
On an Evaluation of Transformation Languages in a Fully XML-driven
Framework for Video Content Adaptation

Davy De Schrijver, Wesley De Neve, Davy Van Deursen, Jan De Cock, and Rik Van de Walle
Department of Electronics and Information Systems - Multimedia Lab

Ghent University - IBBT
Gaston Crommenlaan 8 bus 201, B-9050 Ledeberg-Ghent, Belgium

davy.deschrijver@ugent.be

Abstract

Bitstream Structure Descriptions (BSDs) allow taking
the complexity of transforming scalable bitstreams from the
compressed domain to the semantic domain. These descrip-
tions are an essential part of an XML-driven video adapta-
tion framework. The performance of a BSD transformation
engine is very important in such an architecture. This paper
evaluates the efficiency of XML-based transformation lan-
guages in our video adaptation framework. XSLT, STX, and
a hybrid solution are compared to each other in terms of ex-
ecution times, memory consumption, and user-friendliness.
Our experiments show that STX is the preferred solution
when speed and low-memory are important. The hybrid so-
lution is competitive in terms of memory consumption and
is more user-friendly than STX. Although XSLT is relative
fast, its memory consumption is very high.

1. Introduction

The increasing use of the device-independent Extensible
Markup Language (XML) in numerous applications (e.g.,
configuration files, databases, MPEG-7 metadata descrip-
tions,...) has lead to the need of efficient transformation
languages. In this paper, the most common XML-based
transformation languages are compared to each other, in
particular Extensible Stylesheet Language Transformations
(XSLT), Streaming Transformations for XML (STX), and a
hybrid solution based on the just mentioned languages.
The advantage of expressing transformations by making use
of these languages is the fact that the resulting stylesheets
are also well-formed XML documents. Hence, Bitstream
Structure Descriptions (BSDs), together with transforma-
tion stylesheets, are the core of a fully XML-driven frame-
work for video content adaptation. Such a novel architec-
ture will be used in this paper to evaluate the efficiency

of the transformation languages. Its workflow is as fol-
lows. Firstly, the high-level structure of a scalable video
bitstream is described in XML, resulting in a BSD. Subse-
quently, these BSDs are transformed in order to take into
account different usage environment characteristics (e.g.,
screen resolution of a device, network bandwidth, etc.). Fi-
nally, starting from the transformed BSD, a new bitstream is
generated (containing a lower resolution or visual quality).
The efficiency of the transformation technology chosen is
very important, on the one hand due to the time-constrained
nature of such an adaptation framework, and on the other
due to the typically large size of the BSDs. In this paper,
the performance of the transformation languages is evalu-
ated for the first time in the context of BSDs, resulting in a
distinct preference for STX.
The outline of the paper is as follows. In Section 2, an
overview is given of different XML-based transformation
languages. The advantages and disadvantages are men-
tioned and the differences between the languages are ex-
plained by means of a small example. Our use case, in par-
ticular an XML-driven video adaptation framework, will be
explained in Section 3. A discussion of the results is pro-
vided in Section 4. Finally, Section 5 concludes this paper.

2. Transformation languages

There are two approaches to interpret and to transform
XML documents. Firstly, traditional procedural program-
ming languages such as Java or C++, together with a parser,
can be used to read in and consume XML data. Two main
types of XML parsers exist. One built on top of tree-
based models (e.g., Simple API for XML, SAX) and one on
event-based models (e.g., Document Object Model, DOM).
A comparison between these two technologies for large
XML documents is given in [2]. Secondly, transformations
can be implemented by using a standardized (XML-based)
language together with a generic engine for interpreting

<library>
<film>

<id>0</id>
<genre>Romantic</genre>
<title>Romeo and Juliet</title>

</film>
<film>

<id>1</id>
<genre>Science Fiction</genre>
<title>Star Wars</title>

</film>
... and so on ...

</library>

Figure 1. Example of an XML document

the stylesheets. The main difference between the two ap-
proaches is the possibility to make use of generic soft-
ware modules (transformation engines) in the latter case.
These generic engines have the advantage that the received
stylesheets (representing a transformation) are written in
a well-known (standardized) XML-based language. Since
these stylesheets are also well-formed XML documents, it
is possible to obtain a complete XML-driven architecture
where all communication is based on XML documents and
where the architecture is built on top of generic software
modules. Such a framework is explained in Section 3.
The two most common XML-based transformation lan-
guages, in particular XSLT and STX, together with a hybrid
approach are compared in the next paragraphs. In order to
explain the functioning of the different languages, we use
a simple example of an XML document of which a frag-
ment is given in Figure 1. This example contains a film
library in which every film can be identified by a unique
id tag. The transformations implemented must remove all
films with odd ids.

2.1. XSLT

The easiest and most common way to implement an
XML transformation is to make use of XSLT [3]. XSLT
is based on an underlying tree-model such as DOM. This
results in the fact that the first step in an XSLT engine is the
construction of an internal tree representation of the corre-
sponding XML document. As such, the memory consump-
tion of the engine is in line with the size of the XML doc-
ument. The in-memory generated tree closely reflects the
content and structure of the XML document, which leads
to an easy implementation of the transformation. It allows
all kinds of modifications and all kinds of navigation possi-
bilities. The engine iterates through the complete tree and
for every node, the best matching XSLT template is exe-
cuted. Out of each template, all other nodes of the tree can
be reached by using XPath expressions and that informa-
tion can be further used in the executed template. After the
execution of the stylesheet, a resulting (DOM) tree is gener-
ated, which will be serialized to an XML document. This ar-
chitecture leads to the impossibility to use XSLT in stream-

<!--************************* XSLT Implementation **************************-->
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="library">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>
<xsl:template match="film">

<xsl:if test="./id mod 2 = 0">
<xsl:copy-of select="."/>

</xsl:if>
<!-- When the ID is odd, do not copy the film -->

</xsl:template>
</xsl:stylesheet>
<!--************************ STX Implementation ****************************-->
<stx:transform version="1.0" pass-through="all" xmlns:stx="http://stx.

sourceforge.net/2002/ns">
<!-- Default, the input elements are copied to the resulting document -->
<stx:variable name="keep_film"/>
<stx:buffer name="current_film"/>
<stx:template match="film">

<stx:result-buffer name="current_film" clear="yes">
<stx:copy>

<stx:process-children/>
</stx:copy>

</stx:result-buffer>
<stx:if test="$keep_film">

<stx:process-buffer name="current_film" group="copy_film"/>
</stx:if>
<!-- When the ID is odd, do not copy the film -->

</stx:template>
<stx:template match="id">

<stx:if test=". mod 2 = 0">
<stx:assign name="keep_film" select="true()"/>

</stx:if>
<stx:else>

<stx:assign name="keep_film" select="false()"/>
</stx:else>
<stx:process-self/>

</stx:template>
<stx:group name="copy_film"/> <!-- Copy film to the output stream -->

</stx:transform>
<!--********************* Hybrid Implementation ***************************-->
<stx:transform version="1.0" pass-through="all" xmlns:stx="http://stx.

sourceforge.net/2002/ns">
<!-- Default, the input elements are copied to the resulting document -->
<stx:buffer name="xslt_stylesheet">

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform">

<xsl:template match="film">
<xsl:if test="./id mod 2 = 0">
<xsl:copy-of select="."/>

</xsl:if>
<!-- When the ID is odd, do not copy the film -->

</xsl:template>
</xsl:stylesheet>

</stx:buffer>
<stx:template match="film">

<stx:buffer name="current_film">
<stx:copy>

<stx:process-children/>
</stx:copy>

</stx:buffer>
<stx:process-buffer name="current_film" filter-method="http://www.w3.org

/1999/XSL/Transform" filter-src="buffer(xslt_stylesheet)"/>
</stx:template>

</stx:transform>

Figure 2. Transformation stylesheets in the
different languages

ing applications because the complete XML document has
to be converted into a tree model before the transformation
can be started. Besides, the complete resulting tree has to
be present before the transformed XML document can be
generated.
An implementation in XSLT transforming our example is
given in Figure 2. In this example, one can see the two tem-
plates needed. The first template is necessary to copy the
outer tags and the second template copies the needed films
to the result tree. In the second template, one can see that
the test condition uses the value of a deeper lying tag in the
tree by relying on XPath expression.

2.2. STX

As mentioned in the previous section, XSLT prevents the
streaming processing of XML documents. In this case, one
can make use of the STX transformation language [1]. STX
is directly built on SAX and resembles XSLT in terms of
concepts and language constructions. The template-based
XML transformation language processes the SAX events al-
most immediately by executing the best matching template.
Consequently, an STX processor does not have random ac-
cess to all subsequently and previously parsed nodes of the
document; it maintains an ancestor stack (i.e., all ances-
tor nodes together with all properties of the current node).
The only exception to this rule is that the processor already
knows the next SAX event. This look-ahead mechanism can
be useful to process node values immediately or to check
whether an element has child nodes or not. Because an STX
processor does not keep an internal tree, is it impossible to
use XPath as match pattern to specify a certain node or con-
text. Therefore, STX defines a new expression language, in
particular STXPath, which is similar to XPath 2.0 and has
to be evaluated to the ancestor stack.
In Figure 2, an STX implementation is given for our ex-
ample. One can immediately see that STX is more complex
than the XSLT variant. A first important difference between
the two XML-based languages is the usage of variables.
In STX, the variables are adjustable (as in procedural lan-
guages) whereas in XSLT the variables cannot be updated.
Because of the streaming characteristic of STX, every event
should be processed immediately, resulting in the fact that
forthcoming information cannot be used during the process-
ing of the event. Therefore, STX provides buffers to solve
this issue. Buffers are used to store SAX events, which can
be transformed afterward. In our example, a film can only
be transformed after the id of the corresponding film is
known. Therefore, every film is buffered and dependent on
the id, the film might be written to the output stream.

2.3. Hybrid solution: XSLT and STX

From the above, we can conclude that the advantages of
XSLT are the disadvantages of STX and vice versa. In or-
der to exploit the advantages of both languages, a hybrid
approach can be used. In such an approach, STX reads the
SAX stream, identifies small well-formed XML fragments,
and passes these fragments to an XSLT processor. As such,
the use of STX makes it possible to acquire a low memory
footprint during the processing of the XML document. The
XSLT stylesheet is subsequently used for doing look-ahead
operations in the small fragment.
The last transformation in Figure 2 illustrates such a hybrid
solution. The first (static) buffer contains the XSLT style-
sheet (identified by the corresponding namespace) used for

Scalable Bitstream

BintoBSD

BSDtoBin

Adapted Bitstream:

Half Frame Rate and Resolution

Definition of the

Bitstream Structure

XML Description

(BSD)

Transformed Description

(BSD’)

Transformer
Transformation

Stylesheet

Figure 3. XML-driven adaptation framework

transforming a single film. The STX template buffers one
film after which the buffer is transformed by calling the
XSLT stylesheet using the process-buffer instruction.

3. An XML-driven framework for video con-
tent adaptation

Scalable video coding is supposed to pave the way for
several new multimedia architectures. They should make
it possible to take the heterogeneity in the current plethora
of devices and networks into account. In order to deliver
scalable media in a diverse environment, it is important to
be aware of the need of complementary logic that makes
it possible to exploit the scalability properties of the com-
pressed bitstream. This process typically involves the re-
moval of certain data blocks and the modification of cer-
tain high-level syntax elements. One way to realize this
scenario is sketched in Figure 3; it relies on automatically
generated XML-based descriptions that contain information
about the high-level structure of scalable bitstreams. Such
a description can be generated by using a generic software
module (BintoBSD). In a next step, these structural meta-
data can be transformed in order to reflect a desired adapta-
tion of the scalable bitstream, and can subsequently be used
to automatically create an adapted version of the bitstream
(BSDtoBin). Typically, only a limited knowledge of the
coding format is required in order to generate an XML-
based Bitstream Structure Description (BSD). As such, a
BSD acts as an abstraction of the coded bitstream. Tech-
nologies that can be used to obtain such BSDs are described
in [2] and [5]. This paper focuses on the transformations.

4. Comparison and discussion

The bitstreams used in our XML-based adaptation
framework are coded compliant with Joint Scalable Video
Model 4 (JSVM4, [4]). This is a fully embedded scalable
video coding specification that is currently under develop-
ment. We have used 5 sequences of which XML descrip-
tions (BSDs) have been generated. The coded bitstreams
differ in length and so the generated XML documents as
well. All bitstreams contain 4 spatial layers, 5 temporal

Table 1. Performance results: PU=Parse Units; BSDo=Original BSD; BSDm=Modified BSD;
ET=Execution Time; MC=Memory Consumption

Name #Frames #PU
Bitstream BSDo BSDm STX XSLT Hybrid
Size (MB) Size (MB) Size (MB) ET (s) MC (MB) ET (s) MC (MB) ET (s) MC (MB)

sequence 1 50 663 0.84 1.4 0.8 2.1 2.7 1.8 4.2 9.0 2.9
sequence 2 100 1313 1.48 2.7 1.5 3.0 2.7 2.4 7.0 15.7 2.9
sequence 3 250 3263 8.67 6.1 3.7 5.6 2.7 4.1 15.5 35.4 2.9
sequence 4 500 6513 39.59 15.3 7.3 9.8 2.7 6.7 29.9 69.0 2.9
sequence 5 1000 13013 83.55 28.0 13.9 18.4 2.7 12.2 55.7 131.5 2.9

levels, and 3 quality layers. The characteristics of the bit-
streams and corresponding BSDs are given in Table 1.
We have implemented transformation stylesheets along the
3 embedded scalability axes. Each stylesheet is imple-
mented in (1) STX, where a complicated buffering mech-
anism is used to simulate look-ahead operations, (2) XSLT,
where the information needed during the transformation
can be drawn on immediately, and (3) a hybrid solution,
in which every individual parse unit (called a NALU) is
buffered by STX and transformed by XSLT. Because of
space constraints, we only show the results for a temporal
transformation where 1 temporal level is removed (resulting
in a frame rate decreasing by a ratio 2, i.e., from 30Hz to
15Hz). The other transformations yield similar results. The
results of the performance are given in Table 1 and Figure 4.
The STX engine used in our tests is Joost (version 2005-05-
21) and the XSLT engine is Xalan 2.7.0. From the results,
it is clear that XSLT and STX are the fastest solutions and
the ET is linear in terms of the number of PUs. The hybrid
approach is slower but still linear. This is because an XSLT
engine is called for every buffered NALU. XSLT is unar-
guably unusable for transforming BSDs because of the in-
creasing memory consumption for larger XML documents
(60MB for 30s of video). STX can transform a BSD in real
time at a low memory footprint, which is a very important
assessment in the context of an XML-driven framework for
video content adaptation.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 2000 4000 6000 8000 10000 12000 14000

Sequences expressed in #PU

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

0

2

4

6

8

10

12

14

16

18

20

M
e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

M
B

)

STX Mem

XSLT Mem

Hybrid Mem

STX Time

XSLT Time

Hybrid Time

Figure 4. Evaluation results

5. Conclusions

In this paper, we performed an efficiency analysis of dif-
ferent XML-based transformation languages in the context
of a fully XML-driven framework for video content adapta-
tion. In such a framework, a scalable bitstream is adapted
by transforming a high-level XML description instead of
directly adapting the bitstream. These descriptions can be
very large as a result that the performance of the transfor-
mation is important. We have compared XSLT, STX, and a
hybrid solution. From our tests, we can conclude that STX
is the best solution when considering execution times and
memory consumption. Conversely, XSLT is fast enough but
needs a lot of memory in case of larger XML documents
and it cannot be used in streaming scenarios. The hybrid
approach is more user-friendly and competitive with STX
in terms of memory usage but it is multiple times slower.

6. Acknowledgements

The research activities that have been described in this
paper were funded by Ghent University, the Interdisci-
plinary Institute for Broadband Technology (IBBT), the In-
stitute for the Promotion of Innovation by Science and Tech-
nology in Flanders (IWT), the Fund for Scientific Research-
Flanders (FWO-Flanders), the Belgian Federal Science Pol-
icy Office (BFSPO), and the European Union.

References

[1] P. Cimprich. Streaming transformations for XML version 1.0
working draft. http://stx.sourceforge.net/documents/spec-stx-
20040701.html, July 2004.

[2] D. De Schrijver, C. Poppe, S. Lerouge, W. De Neve, and
R. Van de Walle. MPEG-21 bitstream syntax descriptions for
scalable video bitstreams. Multimedia Systems, In press.

[3] M. Kay. XSLT Programmers’s Reference, 2nd Edition. Wrox
Press Ltd., Birmingham, UK, 2001.

[4] J. Reichel, H. Schwarz, and M. Wien. Joint Scalable Video
Model JSVM-4. Doc. JVT-Q202, October 2005.

[5] D. Van Deursen, W. De Neve, D. De Schrijver, and R. Van de
Walle. BFlavor: an optimized XML-based framework for
multimedia content customization. In Proceedings of the 25th
PCS, pages 6 on CD–rom, Beijing, April 2006.

