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Abstract

Inspired by a theory of embodied music cognition, we investigate whether music can
entrain the speed of beat synchronized walking. When human walking is in synchrony
with the beat and all musical stimuli have the same tempo, then music-induced differences
in walking speed are due to differences in stride length, thus reflecting the vigor or physical
strength of the movement. Participants walked in an open field in synchrony with the beat
of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4
beats. The walking speed was measured as the walked distance during a time interval of 30
seconds. The results reveal that some music is activating in the sense that it increases the
speed, and some music is relaxing in the sense that it decreases the speed, compared to the
spontaneous walked speed in response to metronome stimuli. Participants are consistent
in their observation of qualitative differences between the relaxing and activating musical
stimuli. Using regression analysis, it was possible to set up a predictive model using
only four sonic features that explain 60 % of the variance. The sonic features capture
variation in loudness and pitch patterns at periods of three, four and six beats, suggesting
that expressive patterns in music are responsible for the effect. The mechanism may
be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism,
or an arousal effect but further study is needed to figure this out. Overall, the study
supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter
strength of the music may entrain the vigor of the movement. The study opens new
perspectives for understanding the relationship between entrainment and expressiveness,
with the possibility to develop applications that can be used in domains such as sports
and physical rehabilitation.

Introduction

In a study that addressed the effect of music on beat synchronized walking in an open field
Styns et al. [1] observed that participants walked faster on music than on metronome ticks.
This result suggests that music may affect the human motor system by giving it a boost
so that participants take bigger steps than when they walk in synchrony with metronome
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ticks. When two stimuli have the same tempo and the walking is synchronized with the
beat, then it is the stride length that determines possible differences in speed. However,
little is known about the acoustical and musical features that cause this effect. Nor
is it known whether musical stimuli exist that have a relaxing effect on the participants
resulting in them taking smaller steps and thus walking slower than on metronome stimuli.

Inspired by a theory of embodied music cognition [2], our hypothesis is that mu-
sic may entrain the vigor or physical strength of a movement response. This implies
that the flow of a movement may embody expressive aspects of the music on top of a
time-entrainment [3]. Studies of time-entrainment addressing diverse aspects of synchro-
nization (see [4] [5] for reviews) including dancing (e.g. [6–8]) show that the tight and
complex coupling of perception and movement is guided by temporal recurrent patterns
in the acoustical structure of the music. These patterns may also influence the cognitive
grouping of information into larger musical units at different hierarchical levels [9] [10].
However, certain features of the music (such as the sound pressure level of the bass drum)
may also lead to more intense spontaneous hip movements and a higher degree of time-
entrainment [11], which suggests an entrainment of the vigor of the movement response on
top of an entrainment of the timing of the movement response. Applied to beat synchro-
nized walking, we assumed that the vigor of the movement response could be most easily
observed in the walking speed (or forward stride length). Note that effects on vertical
and or sideward movement of the body cannot be excluded but we do not consider these
aspects in the present study. The boost effect observed by Styns et al. [1] can be seen
as an expression of movement vigor. However, we believe that the set of musical stimuli
used by Styns et al. had an activating character. We assume that if some music may
activate the beat synchronized movement in such a way that the walking speed increases,
it may also work in the opposite way in the sense that some music may relax the beat
synchronized movement in such a way that the walking speed decreases. We thus make a
distinction between an ‘activating’ effect and a relaxing’ effect and we relate both effects
to metronome stimuli that we assume to be neutral because metronome stimuli do not
contain sonic energy between the pulses that mark the beat tempo. We reasoned that a
lack of such energy cannot possibly entrain the vigor of the movement in an exogenous
way. In other words, we assume that an activating and relaxing effect of music on beat
synchronized walking is determined by the flow of the sonic energy in the music.

To test our hypothesis we focus on stimuli with a tempo of 130 beats per minute
(BPM). This tempo is slightly above the resonance frequency in human movement [12] [13],
which is on average 117 BPM [14]. Styns et al. [1] found that an increase of the tempo
from 50 BPM to 110 BPM implies an increase in beat synchronized walking speed because
more steps with larger stride length are taken. In the range from 130 BPM to 200 BPM,
the stride length no longer increases and the walking speed does not increase any more,
despite the increase in number of steps taken. The range from 110 BPM to 130 BPM
marks a resonance zone where beat synchronized walking is optimal. Within that range
the difference in speed in response to music and metronome ticks is most prominent and
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shows a peak at 130 BPM.
However, we do not know which music has an activating effect and which music has a

relaxing effect, nor do we know why it has this effect. Therefore, we start from different
musical styles and select music that may have an effect on walking speed. Then we
measure the effects and try to identify which qualitative perceptual features and which
objective sonic features may be responsible for the observed effects. Accordingly, we
conduct a behavioral experiment in two parts. In the first part, participants are asked to
walk in synchrony with the musical beat. In the second part, they are asked to listen to
the pieces of music and to rate them using a series of bipolar adjectives. To identify the
sonic features, we use feature extraction and regression analysis algorithms.

Methods

Ethics Statement

The participants signed a consent declaration in which they declare that they are freely
volunteering to participate, that they are informed in advance about the task, the proce-
dure and the technology used for measurement. They had the opportunity to ask questions
and agreed that recordings of their actions were made. They agreed that recorded data
would be used for scientific and educational purposes only. In agreement with the general
standards at our university and our faculty, security was guaranteed (our indoor task is
not dangerous), and privacy is respected. According to the Belgian law for experiments
aiming towards research performed in view of the development of biological or medical
knowledge (cf. 7 May 2004 Law concerning experiments on the human person (Ch.II,
Art.2, Par.11)), our research is exempt from needing ethical approval as this study only
involves behavioral knowledge.

Participants

The participants were 18 healthy, normally built adults: 7 male, 11 female, aged 22 to 51
(M: 28), between 162 and 187 cm (M: 171) tall and with a weight between 52 and 100 kg
(M: 64). Most of them had experience with playing music (14 reported that they play a
musical instrument) and 17 of the participants agreed with the statement “I often move
to music”.

Stimuli

The walking experiment was based on 52 musical excerpts and 6 identical metronome
sequences. All excerpts and sequences had a duration of 30 seconds and a tempo of 130
BPM (64 beats). Amplitudes were normalized and subjectively checked to minimize the
differences in loudness and a short fade-in of 50 ms and a fade-out of 100 ms was applied
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to each musical excerpt, using CoolEdit. The metronome sequences were generated with
Analog Box (http://code.google.com/p/analog-box/). In order to maximize musical
diversity, a group of three musicologists collected a set of musical pieces with a tempo
of 130 BPM from a variety of different styles. From this set the selection of 52 excerpts
was made based on a series of criteria: the three experts should agree that the tempo
was 130 BPM, the tempo should be stable throughout the excerpt and the music should
have a homogeneous character. Moreover, in the selection process, a preference was
given to musical pieces that would probably be unknown to most participants, in order
to avoid effects of familiarity as much as possible. Table 1 provides a list of all the
musical excerpts that were used. Based on the 52 excerpts and 6 metronome sequences,
three playlists (I, II, III) of 58 stimuli (musical excerpts and metronome sequences) were
generated by randomly changing the order in which the musical excerpts were presented.
The 6 metronome sequences were presented at fixed positions in each playlist, namely, at
positions 1, 12, 23, 34, 45, and 58. Between each stimulus, a 5 second break was inserted.
Each participant listened to one of the three playlists and all playlists occurred an equal
number of times during the experiment. For the second part of the experiment only the
52 musical excerpts were used.

Procedure

Synchronous Walking. The walking experiment took place in a sports hall. In the
middle of the hall a circle with a diameter of 15 m was drawn, which served as the
pathway for the walking participants. For a video example and sounds, see (http://www.
ipem.ugent.be/ActivatingRelaxingMusic). Upon arrival, the participants were briefly
informed about the procedure and the goal of the research. Next, they were equipped
with a wireless sensor system, called Xbus Kit (http://xsens.com/en/products/human_
_motion/xbus_kit.php). This kit consists of five MTx sensors that measure acceleration,
angular acceleration and the earth magnetic field, each in 3D. These MTx sensors were
attached to the top of the right foot, the side of the right ankle, the right knee, the right hip
and the right hand, which gives us a detailed image of the participants movements while
walking. The MTx sensors were connected to the Xbus Master, which collects the data and
sends them to a computer (laptop ACER Aspire 1500) via a Bluetooth connection with a
sampling frequency of 50 Hz. Next to the sensor system, each participant received an IPod
Nano and a pair of headphones (Sennheiser HD 215). Before starting the experiment, the
participants were explicitly instructed to walk in synchrony with the music, sticking to the
tempo of the metronome stimulus that they could hear at the beginning of the soundtrack.
The walking path was indicated by a circle on the ground. Participants were instructed
to walk along the circle whenever they heard a sound through their headphones and to
stop when the music stopped. Before they started they heard some music which they
could use to adjust the volume. Everybody was asked to choose a comfortable listening
level and once this was fixed the volume could not be changed anymore. The excerpts

http://code.google.com/p/analog-box/
http://www.ipem.ugent.be/ActivatingRelaxingMusic
http://www.ipem.ugent.be/ActivatingRelaxingMusic
http://xsens.com/en/products/human__motion/xbus_kit.php
http://xsens.com/en/products/human__motion/xbus_kit.php
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were presented in two blocks of 29 pieces (taking 16 minutes 55 seconds to finish one
block). Between blocks, a five-minute break was given, during which some refreshments
were offered.

Qualitative rating. One or two days after the walking experiment, the participants
came to the laboratory to complete the rating experiment. They listened to the same
music and rated the excerpts, using nine pairs of bipolar adjectives based on the fol-
lowing [15]: good-bad, happy-sad, tender-aggressive, soft-loud, slow-fast, moving-static,
stuttering-flowing, easy-difficult (to synchronize with) and known-unknown. The inter-
pretation of the bipolar adjectives was explained to the participants by means of a short
text, before starting the experiment. The adjectives were presented on sheets (one sheet
for each musical piece), and were divided by a 10 cm horizontal line. The line was used as
a Likert scale, allowing the participant to make a quasi-continuous judgment by putting a
mark somewhere along the line. This rating will allow us to clarify the personal motivation
and provide a first level of explanation of how the effect of sonic parameters is interpreted
by the listener. After finishing the whole experiment, the participants received a voucher
of 15 Euro, which they could spend at a well-known multi-media market.

Feature extraction and data-analysis

Walking speed. The speed of walking was derived from the outputs of the sensor that
was attached to the hip. This sensor information provided the angle with respect to the
magnetic north pole. Participants had to walk in a circle, so that for each stimulus the
distance between starting position and end position could be calculated using formula 1,

d = (β − α)r (1)

d stands for the distance, β is the angle (in radians) of the end position with respect to
the magnetic north pole, α is the angle (in radians) of the starting position with respect
to the magnetic north pole, and r is the radius (here 7.5 m). The speed of walking was
calculated by dividing the distance by the duration of the stimulus, which is 30 seconds.

Walking tempo. The walking tempo was calculated using acceleration information of
the sensor attached to the foot. The tempo was found by taking the peak of a Discrete
Fourier Transform (DFT) that was applied to the acceleration data. The size of the DFT
was chosen in such a way that the resolution of the DFT bins was equal to 0.5 BPM. As
the tempo of only one foot was measured, it was necessary to multiply the obtained DFT
bins by 2, so that the value corresponds with half the walking tempo of one foot.

Normalizing and averaging the walking speed. In order to assess the effect of the
sonic features on walking speed, each song s is assigned a unique walking speed x(s).
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The assignment process is solely based on acceptable trials, defined as trials in which
the participant walks in synchrony with the tempo of the stimulus (either a song or a
metronome tick). Since the mean walking speed of a participant is bound to depend
on his/her physical characteristics, such as length and weight, one needs to assure that
the computed x(s) is not affected by these characteristics. Therefore, in a first step, the
speed values of the acceptable song trials of participant p are divided by the mean speed
of that participant over the acceptable metronome trials. The underlying assumption is
that metronome sequences are neutral in terms of activation and relaxation. Once this
normalization is performed, the envisaged x(s) for a song s is the mean normalized walking
speed over the acceptable trials of all participants for this song. Using this procedure, the
walking speed to metronome ticks equals 100 units. Slower and faster walking speeds for
songs are rated below or above this value.

Extraction of sonic features. It is anticipated that walking speed in synchronous
walking is especially affected by the temporal patterns in the music. Therefore, for each
of the 52 musical excerpts, a set of 190 sonic features is computed: 2 features are provided
by a beat tracker and 188 features emerge from a dedicated feature extractor encompassing
three levels of analysis [16], called the frame-level, the beat-level, and the song-level.

Generally speaking, the sonic feature extraction is achieved in three stages. The audio
signal is first converted into a stream of acoustic parameter vectors (one vector every 5
or 10 ms; the components of the vector cover subsequent frequency bands). This feature
stream is then analyzed per inter-beat interval (IBI) and gives rise to beat-level feature
vectors (one vector per beat). In the third stage the time evolution of that beat-level
feature in the course of the song, called the feature pattern, is considered as a ‘signal’
and its spectrum is computed at four frequencies, namely 1/2, 1/3, 1/4 and 1/6 of the
beat rate. In total, 45 beat-level features were considered, giving rise to 4 x 47 = 188
sonic features. Each acoustic parameter vector consists of (a) 6 loudnesses (loudness =
energy to the power of 0.25) evoked by the outputs of a 6-channel filter bank and (b)
52 evidences for 52 frequencies between 0.1 and 2 kHz and coinciding with the notes on
a Western scale. A more technical description is given in the next paragraphs; for more
details, see [16].

Frame-level analysis. The frame-level analysis consists of two components. The
first component considers subsequent fixed length frames of 30 ms long, shifted over 5 ms.
Per frame (a time interval of 5 ms), this analysis produces the loudnesses measured in six
frequency bands. This is achieved by decomposing the signal into six subband signals by
means of six triangular filters with center frequencies of approximately 118, 298, 570, 983,
1609 and 2559 Hz and by measuring the energies of these signals in an interval of 30 ms.
The second component considers subsequent frames of 150 ms long, shifted over 20 ms.
This analysis produces frame per frame evidences for 52 note-related frequencies ranging
from 0.1 to 2 kHz. We consider the note frequencies on an equally tempered western
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scale.

Beat-level analysis. The frame-level features are further considered per beat pe-
riod. Each beat period is presumed to start with an energetic occurrence that marks the
beat at a particular time instance. The beat-level analysis produces 47 sonic features per
beat: (i) There are 7 beat-onset features, which describe the total loudness growth as
well as the loudness growths in the six subbands at the beat onset time. (ii) There are 3
beat event features, which describe the exact position of the beat onset, the length of the
beat event and the skewness of this event. (iii) There are 21 beat period features, which
describe the seven frame-level loudnesses (the total loudness and the six subband loud-
nesses) observed in the course of the beat period following the beat event. Per loudness
we first of all retain the mean and the standard deviation of the loudness samples, but
we also consider the temporal evolution of the loudness samples in the beat period and
we retain the center of gravity of this temporal pattern. (iv) There are 10 beat period
features summarizing the information that is retrieved from the pitch saliences computed
by the frame-level analysis. The first feature represents the position of the onset of the
most salient note found in the beat period. The nine others describe the frequency (in
Hz), the pitch class (chroma) and the salience of the three most salient notes. If only two
notes are found, the third note is marked by a zero frequency and salience. (v) Finally,
we compute 6 beat similarity features describing cosine similarities between subsets of
the formerly derived beat onset and beat period features of each two subsequent beat
onsets/periods. The considered feature subsets are: (1) the loudness growths in the six
subbands at the beat onset, (2) the means of the six subband loudnesses in the beat
period, (3) the standard deviations of the six subband loudnesses in the beat period, (4)
the centers of gravity of the six subband loudness patterns, (5) the three most salient note
frequencies found in the beat period, and (6) the same frequencies after mapping to the
chromatic scale.

Song-level analysis. In the song-level analysis stage, we consider the beat-per-beat
values of each individual beat-level feature as the samples of a ’signal’ that was sampled
at the beat rate. The aim of this analysis is to discover evidences for periodicities of
lengths 2, 3, 4 or 6 in such a signal, and to consider these evidences as sonic features. The
computed evidences for a particular signal are just the values of the amplitude spectrum
of that signal at frequencies of one half, one third, one fourth and one sixth of the beat
rate. This implies that every beat-level feature gives rise to four evidences, yielding 188
song-level features in total. These features, together with the outputs of two oscillators
residing in the beat tracker, namely, the oscillators tuned to twice or three times the beat
rate, complete the set of 190 sonic features characterizing the song.

Regression analysis. The goal of the regression analysis is to identify the sonic features
that mostly affect the mean normalized walking speed of a song and to obtain an unbiased
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estimate of the performance one can obtain with these features. If there were enough
songs available, one would first divide them in a development set and a test set, and
subsequently sub-divide the development set in a training set and a validation set. To
select the best sonic features, one would then examine many potentially interesting sonic
feature subsets, develop a regression model for each subset in the training set, validate
that model on the validation set and finally retain the model with the lowest validation
error. To get a performance measure, one would simply evaluate the retained model on
the test set.

However, given the low number of songs being available, the above procedure is not an
option and 10-fold cross-validation is used instead. To that end, the 52 songs are divided
into 10 folds (8 folds of 5 and 2 folds of 6 songs) and 10 trials are being conducted, one
for each fold. In each trial, the considered fold acts as a test set, and the remaining folds
as a development set. The feature selection stage of a trial then delivers a set of selected
sonic features and speed predictions that are made with these features for the songs in
the test fold. After 10 trials, we have speed predictions for all 52 songs and we know how
many and which sonic feature are selected in each trial. The root mean squared error
(RMSE) between the predicted speeds and the measured speeds of all 52 songs is used as
a quality measure for how well the sonic features can predict the walking speeds.

In order to restrict the number of feature combinations to explore in the feature
selection stage of a trial, we introduce a feature pre-selection step. Its aim is to identify
the 10 potentially most interesting sonic features. We choose 10 because we expect that
models using more than 5 features will not generalize well on new songs, so 10 features to
select from should be enough. The simplest way to accomplish the pre-selection would be
to retain the 10 features which correlate most with the speed measurements. However,
this procedure holds a risk of missing a feature that is not very strong on its own but
efficient in combination with another feature. Therefore, we tested all 190x189/2 = 17955
possible pairs of two features, we created a regression model per pair and measured the
correlation between the predictions of that model and the measurements. We then selected
the 10 features occurring most frequently in the 10% best pairs. We actually tried both
approaches and the emerging feature sets had 8 features in common (see later). Thanks
to the feature pre-selection it is feasible for the feature selection stage of a trial to examine
all combinations of 1 to 10 pre-selected features and to select the best combination. To
find the best combination, 9-fold cross-validation on the 9 development folds is applied, as
suggested in [17]. The predictions of the walking speeds on the test fold are then obtained
by means of a regression model using the combination that is trained on the complete
development set. If one does not only want a performance measure, but also a regression
model for predicting the walking speeds of future songs, one can select the K features
that were selected most frequently in the 10 trials and train a regression model using
these features on the all 52 songs. A good value of K would be the maximum number of
features that was ever selected in one trial.
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Results

Synchronization

The criterion that must be met for walking in synchrony with the music is that the number
of steps is equal to the number of beats in the music. In 88.7 % of the trials, participants
synchronized with the musical tempo, which means that most participants had a tempo
of 130 steps per minute (SPM). In 9.2 % of all trials, participants did not adopt a tempo
of 130 SPM, neither did they adopt a multiple or a division of this tempo. This number
does not indicate that certain songs were more difficult to synchronize with, rather some
subjects had difficulties in synchronizing with a large number of songs. In a few cases
subjects walked at the double tempo (0.38 %) or half of the tempo (1.72 %). Only those
trials were selected for further analysis in which the participant walked in synchrony with
the musical tempo.

Effects of music on walking speed

Figure 1 displays the normalized speeds for the 52 musical excerpts. The figure shows
that the speed of walking to music can be slower or faster than the speed measured for
metronome ticks. Each participant’s average walking speed with the metronome was
scaled to 100%. However, the figure also suggests that there is quite some variability be-
tween participants and that the walking speed for quite a number of musical excerpts does
not differ from those of metronome ticks. Nevertheless, the figure suggests a significant
distinction between the extremes, that is, between low speed or relaxing excerpts (where
participants take small steps) and high speed or activating excerpts (where participants
take large steps). When we compare the ten fastest (mean = 107.0%) with the ten slowest
(mean = 89.4%) and the 10 most neutral songs from the middle (mean = 99.9%), ANOVA
shows a significant difference (F(2, 27) = 96.50, p < .001), with a post-hoc Scheffé test
showing highly significant differences between all three the groups. This shows that we
can indeed identify music that is activating or relaxing compared to metronome ticks (or
neutral music) with the same tempo.

Regression analysis

A scatter plot of the predicted versus the measured speed values is depicted in Figure 2.
This scatter plot shows the predictions of the regression models (one model per test, one
test per fold) for the entire dataset. The RMSE between predictions and measurements
is 3.98 (recall that the mean value of the measurement is 100). The Pearson Correlation
Coefficient (PCC(50)) between the two is 0.77 (p < .001), meaning that 60% of the original
variance in the measurements is explained by the models (0.60 = square of PCC).
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Which features are most important? In 8 of the 10 trials, 5 features were utilized.
In the other 2 tests only 4 features were utilized. The latter 4 features are common in all
10 tests performed. They are listed in Table 2. One other sonic feature was selected five
times, but most others only once or twice. Therefore, it makes sense to focus only on the
4 features that were always selected. Table 2 provides the mean and standard deviation
(over 10 trials) of their regression coefficient, as well as their individual PCC with the
measurements. These PCCs show that features 178 and 176 exhibit the strongest corre-
lations. Feature 178 alone, can already explain 44% of the variance (PCC = -0.67). Note
that five features exhibiting a higher absolute correlation with the measurements than
feature 131 were not selected more than 2 times. Apparently they provide no comple-
mentary information. Since feature 131 was always selected and since it was not retained
by the more simple pre-selection method mentioned above, a final evaluation with the
feature set emerging from that simple pre-selection was conducted as well. This feature
set provided a much smaller gain for feature 178 alone: PCC = 0.72, explained variance
of 51% and only 2 features (178 and 176) that were selected 10 times.

What do the features represent? Features 176 and 178 are both derived from an
analysis of the individual loudness patterns in subsequent IBIs (recall that a pattern is
defined as an evolution in time). In the case of feature 176 the variances of the six loudness
patterns in each IBI are computed, and the cosine similarity between the variance vectors
measured in two subsequent IBIs is considered as a feature of the beat between those IBIs.
Feature 176 is high if the spectral analysis of the temporal evolution of this feature over
the song excerpt reveals the clear presence of a frequency of one sixth of the beat rate. In
the case of feature 178, the center of gravity (the centroid) of each loudness pattern in an
IBI is computed and the cosine similarity between the centroid vectors measured in two
subsequent IBIs is considered as a feature of the beat between those IBIs. Feature 178
is high if the spectral analysis of the temporal evolution of this feature reveals the clear
presence of a frequency of one third of the beat rate.

In order to get some idea about the relationship between sonic features and music prop-
erties one may consider the example of music in which the loudness patterns in subsequent
IBIs differ. Such differences can emerge from small timing deviations of instruments with
respect to each other (known as laid-back) or from differences in the swellings of articu-
lated tones (due to a crescendo and decrescendo). Both of these phenomena are known
to affect the expressiveness of the music and they cause a disturbance of the dominant
binary meter (due to delayed onsets, or the suggestion of syncopation).

Features 131 and 152 are both derived from an analysis of the note evidences measured
in subsequent IBIs. In the case of feature 131 the mean evidence of the most salient note
in each IBI is considered as a feature of the initial beat of that interval. Feature 131 is high
if the spectral analysis of the temporal evolution of this feature reveals the clear presence
of a frequency of one fourth of the beat rate. In the case of feature 152 the frequency
of the third most salient note in each IBI is considered as a feature of the initial beat of
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that interval. Feature 152 is high if the spectral analysis of the temporal evolution of this
feature reveals the clear presence of a frequency of one third of the beat rate. Given the
fact that the frequency is set to zero if only one or two notes are found in the IBI, feature
152 is high if three notes are found only once every three IBIs.

Interestingly, the selected features span periodicities of 3, 4 or 6 beats, whereas occur-
rences of bursts or energy distributions of onset features were not selected. This indicates
that the features are indicative of fluctuation and emphasis that covers subsequent beat
periods. In addition, the features measure phenomena that cover the entire sound spec-
trum rather than just a part of that spectrum (e.g. a single subband). Therefore, we can
say that the features measure global temporal phenomena (with periods up to 6 beats)
and global spectral phenomena (all 6 subbands).

To sum up, the analysis suggests that articulated fluctuations of loudness and em-
phases of pitch are expressive characteristics that may weaken or strengthen the binary
meter. The weakening of the binary meter is due to expressive properties of composition
and performance that leave traces of ternary components. When a spectrum is made of
the IBI comparisons, the spectral peaks will typically articulate the binary meter due to
the fact that the basic structure of the music is predominantly binary. However, when
the articulated expression implies deviations from the binary meter (as in laid-back or
crescendo-decrescendo notes), these peaks will be broader and spread out to the ternary
region. Therefore, the measurements at three or six beats do not necessarily reflect peaks
that mark a clearly audible ternary structure of the music. Rather, they reflect articulated
expressive characteristics of the performance that is predominantly subsumed under the
binary meter and affect that meter. In contrast, the absence of this type of articulated
expression and the presence of other additional binary features emphasize a more strict
binary meter.

How do the features affect the walking speed? The regression coefficients of fea-
tures 176 and 178 are negative, which means that they are associated with the desire to
take bigger steps. The regression coefficient of feature 131 is positive, which means that it
encourages the participants to take bigger steps. A more detailed analysis indicates that
most activating songs had a simple tonal pattern in the sense that only one or two salient
notes per IBI were found, whereas most relaxing songs had a more complex tonal struc-
ture (many IBIs with three notes were discovered). Apparently, a more complex tonal
structure in combination with a weakened binary meter tends to suppress the enthusiasm
of the participants to take bigger steps. In general terms we can say that traces of ex-
pressive articulation in the ternary meter are characteristic for relaxing music, whereas
an absence of these traces and an emphasis on the binary meter is characteristic for the
activating music.
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Qualitative evaluation of the activating and relaxing excerpts

We selected the 10 excerpts which induced the highest average speed and the 10 fragments
which induced the lowest average speed in the walking experiment. Excerpts that induce
a high speed are labeled activating (marked with a in Table 1, where a1 is the most acti-
vating excerpt), while excerpts that induce a low speed are considered relaxing (marked
r in Table 1, where r1 is the most relaxing excerpt). First, we checked whether the sonic
features differed significantly between the activating and relaxing excerpts. Then we car-
ried out a qualitative analysis of the style of the excerpts and examined if differences
between the two groups also appear in the ratings derived from the second part of the
experiment.

To check whether sonic features differ, we took the values of the five sonic features
for the sets of 10 activating and 10 relaxing excerpts, and we applied t-tests to see if
they differ significantly. This is indeed the case for all four features: feature 176 t(18) =
3.00, p < .01; feature 131 t(18) = −2.34, p < .05; feature 152 t(15) = 2.77, p < .05; feature
178 t(18) = 3.06, p < .01. This indicates that these particular sonic features indeed make
a difference between the groups of activating and relaxing excerpts.

Figure 3 shows relaxing excerpts and activating excerpts in relation to the qualitative
descriptors as they were rated by the participants during the second part of the experi-
ment. Mann-Whitney tests on the mean ratings per excerpt showed that the adjectives
bad-good, aggressive-tender, loud-soft, fast-slow and fluent-stuttering are ranked signif-
icantly different in both groups. In particular, this means that activating is related to
the qualitative features bad (U = 17.00, p < 0.05), aggressive (U = 0.00, p < 0.001),
loud (U = 0.00, p < 0.001), fast (U = 16.00, p < 0.01), stuttering (U = 0.00, p < 0.001).
In contrast, the adjectives sad-happy, static-moving, difficult-easy and unknown-known
are not ranked significantly different. This analysis suggests that sound qualities related
to loudness, timbre, texture are perceptually more important than adjectives that probe
subjective experiences related to emotions, difficulty, familiarity, and taste. Overall, par-
ticipants are consistent in their observation of qualitative differences between the relaxing
and activating musical stimuli.

Style description of the activating and relaxing excerpts

A stylistic interpretation of sonic features is challenging because the sonic features may
capture combined musical configurations. After having listened to the most activating
and most relaxing musical pieces, we were left with the following impressions. Activating
music tends to exhibit (i) less variation in the musical expression, (ii) a continuous strength
that is typically supported by a bass that is active at a subbeat metric level, resulting
in a more or less constant loudness over several measures, (iii) a downbeat characteristic
(on the first and third beat), with the strongest pitch on the first beat, (iv) short melodic
motives using short notes that are often repeated, (v) a lot of noise in the timbre. Relaxing
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music tends to have (i) more variation in the musical expression, (ii) a variable strength
that clearly articulates the played notes, leading to fluctuations in the loudness patterns,
(iii) an upbeat characteristic (on the second and fourth beat) with harmonic support on
the second and fourth beat, (iv) longer melodic motives and phrases, and legato notes, (v)
a more transparent and bright timbre. Obviously, these descriptions somehow summarize
a general difference between the most activating and the most relaxing musical excerpts.
As far as genre is concerned, pop-techno is more prominent in activating excerpts, while
jazz-reggae is more prominent in relaxing excerpts. In general, the relaxing excerpts
contain more variance in phrasing and melody, whereas the activating excerpts have a
more equalized phrasing stressing a binary structure.

Discussion

Musical interpretation and theoretical model

The present study shows that in beat synchronized walking, temporal patterns in music
may influence the walking speed (or stride length). This result supports the hypothesis
that music may entrain the vigor of the movement response on top of time-entrainment.
The findings show that music can influence a control mechanism for movement activation
and movement relaxation and that participants are consistent in their observation of
qualitative differences between relaxing and activation musical excerpts. The effect can
be predicted by a small number of features extracted from recurrent temporal patterns
in the sonic energy of the music. However, the musical interpretation of these features is
challenging given the fact that the features may capture the combined effect of different
musical phenomena. The features suggest that fluctuations in loudness and pitch affect the
perceived meter strength. Weakening of the binary meter strength affects the strength
of ternary components and this contributes to a relaxing effect. The absence of these
fluctuations implies a more regular binary meter which, in combination with a pitch
emphasis on binary components, contributes to an activating effect.

There are different explanations for this effect. One possibility is that expressive
patterns in a binary meter cause an attention shift [9] to a larger time period (namely
ternary rather than purely binary), thus affecting the movement vigor and resulting in a
slowing down of the speed while keeping the tempo constant. Similar attentional shifts
have been documented in studies that address synchronized finger tapping to music and
artificial stimuli [18–21]. However, expressive aspects of music are subtle and their effect
on movement may also occur at a subliminal level. Thus, rather than speaking of an
attention shift, the effect may be due to a direct audio-motor coupling in which articulated
fluctuations affect the strength of the binary meter. This is then directly translated in the
vigor of the movement response. Nozaradan et al. [22,23] show that the brain reflects beat
and meter in accordance with the resonance frequency of moving [12]. Metric structures
thus resonate in the brain and there is evidence that they entrain the motor system [24–29].
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The connection with imagery forms a further basis for a music-driven perception-action
coupling that may influence the vigor of the movement [30, 31]. In addition it is possible
that the continuous strength of the activating music is reflected in a continuous strength
of the movement response. Van Dyck et al. [11] provides evidence that the sound pressure
level of the bass drum may entrain movement intensity and synchronization. The absence
of articulated loudness fluctuations and presence of a continuous activity of the bass at
subbeat level gives a particular emphasis to the binary meter and comprises an energetic
component that may contribute to the activating effect.

Qualitative descriptors

The analysis of sonic features has been complemented by a rating task, showing that the
participants perceive differences between activating and relaxing music in terms of the
adjectives bad-good, aggressive-tender, loud-soft, fast-slow and fluent-stuttering. However,
the adjectives sad-happy, static-moving, difficult-easy and unknown-known do not mark
such a difference. This suggests that personal taste is not a motivating factor. One could
expect people to walk faster when they listen to their familiar music, to music which
generates positive vibes or to music which is easy to synchronize to. However, there
is almost no difference between activating and relaxing music for adjective pairs such
as sad-happy, easy-difficult and unknown-known. Interestingly, the relevant qualitative
descriptors seem to stress an experience of sonic energy, as music with an activating effect
is associated with the adjectives aggressive, loud, fast, and stuttering. Music with a
relaxing effect is associated with the adjectives tender, soft, slow, fluent. It is tempting
to associate this type of descriptors with sonic features that characterize global spectral
and temporal patterns.

Music in sports and rehabilitation

Although several studies have looked at the effects of music on human movement only a
few studies have examined in detail synchronized walking movements in relation to musi-
cal parameters. Studies that addressed the non-synchronized use of music during sports
exercise showed for example that music influences motivation, and that the effect is typ-
ically determined by sonic features such as tempo and loudness levels [32–34]. Studies
that looked at the synchronized use of music, such as during treadmill-walking [35] or
running [36] showed that an effect on body-related properties such as effort (heart rate,
perseverance) occurs. Apart from objective measurements the experiences of participants
have been analyzed using questionnaires that probe effort sensation, perceived exertion,
arousal, emotion, and so on. It has even been suggested that positive experiences as-
sociated with synchronous body movement are linked to an increase in neuromuscular
or metabolic efficiency [37]. Also in physical rehabilitation programmes, music has been
used to influence human movement. For example, music has been used to improve gait
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patterns in stroke patients who have suffered a stroke [38]. In addition, it is known that
sonic cueing may enhance gait coordination in Parkinson patients [39], and that rehabil-
itation patients who walk on music can walk longer than patients who do not walk on
music [40,41]. However, most studies that address the effect of music on walking focus on
general musical parameters, such as the difference between music and no music, fast and
slow music tempo, or low and high intensity levels. Less attention has been devoted to
more fine-grained sonic features. Furthermore, it should be noted that the effect of music
on synchronized walking speed in a context of treadmill walking is complicated due to the
fact that the treadmill interface imposes a fixed speed, and therefore influences the step
size upon synchronized walking.

The results of the present study are relevant for the hypothesis [35] that music, in
contrast with no-music, can alter psychomotor arousal and thus can act as a stimulant
or sedative. Our study shows that music at 130 BPM can be activating or relaxing,
depending on the musical style and structure, which is reflected in features that mark
temporal distribution of sonic energy. In addition to [36] who used two musical pieces
that were rated as either motivational or non-motivational (oudeterous) music by the
participants, and where both musical conditions resulted in higher speeds compared to
the no-music condition, our study shows that finer distinctions are possible, and that
music of the same tempo (130 BPM) can indeed have an activating or relaxing effect
on the speed of synchronous walking. Moreover, our study shows that it is possible to
identify sonic features that predict the effect.

Music has a performance- and motivation-increasing effect on joggers, especially on
untrained people [42]. Recently, applications have been developed that aim at exploiting
music for walking, such as StepMan [43] and Djogger [44]. Up to now, these devices mea-
sure the walking tempo and provide music with the same tempo. However, in developing
sports applications, where joggers follow a training program based on synchronized walk-
ing and running with music, one may question whether tempo is indeed the only criterion
that determines the walking speed, and whether additional stylistic sonic features should
be taken into account in order to influence aspects of movement vigor.

Music and muscular bonding

The results of our study may contribute to a better understanding of the muscular bonding
effect [45]. McNeill observed that throughout history, one of the main functions of beat
synchronized walking (such as marching) is to arouse a euphoric fellow feeling within a
group of individuals. This feeling is typically achieved through prolonged and rhythmic
muscular motions that can be supported by the music, such as during working on the
field, or during exercise and marching. The effect is called muscular bonding, and it puts
forward the important role of the human body as a mediator between sonic properties
of music (tempo, loudness) and experiences (fellow sympathy, arousal). This viewpoint
is a core component of the embodied music cognition research paradigm, in which the
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relationship between human motion and musical experience is seen as a cornerstone of
musical signification [2]. It is possible that vigor entrainment can be linked with a fellow
feeling effect (see e.g. [46]). However, this effect needs further study and clarification.

Conclusion

This study concentrates on the effects of beat synchronized walking in human beings.
When human walking is in synchrony with the beat and all musical stimuli have the same
tempo (namely 130 BPM), then consistent differences in the walking speed of people can
only be due to music-induced differences in stride length. Taking bigger or smaller steps
in response to the particular nature of the music can then be directly coupled with the
vigor of the movement response. The major contribution of this study is that: (i) It shows
that the entrainment of music and movement involves two different components namely,
timing and vigor. The entrainment of timing is related to tempo (and phase) of the
movement response, while the entrainment of vigor is here defined in terms of activation
and relaxation. We believe that this finding sheds new light on the embodiment of music,
in particular how music may influence the physical strength of a movement. (ii) The
study also shows that the entrainment of the vigor of a movement response to music
is due to expressive musical features that are reflected in the musical meter. A limited
number of sonic features can predict the difference between activating and relaxing music
and hence the difference in vigor response. The sonic features focus on recurrent patterns
of fluctuation in the binary and ternary meter strengths. This finding is interesting in
that it reveals a relationship between expressiveness and meter. Overall, our study opens
new perspectives for understanding the relationship between musical entrainment and
expressiveness, with the possibility to develop applications that can be used in domains
such as sports and physical rehabilitation.
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Figure Legends
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Figure 1. Mean and standard deviation of the normalized walking speed for each song,
ranked according to the mean walking speed for the songs x(s).
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Figure 2. Scatter plot of the speed x(s) versus their values predicted with a regression
model based on sonic features.
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Figure 3. Average score of nine bipolar adjectives (with 0 indicating the first adjective
and 100 indicating the second adjective) for the 10 relaxing excerpts (grey bars) and the
10 activating excerpts (white bars). The stars indicate significance levels.
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Table 1. List of musical pieces. The first column is the number, the second column
specifies the composer or performer, the third column the title of the piece, and the
fourth column indicates whether the piece has a relaxing or activation effect. The
stimuli are ordered from most relaxing to most activating.

Id Composer Performer Song Activating Re-
laxing

1 Mr. de Sainte-Colombe Courante r1
2 Hector Zazou Eye Spy r2
3 S.E.S. Sad Song r3
4 Manu Chao Minha galera r4
5 Willem Vermandere Schoorbakkebrug r5
6 Penguin Caf Orchestra Paul’s Dance r6
7 Al Dexter Guitar Polka r7
8 Ken Boothe Archibella r8
9 Joseph Haydn Simphonietta r9

10 Django Reinhardt It don’t mean a thing r10
11 Tokyo’s Coolest Combo Comment te dire adieu
12 CPEX Pinocchio
13 Bruce Channel Hey Baby (Dirty Dancing)
14 Will Tura Hopeloos
15 Antonello Paliotti Sotto e’ncoppa
16 Rosalie Allen I wanna be a cowboy sweetheart
17 Moving Hearts Hiroshima Nagasaki Russian Roulette
18 Amuka Appreciate me
19 France Gall Laisse tomber les filles
20 Nathalie McMaster Capers jigs
21 Santana Primavera
22 Charles Dieupart Concerto in a-minor, allegro
23 Joseph Bodin de Boismortier ”Don Quichotte chez la Duchesse”, Tambourin I
24 Antonio Vivaldi Cello Sonata in a-minor, allegro
25 Georg Friedrich Hndel Allegro Trio Sonata in g-minor, allegro
26 traditional Irish Fred’s tune
27 anonymous la Rotta
28 Suksinder Shinda Punjabain
29 Elysium Interpretation of Dreams
30 Banda 11 de Enero Feria de Manizales
31 Pea Suazo y su Banda Gorda Aqui, pero alla
32 Jovanotti Tutto l’Amore Che Ho
33 Date of Birth Aim at El Paso
34 O-zone Dragosta din tei
35 Communards Don’t leave me this way
36 Boredoms Jungle Taitei
37 Van Halen Dance the night away
38 Vasmolon Lard Ki Labam
39 Kieran Fahy McHugh’s
40 Kosheen Catch
41 Jefferson Airplane Somebody to love
42 Matthew Dekay If I could fly
43 Aqua Barbie Girl a10
44 tatu Not gonna get us a9
45 Traffic Signs The big fake a8
46 Le grand rouge Parlens d’aimer a7
47 Junior Jack The hype a6
48 Peter Katafalk Down and Out a5
49 Kujay Dada Young Hearts a4
50 Franceso Veracini Ouverture no.5 (b-major), allegro a3
51 Clawfinger Out to get me a2
52 Falik The ballad of El Efe a1
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Table 2. The most frequently selected sonic features (out of ten models) for

walking speed. For each feature we list the feature number (Id), the mean (µc) and
standard deviation (σc) of the regression coefficients for these features in the models and
the number of times (N) (0 .. 10) the feature was selected.

Id Walking speed µc σc N PCC
176 Evidence for a period of 6 beats in the simi-

larity between the standard deviations of the
six loudness features in subsequent beat pe-
riods

-244 49 10 -0.53

131 Evidence for a period of 4 beats in the
salience of the most salient note in a beat
period

229 33 10 0.40

152 Evidence for a period of 6 beats in the fre-
quency of the third most salient note in a
beat period (frequency = 0 if no third note
is present)

-275 42 10 -0.42

178 Evidence for a period of 3 beats in the simi-
larity between the centroids of the six loud-
ness features in subsequent beat periods

-362 63 10 -0.67


