
GPU-DRIVEN RECOMBINATION AND TRANSFORMATION OF YCoCg-R
VIDEO SAMPLES

Dieter Van Rijsselbergen, Wesley De Neve, and Rik Van de Walle
Department of Electronics and Information Systems - Multimedia Lab

Ghent University - IBBT
Gaston Crommenlaan 8/201, B-9050 Ledeberg-Ghent, Belgium

e-mail: {Dieter.VanRijsselbergen, Wesley.DeNeve, Rik.VandeWalle}@UGent.be

ABSTRACT
Common programmable Graphics Processing Units (GPU)
are capable of more than just rendering real-time effects
for games. They can also be used for image processing and
the acceleration of video decoding. This paper describes
an extended implementation of the H.264/AVC YCoCg-R
to RGB color space transformation on the GPU. Both the
color space transformation and recombination of the color
samples from a nontrivial data layout are performed by the
GPU. Using mid- to high-range GPUs, this extended im-
plementation offers a significant gain in processing speed
compared to an existing basic GPU version and an op-
timized CPU implementation. An ATI X1900 GPU was
capable of processing more than 73 high-resolution 1080p
YCoCg-R frames per second, which is over twice the speed
of the CPU-only transformation using a Pentium D 820.

KEY WORDS
GPU, H.264/AVC, YCoCg-R, pixel shaders, performance

1 Introduction

H.264/AVC is a standardized specification for digital video
coding characterized by a design that targets efficiency,
robustness, and usability. The first version of this stan-
dard primarily focused on consumer-quality video, char-
acterized by an eight bit per sample representation and a
4:2:0 chromaticity subsampling format. In July 2004, the
Fidelity Range Extensions (FRExt) were amended to the
H.264/AVC standard [1]. These extensions serve the more
demanding markets like studio post production and medical
imaging wherein preservation of quality is of great impor-
tance. Among the coding tools introduced by the Fidelity
Range Extensions are two new color space transformations:
YCoCg (luma, chroma orange, and chroma green) and its
reversible variant YCoCg-R. The latter color space trans-
formation allows for a lossless conversion from and to the
RGB color space. This lossless quality is important in the
context of (near) lossless video coding in the aforemen-
tioned application areas. The YCoCg-R color space was
defined in the context of the High 4:4:4 profile of the FRExt
amendment.

A color space conversion is one of the most compu-
tationally expensive operations in a typical video decod-

ing process. As shown by Shen et al. [2] no less than
40% of the decoding time can be spent on this color space
transformation, in case of a YCbCr to RGB tranforma-
tion. The goal of this research is to utilize the program-
mable 3-D graphics pipeline, implemented by consumer-
oriented GPUs, to perform the color space transformation
from YCoCg-R to RGB. More specifically, this paper dis-
cusses an extended implementation of a preliminary basic
GPU-assisted YCoCg-R decoding process [3].

This paper is outlined as follows: Section 2 briefly
outlines the YCoCg-R color space, followed by Section 3,
where the basics of GPU shaders, and the architecture and
shortcomings of the basic GPU-assisted implementation
are laid out. Section 4 continues with describing the ex-
tended implementation. Section 5 compares performance
results of the basic GPU, extended GPU and CPU-only ver-
sion, and Section 6 concludes this paper.

2 The YCoCg-R Color Space

The YCoCg color space is characterized by a simple set
of transformation operations, as well as an improved cod-
ing gain compared to both RGB and YCbCr [4]. The sim-
ple transformation definition addresses ambiguities such as
difficult to use floating point constants and rounding errors
to which YCbCr and similar color spaces are often sub-
jected. By providing an additional bit for the representa-
tion of the chroma components, compared to the luma com-
ponent, this transformation offers a reversible and lossless
conversion between the RGB and YCoCg color space and
is hence called YCoCg-R.

The YCoCg-R scheme requires a mere six integer op-
erations per transformation and is defined by the follow-
ing equations (1). If intermediate results were stored using
more bits than reserved for each color channel, an addi-
tional bit masking operation must be applied to the final
result.

Co = R−B

t = B + (Co� 1)
Cg = G− t

Y = t + (Cg � 1)

⇔

t = Y − (Cg � 1)
G = Cg + t

B = t− (Co� 1)
R = Co + B

(1)

2.1 The YCoCg-R file format

As there exists no standard file format for storing YCoCg-
R images, an own format was developed, as illustrated in
Figure 1. Considering the nature of current video coding
specifications where luma and chromaticity are processed
individually (and are combined only in the final decoding
step) a planar format for laying out color component frames
was opted for.

Cg

Y

Co

8 bytes

1 byte

Cg

8 bits

1 bit

Bit Collector

File Layout

Pixel Format

8 bits

Y

Co

Cg

Figure 1. The YCoCg-R file format and its decomposition

A common representation of eight bits was chosen for
the luma components. As is required for lossless YCoCg-
R processing, one additional bit is added for representing
the chroma samples. In order to maintain as much byte
alignment as possible and not to suffer from any unused
bits, the most significant bit of each of eight consecutive
chroma samples is collected in a byte-sized bit collector.
This collector is stored after the eight lower-bit bytes of the
chroma samples. A unit of eight bytes and a bit collector is
referred to as an interval. This file layout induces a memory
fetch pattern that is identical for all samples in an interval.

3 GPU-assisted YCoCg-R decoding

3.1 Shaders

While the first generations of so-called 3-D acceleration
chips implemented a 3-D pipeline of fixed functionality,
newer programmable hardware generations allow full con-
trol over the way in which vertices and pixels are processed
by exposing an extensive instruction set of vector-oriented
floating point operations. These GPUs offer great float-
ing point processing power for graphics-oriented applica-
tions and provide a number of parallel processing paths.
GPUs operate simultaneously on both image pixels and
pixel components (pixels can be considered as a vector of
e.g., red, green, and blue for the RGB color space). In

both cases, the GPU realizes the Single Instruction Mul-
tiple Data (SIMD) paradigm [5].

In order to gain access to the programmable core of
the GPU, it is necessary to make use of vertex or pixel
shaders. Vertex shaders are used to transform vertices in
space into points on a two-dimensional plane which repre-
sents the screen. Pixel shaders are then employed to fill
in (or rasterize) rectangles made up of transformed ver-
tices. The pixel shader is invoked for every pixel drawn
and its output is determined as a function of texture sam-
ples and numerical operations. As such, pixels shaders are
suited for the implementation of a color space transforma-
tion. All shaders in this research were compiled for the
PS 2 0 pixel shader profile, using the High Level Shading
Language (HLSL) compiler. Rewriting the shaders in as-
sembly code produced no substantial speedups. The com-
piler has proven capable of performing most of the opti-
mizations itself.

3.2 The Persephone engine

The Persephone Engine, shown in Figure 2, is an own de-
veloped software platform, built on top of the Direct3D API
and its Effects framework, that allows for extensive testing
of the application of pixel and vertex shaders on uncom-
pressed video images. The data flow in the Persephone En-
gine is as follows. Producer objects read the uncompressed
video data from hard disk, thereby caching this data in sys-
tem memory buffers to avoid hard-disk delays. Secondly,
the data can be preprocessed and is then uploaded over the
system interconnect bus (e.g., AGP or PCI Express) to the
video memory on the graphics card. Finally, the 3-D graph-
ics pipeline state, scene geometry and actual visualization
(on a display or read back from the frame buffer into a file)
is handled by a Renderer object. This Renderer object also
initiates the upload process carried out by the Producer.

Renderer

Producer

Graphics Hardware

GPU

Texture Memory Render TargetHard

Disk

Memory

Buffer CPU

Figure 2. Schematic view of the Persephone engine

3.3 Limitations of the basic implementation

Figure 3 depicts the workflow of a basic implementation.
The YCoCgReader producer reads YCoCg-R frames from
disk using the routines provided by the operating system. It
copies the luma plane directly to video memory in a 8-bit
per sample texture format. The compacted chroma samples
are recombined into a texture of 16-bit words in the video
memory. The pixel shader then applies correct scaling to

Co Cg Y

YCoCgReader::getData()

YCoCg-R file

CPU

fread()

Graphics Hardware

yTexture

coTexture

cgTexture

RenderTarget

pixel shader

Interconnect bus
(AGP/PCI Express)

Figure 3. Data flow in the basic GPU implementation

all samples fetched from the texture memory and performs
the color space transformation from YCoCg-R to RGB.

This approach, although already proven to be signifi-
cantly faster than a pure CPU implementation [3], still has
a number of limitations. Storing and uploading the chroma
samples in 16-bit units, and thereby wasting 7 bits, intro-
duces a 44% overhead in bus bandwidth and video memory
usage. Also, the recombination of the chroma samples is
performed by the CPU. This requires a couple of instruc-
tions per sample, and is of considerable cost compared to
the mere six integer operations required for the actual color
space transformation.

4 Recombination of YCoCg-R samples on
the GPU

In order to deal with the limitations mentioned above, the
basic implementation was extended to rely entirely on the
GPU to perform the remaining chroma sample recombina-
tion and actual color space transformation.

For a given output pixel location (x, y), the following
steps need to be executed in order to reconstruct the chroma
samples.

1. Determination of the pixel’s interval and position
therein. Both can be determined solely based on the
x-coordinate.

intervalx,y =
⌊x

8

⌋
(2)

bitx,y = x (mod 8) (3)

2. Texture fetch of the least significant byte (LSByte) of
the Co and Cg samples. Both chroma channels em-
ploy a single coordinate, defined in (4).

coordLSByte,x,y = (x + intervalx,y, y) (4)

3. Texture fetch of the Co and Cg bit collectors, using
(5).

coordcollectors,x,y = 8 + 9 intervalx,y (5)

4. Bit extraction based on the collector and pixel posi-
tion. Essentially, this step implements (6) (with Ci

Interconnect bus
(AGP/PCI Express)

Co

Graphics Hardware

yTexture

coTexture

cgTexture

RenderTarget

Y

YCoCg-R file

fread()

pixel shader

CPU

Co

Figure 4. Data flow proposition for the extended imple-
mentation

being either Co or Cg). The GPU approach, however,
will be somewhat different and is discussed later.

MSBCi,x,y = (collectorCi,x,y � bitx,y) & 1 (6)

5. Recombination of the least significant byte with the
most significant bit, resulting in reconstructed chroma
samples. This final step performs the calculation in
(7).

Ci,x,y = MSBCi,x,y + (LSByteCi,x,y � 8) (7)

A single pixel shader is executed for each pixel in the
transformed image and an identical code path is followed
on each invocation.

The data flow in this extended implementation, de-
picted in Figure 4, is much simpler. A new Producer ob-
ject reads data from disk directly into a texture surface in
video memory. Profiling shows that this operation is essen-
tially a repeated movsd instruction, albeit used with some
nuance; since the actual width (or pitch) of a texture sur-
face can be larger than the requested texture size, frames
are copied scanline per scanline, instead of in a single op-
eration. All textures, both luma and chroma, contain single
byte elements (i.e., the D3DFMT L8 texture format) and
no memory and bus bandwidth is wasted.

4.1 Extended vertex processing

The first step of the recombination, the calculation of a
pixel’s interval and bit index, could be performed entirely
in the pixel shader itself. However, a more elegant solution
can be devised by extending the geometry and vertex shad-
ing, thereby profiting from a number of inherent graphics
pipeline principles.

The preliminary implementation employs a single
quad1 (rasterized as two rectangles) of four vertices as un-
derlying geometry to which the entire transformed image
is mapped. Each vertex is assigned a single texture coor-
dinate, as illustrated in Figure 5. The upper left pixel of

1Since the GPU rasterizes in terms of triangles, each quad has to con-
sist of two triangles. Both triangles will share two of the four vertices, as
is also illustrated in Figure 5.

the image is mapped to texture coordinate (0,0), the lower
right pixel to coordinate (1,1) and all other pixels are inter-
polated between these extremes.

image width

tex0: (1,0) vertex
tex0: (0,0)

tex0: (0,1) tex0: (1,1)

Figure 5. The original geometry, consisting of a single quad
and texture coordinate

The novel approach uses a quad per pixel interval (i.e.,
one quad for every 8 pixels wide vertical strip) instead of
one spanning the entire image. Each vertex is also assigned
an additional texture coordinate, indicating the interval rep-
resented by that vertex. This new geometry is illustrated in
Figure 6.

The additional texture coordinate can easily be gener-
ated by means of a vertex shader. Since the number of ver-
tices to be processed is substantially lower than the num-
ber of pixels to be rasterized, processing time can be saved
by moving functionality from pixel shading to the vertex
processing phase. Below, the new vertex shader is listed.
The input vertex position and texture coordinate, both cal-
culated by the Persephone renderer at startup, are passed
through to output. The additional second texture coordi-
nate is used to store the vertex’s interval and is also re-
turned. This vertex shader requires only five instructions,
two multiplications and three trivial moves.
VS(f l o a t 4 pos : POSITION , f l o a t 3 t e x 0 : TEXCOORD0) {

VSOutpu t 2 tex ou tv ;
ou tv . pos = pos ;
ou tv . t e x 0 = t e x 0 ;
ou tv . t e x 1 = f l o a t 2 (t e x 0 . x ∗ uvImageWidth / 8 . 0 , 0) ;
r e t u r n ou tv ;

}

For every rasterized pixel, the GPU will interpolate
the exact texture coordinate, using the coordinates assigned
to the vertices of the triangle. This interpolation, inherent
to the graphics pipeline and essentially without additional
cost, provides the pixel shader with exactly the information
it requires. The interpolated texture coordinate will contain
the pixel’s interval as its integer part. The fractional part of
that texture coordinate represents the position of the pixel
in the interval. This extended geometry and vertex process-
ing approach reduces the pixel shader by two instructions.

4.2 Bit lookups

Since current generations of GPUs have no support for bit-
wise integer operations, such as AND or bit shifts, there is
no way to carry out the fourth step of the chroma recombi-

8 pixels

interval i-1 interval i interval i+1

texcoord: i.25

texcoord: i.375

tex1: i-1 tex1: i tex1: i+1

vertex

Figure 6. New geometry consists of different quads and
adds a texture coordinate

nation, i.e., the extraction of collector bits, using an elegant
instruction set.

In order to determine the value of a bit, two ap-
proaches can be taken. The first option is to arithmetically
calculate the value of the bit (indexed starting from least
significant bit 0) of a value x, as follows.

bit(x, i) = round
(
frac

(x

2i+1

))
(8)

The pixel shader can use (8) to determine the correct
bit value. Notice that such a function can process both
chroma collectors concurrently.

f l o a t 2 l o o k u p B i t (f l o a t 2 i n p u t , f l o a t b i t) {
f l o a t t = exp2 (f l o o r (8∗ b i t) + 1) ;
r e t u r n round (f r a c (i n p u t / t)) ;

}

A Lookup Table (LUT) can serve as an alternative to
the arithmetic bit calculation. LUTs are commonly used in
GPU image processing operations such as color corrections
[6]. Their use avoids expensive calculations of a (prefer-
ably continuous) function for each element in its domain,
by storing discrete pairs of elements and respective func-
tion values. Figure 7 illustrates the LUT used in this case.
The LUT is implemented as a texture of 256 by 8 elements
and is filled according to equation 8. As such, the table
contains one row of elements for each possible byte value,
i.e., 28 = 256 combinations.

The bit collector serves as the first coordinate of the
LUT. The bit index obtained from the vertex shader serves
as the other. As this interpolated fractional value lies, nat-
urally, within the [0,1] interval, it can be employed imme-
diately for addressing the LUT.

The lookup table incurs an additional texture read, but
considering the limited size of the table (2048 entries) a
texture cache possibly handles most reads directly. How-
ever, if the arithmetic function compiles (and optimizes)
to a limited number of instructions, the actual calculation

0x1 0x1 0x1 0x1 0x1 0x1 0x1 0x1

0x0 0x0 0x0 0x0 0x0 0x0 0x1

0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

lookupBit(bit 3, value 1)

07

0

255

0x0

256x8 Bit Lookup Table

Figure 7. Retrieval of the fourth bit from byte value 1, by
means of a Lookup Table

could still be cheaper than a texture memory fetch, espe-
cially in cases where the texture access misses the cache.
Both approaches are evaluated in Section 5.

Once the correct most significant bits are obtained for
the Co and Cg channels, by means of calculus or the LUT,
these values are multiplied by 256 (i.e., the equivalent of
shifting 8 positions to the left). This product is added to the
previously fetched least significant chroma bytes in order
to complete the reconstruction of the chroma samples.

4.3 The pixel shader

The implementation of all steps in the chroma sample re-
combination, including the optimizations from Sections 4.1
and 4.2, results in the pixel shader listed below. This
is the shader version that uses the LUT. The arithmetic
shader is identical except for the use of the lookupBit
function from Section 4.2, for assigning co9thbit and
cg9thbit. The LUT shader compiles to 38 instructions,
while the arithmetic shader compiles to 45 instructions.
This is roughly twice the length of the preliminary shader.

When reading the samples from texture memory and
rescaling to the [0,255] range, a small corrective factor
is added to ensure that no floating point input values are
less than their nearest integer value. This avoids incor-
rect rounding and image artifacts in the transformed image,
caused by floor operations in the color space transforma-
tion. The statement before returning the result limits all
color channels to [0,255]. This is an equivalent of the re-
quired bit masking operation mentioned in Section 2. Due
to Direct3D-specific texture addressing, the collector coor-
dinate needs to be augmented by a half pixel in order to
exactly map the texture elements to output pixels.
f l o a t 4 PS 11 (VSOutpu t 2 tex i n p) : COLOR {

f l o a t t ;
f l o a t 3 r = 0 ; y co cg r = 0 ;
f l o a t 3 f = {255 ,255 ,255} , e = { 0 . 5 , 0 . 5 , 0 . 5} ;
f l o a t c o l l e c t o r c o , c o l l e c t o r c g ;

f l o a t i n t e r v a l = f l o o r (i n p . t e x 1) ;
f l o a t b i t = f r a c (i n p . t e x 1 . x) ;

f l o a t 2 coord = f l o a t 2 (
(i n p . t e x 0 . x+ i n t e r v a l . x / uvImageWidth) / 9∗8 ,
i n p . t e x 0 . y

) ;

y co cg r . x = tex2D (ySampler , i n p . t e x 0) ;
y co cg r . y = tex2D (uSampler , coord) ;
y co cg r . z = tex2D (vSampler , coord) ;

y co cg r = y co cg r ∗ f + e ;

f l o a t 2 c o l l e c t o r c o o r d s =
f l o a t 2 (

(8 . 5 + i n t e r v a l ∗ 9) / (uvImageWidth / 8 . 0∗ 9 . 0) ,
i n p . t e x 0 . y

) ;

c o l l e c t o r c o = tex2D (uSampler , c o l l e c t o r c o o r d s) ;
c o l l e c t o r c g = tex2D (vSampler , c o l l e c t o r c o o r d s) ;

f l o a t c o 9 t h b i t =
tex2D (lookupSampler , f l o a t 2 (b i t , c o l l e c t o r c o)) ;

f l o a t c g 9 t h b i t =
tex2D (lookupSampler , f l o a t 2 (b i t , c o l l e c t o r c g)) ;

y co cg r . yz += f l o a t 2 (c o 9 t h b i t , c g 9 t h b i t) ∗ 256 ;

/ / A c t u a l YCoCg−R c o l o r s p a c e t r a n s f o r m :
t = yc oc g r . x − f l o o r (yc oc g r . z / 2) ;
r . g = t + y co cg r . z ;
r . b = t − f l o o r (yc oc g r . y / 2) ;
r . r = r . b + y co cg r . y ;

r = f r a c (r / 2 5 6)∗ (2 5 6 . 0 / 2 5 5 . 0) ;
r e t u r n f l o a t 4 (r , 1) ;

}

The correctness of this shader (and the rest of the im-
plementation), was verified using an exhaustive test, com-
paring all permutations of input values to the transformed
output from the GPU.

5 Performance measurements

The performance of the GPU-based transformation was
tested on two machines; an AMD Athlon XP 2800+-based
system with AGP-bus and an Intel Pentium D 820-based
PC equipped with PCI-Express. Two GPU boards were
used in each test system: an NVIDIA FX5900 and 6800
in the Athlon, and an ATI X600 and X1900 in the Pen-
tium. At the time of writing, the FX5900 and X600 can
be considered lower-end GPUs, the 6800 is midrange and
the X1900 is a high-end chip. The test consisted of the
upload, transformation and visualization of 300 YCoCg-R
pictures. All pictures were buffered in memory in order
to avoid suffering from a hard disk throughput bottleneck.
The picture material used for this test was the high def-
inition VIPER test sequence, which was especially made
available by FastVDO for high-quality experiments.

The performance results are listed in Table 1 and Ta-
ble 2. While the basic GPU implementation outperforms
the CPU version in all situations, the same can not be said
about the new approach. The extra burden placed on the
GPU loads the X600 and FX5900 to their maximum pro-
cessing capacity. The reduction in frame rate compared to
both the CPU-only and first GPU implementation shows

that both lower-end chips form the bottleneck in recombin-
ing and transforming YCoCg-R frames. The CPU spends
more time waiting for the GPU to finish processing than
performing useful tasks. In both cases, the first GPU imple-
mentation offers a better balance between CPU and GPU
workload. The FX5900 favors the arithmetic calculation of
bit values, while the X600 is faster looking up those values
from the LUT. As a matter of fact, the arithmetic bit calcu-
lation on the X600 suffered from artifacts due to its lower
internal precision of 24 bits (all other chips support a 32-bit
floating data type). This phenomenon was not observed in
the faster LUT implementation, where the transformation
was performed in a lossless fashion.

The tests performed using the 6800 and X1900 clearly
benefit from the greater processing power of these higher-
end chips. While the CPU still spends 25% time waiting
for the 6800, the X1800 processes a frame in the time the
next frame is being uploaded, forming a balanced division
between CPU and GPU work. The LUT and arithmetic
bit calculation perform almost identical on both higher-end
GPUs.

The fact that the new implementation runs slower on
the low-end chips does not deny a benefit for the CPU. If
targeting real-time applications, this implementation still
leaves more spare CPU time, as long as frames can be trans-
formed within real-time constraints (typically between 30
fps and 60 fps) by the GPU. Instead of spin-locking the
driver until the GPU is ready, the application can poll the
GPU state at regular intervals while performing useful tasks
in between.

Table 1. Performance results on Athlon XP 2800+

GPU Resolution CPU-only GPU Basic GPU New (LUT) GPU New
(fps) (fps) (fps) (fps)

768x576 75.2 148.2 64.8 87.2
FX5900 1024x576 55.0 109.4 47.8 65.4

1280x720 35.4 70.3 30.8 41.2
1920x1080 15.7 30.3 13.7 18.9

768x576 75.3 149.7 247.9 247.5
6800 1024x576 54.9 110.1 188.9 188.8

1280x720 35.6 70.8 116.2 114.6
1920x1080 15.9 31.5 49.5 48.9

Table 2. Performance results on Pentium D 820

GPU Resolution CPU-only GPU Basic GPU New (LUT) GPU New
(fps) (fps) (fps) (fps)

768x576 137 150 110 97.6
X600 1024x576 104 113.5 83 73

1280x720 67 77 53.5 47
1920x1080 29.7 34 24 21.5

768x576 137 160 304.5 302.8
X1900 1024x576 104 122 238 236.2

1280x720 67 78.5 155 150.7
1920x1080 29.7 36.4 73.5 69.8

6 Conclusions and future work

In this paper, an improvement of the previous implementa-
tion of GPU-assisted YCoCg-R color space transformation

was demonstrated. The entire recombination and process-
ing of YCoCg-R samples is now performed by the GPU,
resulting in faster processing and double speed in specific
cases. Aside from transferring image bytes from file or a
memory buffer to the graphics memory, the CPU remains
available for other decoding tasks. It must be noted that this
new implementation favors fast GPUs and is not necessar-
ily the best option for older GPUs in terms of pure process-
ing speed. The successful realization of the chroma sample
recombination proves that current GPUs provide the nec-
essary flexibility to handle nontrivial data layouts. How-
ever, the limited and specific processor instruction set of-
ten requires using non-straightforward techniques and op-
timizations. Future work will focus on the implementation
of other common video decoding steps (e.g., motion com-
pensation) on the GPU, within the context of H.264/AVC
and lossless encoding solutions. Attention will also be paid
to further development of the Persephone Engine.

Acknowledgements

The research activities as described in this paper were
funded by Ghent University, the Interdisciplinary Institute
for Broadband Technology (IBBT), the Institute for the
Promotion of Innovation by Science and Technology in
Flanders (IWT), the Fund for Scientific Research-Flanders
(FWO-Flanders), the Belgian Federal Science Policy Of-
fice (BFSPO), and the European Union.

References

[1] G. Sullivan, P. Topiwala, and A. Luthra, The
H.264/AVC Advanced Video Coding Standard:
Overview and Introduction to the Fidelity Range
Extensions. Proceedings of SPIE annual meeting
2004: Signal and Image Processing and Sensors,
volume 5558, Denver, USA, 2004, 454-474.

[2] G. Shen, G. Gao, S. Li, H.-Y. Shum, and Y.-Q. Zhang,
Accelerate Video Decoding with Generic GPU. IEEE
Transactions on Circuits and Systems for Video Tech-
nology. 15 (5), 2005, 685–693.

[3] W. De Neve et al., GPU-Assisted Decoding of Video
Samples Represented in the YCoCg-R Color Space,
Proceedings of the 13th ACM International Conference
on Multimedia, Singapore, 2005, 447–450.

[4] H. Malvar and G. Sullivan: YCoCg-R: A Color Space
with RGB Reversibility and Low Dynamic Range.
JVT-document JVT-I014, Norway, JVT, July 2003.

[5] R. Duncan, A Survey of Parallel Computer Architec-
tures, IEEE Computer, 23 (2), 1990, 5–16.

[6] J. Selan, Using Lookup Tables to Accelerate Color
Transformations, in M. Pharr (Ed.), GPU Gems 2
(Boston, Addison Wesley, 2005) 381–392.

