

A queueing model for group-screening facilities

Dieter Claeys, Joris Walraevens, Bart Steyaert, Herwig Bruneel

EURO 2013

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三国 - の9()

Outline

Group screening: what?

Queueing model

3 Static versus dynamic group screening

4 Comparison of results

- Testing probability
- Mean delay

5 Conclusion

Group screening

- WWII: detect syphilitic men drafted for military service
 - Expensive
 - Small prevalence rate
- Idea: test samples in group

Does it work?

<ロ> (日) (日) (日) (日) (日)

Example

- Prevalence rate 1%
- 5 samples per pool
- Individual retesting

- If pool infected: 5 extra tests (+ 1 group test)
- Else: only 1 group test
- E[# tests per pool] $\approx 0.05^*6 + 0.95^*1 = 1.25$ instead of 5

Other applications of group screening

• Screening for HIV, Influenza, West Nile Virus

• DNA library screening

• Drug discovery

• Quality control

< ロ > < 同 > < 回 > < 回 > < 回

Optimal group size

- Larger group size:
 - More items (samples) in a group (pool)
 - Larger probability that group is bad
- Dorfman: standard model
 - Many items to be screened
 - Items present from the start
- Practical context usually not static but dynamic
 - Items arrive over time
 - Extra decision variable: minimum group size
 - Queueing model

イロト イポト イヨト イヨ

Outline

Group screening: what?

Queueing model

3 Static versus dynamic group screening

4 Comparison of results

- Testing probability
- Mean delay

5 Conclusion

• Items arrive spread over time

EURO 2013 9 / 40

・ロト ・聞ト ・ヨト ・ヨト

- Items arrive spread over time
- Await in queue their screening

- Items arrive spread over time
- Await in queue their screening
- By the screening facility

Screening

• In group: batch/bulk service

• Server capacity c: maximum group size

• Minimum batch size /: minimum group size

Screening

• Service time of group: # required tests

• Dependent on # items in the group

• Capture screening policy in distribution screening time

Example: individual retesting

- S_j: service time of a group of j items
- $S_j(z)$: probability generating function of S_j
- $\overline{p} \triangleq 1 \text{prevalence rate}$
- $S_j(z) = \overline{p}^j z + (1 \overline{p}^j) z^{j+1}$, $j \ge 2$

<ロ> (日) (日) (日) (日) (日)

Performance measures

• Testing probability *f*: fraction of slots during which server (test unit) is serving (screening)

• Mean delay \overline{D} : average time between the arrival of an item and the moment at which the result of the item is known

Numerical example: f

	<i>c</i> = 6	<i>c</i> = 7	<i>c</i> = 8	<i>c</i> = 9	c = 10	c = 11	c = 12
l = 1	0.9796	0.9786	0.9780	0.9778	0.9777	0.9777	0.9778
<i>l</i> = 2	0.9209	0.9173	0.9150	0.9143	0.9138	0.9141	0.9143
<i>l</i> = 3	0.8475	0.8406	0.8361	0.8348	0.8338	0.8344	0.8349
<i>l</i> = 4	0.7852	0.7754	0.7689	0.7672	0.7658	0.7669	0.7677
<i>l</i> = 5	0.7436	0.7316	0.7236	0.7216	0.7200	0.72159	0.7228
<i>l</i> = 6	0.7170	0.7020	0.6928	0.6907	0.6889	0.6909	0.6926
l = 7		0.6891	0.6778	0.6756	0.6738	0.6761	0.6780
<i>l</i> = 8			0.6679	0.6653	0.6635	0.6661	0.6682
<i>l</i> = 9				0.6631	0.6609	0.6638	0.6660
$\mathbf{I}=10$					0.6591	0.6626	0.6648
l = 11						0.6651	0.6678
l = 12							0.6698

・ロト ・聞ト ・ヨト ・ヨト

Numerical example: \overline{D}

	<i>c</i> = 4	c = 5	<i>c</i> = 6	<i>c</i> = 7	c = 8	<i>c</i> = 9	c = 10
l = 1	57.4139	42.4111	37.6298	37.6303	37.5259	39.0722	40.2516
l = 2	57.2731	42.2940	37.5278	37.5399	37.4464	39.0008	40.1824
<i>l</i> = 3	60.1768	45.0087	40.1156	40.1894	40.1384	41.8741	43.2097
<i>l</i> = 4	63.3439	48.1818	43.2285	43.3755	43.3763	45.2714	46.7414
l = 5		52.5499	47.4802	47.6944	47.7292	49.7700	51.3546
<i>l</i> = 6			51.1644	51.6063	51.6833	53.8279	55.4936
l = 7				56.5320	56.7008	58.9817	60.7385
<i>l</i> = 8					60.9422	63.4986	65.3284
<i>l</i> = 9						68.6834	70.6856
l = 10							75.3074

・ロト ・聞ト ・ヨト ・ヨト

Outline

Group screening: what?

Queueing model

3 Static versus dynamic group screening

4 Comparison of results

- Testing probability
- Mean delay

5 Conclusion

Numerical complexity

• \forall c: calculate c roots

• \forall (*I*,*c*): solve set of *c* equations in *c* unknowns

• Much numerical work

• Use results from model of Dorfman?

Static model

• Many items (N), all present from the start

• Average # tests (E [7]) to screen all items

• Example: individual retesting:

$$\operatorname{E}[T] \sim \frac{N}{c} \left[1 + c(1 - \overline{p}^{c})\right]$$

for $N
ightarrow \infty$

Dynamic versus static

• Group size(s)

- Static: one group size (no minimum)
- Dynamic: minimum and maximum group size (*I* and *c*)

• Performance measures

- Static: average # tests (E[T])
- Dynamic: testing probability (f), mean delay of items (\overline{D})

Input parameters

- Static: # items to be screened (N)
- Dynamic: distribution of # item arrivals in a time unit (A(z))

Outline

Group screening: what?

Queueing model

Static versus dynamic group screening

4 Comparison of results

- Testing probability
- Mean delay

5 Conclusion

Outline

Group screening: what?

Queueing model

Static versus dynamic group screening

Comparison of results Testing probability

Mean delay

5 Conclusion

- *l_f*: minimum group size that minimizes *f*
- c_f: maximum group size that minimizes f
- c_s: optimal static group size (minimizes E[T])
- Main result: $l_f = c_f = c_s$, regardless of
 - N (static)
 - A(z) (dynamic)
 - Prevalence rate

Outline

Group screening: what?

Queueing model

Static versus dynamic group screening

Mean delay

5 Conclusion

• $I_{\overline{D}}$: minimum group size that minimizes \overline{D}

• $c_{\overline{D}}$: maximum group size that minimizes \overline{D}

- Results:
 - $c_{\overline{D}} \neq c_s$: numerical work involved
 - $I_{\overline{D}} = 1$ good heuristic: reduces complexity

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Search space for $c_{\overline{D}}(1)$

• Stability condition:

$$\rho \triangleq \lambda \frac{\mathrm{E}\left[S_{c}\right]}{c} < 1$$

- c: group size
- S_c : # tests to screen group of c items

Search space for $c_{\overline{D}}$ (2)

• ρ smallest for $c = c_s$

• $c \uparrow \text{ or } c \downarrow (\text{as compared to } c_s) \Rightarrow \rho \uparrow$

• c too small or too large $\Rightarrow \rho > 1$

No numerical work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Algorithm for small λ

• Search space largest for small λ

- Algorithm for small λ
- Two scenarios:
 - Bursty arrivals
 - Poisson like arrivals (e.g. Poisson, Bernoulli, geometric)

Bursty arrivals

Main result: $c_{\overline{D}} = c_s$ good heuristic

≣ ► Ξ ∽ ⊂ ભ EURO 2013 31 / 40

< □ > < □ > < □ > < □ > < □ > < □ >

Poisson like arrivals

Taylor series expansion of $\overline{D}(\lambda)$ about $\lambda = 0$:

$$\overline{D}(\lambda) = \overline{D}_0 + \lambda \overline{D}_1 + \lambda^2 \overline{D}_2 + \dots$$

Theorem

 \overline{D}_j takes into account the possibilities

of having $1, 2, \ldots, j+1$ arrivals

in a time unit with item arrivals

Poisson like arrivals: \overline{D}_0

$$\overline{D}(\lambda) = \overline{D}_0 + \lambda \overline{D}_1 + \lambda^2 \overline{D}_2 + \dots$$

• 1 item arrival

• No information about $c_{\overline{D}}$

Poisson like arrivals: \overline{D}_1

$$\overline{D}(\lambda) = \overline{D}_0 + \lambda \overline{D}_1 + \lambda^2 \overline{D}_2 + \dots$$

- 1 or 2 arrivals
- c = 1 versus $c \ge 2$
- $3/2 \to [S_1]$ versus $\to [S_2]$
- If c = 1 best: stop; else: continue with \overline{D}_2

Poisson like arrivals: \overline{D}_k

$$\overline{D}(\lambda) = \overline{D}_0 + \ldots + \lambda^k \overline{D}_k + \ldots$$

•
$$c = k$$
 versus $c \ge k$

- $E[S_k] + 1/(k+1)E[S_1]$ versus $E[S_{k+1}]$
- If c = k best: stop; else: continue with \overline{D}_{k+1}

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

Group screening: what?

Queueing model

Static versus dynamic group screening

4 Comparison of results

- Testing probability
- Mean delay

- Queueing model to include dynamic nature of item arrivals
 - Batch/bulk service
 - Screening policy captured in service times
 - Testing probability f and mean delay \overline{D}
 - Requires (much) numerical work
- When are static results useful in dynamic context?

```
if optimization criterion == f
    optimal l = optimal c = c_s;
if optimization criterion == delay
    optimal l = 1 (heuristic);
    if small arrival rate
          if bursty arrivals
               optimal c = c_s (heuristic);
          if Poisson arrivals
               efficient algorithm for optimal c
    else
          determine search space
          calculate delay for all group sizes from
          the search space and select the group size
          that produces smallest delay
```

EURO 2013 38 / 40

<ロ> (日) (日) (日) (日) (日)

Future work

- $c_{\overline{D}} \leq c_s$?
- $c_{\overline{D}}$ non-decreasing function of λ ?
- Accurate closed-form approximation for \overline{D} for medium λ
- Same conclusions in case of False Positives and False Negatives?

Questions?

Claeys et al. (SMACS)

A queueing model for group-screening facilities

≣ ► Ξ ∽ < (~ EURO 2013 40 / 40

▲□▶ ▲圖▶ ▲国▶ ▲国▶