

Figure 4.1: SP algorithm

4.3 Main results.

For a given (reduced) partnership problem we can now explore the set of stable partnerships.

In particular, we uncover three sets of characteristics of stable partnerships; three ways in which

these partnerships are similar. First, all stable partnerships can be found by running SP a sufficient

number of times. This result, given in Theorem 4.3.1, extends the results from Gusfield (1988,

Theorem 2.1.) and Borbelova and Cechlarova (2010, Lemma 7) for the roommate problem and
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the stable b-matching problem respectively. Second, this observation, that all stable partnerships

can be produced by the same algorithm, brings us to the second set of results and a second

level of similarity. Each run can be characterized by the set of rotations that are deleted on that

run (Lemma 4.3.3). Now, for some rotations there exists a counterpart – a dual rotation – that

contains the same edges but at different positions of the rotation. Theorem 4.3.5 then states

that if a rotation is not deleted on a run of SP, its dual counterpart will be deleted in that run.

Hence, all sets of rotations are similar up to which rotation in a pair of dual rotations is deleted.

A related result, Theorem 4.3.6, then shows that there is a one-to-one correspondence between

the set of sets of rotations in a run and the set of stable partnerships, hence, the second level of

similarity: stable partnerships are similar in that they can be linked to sets of rotations which

are in itself similar. Third, this then connects to the third level of similarity and our third set of

results, similarity over which edges belong to the stable partnership. There are edges that belong

to all stable partnerships and edges that belong to some stable partnerships. Those edges that

belong to all stable partnerships are not part of a rotation that has a dual, whereas those edges

that belong to some stable partnership, but not to all, are always part of a rotation that has a dual

(Theorem 4.3.7).

Additional notation. A run of SP, starting from a reduced partnership problem P ′= {(V,E ′),C},

can be summarized by γ, a sequence of the rotations deleted in Phase 2 – as the selection of which

rotation to be deleted determines the deletions in the subsequent Phase 1 of SP. All such runs are

given in the set ΓP ′ . After running γ, we obtain the problem P ′γ = {(V,E ′γ),C} with E ′γ being a

stable partnership. A subrun of γ of order k, γ[k], contains the first k elements of γ. So P ′
γ[k] is the

reduced problem we obtain if we eliminate the first k rotations in γ, applying Phase 1 after each

elimination.

Denote by φ(γ), the set of rotations that are eliminated when following the run γ; a rotation π is

in φ(γ) if π is in the sequence γ. Then define Φ the set of all rotations that are ever eliminated at

some run of SP. Formally,

Φ =
⋃

γ∈ΓP ′

φ(γ).
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If there exists a rotation π ∈ Φ such that there is a rotation ρ ∈ Φ, that contains the same edges

while ρ 6= π, then we say that π and ρ are duals and we write ρ = πd and π = ρd . Formally, the

dual of a rotation π = (a1,(a1)
r, . . . ,am,(am)

r) is a rotation such that ((ai−1)
r,ai) is an edge-pair

that leads to ((ai)
r,ai+1), for every i modulo m. Hence, a dual of a rotation contains the same

edges in the same order but the edge-pairs are different. For a set of rotations φ⊆Φ, we say that

φ covers a rotation π, if π ∈ φ or πd ∈ φ.

Now, if π ∈ ΠP ′
γ[k]

, we say that running γ[k] suffices to expose π. Note that it may very well be

that π was already exposed for some subrun γ[k′] with k′ < k. We will see later on in Lemma

4.3.3 that the order in which rotations are eliminated is not relevant for the reduced problem that

is obtained. Hence, the concept of sufficient to expose can also be applied to φ(γ[k]). A rotation

π ∈ ΠP ′ for some reduced problem P ′ removes another rotation π′ ∈ ΠP ′ , if deletion of π and

subsequent application of Phase 1 leads to a reduced problem P ′′ such that π′ 6∈ΠP ′′ .

In Gusfield (1988, Theorem 2.1.) and Borbelova and Cechlarova (2010, Lemma 7) it is shown

that, for the roommate problem and the stable b-matching problem, Irving’s algorithm can find

all possible stable matchings for any given problem. Gusfield (1988) designed an efficient enu-

meration algorithm to find all stable matchings for a given problem. Theorem 4.3.1 extends this

result and shows that the extension of Irving’s algorithm, SP, also succeeds in finding all possible

stable partnerships, provided it is run a sufficient number of times.

Theorem 4.3.1 8 For a partnership problem P , if S is a stable partnership of P , then there exists

a run of SP that produces S.

Proof A run of SP will be constructed such that no element in S is ever deleted, implying that

the run produces S.

Consider round 0 and the partnership problem P0 = P . By Property 2, S is not deleted from the

set of stable partnerships by applying Phase 1 in round 0. Assume that for all v ∈ V , S(v) ⊆

Cv(E ′0(v)). We can show that in that case S(v) =Cv(E ′0(v)) for all v ∈V : Assume

|S(v)|< |Cv(E ′0(v))| (4.1)

8Adapted from Gusfield (1988, Theorem 2.1.).
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and define T = C−v (E
′
0)\S(v), the elements of C−v (E

′
0) not in S(v). Since, by construction of

T , for every uv ∈ T , uv ∈ Cu(S(u)∪ uv), to preserve stability and by MON, it must be that

Cv(S(v)∪T ) = S(v). Then, by the inequality in (4.1), |Cv(S(v)∪T )|< |Cv(E ′0(v))|. Now, Fleiner

(2010, Lemma 3.2.) states that |Cv(E ′0(v))|= |C−v (E ′0)| such that

|Cv(S(v)∪T )|< |C−v (E ′0)|= |Cv(C−v (E
′
0))|. (4.2)

The equality holds since P ′ is a reduced problem and there are no edges dominated by the in-

verted choice set. As

C−v (E
′
0)⊆ S(v)∪T, (4.3)

statement (4.2) implies a violation of INCR. Hence, |S(v)| ≥ |Cv(E ′0(v))|.9 Then, if S(v) ⊆

Cv(E ′0(v)), it follows that S(v) = Cv(E ′0(v)). If S(v) = Cv(E ′0(v)), there is no uv ∈ S such that

uv ∈Cv(E ′0(v)), this implies that S(v) =Cv(E ′0(v)) =C−v (E
′
0) for all v. As P ′0 is reduced, there is

no uv such that uv ∈Cv(C−v (E
′
0)∪uv). Hence, it must be that Cv(E ′0) = E ′0 and S = E ′0. Hence,

the lemma holds as SP will directly terminate, producing S.

Now, assume that for some v ∈ V , S(v) 6⊆ Cv(E ′0(v)). As, |S(v)| = |Cv(E ′0(v))|, there exists

uv ∈Cv(E ′0(v))\S(v). As S is stable, uv 6∈C−v (E
′
0), so there exists an edge pair (uv,vw)) that is

either in a rotation π ∈ΠP ′0 or in a tail leading to a rotation π. If (uv,vw) is in π with Qπ all edges

deleted when eliminating π, then, by Property 3(i), Qπ∩S = /0. Hence, eliminating π leads to a

new problem P1 with S a stable partnership of P1.

Now, assume (uv,vw) is in some tail τ leading to a rotation π. If Qπ ∩ S 6= Qπ, then we are in

the previous case and there exists (xy,yz) ∈ π such that xy 6∈ S. Hence, assume that Qπ∩S = Qπ.

Consider the sequence

(b1 = uv,(b1)
r = vw, . . . ,bl = rx,(bl)

r = xy,ai = yz).

First, if yz ∈ S, then xy 6∈ S: Assume otherwise, xy ∈ S. Then, by MON, yz ∈Cy(C−y (E
′
0)∪S(y)),

while yz ∈Cy(S(y)) by individual rationality of S. Hence, there exists a blocking edge in C−y (E
′
0)

for S, contradicting the stability of S such that it should be that xy 6∈ S. Second, if xy 6∈ S,
9By INCR and |Cv(E ′0(v))| = |C−v (E ′0)|, it holds in fact that |S(v)| = |Cv(E ′0(v))| for all v ∈ V and all stable

partnerships S in P ′.
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then rx ∈ S: If rx 6∈ S, then xy ∈Cx(S(x)∪ xy). In addition, yz ∈Cy(C−y (E
′
0)∪ S(y)∪ xy) while

yz ∈Cy(S(y)). Hence, either xy ∈Cy(S(y)∪ xy) or there exist a blocking edge in C−y (E
′
0) for S.

Both cases contradict the stability of S, such that rx must be in S.

These two arguments can be repeated such that we have a pattern where all first elements of edge-

pairs in τ before (rx,xy) are in S while all second elements are not in S. However, uv 6∈ S, such

that we have a contradiction. Hence, if uv 6∈ S, then Qπ∩S must be an empty set, implying that

by eliminating π, we did not delete S as a stable partnership. Hence, it is possible, starting from

P0, to execute Phases 1 and 2 such that it results in P1 for which S is still a stable partnership.

This argument can be replicated for all subsequent rounds such that eventually we have a run of

SP that produces S.

The crucial element in the proof of Theorem 4.3.1 is Property 3 which highlights the relation

between stable partnerships and rotations. In words, Property 3 implies that if an edge that is a

first element of an edge-pair in a tail-rotation structure is not in a stable partnership, then all the

first elements of the edge-pairs in that tail-rotation structure are not in a stable partnership. As

such an edge-pair always exists for any stable partnership, assuming a stable partnership is not yet

reached by SP, this implies that we can always eliminate a rotation without eliminating that stable

partnership. Hence, Theorem 4.3.1 implies that the stable partnerships are structurally identical,

in the sense that they can all be produced by the same algorithm. The concept that links these

stable partnerships is the set of rotations that are eliminated on the different runs of SP, which

is similar over different runs (Theorem 4.3.5) and which can be mapped onto the set of stable

partnerships (Theorem 4.3.6). Before presenting these results, we first present some intermediary

results – lemmata – which, besides providing additional intuition into SP, are essential to prove

the next theorems.

Lemmata on SP. The first result shows how choice sets are affected when executing Phase 1

and Phase 2, that is, it deals with the question how Cv(Et+1) is different from Cv(Et). As it turns

out, the change is limited to the edges that are part of the rotation that is eliminated in the Phase

2 of that round. If we assume that π was eliminated and that Qπ was the set of deleted edges,
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then, for v, all edges of Qπ(v) that were in the choice set of v drop out of the choice set – quite

logically, as they are deleted. In addition, the only new edges in the choice set of v are those

second elements of the edge-pairs in π such that they are replacements for the first element of the

edge-pair for agent v.

Lemma 4.3.2 For a reduced problem P ′t , assume that a rotation π is eliminated at round t in

Phase 2, with Qπ the set of deleted edges in Phase 2. In addition, define a set Qr
π

v, such that

vw ∈ Qr
π

v if there exists an edge-pair (uv,vw) ∈ π. Then, for all v ∈V ,

Cv(E ′t+1) =Cv(E ′t )\Qπ(v)∪Qr
π

v. (4.4)

Proof See appendix 4.5.1.

The second lemma is useful in that it links a set of rotations, associated with a run of SP, to a

particular stable partnership; a run γ in which a certain set of rotations φ(γ) is eliminated always

leads to the same stable partnership, no matter in which order the rotations in φ(γ) are eliminated.

In words, if, starting from the same reduced problem, we have two subruns that eliminate the

same set of rotations, then the resulting reduced partnership problems are the same. Hence, if

two runs have the same set of rotations, then these runs produce the same stable partnership.

Lemma 4.3.3 Starting from a reduced problem P ′, take two runs of SP, γ and δ and subruns γ[k]

and δ[k] such that φ(γ[k]) = φ(δ[k]). Then P ′
γ[k] = P ′

δ[k].

Proof See appendix 4.5.1.

While Lemma 4.3.3 will eventually imply that stable partnerships and sets of rotations are linked,

the next lemma, Lemma 4.3.4, will be helpful in proving that sets of rotations of different runs

cover the same rotations (Theorem 4.3.5) by showing that if we have a subrun δ[l] that covers

all rotations of another subrun γ[k] except for a rotation π, then π will be exposed in the problem

after running δ[l]. For example if a run (π1,π2) exposes a rotation π, then (π1,π
d
2) or (πd

1,π2) or

(πd
1,π

d
2) will also expose π.
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Lemma 4.3.4 Consider a reduced problem P ′ and two subruns of order k and l, γ[k], and δ[l]

such that any ρ ∈ φ(γ[k]) is covered by φ(δ[l]). In addition, assume a rotation π that is not

covered by δ[l]. If π ∈ΠP ′
γ[k]

, then π ∈ΠP ′
δ[l]

.

Proof See appendix 4.5.1 for a formal proof.

Illustration of the proof. The lemma is proven using three sublemmata which are proven in appendix

4.5.1 and can be paraphrased as follows:

• Lemma 4.5.1: A rotation exposed in a problem can only be removed by eliminating its dual.

• Lemma 4.5.2: If both a rotation π and its dual πd are exposed, then eliminating either π or πd does

not expose new rotations.

• Lemma 4.5.3: If a rotation π is exposed after a subrun δ in which the set of rotations is a subset of

the set of rotations of another subrun δ, then π will also be exposed after δ.

Consider a reduced problem P ′ and a subrun γ[2] = (π1,π2). In addition, there exists another subrun

δ[3] = (ρ1,ρ2,ρ3) such that π1 = ρd
3 and π2 = ρd

2 , depicted as node (6) in Figure 4.2.

ρ1 ρ2 ρ3

π1

ρ2

π2

π1

(1)

(2) (3)

(4)

(5)

(6)

Figure 4.2: Illustration of the proof.

Assume there exist a rotation π such that π ∈ ΠP ′
γ[2]

. The question now is whether π ∈ ΠP ′
δ[3]

. Now, there

are two pairs of dual rotations in φ(γ[2])∪φ(δ[3]), with {π2,ρ2} being the first to pop up in δ[2].

(1) Follow the subrun δ[3] until we have to eliminate ρ2, i.e. in P ′
δ[1]. After this subrun, π1 is exposed,

by Lemma 4.5.1, together with subrun ρ2.

(2) Eliminating π1, we get the subrun (ρ1,π1). By Lemma 4.5.3, π2 will be exposed, together with

subrun ρ2, by Lemma 4.5.1.
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(3) Eliminating π2 gives us a subrun (ρ1,π1,π2), for which π is exposed, by Lemma 4.5.3. However,

as both ρ2 and its dual, π2, are exposed after (ρ1,π1) (in node (2)), Lemma 4.5.2 tells us that no

new rotation can be exposed after eliminating π2, such that it has to be that π is also exposed after

(ρ1,π1) (in node (2)).

(4) Eliminating ρ2 we get a subrun (ρ1,π1,ρ2) and a problem in which π is exposed by Lemma 4.5.1.

(5) There also exists a subrun (ρ1,ρ2,π1) – by lemma 4.5.1 – and by lemma 4.5.3 π will also be exposed

after that subrun.

(6) If we compare the run leading to node (5) with (ρ1,ρ2,ρ3) we see that any rotation in the former is

still covered by the latter subrun. In addition, there is only one dual pair left, {π1,ρ3}. Sublemma

4.5.2 can be applied again, showing that π is a rotation after the subrun (ρ1,ρ2), and by sublemma

4.5.3 also after subrun (ρ1,ρ2,ρ3) as had to be shown.

Connecting sets of rotations to stable partnerships. Theorem 4.3.5 connects sets of rotations

of different runs, stating that any run of SP covers the same set of rotations. This means that if

we have a rotation that is eliminated in some run of SP, then this rotation or its dual will be

eliminated in all runs of SP.

Theorem 4.3.5 10 Consider a reduced partnership problem P ′ = {(V,E ′),C}. Every γ ∈ ΓP ′

covers the same set of rotations.

Proof Consider two runs of SP, γ = (π1, . . . ,πK) and δ. Note that as γ and δ are full runs, it has to be that

ΠP ′γ = ΠP ′
δ
= /0.

Assume that γ[k] is a subrun of γ such that any πn ∈ φ(γ[k]) is covered by φ(δ), while πk+1 is not covered

by φ(δ). Then Lemma 4.3.4 states that πk+1 ∈ ΠP ′
δ(l)

, which violates ΠP ′γ = ΠP ′
δ
= /0. Hence, no such

subrun γ[k] will ever exist and all rotations πn ∈ φ(γ) will be covered by φ(δ[l]).

By the symmetric argument, all rotations ρ ∈ φ(δ) will be covered by φ(γ), proving that every γ ∈ ΓP ′

covers the same set of rotations.
10Adapted from Gusfield (1988, Theorem 4.1) and Borbelova and Cechlarova (2010, Theorem 2).
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Because of Theorem 4.3.5, the rotations in Φ can be partitioned into two sets, Φs and Φd . The

set Φs contains singular rotations, that is the rotations that are eliminated at every run of SP. The

set Φd contains dual rotations, rotations that are not always eliminated in a run of SP. When a

rotation π ∈ Φd is not eliminated in a run γ, then Theorem 4.3.5 implies that πd is eliminated in

a run γ. Hence, every run consists of all singular rotations and exactly one of each pair of dual

rotations.

Theorem 4.3.6 connects runs to the stable partnership that is produced, stating that there is a one-

to-one correspondence between the sets of rotations in a run and the stable partnerships that are

produced. If two runs eliminate the same set of rotations, then they must produce the same stable

partnership; and, if two runs of SP produce the same stable partnership, then the runs eliminate

the same set of rotations.

Hence, to summarize, each stable partnership can be characterized by the unique set of rotations

that are eliminated to produce this partnership in SP. In addition, differences between stable

partnerships are driven by differences in these unique sets of rotations, particularly the different

elements of a pair of dual rotations that are eliminated.

Theorem 4.3.6 11 Consider a reduced partnership problem P ′ and two runs γ and δ of SP such

that executing run γ produces Sγ and executing run δ produces Sδ. Then, φ(γ) = φ(δ) if and only

if Sγ = Sδ.

Proof

⇒ By Lemma 4.3.3, P ′γ = P ′
δ
, indicating that Sγ = E ′γ = E ′

δ
= Sδ.

⇐ Assume Sγ = Sδ but φ(γ) 6= φ(δ). By Theorem 4.3.5, there must exist π ∈ Φd such that π ∈ φ(γ)

while πd ∈ φ(δ). As Sγ = Sδ this implies that no edge in π can be in Sγ, as otherwise this edge

will be deleted in the elimination of πd , and hence will not be in Sδ = Sγ. Consider the edge-pair

(uv,vw)∈ π. As π∈ φ(γ), π is eliminated at some round k of the run γ in SP. As vw is the E ′
γ[k−1](v)-

replacement of uv and as uv is deleted in round k, vw ∈Cu(E ′γ[k](v)) which by SUB implies that

vw ∈Cv(Sγ(v)∪ vw). (4.5)

11Adapted from Gusfield (1988, Theorem 5.2) and Borbelova and Cechlarova (2010, Theorem 3).
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Now, consider the edge-pair (vw,wx) ∈ πd . Assuming πd is eliminated at some round l of δ, by the

definition of an edge-pair, vw ∈Cw(E ′δ[l−1]). By SUB, it follows that

vw ∈Cw(Sδ(w)∪ vw). (4.6)

As Sγ = Sδ, (4.5) and (4.6) imply that vw is a blocking edge for Sγ which contradicts the stability of

Sγ. Hence, φ(γ) = φ(δ).

Stable edges. Theorems 4.3.5 and 4.3.6 enable us to extend another result by Gusfield (1988) and Bor-

belova and Cechlarova (2010), with respect to the type of edges that can be found in a stable partnership.

A rotation π is a predecessor of another rotation ρ if π has to be eliminated for ρ to become exposed, that

is, ρ ∈ΠP ′
γ[k]

only if π ∈ γ[k]. The predecessor relation can be given by ≺, indicating that if π≺ ρ, then π

is a predecessor of ρ. It can be easily shown that for π ∈ Φs, if π′ ≺ π, then π′ ∈ Φs; a singular rotation

can only be preceded by another singular rotation. To see this, note that if π′ ∈ Φd , then there exists a

run γ such that π′ 6∈ γ. However, as π is a singular rotation, π will be part of γ by Theorem 4.3.5 such

that it cannot be that π′ is a predecessor of π. Hence, π′ ∈ Φs. By Theorem 4.3.5, this implies that for

P there exists a subrun γ[k] such that all singular rotations of the problem are eliminated, while no stable

partnership was deleted by this run. Denote P s = {(V,Es),C}= P ′
γ[k], the problem obtained by eliminating

every non-dual rotation of P ′. Then we get to our final result.

Consider a partnership problem P = {(V,E),C}. An edge e ∈ E is called stable if e ∈ S with S, some

stable partnership in P and e is called fixed if e ∈ S for S, any stable partnership in P . Then, Theorem

4.3.7 states that an edge is a fixed edge if and only if it is in the choice set for both agents for the problem

P s. In addition, e is a non-fixed stable edge if and only if it is an edge in a rotation that has a dual.

Theorem 4.3.7 12 For a partnership problem P and P s, consider e ∈ Es. Then:

(i) e = uv is a fixed edge if and only if e ∈Cv(Es(v))∩Cu(Es(u));

(ii) e = uv is a stable edge that is not fixed if and only if uv is in a rotation π ∈Φd .

Proof (i) ⇒: First, note that if e = uv is a fixed edge then uv cannot be in a rotation π ∈ Φd : By

Theorem 4.3.5, there exists a run γ of SP, starting from P s such that π ∈ γ. Hence, there is no

12Adapted from Borbelova and Cechlarova (2010, Lemma 19).



CHAPTER 4. STRUCTURE 101

edge-pair (uv,vw) ∈ π for some vw. In addition, there also exists a run δ such that πd ∈ δ, implying

that there is no edge-pair (xu,uv) ∈ π as well for some xu.

Second, pick any stable partnership S and assume that a run γ starting from P s produces S. By

repeated application of Lemma 4.3.2, we get that for all w ∈V ,

Cw(S(w))⊆Cw(Es(w))∪
⋃

π∈φ(γ)

Qr
π

w. (4.7)

Hence, if an edge f = wx ∈ Cw(Es(w)), it can only be in Cw(S(w)) when it is in Qr
π

w for some

rotation π ∈ φ(γ).

Now, as e is a fixed edge, e ∈Cv(S(v))∩Cu(S(u)) for any stable partnership S. Since e was not in

any rotation, it has to be that e ∈Cv(Es(v))∩Cu(Es(u)).

⇐: Note that for any stable partnership S, S ⊆ Es. If e ∈Cv(Es(v))∩Cu(Es(u)), then SUB implies

that e ∈ Cv(S(v)∪ e)∩Cu(S(u)∪ e). If e 6∈ S, then e is a blocking edge, contradicting with the

stability of S.

(ii) ⇒: Assume that e = uv is a stable non-fixed edge and that uv is not in any rotation. As e is a stable

edge, e ∈Cv(S(v))∩Cu(S(u)) for some stable partnership S. By (4.7), e ∈Cv(Es(v))∩Cu(Es(u)),

which by (i) implies that e is a fixed edge. Hence, uv must be in a rotation.

⇐: Assume uv is in a rotation π ∈ Φd such that (uv,vw) ∈ π. If uv is not a stable edge then uv 6∈ S

for any stable partnership S. By Property 3(i), no first element xy of an edge-pair (xy,yz) ∈ π is a

stable edge. However, as π ∈ Φd , πd ∈ Φd , and by Theorem 4.3.5 there exists a run δ such that πd

is eliminated. Hence, δ leads to a stable partnership S such that no edge in π is in S. The proof

of Theorem 4.3.6 showed that this contradicts with the stability of S, concluding that uv is a stable

edge.

Now, assume π ∈ γ for some run γ. Say that π is exposed at P s
γ[k]. Then, by the definition of a

rotation, uv ∈Cu(Es
γ[k](u)). By MON, this implies that uv ∈Cu(Es(u)) such that by (i), e is not a

fixed edge and the lemma is proven.
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4.4 Concluding Remarks

This paper studies the partnership problem and the extended version of Irving’s algorithm, SP, that pro-

duces a stable partnership if one exists. The main aim of the paper was to analyse the set of stable

partnerships and its relation to the concept of rotations on which SP is built. There are three main re-

sults. First, any stable partnership can be found by SP (Theorem 4.3.1). In other words, for every stable

partnership there exists a run of SP that produces this partnership. This implicitly reveals the similarity

between any two stable partnerships, as they seemingly consist of the same type of edges. Second, this

similarity is more explicitly established in Theorems 4.3.5 and 4.3.6. Theorems 4.3.5 and 4.3.6 link stable

partnerships to sets of rotations. Theorem 4.3.6 states that for any stable partnership there exists a unique

set of rotations that produces that stable partnership when eliminated. The similarity then originates in the

fact that those sets of rotations are identical in the sense that they all cover the same rotations (Theorem

4.3.5). Third, this implies that there exist rotations that are always eliminated – singular rotations. Edges

that are in the choice set for both agents, after these rotations are eliminated, will show up in any stable

partnership (Theorem 4.3.7(i); fixed edges). In addition, there are pairs of dual rotations and one rotation

of each pair will always be eliminated. Then, a non-fixed edge can only be part of a stable partnership if

and only if this edge shows up in one of those rotations (Theorem 4.3.7(ii)).

These results are extensions of results established for the stable roommate problem (Gusfield, 1988)) and

the stable b-matching problem (Borbelova and Cechlarova, 2010). This has two implications. First, the

main conclusion of this paper should be that, even though the partnership problem is a problem that is

much more general than the roommate problem, structurally it still is in essence a roommate problem, in

the sense that the structure of the stable partnership is the same as the structure of the stable matching

in the roommate problem. Second, other results from Gusfield (1988) and Borbelova and Cechlarova

(2010), that build on the theorema presented in this paper, can be extended as well. In particular, we can

think of the efficient enumeration of all stable matchings for a given problem (Gusfield, 1988) and the use

of Irving (1985)’s algorithm to find stable matchings fulfilling some optimality criteria (Borbelova and

Cechlarova, 2010). Appendix 4.5.2 shows that the dual enumeration method, the efficient enumeration

method introduced in Gusfield (1988) can also be applied to efficiently enumerate all stable partnerships.
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4.5 Appendix

4.5.1 Proofs

In this section, Property 1, Lemma 4.3.2, Lemma 4.3.3 and Lemma 4.3.4 will be proven. In the proof of

Lemma 4.3.4 we will also present and proof three other (sub)lemmata.

Proof of Property 1. We prove the lemma by induction.

First, consider the last deleted edge uv in Phase 1. For this edge, w.l.o.g.,

uv ∈Cv(C−v (E
′∪uv)∪uv). (1)

Now, by SUB,

C−v (E
′∪uv)\uv⊆C−v (E

′), (2)

all elements, except uv, that were in the inverted choice set of v before deleting uv are also in the inverted

choice set of v for E ′. Statement (1), by MON, then implies that uv ∈Cv(C−v (E
′)∪uv).

Now, assume the lemma is valid for the last n deleted edges in phase 1 and consider uv to be the n+1-last

deleted edge for a problem {(V,T ),C} with E ′ ⊂ T ⊆ E. Since uv is deleted, w.l.o.g.,

uv ∈Cv(C−v (T )∪uv). (3)

Assume now that, in contradiction with the lemma,

uv ∈Cv(C−v (E
′)∪uv). (4)

Statement (3) implies, by MON,

uv ∈Cv(C−v (T )∪C−v (E
′)∪uv). (5)

Hence, there should exist an edge

vw ∈Cv(C−v (T )∪C−v (E
′)∪uv)\C−v (E ′), (6)

otherwise SUB and INCR would imply a violation of statement (5). In words, there exists an edge vw that

is in the choice set for C−v (T )∪C−v (E
′)∪uv) but is not in C−v (E

′). Note, that by SUB,

vw ∈Cv(C−v (T )∪C−v (E
′)). (7)
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Now, if vw ∈ E ′, SUB and E ′ ⊂ T imply that vw ∈C−v (E
′). Thus, vw 6∈ E ′, meaning that vw was deleted

in some later round T ′ for which E ′ ⊂ T ′ ⊂ T . As vw was deleted, vw ∈Cv(C−v (T
′)∪ vw). By induction,

vw ∈ Cv(C−v (E
′)∪ vw) which by statement (7) is a violation of SUB. Hence, no such vw can exist, by

which statement (4) implies a violation of statement (3), proving the lemma.

Proof of Lemma 4.3.2. First, we prove the following expression:

Cv(Et+1(v)) =Cv(E ′t (v))\Qπ(v)∪Qr
π

v. (1)

This amounts to proving two things:

Cv(E ′t (v))\Cv(Et+1(v))⊆ Qπ(v) (2)

Cv(Et+1(v))\Cv(E ′t (v)) = Qr
π

v (3)

With respect to (2), consider an edge uv ∈ Cv(E ′t (v)) such that uv 6∈ Qπ(v). In that case, uv ∈ Et+1 and

by SUB, uv ∈Cv(Et+1(v)), such that (2) holds. With respect to (3), note that each vw ∈ Qr
π

v is an E ′t (v)-

replacement of some uv ∈ Qπ(v) such that uv ∈Cv(E ′t (v)). By SUB and INCR, this means that

Qr
π

v =Cv(E ′t (v)\Qπ(v))\Cv(E ′t (v)).

As Et+1(v) = E ′t (v)\Qπ(v), this proves (3).

Next, we prove the following:

Cv(E ′t+1(v)) =Cv(Et+1(v)), (4)

which boils down to the fact that edges deleted in Phase 1 of round t +1 do not belong to any choice set

over Et+1. We have to show that

Cv(C−v (Et+1)) =C−v (Et+1). (5)

If this is not the case, then some edge in C−v (Et+1) is dominated by the inverted choice set, implying by

Property 1 that it will be deleted in Phase 1. If (5) holds, then Cv(C−v (T )) = C−v (T ) for all T such that

Et+1 ⊆ T ⊂ E ′t+1 such that eventually no edge in a choice set is deleted in Phase 1 and (4) holds.

By the definition of a reduced problem, we know that for all v ∈V ,

Cv(C−v (E
′
t )) =C−v (E

′
t ). (6)

Assume that (5) does not hold and that there exists an edge uv such that

uv ∈Cv(C−v (Et+1)). (7)
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Now, denote by F the set {
⋃

w6=v Qr
π

w}(v); the set of edges wv, for some w, in π incident to v such that wv

is the E ′(w)-replacement for some edge incident to w. By (1),

C−v (Et+1)⊆C−v (E
′
t )∪F, (8)

such that by MON and (7),

uv ∈Cv(C−v (E
′
t )∪F). (9)

Now, by the definition of a rotation, for all edges wv ∈ F , there is an edge vx = Cv(C−v (E
′
t )∪wv) and

vx ∈Qπ(v). Denote all such edges vx by F ′. By MON and INCR, Cv(C−v (E
′
t )∪F) = F ′, which by (8) and

SUB implies that uv ∈Cv(C−v (Et+1)), contradicting (7), proving (5) and the lemma.

Proof of Lemma 4.3.3. What we have to prove is that E ′
γ[k] = E ′

δ[k]. Note that, because the set of elim-

inated rotations is the same, any difference between E ′
γ[k] and E ′

δ[k] can only be due to an edge that was

deleted at some Phase 1 on, w.l.o.g., the subrun γ[k] while this edge was never deleted on the subrun δ[k].

First we show that

C−v (E
′
γ[k]) =C−v (E

′
δ[k]). (1)

Consider P ′
γ[k′−1] with k′ ≤ k and π such that γ[k′] = (γ[k′−1],π), i.e. π is the next rotation to be eliminated

after having eliminated the sequence γ[k′−1]. Then, by Lemma 4.3.2, Cv(E ′γ[k′](v))=Cv(E ′γ[k′−1](v))\Qπ(v)∪

Qr
π

v. This holds for all k′ and π such that we obtain

Cv(E ′γ[k](v)) =Cv(E ′(v))\{ ∑
π∈γ[k]

Qπ(v)}∪{ ∑
π∈γ[k]

Qr
π

v\ ∑
π∈γ[k]

Qπ(v)}, 13 (2)

for all v ∈V . However, as γ[k] and δ[k] contain the same rotations,

∑
π∈γ[k]

Qπ(v) = ∑
π∈δ[k]

Qπ(v), (3)

and

∑
π∈γ[k]

Qr
π

v = ∑
π∈δ[k]

Qr
π

v, (4)

such that (1) follows.

Next, we show that if an edge uv is deleted at Phase 1 right after eliminating the k′-th rotation, with k′ ≤ k,

on the subrun γ[k], then uv ∈Cv(C−v (E
′
γ[k])∪ uv). By Property 1, we know that uv ∈Cv(C−v (E

′
γ[k′])∪ uv).

13
∑π∈γ[k] Qπ(v) is in there two times as it is possible that an edge is in both ∑π∈γ[k] Qπ(v) and ∑π∈γ[k] Qr

π
v
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Assume that π′ is the rotation that is eliminated after γ[k′]. Denote by F the set {
⋃

w6=v Qr
π′

w}(v). Then,

by Lemma 4.3.2, C−v (E
′
γ[k′+1]) =C−v (E

′
γ[k′])\Qπ′(v)∪F . Denote by F ′ the set of all edges vx such that for

wv ∈ F , vx =Cv(C−v (E
′
γ[k])∪wv). Then by MON,

Cv(C−v (E
′
γ[k′])∪F ∪uv) = F ′∪uv, (5)

such that by INCR uv ∈Cv(C−v (E
′
γ[k′+1])∪uv). Repeating this argument we get that

uv ∈Cv(C−v (E
′
γ[k])∪uv) =Cv(C−v (E

′
δ[k])∪uv), (6)

where the equality follows from (1). Hence, as P ′
δ[k] is a reduced problem, uv 6∈ E ′

δ[k], proving the lemma.

Proof of Lemma 4.3.4. Lemma 4.3.4 will be proven using three other lemmatas:

Lemma 4.5.1 For a reduced partnership problem P ′, if π and π′ are two distinct rotations in ΠP ′ , then π

removes π′ if and only if π′ = πd .

Consider P(π), the problem after eliminating π and P ′(π) the reduced partnership problem after eliminating

π and applying Phase 1 from P ′.

⇐ If π′ = πd , then it is straightforward that eliminating π removes π′, as half of the elements which π′ is

composed of, are no longer in the subsequent reduced partnership problem.

⇒ We have to show that if π′ 6= πd , then π′ ∈ ΠP ′(π) . Before it can be proven that π′ ∈ ΠP ′(π) we have to

show first that all edges in π′ are in E ′(π). This claim has two parts:

(a) No edge in π′ is deleted in the elimination of π,
⋃

uv∈π′ uv⊆ E(π).

(b) No element in π′ is deleted in Phase 1 after eliminating π:
⋃

uv∈π′ uv⊆ E ′(π),

Concerning (a) we prove the following statements:

(i) If π′ 6= π, then Qπ∩Qπ′ = /0. Assume this is not the case: There exists an edge uv ∈ E ′ such that

(uv,vw) ∈ π and (uv,vx) ∈ π′. There is exactly one E ′(v)-replacement of uv for v such that vw = vx.

In addition, Cw(C−w (E
′)∪vw) = wy for some x, hence (uv,vw) can only lead to one other edge-pair,

say (wy,yz). This argument can be repeated such that eventually we find that π = π′.
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(ii) If π′ 6= πd , then Qπ∩{
⋃

uv∈π′ uv\Qπ′}= /0. Assume this is not the case: there exists an edge uv∈ E ′

such that (uv,vw) ∈ π and (xu,uv) ∈ π′. Assume (yz,zu) leads to (uv,vw). This implies that

uv ∈Cu(C−u (E
′)∪ zu) (1)

uv ∈Cu(E ′(u)\xu). (2)

By SUB, (1) and (2) can only hold if

xu ∈C−u (E
′)∪ zu. (3)

However, by the definition of a rotation xu /∈C−u (E
′), such that (3) can only hold if xu = zu. Hence,

we get the edge-pair (yx,xu) ∈ π and (xu,uv) ∈ π′. This argument can then be repeated such that

eventually we find that π′ = πd , contradicting the starting assumption.

Statements (i) and (ii) show that if π′ 6= πd , there are no edges that are both in π and in π′. Hence, (a)

holds.

Now, we prove (b),
⋃

uv∈π′ uv ⊆ E ′(π). Assume on the contrary that uv ∈ π′ but uv 6∈ E ′(π). Lemma 4.3.2

implies that if uv was deleted in Phase 1, then uv 6∈Cv(E(π)(v))∪Cu(E(π)(u)), which by MON implies that

uv 6∈Cv(E ′(v))∪Cu(E ′(u)). Hence, uv is such that (xu,uv) ∈ π′.

Now, by Property 1, one of two statements must hold:

uv ∈Cv(C−v (E
′
(π))∪uv) (4)

uv ∈Cu(C−u (E
′
(π))∪uv). (5)

Assume first that (4) holds. As P ′ is a reduced problem,

uv ∈Cv(C−v (E
′)∪uv), (6)

and Cv(C−v (E
′)∪ uv) = vw for some vw such that (xu,uv) leads to (vw,wy). Define F = {

⋃
u6=v Qr

π
u}(v).

Then, by INCR, vw ∈Cv(C−v (E
′)∪F) as the |F | elements in C−v (E

′)∩Qπ(v) will drop out of the choice

set. By MON,

vw ∈Cv(C−v (E
′)∪F ∪uv), (7)

such that, by INCR, uv ∈Cv(C−v (E
′)∪F ∪ uv). By lemma 4.3.2, C−v (E

′
(π)) ⊆C−v (E

′)∪F . By SUB, this

implies that (4) cannot hold.
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Next, assume that (5) holds. As (xu,uv) is an edge-pair,

uv ∈Cu(E ′(u)\xu). (8)

Hence, by SUB (5) can only hold if xu ∈ C−u (E
′
(π)). However, by lemma 4.3.2 this implies that xu ∈ F

which is not possible as there are no edges that are both in π and π′.

Now that it is established that
⋃

uv∈π′ uv ⊆ E ′(π), we prove that π′ ∈ ΠP ′(π) . There are two points to this

claim:

(i) Consider an edge pair (uv,vw) ∈ π′. First, uv ∈Cv(E ′(π)(v)) by SUB and the definition of a rotation.

Second, vw ∈Cv(E ′(π)(v)), by vw ∈Cv(E ′(v)) and lemma 4.3.2. In addition, vw ∈Cv(E ′(π)(v)\uv)

by SUB. Hence, vw is a E ′(pi)(v)-replacement of uv.

(ii) Assume now that (uv,vw) leads to (wx,xy)∈ π′. By the same argument as for (7), wx∈Cv(C−v (E
′)∪

F ∪ vw) with F = {
⋃

u6=w Qr
π

u}(w), which by INCR implies that wx ∈Cv(C−v (E
′
(π))∪ vw). �

Lemma 4.5.2 Consider a reduced problem P ′ such that {π,πd} ⊆ ΠP ′ . If γ[1] = (π) is such that π′ ∈

ΠP ′(π) , then π′ ∈ΠP ′ .

Consider an edge-pair (uv,(vw)) ∈ π′ that leads to an edge-pair (wx,(xy)) ∈ π′. Proving Lemma 4.5.2

amounts to showing that

(a) uv ∈Cv(E ′(v)),

(b) vw ∈Cv(E ′(v)),

(c) vw ∈Cv(E ′(v)\uv),

(d) wx =Cv(C−v (E
′)∪ vw).

(a) By Lemma 4.3.2,

Cv(E ′(π)(v)) =Cv(E ′(v))\Qπ(v)∪Qr
π

v. (9)

Hence, if uv ∈Cv(E ′(v)), then uv ∈Qr
π

v. However, this implies that uv ∈Qπd (v). As uv ∈Cu(E ′(π)(u)), by

MON,

uv ∈Cu(E ′(u)). (10)

such that uv ∈Cv(E ′(v)), contradicting uv ∈Cv(E ′(v)).
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(b) As vw ∈Cv(E ′(π)(v)), vw ∈Cv(E ′(v)), by MON.

(c) Note that

vw ∈Cv(E ′(π)(v)\uv) (11)

and uv 6∈ C−v (E
′), by (10). If vw 6∈ Cv(E ′(v)\uv), then there exists an edge vz with vz 6= vw such that it

is the E ′(v)-replacement of uv. By SUB, vz ∈Cv(E ′(π)(v)\uv∪ vz), such that there are two possibilities if

(11) holds.

(i) vz ∈Cv(E ′(π)(v)). By Lemma 4.3.2, vz∈Qr
π

v. However, then vz∈Qπd (v) such that vz=Cv(C−v (E
′)∪

av) for some av. As av ∈ Qπ(v), av 6= uv, since uv ∈ E ′(π). In addition, uv 6∈C−v (E
′) such that by

MON, vz ∈Cv(E ′(v)\uv) and vz cannot be the E ′(v)-replacement of uv.

(ii) vz ∈ Qπ(v). As vz 6∈Cv(E ′(v)), this implies that vz ∈Cz(E ′(z)) and

vz =Cv(C−v (E
′)∪av) (12)

for some av such that av∈Qr
π

a. Hence (av,vz) is an edge-pair in πd , which by SUB implies that av∈

Cv(E ′(π)(v)). In addition, as π is eliminated, av ∈Ca(E ′(π)(a)). As av ∈Cv(E ′(π)(v))∩C−v (E
′
(π)(v)),

av 6= uv. However, this implies a contradiction with (12), as uv 6∈C−v (E
′), which by MON implies

vz ∈Cv(E ′(v)\uv).

Hence, both possibilities are not possible and vw ∈Cv(E ′(v)\uv).

(d) We know that

wx =Cw(C−w (E
′
(π))∪ vw) (13)

and vw 6∈C−w (E
′), by point (b). Define F =

⋃
u6=w Qr

π
u. By Lemma 4.3.2,

C−w (E
′) =C−w (E

′
(π))\F ∪Qr

πd
w. (14)

By the definition of a rotation and INCR,

Cw(C−w (E
′
(π))∪Qr

πd
w) = Qr

πd
w. (15)

By MON and (13) and (15) we get

{Qr
πd

w,wx} ⊂Cw(C−w (E
′
(π))∪Qr

πd
w∪ vw). (16)
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However, each edge in Qr
πd

w is also an E ′(w)-replacement of some element in F such that

Qr
πd

w ⊆Cw(C−w (E
′
(π))\F ∪Qr

πd
w∪ vw). (17)

By INCR, (17) implies that wx =Cw(C−w (E
′)∪ vw). �

Lemma 4.5.3 Consider a reduced problem P ′ and two subruns of order k and l, γ[k], and δ[l] such that

φ(γ[k]) ⊆ φ(δ[l]). In addition, consider a rotation π that is not covered by φ(δ[l]). If π ∈ ΠP ′
γ[k]

, then

π ∈ΠP ′
δ[l]

.

First, consider k = 0. Then π ∈ΠP ′ = ΠP ′
δ[0]

and π ∈ΠP ′
δ[l]

by lemma 4.5.1. Next, assume that the lemma

holds for all subruns, δ[l] and γ[k′] such that k′ < k and define the following statement,

Q (α[a],β[b],ρ): For two subruns α[a] and β[b] such that φ(α[a]) ⊂ φ(β[b]), if ρ is not cov-

ered by φ(β[b]) and ρ ∈ΠP ′
α[a]

, then ρ ∈ΠP ′
β[b]

.

The order of Q (α[a],β[b],ρ) is b. A statement Q (α[a],β[b],ρ) is called solved if we can prove that the

statement holds. The goal of the proof is to solve Q1 = {Q (γ[k],δ[l],π)}.

Consider the sequence δ∗ = (ρ1,ρ2, . . . ,ρl−k) that has only the rotations in φ(δ[l])\φ(γ[k]) but with their

order in δ[l] preserved. Denote by q(ρn) the position of ρn in δ[l] for all n ≤ l− k. To solve Q1, we need

to show that there exists a subrun γ∗ = (γ[k],δ∗). Then, as π ∈ ΠP ′
γ[k]

, by lemma 4.5.1, π ∈ ΠP ′
γ∗

and by

lemma 4.3.3, π ∈ΠP ′
δ[l]

.

Showing that there exists a subrun γ∗ amounts to solving the following set of statements

Q2 = {Q (δ[q(ρn)−1],(γ[k],δ∗[n−1]),ρn) for all ρn ∈ γ
∗}. (18)

To see this, note that we want to prove that, for all n, ρn ∈ΠP ′(γ[k],δ∗ [n−1])
while we know that ρn ∈ΠP ′

δ[q(ρn)−1]
.

In addition,

φ(δ[q(ρn)−1])⊆ φ((γ[k],δ∗[n−1])). (19)

Finally, ρn is not covered by (γ[k],δ∗[n−1]). If ρn would be covered by (γ[k],δ∗[n−1]) then δ[l] cannot

be a subrun as it would imply that either ρn is eliminated twice – which is impossible – or that ρd
n is also

eliminated – which is impossible by lemma 4.5.1. The statements in Q2 will have an order that is at most

k+(l− k)−1 = l−1.

If we want to solve a statement in Q2, say Q (δ[q(ρn)− 1],(γ[k],δ∗[n− 1]),ρn), then – as the previous

argument can be repeated – we need to solve an additional set of statements. The set of all additional
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statements (over all statements in Q2) will be denoted Q3, where the solvability of Q2 depends on the

solvability of Q3. The statements in Q3 will have an order that is at most l− 2. This process can be

repeated such that eventually we are bound to end up with a set of statements Qi in which the maximal

order is lower than k. By induction, all statements in Qi+1 can be solved, implying that all statements in

Qi can be solved as well, which eventually implies that Q1 can be solved, proving the lemma.�

These three lemmata enable us to prove Lemma 4.3.4. Recall that a rotation ρ is covered by φ(δ[l]) if

either ρ∈ φ(δ[l]) or ρd ∈ φ(δ[l]). Consider γ[k] = (π1, . . . ,πk) and δ[l] = (ρ1, . . . ,ρk). For φ(γ[k])∪φ(δ[l]),

denote by n∗ the number of dual pairs, i.e. the number of pairs of rotations that are each others duals. If

n∗ = 0, then φ(γ[k])⊆ φ(δ[l]) and the lemma holds by Lemma 4.5.3. Assume that the lemma holds for all

n∗ < n and set n∗ = n.

From all n∗ dual pairs in φ(γ[k])∪φ(δ[l]) select that pair {πp,ρq} such that q is as low as possible, i.e. ρq

is the first rotation in δ[l] such that it has a dual – πp – in γ[k]. Consider P ′δ[q−1], the problem in δ[l]

just before ρq will be eliminated. Rotation π1 is in ΠP ′ which by Lemma 4.5.1 implies that π1 ∈ΠP ′
δ[q−1]

.

Eliminate π1 in P ′
δ[q−1] to get a subrun (δ[q−1],π1). By Lemma 4.5.3,

π2 ∈ΠP ′(δ[q−1],π1)
. (20)

Repeating this argument and by Lemma 4.5.1, we get that

{πp,ρq} ⊂ΠP ′(δ[q−1],γ[p−1])
(21)

and

πp+1 ∈ΠP ′(δ[q−1],γ[p])
. (22)

By Lemma 4.5.2, (21) and (22) imply that

πp+1 ∈ΠP ′(δ[q−1],γ[p−1])
. (23)

Eliminating πp+1 in P ′(δ[q−1],γ[p−1]) and by Lemma 4.5.1, we get that

{πp,ρq} ⊂ΠP ′(δ[q−1],γ[p−1]),πp+1)
. (24)

As πp+2 ∈ΠP ′(δ[q−1],γ[p+1])
, Lemma 4.5.2 implies that πp+2 ∈ΠP ′(δ[q−1],γ[p−1],πp+1)

. This argument can be repeated

such that eventually, by Lemma 4.5.3, for γ′[k′] = (δ[q],γ[p− 1],πp+1, . . . ,πk) with k′ = q+(k− 1) it is

shown that

π ∈ΠP ′
γ′[k′]

. (25)
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Assume γ′[k′] = (π′1, . . . ,π
′
k′). Now, γ′[k′] consists of elements of γ[k] and elements of δ[l]. Hence, since any

π j in γ[k] was covered by φ(δ[l]), it is also the case that any π′j′ in γ′[k′] is covered by φ(δ[l]). In addition,

no new rotations were added, while πp 6∈ γ′[k′]. Hence the number of dual pairs in φ(γ′[k′])∪φ(δ[l]) will

be lower than n∗. By induction, (25) then implies that π ∈ΠP ′
δ[l]

.

4.5.2 The dual enumeration method.

Gusfield (1988) presents an efficient method to produce all stable matchings, exploiting the properties of

the stable roommate problem. This appendix will show that this enumeration method can be applied to

the partnership problem as well.

Exposing a rotation Recall that we defined the predecessor relation in section 4.3, where a rotation

π was a predecessor of ρ if ρ ∈ ΠP ′
γ[k]

only if π ∈ γ[k]. Define Ω(ρ) as the set of all predecessors of ρ.

Then, if ρ is exposed after a subrun, all rotations in Ω(ρ) should be eliminated in that subrun. We will also

show the reverse. If a subrun eliminates all rotations in Ω(ρ), then ρ is exposed after the subrun. Hence,

the only way to expose a rotation ρ is to eliminate all rotations in Ω(ρ) and elimination of all rotations in

Ω(ρ) suffices to expose ρ. Formally,

Lemma 4.5.4 For a rotation ρ and a subrun γ[k] such that ρ is not covered by γ[k]: ρ ∈ΠP ′
γ[k]

if and only

if Ω(ρ)⊆ φ(γ[k]).

Before giving the proof we first need another result, that states that if a rotation ρ is not exposed for a given

problem, then there exists at most one rotation π in that given problem whose elimination can expose ρ:

Lemma 4.5.5 For a reduced partnership problem P ′ and a rotation π 6∈ ΠP ′ , if ρ is a rotation in ΠP ′ ,

such that π ∈ΠP ′(ρ) , then ρ is the unique such rotation in ΠP ′ .

Proof Consider two rotations ρ1 and ρ2 such that they are both exposed in P ′ and such that π is exposed

after eliminating either ρ1 or ρ2. We have to prove that ρ1 = ρ2. For simplicity, call the process of

eliminating ρ1 and subsequently applying Phase 1 run 1, and the process of eliminating ρ2 and applying

Phase 1, run 2.

Rotation π becomes exposed after either of the following events: First, there may exist two edge pairs in

π, (xu,uv) and (vw,wy) such that (xu,uv) does not lead to (vw,wy) in P ′ but it does so after run 1 and run
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2. Hence,

vw ∈Cv(C−v (E
′)∪uv), (26)

vw ∈Cv(C−v (E
′
(ρ1)

)∪uv), (27)

vw ∈Cv(C−v (E
′
(ρ2)

)∪uv). (28)

Note that (26) implies, by INCR, that there exists vz ∈Cv(C−v (E
′)∪uv) and vz 6= uv, by the reducedness

of P ′. Set Fρ1 = {
⋃

w6=v Qr
ρ1

w}(v). If vz 6∈ Qρ1 , then by INCR, vw ∈Cv(C−v (E
′)∪Fρ1 ∪uv), which by SUB

and Lemma 4.3.2 implies that (27) does not hold. Hence, vz ∈Qρ1 . However, the same argument goes for

ρ2 such that vz must be in Qρ2 contradicting vz ∈ Qρ1 unless ρ1 = ρ2.

Second, (uv,vw) is an edge-pair in P ′(ρ1)
and P ′(ρ2)

but not in P ′. Assume uv 6∈Cv(E ′(v)). Then, by Lemma

4.3.2, uv ∈ Qr
ρ1

v and uv ∈ Qr
ρ2

v, which implies that ρ1 = ρ2. Hence, uv ∈ Cv(E ′(v)). Then there should

exist an edge vy 6= vw that is the E ′(v)-replacement of uv. As vy is no longer an E ′(ρ1)
(v)- or E ′(ρ2)

(v)-

replacement for uv this means in runs 1 and 2 either vy was deleted or vy is in the choice set after runs 1

and 2. Take run 1 and assume vy was deleted. Edge vy can be deleted in two ways:

(i) vy is deleted in Phase 2; vy ∈ Qρ1 : This means that uv must be in C−v (E(ρ1)), as otherwise vy can

never be dominated by the inverted choice set. However, uv is also in Cv(E ′(v)), by which (uv,vw)

cannot be an edge-pair in P ′(ρ1)
.

(ii) vy is deleted in Phase 1: The same argument as in (i) implies that vy must be deleted because

vy ∈Cy(C−y (E(ρ1))∪ vy) (29)

as vy ∈Cv(C−v (E(ρ1))∪ vy). Note that, by the reducedness of P ′, vy ∈Cy(C−y (E
′)∪ vy), indicating,

by INCR, that there is an edge in C−y (E
′), say ya, that is in Cy(C−y (E

′)∪ vy). If ya 6∈ Q(ρ1), then by

INCR, (29) cannot hold, hence ya ∈ Q(ρ1).

If vy was deleted in run 2 as well, then by (i) and (ii), ya has to be in Q(ρ2), which violates ya∈Q(ρ1) unless

ρ1 = ρ2. Hence, if we assume that ρ1 6= ρ2, vy∈Cv(E ′(ρ2)
) and by Lemma 4.3.2, there is an edge-pair in ρ2,

(av,vy) that leads to an edge-pair (yz,zb), indicating that yz =Cy(C−y (E
′)∪ vy). As yz ∈ Q(ρ2), yz 6∈ Q(ρ1),

which implies by INCR that vy ∈Cy(C−y (E
′)∪Fρ1 ∪ vy) and by SUB (29) cannot hold and ρ1 = ρ2.

This leaves as a final possibility the case where vy is both in Cv(E ′(ρ1)
) and Cv(E ′(ρ2)

). However, by Lemma

4.3.2, this implies that ρ1 = ρ2.
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Proof of Lemma 4.5.4. ⇒ If ρ is exposed in a reduced problem P ′
γ[k], then it follows from the definition

of a predecessor that Ω(ρ)⊆ φ(γ[k]).

⇐ Consider the subrun ω[k] such that Ω(ρ) = φ(ω[k]). If ⇐ does not hold, then ρ may not be exposed

in P ′
ω[k]. However, by the definition of a predecessor, there should exist another subrun γ[k] with Ω(ρ) ⊂

φ(γ[k]) such that ρ is exposed after γ[k]. As there are elements of γ[k] that are not in Ω(ρ), there should exist

another subrun δ[l] with Ω(ρ) ⊂ φ(δ[l]) such that ρ is exposed after δ[l] as well and such that φ(δ[l]) 6=

φ(γ[k]). We will show that such a situation is not possible.

We show that it is not possible that we have two distinct subruns γ[k] = (π1, . . . ,πk) and δ[l] = (ρ1, . . . ,ρl)

such that ρ is exposed in P ′
γ[k] and P ′

δ[l] but ρ is not exposed in P ′
γ[k′] and P ′

δ[l′] for any k′ < k and l′ < l.

Denote by n∗ the number of elements in δ[l] that are not covered by γ[k]. First, assume that πk 6= ρl . By

Lemma 4.3.4, we can create a subrun γ∗[k′] that eliminates all elements of γ[k], and then all n∗ elements

of δ[l] that are not covered by γ[k]. Lemma 4.3.4 also tells us that πk and ρl are exposed in P ′
γ∗[k′]. In

addition, by that same lemma, ρ will be exposed in P ′(γ∗[k′],πk)
and P ′(γ∗[k′],ρl)

. If ρ is not exposed in P ′
γ∗[k′],

then Lemma 4.5.5 is violated, hence ρ is exposed in P ′
γ∗[k′].

If, πk = ρl , then the same argument implies that we can replace the elimination of πk−1 and ρl−1 by the

elimination of πk, creating a new subrun γ∗[k′] and ρ is exposed after this subrun.

Denote γ∗[k′] by δ[l]. Now, we are faced with a similar situation; a subrun γ[k] after which π is exposed

and a subrun δ[l] = γ∗[k′] after which π is also exposed. However, this time, there are n∗−1 elements of

δ[l] not covered by γ[k]. Now, we form another subrun γ∗[k′] that first eliminates the first k−1 elements of

γ[k] and then all first l−1 elements of the new δ[l] that are not covered by γ[k]. Again, we can show that ρ

is exposed after γ∗[k′]. Repeating this exercise, we create new subruns δ[l] with a lower n∗ and eventually

we will have that ρ is exposed after γ[k−1] violating the starting assumption.

The method. Call the set of rotations that are eliminated on a particular run of SP a run set. In the words

of Gusfield (1988), the idea is to simulate SP, forcing it to generate each distinct run set, and associated

stable partnership, exactly once. Consider a directed tree B where a node x represents a reduced problem

P ′x – the root node is P ′. A leaf is a node that has no arcs leaving. When a node x is not a leaf of the

tree, there are at most two arcs leaving x. The first arc – the left arc – will be labeled by a rotation π

that is exposed in P ′x. The left arc leaving x arrives at a node y that represents the reduced problem after

eliminating π and applying Phase 1. If this rotation is singular, there is no second arc leaving. If this

rotation has a dual, πd , then there will be a second arc – the right arc – that will be labeled by Ω(πd). This
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right arc arrives at a node z that represents the reduced problem after eliminating all rotations in Ω(πd)

and πd and applying Phase 1. Note that the path from the root of B along all left arcs to the leaf, represents

one particular run of SP.

Each leaf of B represents a reduced problem that has no rotations. The idea is now that any leaf of B

represents a stable partnership and that no stable partnership is represented by more than one leaf. Hence,

by applying the dual enumeration method, we enumerate all stable partnerships while avoiding producing

the same stable partnership twice. Formally,

Theorem 4.5.6 (Theorem 6.2. in Gusfield (1988).) For the directed tree B, if P ′x is the reduced partner-

ship problem at a leaf x, then E ′x is a stable partnership of P and there does not exist another leaf x′ such

that E ′x′ = E ′x.

We will not give the proof of theorem 4.5.6 as it is in large part the same as the proof of Gusfield (1988,

Theorem 6.2.), because it builds on the same results that we extended in this paper (theorems 4.3.1, 4.3.5

and 4.3.6). However, there is one property, used in the proof of Gusfield (1988), that is yet to be proven in

a partnership context:

Lemma 4.5.7 Let π be such that π ∈ Φd . Then, if there exists a subrun γ[k] such that π ∈ ΠP ′
γ[k]

, there

exists a subrun γ∗[k+ k′] = (γ[k],γ′[k′]) such that πd ∈ΠP ′
γ∗ [k+k′]

.

Proof By Theorem 4.3.5, there exists a subrun δ[l] such that πd ∈ΠP ′
δ[l]

. Note that π 6∈ δ[l]. Consider the

first rotation, ρ1, in the subrun δ[l], that is not covered by γ[k]. As all previous rotations in δ[l] are covered

by γ[k], by Lemma 4.3.4, ρ1 is exposed in P ′
γ[k]. Eliminating ρ1 leads to the reduced problem P ′(γ[k],ρ1)

.

Now, there is a new first rotation, say ρ2, in the subrun δ[l] that is not covered by (γ[k],ρ1). Again, by

Lemma 4.3.4, ρ2 is exposed in P ′(γ[k],ρ1)
such that it can be eliminated. Hence, repeating this argument, we

can create a subrun γ∗[k+ k′] such that δ[l] is covered by this subrun and such that π 6∈ γ∗[k+ k′]. Lemma

4.3.4 can be applied and πd ∈ΠP ′
γ∗ [k+k′]

.

Complexity Set n = |V | and m = |E| for a partnership problem P . If we assume that there are k stable

partnerships, we want to know how long it takes to find those k stable partnerships, assuming we use

an oracle that gives the function Cv(.) for all v. Fleiner (2010, Theorem 4.1.) showed that a modified
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version of SP runs in O(n+m) time, that is, the algorithm uses O(n+m) calls of the oracle.14 The dual

enumeration method contains a number of steps:

(1) Finding all rotations and their types: Running the modified version of SP once, we get a set of rota-

tions that covers all rotations eliminated in any run of SP – by Theorem 4.3.5. Hence, obtaining the

set of rotations takes O(n+m) time. To determine the type of a rotation π – singular or dual – we

go back to where this rotation was eliminated in the particular run and continue SP without elimi-

nating π. This boils down to another run of SP and requires O(n+m) time. There are maximally m

rotations, such that this whole process uses O(m(n+m)) calls.

(2) Construct the predecessor relations: Following the analysis of Gusfield (1988, Section 6.2.3.), this

takes O(m) calls.

(3) The dual enumeration method: By Gusfield (1988, Section 6.2.4.), producing one stable partnership

takes O(m). Hence, this process runs in O(k.m) time.

This implies that the whole process takes at most O(m(n+m)+ km) time.

14As mentioned before, in footnote 6, we presented a two-phase algorithm here to make the analysis more straight-

forward. The modified, more efficient, version starts with a first application of phase 1. Then phase 2 and subsequent

phase 1 can be combined, as the edges eliminated in phase 2 indicate which edges might be dominated by the in-

verted choice set in the post-phase 2 partnership problem.
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