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Abstract

Horn Clause Programs have a natural exhaustive depth-first procedu-
ral semantics. However, for many programs this semantics is ineffective.
In order to compute useful solutions, one needs the ability to modify the
search method that explores the alternative execution branches.

Tor, a well-defined hook into Prolog disjunction, provides this ability.
It is light-weight thanks to its library approach. Tor supports modu-
lar composition of search methods and other hooks. The Tor library is
already provided and used as an add-on to SWI-Prolog.

1 Introduction

Kowalski’s well-known adage [1] crisply captures the essence of programming in
the equation:

Algorithm = Logic + Control

Unfortunately, it is not all that easy to cleanly separate logic and control when
implementing search heuristics in Prolog. When one discovers that Prolog’s
control is ineffective, it is often impossible to orthogonally add one’s own control
without touching the existing logic. Syntactically, logic and control in Prolog
are tightly coupled, and adding a different control means cross-cutting existing
code.

Our novel approach to adding, in an orthogonal manner, control, features
the following properties:

• It is a light-weight and efficient library-based approach that is easily
portable; it is currently an SWI-Prolog library [2] available at http:

//www.swi-prolog.org/pack/list?p=tor.

• Our approach has all the benefits of modularity: search methods can be
composed and the library of these heuristics is (user-)extensible.

With Tor, we capture all common search methods in CLP(FD) libraries. This
approach is indeed particularly suitable for Constraint Logic Programming, but
also useful for general Prolog programs with a large search space.

For a more thorough discussion of Tor, we refer the interested reader to [3].
An earlier version is discussed in [4].
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label([]).

label([Var|Vars]) :-

( var(Var) ->

fd_inf(Var,Value),

( Var #= Value,

label(Vars)

;

Var #\= Value,

label([Var|Vars])

)

;

label(Vars)

).

label([] ,_ ).

label([Var|Vars] ,D ) :-

( var(Var) ->

D > 0,

ND is D - 1,

fd_inf(Var,Value),

( Var #= Value,

label(Vars ,ND )

;

Var #\= Value,

label([Var|Vars] ,ND )

)

;

label(Vars ,D )

).

Figure 1: Labeling predicate: plain (left) and with depth bound (right).

2 Problem Statement

We illustrate the heart of the matter on a simple labeling predicate label/1

written against SWI-Prolog’s clpfd library [5] (see Fig. 1, left). label/1 defines
a search tree where the branches are created by the disjunction.1

Suppose that for a certain call label([X1,...,Xn]) the search tree is too
large to fully explore. In order to get some useful answers, certain parts of the
tree can be left unexplored. This can for example be achieved by imposing a
depth bound on Prolog’s depth first search (Figure 1 right).

Imposing a depth bound may or may not be a successful approach to getting
useful answers. In case it is not, other pruning strategies can be tried, like
imposing a node bound or a discrepancy bound. Each of these requires rewriting
the label/1 predicate to incorporate a different pruning technique.

The problems with the above approach should be apparent:

• It follows the well-known copy-paste-modify anti-pattern.

• The same heuristic is implemented over and over in different settings. This
process is error-prone, wastes precious programmer time and is bound to
yield non-optimal code quality.

• The effort and expertise required to combine working labeling code with
various search heuristics is non-trivial. This means that fewer combina-
tions are explored, leading to suboptimal solutions.

• As soon as the labeling code spans several different predicates or mul-
tiple invocations of the same predicate, the complexity of adding search
heuristics increases drastically.

1fd inf/2 returns the smallest value in a variable’s finite domain.
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3 Solution Overview

3.1 User Perspective

Tor divides search code into two parts: a) the code that defines the search
tree, and b) the code that defines the search method. The user defines these
separately (or reuses library definitions) and combines them into a search goal.
This decoupling means that new search methods and new search tree code can
be written without awareness of one another and without the modification of
any existing code.

Search Tree Code The search tree code sets up the problem specific search
tree. To fit in the Tor framework, the code must use Tor’s custom disjunc-
tion tor/2 rather than ;/2. For instance, tor label/1 is the Tor-compatible
variant of label/1:

tor_label([]).

tor_label([Var|Vars]) :-

( var(Var) ->

fd_inf(Var,Value),

( Var #= Value,

tor_label(Vars)

tor

Var #\= Value,

tor_label([Var|Vars])

)

;

tor_label(Vars)

).

Search Methods A search method is defined as a predicate that captures
the essence of that method in a declarative way, as a bare-bones search tree
without any useful work (such as labeling variabels). For instance, dbs tree/1

captures the depth-bounded search method.

dbs_tree(Depth) :-

Depth > 0,

Depth1 is Depth - 1,

( dbs_tree(Depth1)

tor

dbs_tree(Depth1)

).

Search methods change less frequently. They are usually written by advanced
users and library writers. For instance, Tor itself comes with a library of
predefined search methods.

Combining Search Tree and Search Method The user imposes a search
method on a search tree by calling the Tor predicate tor merge(MGoal,TGoal),
where MGoal is a call to the search method predicate and TGoal is a call to the
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search tree predicate. Conceptually, tor merge/2 overlays or merges the search
trees of the two goals, synchronizing their tor/2 disjunctions.

To facilitate reuse, we generally recommend to encapsulate the application of
tor merge/2 to a particular search method in a separate predicate, like dbs/2

for dbs tree/1.

dbs(Depth,Goal) :-

tor_merge(dbs_tree(Depth),Goal).

Wrapping Up In the final step, the Tor predicate search(Goal) is used to,
conceptually, replace all the occurrences (merged or not) of tor/2 by proper
Prolog disjunctions.

In summary, the behavior of label/2 of Fig. 1 is recovered as follows:

search(dbs(Depth,tor label(Vars)))

≡
label(Vars,Depth)

3.2 Modularity Aspects

Modular Composition of Search Tree Code and Search Method Even
though their implementations are decoupled, any search tree and any search
method code can be combined out of the box with the help of Tor’s search/1
predicate. For instance, a user can define a complex labeling goal as the con-
junction of two invocations of tor label/1. It is easy to express a different
scenario, either by varying the search tree or the search method code. By lds,
we denote the limited discrepancy search method; nbs stands for node-bounded
search:

?- search(lds((tor_label([X1,...,Xn]), tor_label([Y1,...,Ym])))).

?- search(nbs(30000,(tor_member([X1,...,Xn]), tor_member([Y1,...,Ym])))).

It becomes even more interesting if you label both lists with different variable
and value selection strategies.

Modular Composition of Multiple Search Heuristics A further modu-
larity advantage of Tor is that it provides nested invocation as an out of the
box way to compose two (or more) search methods. Nesting denotes that both
search methods are simultaneously active.

For instance, we can simultaneously apply a depth-limit and perform a lim-
ited discrepancy search:

?- search(dbs(10,lds(tor_label([X1,...,Xn])))).

Contrast this with the non-modular approach were the user would have to write
a combined search heuristic dbs lds/2 from scratch.

Finally, the compositional nature of the notation can be exploited to its
fullest potential to obtain sofisticated search specifications. For instance, the
goal

?- ..., search(lds((dbs(XsLimit,tor_label(Xs))

,dbs(YsLimit,tor_label(Ys))))).
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applies limited discrepancy search to the whole search tree, and additionally
imposes one depth-limit on the search of the Xs and another to that of the Ys.
Such a composite heuristic is not readily expressible with any of the existing
CLP libraries.

4 Heuristics Library

Following the above approach, it is easy to write various modular search methods
yourself. However, Tor already provides a substantial library of which we we
cover only two here. Many others can be found in [3].

4.1 Node-Bounded Search

A node-bounded search is much like a depth-bounded search, except that the
decrements of the limit are not backtracked. Hence, as an optimization we abort
the whole search at once by throwing an exception.

nbs(Nodes,Goal) :-

new_nbvar(Nodes,NodesVar),

catch(

tor_merge(nbs_tree(NodesVar),Goal),

out_of_nodes(NodesVar),

fail

).

nbs_tree(Var) :-

nb_get(Var,N),

( N > 0 ->

N1 is N - 1,

nb_put(Var, N1),

( nbs_tree(Var)

tor

nbs_tree(Var)

)

;

throw(out_of_nodes(Var))

).

4.2 Branch-and-Bound Optimization

This well-known optimization approach posts constraints in the intermediate
nodes of the search tree to find increasingly better solutions. Our implemen-
tation uses Tor to access those intermediate nodes and generate increasingly
larger values of the Objective variable. It uses two variables, BestVar and
Current. The former keeps track of the overall best solution so far, while the
latter is the solution that the current node tries to improve upon.

Both the overall and current best solution are initialized to a value smaller
than the infimum of the objective variable’s domain. Whenever a solution is
found, the overall best solution is updated. Whenever we backtrack into a
Tor choicepoint, the heuristic synchronizes the current best solution with the
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overall best solution. If the current best solution was out of sync, the handler
also imposes a new lower bound on the objective variable. Note that inf denotes
negative infinity.

bab(Objective,Goal) :-

fd_inf(Objective,Inf),

LowerBound is Inf - 1,

new_nbvar(LowerBound,BestVar),

Current = LowerBound,

tor_merge(bab_tree(Objective,BestVar,Current),Goal),

nb_put(BestVar,Objective).

bab_tree(Objective,BestVar,Current) :-

nb_get(BestVar,Best),

( Best \= inf , (Current == inf ; Best > Current ) ->

Objective #> Best,

NCurrent = Best

;

NCurrent = Current

),

( bab_tree(Objective,BestVar,NCurrent)

tor

bab_tree(Objective,BestVar,NCurrent)

).

5 Search Tree Observation

Tor enables various ways to observe the search tree, so that one can gain
insight in the search process itself, e.g., for (performance) debugging purposes.
We provide different components that monitor various metrics of the search tree.

We can also visualize the actual search tree. For that purpose, we provide
a predicate log/1 that emits a textual representation of the search tree. A
complimentary tool that turns this log into a PDF image is also available in the
Tor release.

6 Conclusion

We have presented Tor, a light-weight library-based approach for modifying
Prolog’s depth-first search with reusable and compositional search methods.
The notion of hookable disjunction enables a surprisingly large number of pos-
sibilities for modifying Prolog search.
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