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Abstract

Orthogonal (or standard) Clifford analysis is a higher dimensional function theory offering
a refinement of classical harmonic analysis. More recently, Hermitean Clifford analysis
has emerged as a new and successful branch of Clifford analysis, offering yet a refinement
of the orthogonal case. A new integral transform is introduced in this Hermitean context,
obtained either as the composition of two orthogonal Clifford–Hilbert transforms or as the
commutator of two new Hermitean Clifford–Hilbert transforms. The resulting operator
is shown to possess the typical properties of a classical Hilbert transform as well. Its
connections with standard Clifford–Hilbert transforms are explicitly investigated, and in
particular new Hardy spaces associated to this operator are defined and characterized.
Some results also allow for a nice geometric interpretation.

Keywords: Hilbert transform; Hardy space; Hermitean Clifford analysis
Mathematics Subject Classification 2000: 30G35

1 Introduction

In engineering sciences, and in particular in signal analysis, the one–dimensional Hilbert trans-
form of a real signal u(t) of a one–dimensional time variable t has become a fundamental
tool. For a suitable function or distribution u(t) its Hilbert transform is given by the Cauchy
Principal Value

H[u](t) = − 1

π
Pv

∫ +∞

−∞

u(τ)

τ − t
dτ

Though initiated by Hilbert, the concept of a ”conjugated pair” (u,H[u]), nowadays called a
Hilbert pair, was developed mainly by Titchmarch and Hardy.

The multidimensional approach to the Hilbert transform usually is a tensorial one, consid-
ering the so–called Riesz transforms in each of the cartesian variables separately. As opposed
to these tensorial approaches, Clifford analysis (see e.g. [5, 10, 11]) is particularly suited for a
treatment of multidimensional phenomena where all dimensions are encompassed at the same
time as an intrinsic feature. Clifford analysis essentially is a higher dimensional function theory
offering both a generalization of the theory of holomorphic functions in the complex plane and a
refinement of classical harmonic analysis. In the standard, also called orthogonal, case, Clifford
analysis focusses on so–called monogenic functions, i.e. null solutions of the rotation invariant
vector valued Dirac operator

∂x =
m∑

j=1

ej∂xj

1



where (e1, . . . , em) forms an orthonormal basis for the quadratic space R0,m underlying the
construction of the real Clifford algebra R0,m. The theory of Hardy spaces and the multidi-
mensional Hilbert transform in the orthogonal Clifford analysis framework is nowadays well
established, see [11, 9, 4]. However we want to draw the reader’s attention on the paper [12]
of Horváth who, to our knowledge, was the first to define a Hilbert transform using Clifford
algebra.

Recently another branch of Clifford analysis has emerged, offering yet a refinement of the
orthogonal case; it is called Hermitean Clifford analysis and it focusses on the simultaneous null
solutions of two complex Hermitean Dirac operators. Complex Dirac operators were already
studied in [14, 13, 15]; however, a systematic development of the associated function theory
including the invariance properties with respect to the underlying Lie groups and Lie algebras
is still in full progress, see [8, 2, 3]. While studying Clifford–Hermite wavelets in the context of
Hermitean Clifford analysis, see [6, 7], we came across a new kind of Hilbert operator. The aim
of this paper is to further investigate the properties of this Hilbert–like transform and to show
its similarities and connections with the standard as well as with newly introduced Hermitean
Clifford–Hilbert transforms in Euclidean space. In particular, also new Hardy spaces associated
to this operator are introduced and characterized.

2 Preliminaries

Let R0,m be endowed with a non–degenerate quadratic form of signature (0, m), let (e1, . . . , em)
be an orthonormal basis for R0,m and let R0,m be the real Clifford algebra constructed over
R0,m. The non–commutative multiplication in R0,m is governed by

ejek + ekej = −2δjk , j, k = 1, . . . ,m (2.1)

A basis for R0,m is obtained by considering for a set A = {j1, . . . , jh} ⊂ {1, . . . ,m} the element
eA = ej1 . . . ejh

, with 1 ≤ j1 < j2 < . . . < jh ≤ m. For the empty set ∅ one puts e∅ = 1,
the identity element. Any Clifford number a in R0,m may thus be written as a =

∑
A eAaA,

aA ∈ R, or still as a =
∑m

k=0[a]k, where [a]k =
∑

|A|=k eAaA is the so–called k–vector part of a

(k = 0, 1, . . . ,m). The Euclidean space R0,m is embedded in R0,m by identifying (x1, . . . , xm)
with the Clifford vector x given by

x =
m∑

j=1

ejxj

Note that the square of a vector x is scalar valued and equals the norm squared up to a minus
sign: x2 = − < x, x > = −|x|2. The dual of the vector x is the vector valued first order
differential operator

∂x =
m∑

j=1

ej∂xj

called Dirac operator. It is precisely this Dirac operator which underlies the notion of mono-
genicity of a function, a notion which is the higher dimensional counterpart of holomorphy in
the complex plane. A function f defined and differentiable in an open region Ω of Rm and
taking values in R0,m is called left–monogenic in Ω if ∂x[f ] = 0. Since the Dirac operator fac-
torizes the Laplacian, ∆m = −∂2

x, monogenicity can be regarded as a refinement of harmonicity.
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We refer to this setting as the orthogonal case, since the fundamental group leaving the Dirac
operator ∂x invariant is the special orthogonal group SO(m), which is doubly covered by the
Spin(m) group of the Clifford algebra R0,m. For this reason, the Dirac operator is called a
rotation invariant operator.

When allowing for complex constants and moreover taking the dimension to be even, say
m = 2n, the same set of generators as above, (e1, . . . , e2n), still satisfying the defining relations
(2.1), may in fact also produce the complex Clifford algebra C2n. As C2n is the complexifica-
tion of the real Clifford algebra R0,2n, i.e. C2n = R0,2n ⊕ iR0,2n, any complex Clifford number
λ ∈ C2n may be written as λ = a + ib, a, b ∈ R0,2n, leading to the definition of the Hermitean
conjugation λ† = (a + ib)† = a− ib, where the bar denotes the usual conjugation in R0,2n, i.e.
the main anti–involution for which ej = −ej, j = 1, . . . , 2n. This Hermitean conjugation leads
to a Hermitean inner product and its associated norm on C2n given by (λ, µ) = [λ†µ]0 and
|λ| =

√
[λ†λ]0 = (

∑
A |λA|2)1/2. The above framework will be referred to as the Hermitean Clif-

ford setting, as opposed to the traditional orthogonal Clifford one. Hermitean Clifford analysis
then focusses on the null solutions of two Hermitean Dirac operators ∂Z and ∂†Z , introduced
below.

We first consider the so–called Witt basis for the complex Clifford algebra C2n, viz

fj =
1

2
(ej − ien+j) , f†j = −1

2
(ej + ien+j) , j = 1, . . . , n

These Witt basis elements satisfy the Grassmann identities

fjfk + fkfj = f†jf
†
k + f†kf

†
j = 0 , j, k = 1, . . . , n

and the duality identities
fjf

†
k + f†kfj = δjk , j, k = 1, . . . , n

The Grassmann subalgebras of C2n generated by (fj)
n
j=1 and (f†j)

n
j=1 are denoted by CΛn and

CΛ†
n respectively. Now take a vector X = (X1, . . . , X2n) = (x1, . . . , xn, y1, . . . , yn) in R0,2n,

identified with the Clifford vector X =
∑n

j=1(ejxj +en+jyj), and rewritten in terms of the Witt
basis as

X =
n∑

j=1

fjzj −
n∑

j=1

f†jz
c
j

where n complex variables zj = xj + iyj have been introduced, with complex conjugates zc
j =

xj − iyj, j = 1, . . . , n. In terms of the Hermitean vector variables, defined as

Z =
n∑

j=1

fjzj and Z† = (Z)† =
n∑

j=1

f†jz
c
j ,

the Clifford vector X eventually takes the form

X = Z − Z†

Similarly the traditional Dirac operator can be rewritten as

∂X =
n∑

j=1

(ej∂xj
+ en+j∂yj

) = 2 (
n∑

j=1

fj∂zc
j
−

n∑
j=1

f†j∂zj
) = 2(∂†Z − ∂Z)
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in terms of the Hermitean Dirac operators

∂Z =
n∑

j=1

f†j∂zj
and ∂†Z = (∂Z)† =

n∑
j=1

fj∂zc
j

involving the classical Cauchy–Riemann operators ∂zj
= 1

2
(∂xj

− i∂yj
) and their complex con-

jugates ∂zc
j

= 1
2
(∂xj

+ i∂yj
) in the complex zj planes, j = 1, . . . , n. In this framework also a

second Clifford vector is considered, viz

X| =
n∑

j=1

(ejyj − en+jxj) =
1

i

n∑
j=1

fjzj +
1

i

n∑
j=1

f†jz
c
j =

1

i
(Z + Z†)

with corresponding Dirac operator

∂X| =
n∑

j=1

(ej∂yj
− en+j∂xj

) =
2

i
(

n∑
j=1

fj∂zc
j
+

n∑
j=1

f†j∂zj
) =

2

i
(∂†Z + ∂Z)

Note that the vectors X and X| are orthogonal w.r.t. the standard Euclidean scalar product,
which implies that the Clifford vectors X and X| anti–commute.

A continuously differentiable function g on R2n with values in C2n is called a Hermitean
monogenic (or h–monogenic) function if and only if it satisfies the system

∂Xg = 0 = ∂X|g

or equivalently, the system
∂Zg = 0 = ∂†Zg

The Hermitean Dirac operators ∂Z and ∂†Z are invariant under the action of a realisation,

denoted Ũ(n), of the unitary group in terms of the Clifford algebra, see [8]. This group Ũ(n) ⊂
Spin(2n) is given by

Ũ(n) = {s ∈ Spin(2n) | ∃θ ≥ 0 : sI = exp (−iθ)I}

its definition involving the selfadjoint primitive idempotent I = I1 . . . In, with Ij = fjf
†
j =

1
2
(1− iejen+j), j = 1, . . . , n.

Finally observe that the Hermitean vector variables and Dirac operators are isotropic, i.e.

(Z)2 = (Z†)2 = 0 and (∂Z)2 = (∂†Z)2 = 0

whence the Laplacian ∆2n = −∂2
X = −∂2

X| allows for the decomposition

∆2n = 4(∂Z∂†Z + ∂†Z∂Z)

and one also has that

ZZ† + Z†Z = |Z|2 = |Z†|2 = |X|2 = |X||2 .
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3 A pair of Hilbert transforms

Identifying R2n with the hyperplane {(t, x1, . . . , xn, y1, . . . , yn) : t = 0} in R2n+1 and introdu-
cing the supplementary unit vector e0, squaring up to -1 and orthogonal to all of (e1, . . . , en, en+1, . . . , e2n),
two associated Dirac operators in R2n+1 may also be defined, viz

∂ = ∂te0 + ∂X

and
∂| = ∂te0 + ∂X|

In ”upper halfspace” R2n+1
+ = {(t, x1, . . . , xn, y1, . . . , yn) : t > 0} we then consider the Hardy

spaces of ∂–monogenic, respectively ∂|–monogenic Clifford algebra valued functions

H2(R2n+1
+ ) = {F (t, x1, . . . , xn, y1, . . . , yn) : ∂F = 0 and sup

t>0

∫
R2n

|F |2 dV < +∞}

H|2(R2n+1
+ ) = {F (t, x1, . . . , xn, y1, . . . , yn) : ∂|F = 0 and sup

t>0

∫
R2n

|F |2 dV < +∞}

It is well–known that H2(R2n+1
+ ) entails the Hardy space H2(R2n) as the closure in L2(R2n)

of the space of all non–tangential boundary values for t → 0+ of all functions in H2(R2n+1
+ ),

and moreover, both spaces H2(R2n+1
+ ) and H2(R2n) are isomorphic. In this way an orthogonal

decomposition of L2(R2n) w.r.t. the inner product

〈f, g〉L2 =

∫
R2n

fg dV

is obtained, viz
L2(R2n) = H2(R2n) ⊕ H2(R2n)⊥

f = P[f ] + P⊥[f ]

where P and P⊥ are the so–called Szegö projections on H2(R2n) and its orthogonal complement
H2(R2n)⊥ respectively. These projections may be further explicited in terms of the so–called
Hilbert transform, given for a function f ∈ L2(R2n) by its convolution with the so–called Hilbert
kernel, viz

HX [f ] = e0
2

a2n+1

Pv
X

|X|2n+1
∗ f = e0

2

a2n+1

Pv

∫
R2n

X − U

|X − U |2n+1
f(U) dV (U)

with a2n+1 denoting the area of the unit sphere S2n in R2n+1. One then obtains that

P[f ] =
1

2
(1 + HX)[f ]

P⊥[f ] =
1

2
(1−HX)[f ]

For the Dirac operator ∂| and its corresponding Hardy space H|2(R2n+1
+ ) one arrives at

a similar decomposition of L2(R2n), with alternative Szegö projections P| and P|⊥and their
associated Hilbert transform on L2(R2n) given by

HX|[f ] = e0
2

a2n+1

Pv
X|

|X|2n+1
∗ f

where we have taken into account that |X| = |X||. This pair of Hilbert transforms on L2(R2n),
already introduced in [7, 1], enjoys the following properties.
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Proposition 3.1 One has

(i) HX and HX| are bounded linear operators on L2(R2n);

(ii) H2
X = H2

X| = 1;

(iii) H∗
X = HX , H∗

X| = HX|;

(iv) 〈HX [f ], HX [g]〉L2 = 〈f, g〉L2 = 〈HX|[f ], HX|[g]〉L2.

It follows that f and HX [f ] have the same Szegö projection on H2(R2n):

P [HX [f ]] =
1

2
(1 + HX) [HX [f ]] =

1

2
(HX + 1)[f ] = P[f ]

which can be rephrased in geometrical terms as: f and HX [f ] lie symmetrically w.r.t. H2(R2n).
This implies the following characterization of H2(R2n).

Proposition 3.2 A function f ∈ L2(R2n) belongs to the Hardy space H2(R2n) (respectively to
its orthogonal complement H2(R2n)⊥) if and only if HX [f ] = f (respectively HX [f ] = −f).

Similar observations hold for f and HX|[f ] with respect to H|2(R2n).

4 Hermitean Hilbert transforms

One of the ways for introducing Hermitean Clifford analysis is by considering the complex
Clifford algebra C2n and a so–called complex structure on it, i.e. an SO(2n; R)–element J for
which J2 = −1, see [2]. Let us recall that the main objects of the Hermitean setting are then
generated conceptually by considering the projection operators 1

2
(1± iJ) and letting them act

on the corresponding protagonists of the orthogonal framework, the obtained definitions being
in agreement with those given in Section 2 when J is chosen to be represented by the matrix[

0 En

−En 0

]
where En denotes the identity matrix of order n, or equivalently, J [ej] = −en+j and J [en+j] = ej,
j = 1, . . . , n. Indeed, the Witt basis elements are obtained through the action of 1

2
(1± iJ) on

the orthogonal basis elements ej:

fj =
1

2
(1 + iJ)[ej] =

1

2
(ej − i en+j), j = 1, . . . , n

f†j = −1

2
(1− iJ)[ej] = −1

2
(ej + i en+j), j = 1, . . . , n

while the Hermitean Clifford variables arise through the action on the standard Clifford vector
X:

Z =
1

2
(1 + iJ)[X] =

1

2
(X + i X|)

Z† = −1

2
(1− iJ)[X] = −1

2
(X − i X|)
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and the Hermitean Dirac operators through the action on the orthogonal Dirac operator ∂X :

∂†Z =
1

4
(1 + iJ)[∂X ] =

1

4
(∂X + i ∂X|)

∂Z = −1

4
(1− iJ)[∂X ] = −1

4
(∂X − i ∂X|)

In the same order of ideas we now introduce two Hermitean Hilbert transforms on L2(R2n)
by letting 1

2
(1± iJ) act on the Hilbert transform HX , resulting into

HZ =
1

2
(1 + iJ)[HX ] =

1

2
(HX + iHX|)

HZ† = −1

2
(1− iJ)[HX ] = −1

2
(HX − iHX|)

or more explicitly

HZ [f ] = e0
2

a2n+1

Pv
Z

r2n+1
∗ f

HZ† [f ] = e0
2

a2n+1

Pv
Z†

r2n+1
∗ f

with r = |Z| = |Z†| = |X| = |X||. We now list a number of properties of these Hermitean
Hilbert transforms, the proofs of which are straightforward.

Proposition 4.1 One has

(i) HZ and HZ† are bounded linear operators on L2(R2n);

(ii) H2
Z = 0, H2

Z† = 0;

(iii) H∗
Z = HZ, H∗

Z† = HZ†;

(iv) HZ HZ† + HZ† HZ = −1;

(v) HZ HZ† −HZ† HZ = 1
2
(iHX HX| − iHX| HX).

Observe in particular property (ii) expressing the isotropy of the Hermitean Hilbert transforms,
and property (v) which will lead to an new Hilbert type transform in the Hermitean Clifford
analysis setting, as introduced below.

5 A new Hilbert transform

As a first step towards the definition of a new Hilbert transform the following lemma is crucial;
for a proof we refer to [7].

Lemma 5.1 The Hilbert transforms HX and HX| anti–commute.
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As in [7], we then put
K = iHXHX| = −iHX|HX (5.1)

As the operator K results from the composition of two convolution operators, it is itself a
convolution operator, i.e.

K[f ] = K ∗ f

A precise calculation reveals that its kernel K(X) is given by

K(X) = i
(n− 1)!

πn
Pv

(
n

X X|
|X|2n+2

+

∑n
j=1 ej en+j

|X|2n

)
We now list a number of properties of this new K transform, which are proven in a rather

straightforward way.

Proposition 5.1 One has

(i) K is a bounded linear operator on L2(R2n);

(ii) K squares to unity, i.e. K2 = 1;

(iii) K is selfadjoint, i.e. K∗ = K;

(iv) K preserves the L2 inner product, i.e. 〈K[f ],K[g]〉L2 = 〈f, g〉L2;

(v) in frequency space, K takes the form

F [K[f ]] (Ξ) = i
Ξ| Ξ
|Ξ|2

F [f ](Ξ)

where F denotes the standard Fourier transform in R2n, given by

F [f ](U) =
1

(2π)n

∫
R2n

exp (−i < X, U >) f(X) dV (X) ,

(vi) K anti–commutes with both HX and HX|, i.e.

HX K +KHX = 0 , HX|K +KHX| = 0

Corollary 5.1 For the Hardy spaces H2(R2n) and H|2(R2n), defined in terms of the Dirac
operators ∂X and ∂X| respectively, one has

H2(R2n) ∩H|2(R2n) = {0}

Proof.
Let g belong to both Hardy spaces. It then should hold simultaneously that HX [g] = g and
HX|[g] = g, from which we infer that

K[g] = i HX HX|[g] = i HX [g] = ig

Hence
K2[g] = K[ig] = iK[g] = −g

However, as K2 = 1, we also have that K2[g] = g, whence g = 0.
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Corollary 5.2 The operators 1
2
(1±K) are projection operators on L2(R2n).

Proof.
One can immediately check that (

1

2
(1±K)

)2

=
1

2
(1±K)

and that
1

2
(1 +K)

1

2
(1−K) =

1

2
(1−K)

1

2
(1 +K) = 0

In this way a new orthogonal decomposition of L2(R2n) is obtained. Indeed, putting

K2(R2n) =
1

2
(1 +K)[L2(R2n)]

K2(R2n)⊥ =
1

2
(1−K)[L2(R2n)]

we obtain
L2(R2n) = K2(R2n) ⊕ K2(R2n)⊥

f = 1
2
(1 +K)[f ] + 1

2
(1−K)[f ]

with 〈1
2
(1 +K)[f ], 1

2
(1−K)[f ]〉L2 = 0. Moreover the closed subspaces K2(R2n) and K2(R2n)⊥

may be characterized in a similar way as the traditional Hardy spaces.

Proposition 5.2 One has

(i) f ∈ K2(R2n) if and only if K[f ] = f ;

(ii) f ∈ K2(R2n)⊥ if and only if K[f ] = −f ;

(iii) f ∈ H2(R2n) if and only if K[f ] = −i HX|[f ];

(iv) f ∈ H2(R2n)⊥ if and only if K[f ] = i HX|[f ]

(v) f ∈ H|2(R2n) if and only if K[f ] = i HX [f ];

(vi) f ∈ H|2(R2n)⊥ if and only if K[f ] = −i HX [f ].

Quite remarkably, although directly following from Proposition 4.1 and the definition (5.1)
of K, the projection operators defining the subspaces K2(R2n) and K2(R2n)⊥ may be expressed
in terms of the Hermitean Hilbert transforms introduced in Section 4.

Proposition 5.3 One has

(i) 1
2
(1 +K) = −HZ† HZ;

(ii) 1
2
(1−K) = −HZ H†

Z;

(iii) HZ HZ† −HZ† HZ = K.
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Even more remarkable, however, is the following observation. The Hilbert transforms HX and
HX|, as well as the operator K are bijective on L2(R2n), since they are bounded linear operators
on L2(R2n) with H−1

X = HX , H−1
X| = HX| and K−1 = K. The Hermitean Hilbert transforms on

the contrary can not be injective since they are isotropic, so their kernels should be nontrivial;
they are determined in the following proposition.

Proposition 5.4 One has

ker HZ† = K2(R2n) , ker HZ = K2(R2n)⊥

Proof.
If f ∈ ker HZ† , then it holds that

1

2
(1−K)[f ] = −HZ HZ† [f ] = 0

or K[f ] = f , whence f ∈ K2(R2n). Conversely, if f ∈ K2(R2n), then

f = K[f ] = i HX HX|[f ]

from which it follows that
HX [f ] = i H2

X HX|[f ] = i HX|[f ]

whence HZ† [f ] = −1
2
(HX [f ]− i HX|[f ]) = 0. A similar argument may be applied to ker HZ .

Summarizing, we obtain the following characterizations of the Hardy–like spaces K2(R2n)
and K2(R2n)⊥.

Theorem 5.1

(a) A function f belongs to K2(R2n) if and only if one of the following conditions is satisfied:

(i) K[f ] = f ;

(ii) HZ† [f ] = 0;

(iii) HZ [f ] = HX [f ] = i HX|[f ].

(b) A function f belongs to K2(R2n)⊥ if and only if one of the following conditions is satisfied:

(i) K[f ] = −f ;

(ii) HZ [f ] = 0;

(iii) HZ† [f ] = −HX [f ] = i HX|[f ].

Corollary 5.3 One has

(i) k ∈ K2(R2n) if and only if HX [k] ∈ K2(R2n)⊥;

(ii) k ∈ K2(R2n) if and only if HX|[k] ∈ K2(R2n)⊥;

(iii) ` ∈ K2(R2n)⊥ if and only if HX [`] ∈ K2(R2n);

(iv) ` ∈ K2(R2n)⊥ if and only if HX|[`] ∈ K2(R2n).
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Proof.
We only prove property (i), the proofs of (ii), (iii) and (iv) proceeding along similar lines. If
k ∈ K2(R2n) then i HX|[k] = HX [k] and hence

K [HX [k]] = −i HX| HX HX [k] = −i HX|[k] = −HX [k]

from which it follows that HX [k] ∈ K2(R2n)⊥. Conversely, if HX [k] ∈ K2(R2n)⊥ then

i HX| [HX [k]] = −HX [HX [k]] = −k

or −K[k] = −k meaning that k ∈ K2(R2n).

There is a nice geometric interpretation of the above corollary. Indeed, let us recall that a
function f ∈ L2(R2n) and its Hilbert transform HX [f ] lie symmetrically w.r.t. H2(R2n). If in
particular f is chosen to belong to K2(R2n) then HX [f ] ∈ K2(R2n)⊥, i.e. a function f ∈ K2(R2n)
and its Hilbert transform HX [f ] are orthogonal. The spaces K2(R2n) and K2(R2n)⊥ may thus
be considered as being the bisector spaces of H2(R2n) and H2(R2n)⊥. At the same time,
K2(R2n) and K2(R2n)⊥ are also the bisector spaces of the associated Hardy spaces H|2(R2n)
and H|2(R2n)⊥.

Finally, the L2(R2n) decompositions w.r.t. the Hilbert transform HX and w.r.t. the new
integral transform K can be matched together, resulting into the following schemes. Take
f ∈ L2(R2n), then on the one hand

f = h + g , h ∈ H2(R2n), g ∈ H2(R2n)⊥

and on the other
f = k + ` , k ∈ K2(R2n), ` ∈ K2(R2n)⊥

where moreover the components h, g, k and ` may be decomposed themselves as well, viz

h = hk + h` , hk ∈ K2(R2n), h` ∈ K2(R2n)⊥

g = gk + g` , gk ∈ K2(R2n), g` ∈ K2(R2n)⊥

and

k = kh + kg , kh ∈ H2(R2n), kg ∈ H2(R2n)⊥

` = `h + `g , `h ∈ H2(R2n), `g ∈ H2(R2n)⊥

where obviously the following relations hold:

k = hk + gk, ` = h` + g` and h = kh + `h, g = kg + `g

We thus obtain

f = hk + gk + h` + g` (5.2)

HX [f ] = hk − gk + h` − g` (5.3)

K[f ] = hk + gk − h` − g` (5.4)

and
HXK[f ] = i HX|[f ] = −hk + gk + h` − g` (5.5)

11



since
HX [hk] = h` , HX [gk] = −g` , HX [h`] = hk , HX [g`] = −gk

and
K[hk] = hk , K[gk] = gk , K[h`] = −h` , K[g`] = −g`

Furthermore, the above results (5.2)–(5.5) show that

HZ [f ] =
1

2
(HX + i HX|)[f ] = h` − g`

HZ† [f ] = −1

2
(HX − i HX|)[f ] = gk − hk

as it should, since
HZ [f ] = HZ [hk + gk] = HX [hk + gk] = h` − g`

and
HZ† [f ] = HZ† [h` + g`] = −HX [h` + g`] = −hk + gk

on account of Theorem 5.1. Invoking (5.2)–(5.5), we may also express the components (5.2) of
f in terms of the respective projection operators 1

2
(1±K) and 1

2
(1±HX), leading to

hk =
1

4
(1 + HX +K −HX K) [f ] =

(1 +K)

2

(1 + HX)

2
[f ]

gk =
1

4
(1−HX +K + HX K) [f ] =

(1 +K)

2

(1−HX)

2
[f ]

h` =
1

4
(1 + HX −K + HX K) [f ] =

(1−K)

2

(1 + HX)

2
[f ]

g` =
1

4
(1−HX −K −HX K) [f ] =

(1−K)

2

(1−HX)

2
[f ]

which is in accordance with the definitions of these projections. Similarly, we also have

f = kh + kg + `h + `g (5.6)

HX [f ] = kh − kg + `h − `g (5.7)

K[f ] = kh + kg − `h − `g (5.8)

and
HXK[f ] = i HX|[f ] = kh − kg − `h + `g (5.9)

since
HX [kh] = kh , HX [kg] = −kg , HX [`h] = `h , HX [`g] = −`g

and
K[kh] = kg , K[kg] = kh , K[`h] = −`g K[`g] = −`h

This yields, as an alternative decomposition of f by subsequent projections,

kh =
1

4
(1 + HX +K + HX K) [f ] =

(1 + HX)

2

(1 +K)

2
[f ]

kg =
1

4
(1−HX +K −HX K) [f ] =

(1−HX)

2

(1 +K)

2
[f ]

`h =
1

4
(1 + HX −K −HX K) [f ] =

(1 + HX)

2

(1−K)

2
[f ]

`g =
1

4
(1−HX −K + HX K) [f ] =

(1−HX)

2

(1−K)

2
[f ]

12



which also was to be expected. Furthermore we then have

HZ [f ] = kh − kg

HZ† [f ] = `g − `h

again in agreement with Theorem 5.1.

6 Analytic signals

In one–dimensional signal analysis the concept of ”analytic signal” is fundamental. If u(t) is
a real signal of the time variable t ∈ R and H[u] is its one–dimensional Hilbert transform, see
Section 1, then the complex signal

A(t) = u(t) + iH[u](t)

is called the analytic signal associated to u(t). As H2 = −1, this analytic signal satisfies the
condition

iH[A] = A

which means that if the signal u(t) has ”finite energy”, i.e. u(t) ∈ L2(R), then its associated an-
alytic signal A(t) belongs to the Hardy space H2(R). At the same time the complex conjugated
signal

Ac(t) = u(t)− iH[u](t)

will then belong to the orthogonal complement H2(R)⊥ since

iH[Ac] = −(u− iH[u]) = −Ac

So one could say that in the one–dimensional case complex conjugation maps the Hardy spaces
H2(R) and H2(R)⊥ onto each other.

In the multidimensional case it is directly seen from the definitions of the Hilbert transforms
HX and HX| themselves, see Section 3, that for functions f : R2n → C2n

HX [e0 f ] = −e0 HX [f ]

and
HX|[e0 f ] = −e0 HX|[f ]

It follows that left multiplication by e0, i.e. Te0 : f → e0 f , will map the Hardy spaces H2(R2n)
and H|2(R2n) onto their orthogonal complements and vice versa. Indeed, for f : R2n → C2n its
associated analytic signal is given by

A(X) = f(X) + HX [f ](X)

which clearly belongs to H2(R2n) since

HX [A] = HX [f ] + H2
X [f ] = f + HX [f ] = A

Note that A takes values in the Clifford algebra C2n ⊕ e0 C2n = C2n+1. The action of the Te0

map then results into

Te0 [A] = e0 f + e0 HX [f ] = −HX [e0 f ] + e0 f

13



where now e0 f takes values in e0 C2n, while−HX [e0 f ] = e0 HX [f ] takes values in C2n. Moreover

HX [Te0 [A]] = HX [e0 f ]− e0 f = −Te0 [A]

which means that Te0 [A] belongs to H2(R2n)⊥.

However, for the new spaces K2(R2n) and K2(R2n)⊥ of Hardy type, it holds that

K[e0 f ] = i HX HX|[e0 f ] = i HX

[
−e0 HX|[f ]

]
= e0 i HX HX|[f ] = e0K[f ]

implying that Te0 will map both K2(R2n) and K2(R2n)⊥ onto themselves.

7 A Cauchy integral

As was already mentioned in Section 3, the Hardy spaces H2(R2n+1
+ ) and H2(R2n) are isomor-

phic, the isomorphism being obtained explicitly by means of the Cauchy integral, which, for a
given h ∈ H2(R2n), reads:

C[h](t, x1, . . . , xn, y1, . . . , yn) =
1

a2n+1

∫
R2n

t + e0 (X − U)

|te0 + X − U |2n+1
h(U) dV (U)

with C[h] ∈ H2(R2n+1
+ ) and

lim
t→0+

C[h] = h (7.1)

in the L2 sense of non–tangential boundary values, such that C[h] may be seen as a monogenic
extension of h and both functions may be identified with each other.

More generally, for f ∈ L2(R2n), its Cauchy integral C[f ] still exists and belongs to H2(R2n+1
+ )

(and in fact also to H2(R2n+1
− ), defined similarly), but one obtains

lim
t→0+

C[f ] = C+[f ] =
1

2
f +

1

2
HX [f ] (7.2)

lim
t→0−

C[f ] = C−[f ] = −1

2
f +

1

2
HX [f ]

for its non–tangential boundary values, also called Hardy projections. Note that these results
are in agreement with Proposition 3.2, since (7.2) indeed reduces to (7.1) when f ∈ H2(R2n).
Quite similarly, using the X| variable, one can define the associated Cauchy integral

C|[f ](t, x1, . . . , xn, y1, . . . , yn) =
1

a2n+1

∫
R2n

t + e0 (X| − U |)
|te0 + X − U |2n+1

f(U) dV (U)

establishing the isomorphism between the Hardy spaces H|2(R2n+1
+ ) and H|2(R2n). For f ∈

L2(R2n), C|[f ] will be ∂|–monogenic in R2n+1 \ R2n and show the non–tangential boundary
values or associated Hardy projections

lim
t→0+

C|[f ] = C|+[f ] =
1

2
f +

1

2
HX|[f ]

lim
t→0−

C|[f ] = C|−[f ] = −1

2
f +

1

2
HX|[f ]
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Observe that, in the present case of halfspace, the Hardy projections coincide with the Szegö
projections, which is a well–known fact. Explicitly, one has

C+[f ] = P[f ] C−[f ] = −P⊥[f ]
C|+[f ] = P|[f ] C|−[f ] = −P|⊥[f ]

This leads to an expression of the newly introduced K–transform as a commutator of the Hardy
projections considered.

Proposition 7.1
1

2
K = [C+, iC|+] = [C−, iC|−]

Proof.
For a function f ∈ L2(R2n), the result is directly obtained from the following calculations:

C+
(
iC|+

)
[f ] =

1

4

(
i1 + iHX| + iHX + iHXHX|

)
[f ](

iC|+
)
C+[f ] =

1

4

(
i1 + iHX + iHX| + iHX|HX

)
[f ]

C−
(
iC|−

)
[f ] =

1

4

(
i1− iHX| − iHX + iHXHX|

)
[f ](

iC|−
)
C−[f ] =

1

4

(
i1− iHX − iHX| + iHX|HX

)
[f ]

Finally it is also possible to make the Hermitean Hilbert transforms HZ and HZ† apparent
as part of a boundary value of a suitable combination of a ∂–monogenic and a ∂|–monogenic
function in halfspace.

Proposition 7.2 One has

(i) (C+ + iC|+) [f ] = 1+i
2

f + HZ [f ];

(ii) (C+ − iC|+) [f ] = 1−i
2

f −HZ† [f ];

(iii) (C− + iC|−) [f ] = −1+i
2

f + HZ [f ];

(iv) (C− − iC|−) [f ] = −1−i
2

f −HZ† [f ].
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