
A Low-delay Protocol for
Multihop Wireless Body Area Networks
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Abstract—Wireless Body Area Networks (WBANs) form a new
and interesting area in the world of remote health monitoring.
An important concern in such networks is the communication
between the sensors. This communication needs to be energy
efficient and highly reliable while keeping delays low. Mobility
also has to be supported as the nodes are positioned on different
parts of the body that move with regard to each other. In this
paper, we present a new cross-layer communication protocol
for WBANs: CICADA or Cascading Information retrieval by
Controlling Access with Distributed slot Assignment. The protocol
sets up a network tree in a distributed manner. This tree structure
is subsequently used to guarantee collision free access to the
medium and to route data towards the sink. The paper analyzes
CICADA and shows simulation results. The protocol offers low
delay and good resilience to mobility. The energy usage is low as
the nodes can sleep in slots where they are not transmitting or
receiving.

I. INTRODUCTION

Nowadays, one of the major applications of wireless sensor
networks is environmental monitoring. In these networks, an
abundance of sensors is scattered around to collect and retrieve
environmental data. A new use of sensor networks can be
found in the area of wearable health monitoring. Carefully
placing sensors on the human body and wirelessly connecting
them to monitor physiological parameters like heartbeat, body
temperature, motion et cetera is a promising evolution. This
system can reduce the enormous costs of patients in hospitals
as monitoring can occur real-time, over a longer period and
at home [1], [2]. This type of network is called a Wireless
Body Area Network (WBAN) or Wireless Body Sensor Net-
work (WBSN) [3]–[5]. A WBAN consists of several sensors
and possibly actuators equipped with a radio interface. Each
WBAN has a sink or personal server such as a PDA, that
receives all information from the sensors and provides an
interface towards other networks or medical staff. Connecting
health monitoring sensors wirelessly improves comfort for
patients but induces a number of technical challenges like
coping with mobility and the need for increased reliability.

An important requirement in WBANs is the energy effi-
ciency of the system. The sensors placed on the body only
have limited battery capacity or can scavenge only a limited
amount of energy from their environment [6]. Consequently,

in order to increase the lifetime of the network, energy
efficient measures needs to be taken. From that point of view,
several researchers are developing low power sensors and
radios. Another possibility is the design of optimized network
protocols to lower the energy consumption while satisfying
the other requirements, an approach that is followed in this
paper.

CICADA (Cascading Information retrieval by Controlling
Access with Distributed slot Assignment), presented in this pa-
per, is a low energy protocol designed for wireless, multihop,
mobile body area networks. It is a large improvement of WASP
(Wireless Autonomous Spanning tree Protocol) [7], where a
spanning tree is set up autonomously and is used to route
the data from the nodes toward the sink. Each cycle, the tree
structure is used to allocate time slots to the different nodes
in a distributed manner. CICADA divides such a cycle in a
control subcycle and data subcycle, thus lowering the delay
and introducing mobility robustness.

In the following, section II discusses related sensor network
technologies. In section III, we give a protocol description
where both the control subcycle and the data subcycle are
explained. In section IV an upperbound for the delay is given,
mobility support is examined and the energy efficiency is
discussed. Finally we address simulation results in section V
and section VI highlights our conclusion and future work.

II. RELATED WORK

Body area networks can be considered as a special type
of sensor networks with its own specific requirements. The
most important ones are the increased demand for reliability,
energy efficiency and mobility support. Nodes can move with
regard to each other, for example a node on the wrist moves
in relation to a node attached on the hip.

The most commonly used technique for reducing energy
consumption in sensor networks is controlling the power
and duty cycle of the radio. Scheduled protocols, such as
S-MAC [8], use scheduling to coordinate sleeping among
neighboring nodes to avoid idle listening. A preamble sam-
pling technique is used in WiseMAC [9] where a node
regularly samples or polls the medium for a very brief time



to check whether a packet needs to be received. To reduce the
overhead associated with long preambles, a strobed sequence
of short packets allowing for fast shutdown and response is
used in [10]. An ultra-low duty cycle MAC that combines
scheduling and channel polling is presented in [11]. Another
commonly used technique is TDMA where the medium is
divided into different slots in order to avoid collisions.

When considering wireless transmission around and on the
body, important issues are radiation absorption by and heating
effects on the human body. To reduce tissue heating the radio’s
transmission power can be limited. In [12], a different solution
is presented. Clustering is used to distribute the energy cost
and the increase of tissue temperature over all sensors.

The propagation loss around the human body is high [13],
[14]. This means direct communication between the sensors
and the sink is not energy efficient and even not always
possible, thus there is a need for protocols supporting multihop
body area networks.

A number of issues related to a body area network have been
addressed in WASP [7]. This protocol sets up a spanning tree
in a distributed manner. The communication uses timeslots
which parents allocate to their children in a distributed way
with a proprietary WASP-scheme.

III. PROTOCOL DESCRIPTION

A. General overview

CICADA is a cross-layer protocol. It uses the same packets
to take care of both medium access as well as routing. They
are used to detect the presence or absence of the children and
to control medium access. The protocol sets up a spanning
tree and divides the time axis in slots in order to lower the
interference and avoid idle listening. The assignment of the
slots is done in a distributed way, slot synchronization is
possible because a node knows the length of each cycle. Each
node informs its children when they are allowed to send their
data. Routing itself is not complicated in CICADA anyway as
data packets are routed up the tree which is set up to control
the medium access.
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Fig. 1. Example network. The lines indicate the tree structure.

Data transfer is defined by a sequence of cycles. At the
beginning of each cycle, the slots in the remainder of the
cycle are assigned. The slot allocation is done by sending a
scheme from a parent node to a child node. A node calculates
its own scheme based on the scheme it has received from
his parent. Each cycle is divided in two parts: the control
subcycle and the data subcycle. Each subcycle has its own
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Fig. 2. Communication in the example network.

TABLE I
STEADY-STATE CONTROL SUBCYCLE FOR THE EXAMPLE NETWORK OF

FIG. 1

Slot 1 2 3 4 5
S A B C + D E

scheme for slot allocation: the control scheme and the data
scheme respectively. These schemes are both sent in the
control subcycle, it is used to propagate the schemes from
the parents to their children. When all nodes have received
their scheme, the control cycle has ended and the data cycle
starts.

Each node is assigned 1 slot in the control subcycle. As slots
in the control subcycle are only used to send the short scheme
packets, slots can be shorter, e.g. by a factor 2 or more. When
a node has received such a short scheme packet in a control
slot, it can sleep as no more packets will arrive in that slot.
The data subcycle is used to forward the data from the nodes
to the sink. Unlike in WASP, the first nodes to start sending
data are the nodes at the bottom of the tree. Doing so, all data
can be sent to the sink in 1 cycle. This lowers the end-to-end
delay tremendously.

Thus, as can be seen in figure 2, control information is sent
downwards from the sink to all nodes in the control subcycle.
In the data subcycle, all data is sent upwards to the sink.
Further on in this section, we will discuss both cycles in detail
using the example network from figure 1. The tree is set up
in such a way that communication is only possible between a
child and its parent or between siblings.

B. Control subcycle

The control subcycle is used for transferring the schemes
(i.e. the control scheme and the data scheme) to all nodes.
At the start of the control subcycle, the sink sends the first
message. Table I gives an overview showing which nodes are
allowed to send in which slot. The assignment of the slots
in the control subcycle is done using the control scheme.
Each control scheme contains the following information for
the control subcycle:

• The control scheme indicates the order in which the
children are allowed to send their control scheme;



TABLE II
CONTROL SUBCYCLE INFORMATION OF THE NODES

S A B C D E
TDCC 0 1 1 3 3 3
WPCC 0 0 0 1 0 1

remaining length 5 4 4 3 2 1

TABLE III
STEADY-STATE DATA SUBCYCLE FOR THE EXAMPLE NETWORK. THE DOTS

REPRESENT WAITING SLOTS.

Slots 1 2 3 4 5 6 7 8 9 10
S . . . . A A B B B X
A . C X
B . D E X
C X
D X
E X

• The total length of the control subcycle LCC , starting
from the transmission of the control scheme of the sink.
Stated otherwise, this is the total number of slots needed
to allow all devices to send their scheme. In the example,
the length is 5;

• The tree depth TDCC indicates the level of the receiving
node.

This information is used to calculate the exact slot at which
the node may send. For example, node S sends its scheme
with the following information:
• control scheme = AB
• control subcycle length LCC = 5
• tree depth TDCC = 1

Nodes A and B receive this information. Node A sees in the
control scheme that it is allowed to send first, so it will send
its data scheme in the following slot along with the additional
information. Node B will send in the slot thereafter. The
control subcycle length is the same. However, as node C can
not send simultaneously with node B, node A will add a wait
slot to its control scheme which becomes “.C”. Thus, in the
control cycle, node C has a wait period (WPCC) of length
1. The tree depth of node C is 3, which equals previous tree
depth (1) + length of the control scheme (2). Node B will send
the following: control scheme DE, control subcycle length 5
and tree depth 3. The control subcycle length and the tree
depth are used to calculate the remaining length of the control
subcycle with the following formula:

(LCC) - (TDCC) + (WPCC) (1)

The remaining length indicates how many slots are left in the
control subcycle and is thus used to know the start of the data
subcycle. Table II gives an overview of the control subcycle
information of the different nodes.

C. Data subcycle

For the example network of figure 1, the data schemes of
the nodes or stated otherwise the division of the time slots in
the data subcycle, can be seen in table III. The data scheme
consists of 2 parts: a data period (length α) and a waiting

TABLE IV
CHILDTABLES

S A B
αi βi αi βi αi βi

A 2 3 C 1 1 D 1 1
B 3 4 E 1 1

period (length β). In the waiting period, the node must remain
silent and should turn off its radio. In the data period, the node
receives data from its children and sends data to its parent.
For example, node B has a waiting period of 1 slot and a data
period of 2 slots. The data scheme determines when the child
nodes are allowed to transmit in the data period. The last slot
of each data scheme is a contention slot which is used to allow
new children to join the network, see section III-D.

Each node maintains a table for its children containing the
following information:
αi The number of data slots needed to forward the data

received from node i
βi The number of data slots needed for receiving the data

from node i’s children, the length of the waiting period
of node i and 1 slot for contention.

This table is called the ChildTable. Each child is granted the
number of data slots indicated in the ChildTable (αi). The data
period and waiting period are calculated as follows:

data period α =
∑

i∈Chn

αi (2)

waiting period β = max
i∈Chn

βi (3)

In these formulas, Chn represents the children of node n.
Each time a node sends a data packet, a small amount of

additional information is put in the data header. This header
contains αn and βn, assuming that node n is sending. These
values are calculated as follows.

αn =
∑

i∈Chn

αi + δi (4)

βn = max
i∈Chn

βi +
∑

i∈Chn

αi + 1 (5)

In these formulas, δn represents the number of data slots that
is needed for node n to transmit its own data. When a parent
receives a packet from its child, it will extract this information
from the header and update its ChildTable. Each child has to
send this additional information each data subcycle. If a child
has no data packet to send or to forward, it will send a HELLO
packet to its parent containing only that information. Doing so,
the parent will know that the child is still connected to the tree.

In table IV, the ChildTables for nodes S, A and B are given.
As nodes C, D and E have no children, their ChildTables will
be empty.

D. Joining the network

In each data subcycle, a contention slot is included to allow
nodes to join the tree. A new child hears the data scheme



of the desired parent and sends a JOIN-REQUEST message
in the contention slot, preferably after a random delay. This
join message also contains the number of slots a node needs
to transmit its own data (δi), to enable immediate optimal
resource allocation. When the parent hears the join message,
it will include the node in the next cycle by updating its
ChildTable. As it is assumed that a node i joining the network
has no children, δi equals αi and βi equals 1.

E. Detection of connection loss

Each node will send at least two packets per cycle: a data
packet or a hello packet and a control packet. If a parent does
not receive a packet from a child for 2 or more consecutive
cycles, the parent will assume that the child is lost and removes
it from its ChildTable. If a child does not receive packets from
its parent for 2 or more consecutive cycles, the child will
assume that the parent is gone and will try to join another
node.

IV. DISCUSSION

A. Delay bounds

In TDMA protocols delay has an upper bound. As ex-
plained, CICADA uses a tree structure to send the data to the
sink. Furthermore, as explained in section III-C, the allocation
of the different slots is done in such a way that in one cycle
all data can be sent to the sink. CICADA allows a flexible
increase or decrease of the number of slots assigned to a node
after just one cycle, represented by δi in (4). This guarantees
reasonably low delays even with variable bitrate traffic.

The upper bound for the delay, i.e. the highest delay
experienced in the network, is lower than the length of 1 data
cycle as all data is sent to the sink in only 1 data cycle. It can
be considered as the time between the transmission of the first
packet and the arrival of the last packet. Formula 6 gives the
delay, expressed in time slots:

delayupperbound =
∑

i∈VS

δi + γ(S) (6)

The first term is the amount of data slots needed for
forwarding the data from the level below the sink, where Vn

denotes the set of all nodes in the subtree below node n. The
function γ(n) gives the number of waiting slots needed by
node n. In a data cycle the first slot always is a contention
slot. This slot should not be considered when calculating the
highest delay. Therefore, γ(n) already equals zero in the last
but one level:

γ(n) =


0,

⋃
i∈Chn

Vi = φ

max
∀i∈Chn

(
∑

m∈Vi

δm + γ(i) + 1),
⋃

i∈Chn

Vi 6= φ

(7)
The max function is needed as different branches of the tree
are allowed to send data simultaneously.

Formula (6) shows that the upper bound for the delay is a
function of the number of nodes in the network, depending on

the tree structure and the length of a time slot. A minimum
upperbound and a maximum upperbound for the delay can be
defined.

The minimum upperbound is achieved when all nodes are
directly connected to the sink, the single-hop case. Assuming
we have a network of n nodes below the sink and each node
has just one slot to send in a cycle, based on (6) the minimum
upperbound reduces to

upperboundmin = 1 (8)

When using CICADA in a single-hop network it reduces to a
standard TDMA protocol, with an overhead of 2 slots: 1 for
the contention slot of the sink and 1 for the contention slots
of all other nodes.

The maximum upperbound is found when all nodes are at
different levels, i.e. the tree is actually a single path. Using
the same assumptions, the maximum upperbound becomes

upperboundmax = −2 + n +
n−1∑
i = 1

i (9)

= −2 +
n

2
+

n2

2
(10)
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Fig. 3. Delay bounds related to the number of nodes.

Figure 3 gives the result of a delay bounds analysis in
simulations. We simulated a static CICADA scenario with 2
to 12 nodes and a randomly generated connected topology.
The graph shows different maximum delays experienced in
the scenarios, compared to the number of nodes. Notice how
all results are within the area defined by the minimum and
maximum upperbounds. The calculated maximum delays are
well below the maximum upperbound. This is to be expected
as the topology of the maximum upperbound, i.e. a single path,
is a very extreme case. Often, the nodes are placed too close
together to construct such a topology.

As an example, figure 4 gives the layer 2+3 end-to-end
delay, so delay caused by MAC and routing, for some of
the nodes in the network shown in figure 7. This is the time



between the transmission of the packet by CICADA and the
arrival at the sink. The length of one cycle varies slightly and
is about 110 milliseconds. It can be seen clearly that the delay
is very low and limited to the duration of one cycle. The small
fluctuations are caused by the change of the cycle’s length as
the cycles are updated according to the number of packets
available. Figure 5 shows the layer 7 end-to-end delay, so the
delay experienced by the application. As can be seen on the
figure, a mismatch of the network scheduling and the data
generation speed can introduce more delay at layer 7. When
delivered to the network layer, a packet might have to wait for
the next cycle until it can be sent.

B. Mobility support

CICADA supports mobility, which we believe is a necessity
for multihop body area networks. This can be explained by
the short range of the used wireless transceivers, as radios
transmit at low power to save energy. This approach results
in very small scale topologies where movements of the limbs
can change the topology.

Currently there is no mobility model available for multihop
wireless body area networks. In our studies of the protocol per-
formance we looked at simple, humanly feasible movements
to study the impact.

Nodes can join an existing network in 1 cycle: the moving
node hears the new parent in its control subcycle and joins in
its contention slot in the data subcycle. In the next cycle the
node is assigned data slots and it can start sending.

A parent can monitor messages it expects to come from
its children and vice-versa. Simulations show that marking a
node as lost after 2 missed control packets suffices, as waiting
for more cycles causes slow responses to a changed topology
while tree stability is not improved much.

These two simple mechanisms make mobility support pos-
sible in CICADA: noticing parent loss and joining the new
parent will take at most 3 cycles. Given the fact that cycles
are short this results in good mobility support.

C. Energy efficiency

The most important causes of wasting energy in radio
communication are idle listening, overhearing and collisions.
CICADA takes care of all by assigning slots in the control
cycle and using them in the data cycle. All slots are assigned
so a node perfectly knows when it is allowed to sleep, when
it has to send or when it has to switch on his radio to receive
data. However, idle listening and overhearing can occur in the
control subcycle as the nodes have to wait for the control
scheme of their parent and consequently have to switch on
their radios. However, the slots of the control cycle are shorter
than the ones of the data cycle and nodes can sleep when a
scheme from their parent has been received. In the datacycle,
nodes only have to wake up when transmitting or receiving
data. Using these mechanisms, the dissipation of energy is
minimized.

The network topology plays an important role in the energy
efficiency of the protocol, as the time spent idle listening and

overhearing in the control cycle depends on the depth of the
tree. If the tree structure is rather flat, the nodes will only
spend a very short amount of time waiting inactively for the
control scheme. Further, we envisage that a network topology
with a tree depth of more than 4 levels is highly unrealistic,
thus idle listening and overhearing will only happen during a
short time. Overall, the tree should not have too many levels.
That way, the nodes can sleep more and the upperbound for
the delay will be lower, see (9).

CICADA has been developed to support high-traffic body
area networks where delays should be low, i.e. all sensors
send data often instead of buffering it locally. When used
for low-traffic networks, an optimization is possible. If the
sink detects that the nodes in the network have very few
data packets to send, the data subcycles will be made longer
without actually assigning those extra slots. Using this simple
mechanism the sink can insert longer inactive periods without
losing synchronization.

D. Using trees

Our basic assumption is that building a spanning tree
is possible. Supporting mobility, which can be defined as
transforming one tree in another one, is feasible because of
the fast detection of movement.

Nodes higher in the tree are relaying a lot, which requires
a lot of energy. This is due to the network structure based on
trees. However, if a node really can not relay data because of
energy shortage, it should not act upon joining nodes or drop
children. Those nodes will then look for another parent and
save power for the energy-constrained node. Another possible
solution is the use of dedicated relay nodes near the top of
the tree, i.e. near the sink. These relay nodes do not do any
sensing, so they can use more power to support the network.

E. Differences with WASP

In CICADA all traffic reaches the sink in 1 cycle, which
results in a lower delay. Each CICADA-cycle consists of 2
different subcycles: the control subcycle and the data subcycle.
This results in enhanced mobility support: it is possible to
leave a parent, to detect loss of a parent or a child and
to join a node with much lower delays. CICADA does not
rely on broadcasting to pass information from children to
their parents, instead additional information is put in the data
packets or HELLO packets are used. Moreover, generating
CICADA schemes is easier because of the simple computation
of the waiting period and the data period. This is important
as CICADA is meant to run on sensors where computational
resources are scarce.

V. SIMULATION

A. Implementation

We have implemented the protocol in nsclick, a system that
allows Click Modular Router [15] instances to run inside the
ns-2 network simulator [16]. In order to take the specific prop-
erties of communication near the human body into account, we
have used the advanced propagation model described in [17].
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This model calculates the path loss on the human body using
the distance between the sender and receiver and a path loss
coefficient of 3.3, whereas the path loss coefficient in free
space equals 2. We have adapted the existing propagation
model of ns-2 to use the formula given in [17]. Using this path
loss on the human body, we have a more realistic view on the
losses experienced near the human body and the corresponding
influences on the network topology. We have validated the
protocol in multiple scenarios with different topologies and
mobility parameters.

B. Example scenario

Figure 6 shows an example network where some sensors
are placed on a human body, figure 7 shows the generic tree
view of this network. 13 nodes are each sending a constant bit
rate stream to one sink with radios capable of transmitting up
to 1Mbps. When configuring CICADA with control slots of 5
ms and data slots of 10 ms, the tree was set up after 192ms.
When data was being generated at each node, the cycle length
stabilized to 110ms.

We tested various scenarios, here we will discuss two

scenarios with mobility as an example. In the first scenario,
after 10 seconds node D is moved from its original position
towards node G, which drastically changes the topology. Ten
seconds later, node D is brought back to its original position.
In the second scenario, node J moves closer to the sink. This
corresponds with the movement of the right arm.

Figure 8 shows the layer 2+3 end-to-end delays of nodes D,
G, K and J for the first scenario. Clearly these delays are very
low due to the ability to deliver all data packets to the sink in
one cycle. Between 10s and 20s, node D joins with node C.
This influences all the nodes below node D as an extra hop
is required to reach the sink. Hence the delay increases for all
the depicted nodes. When node D moves, a transitional phase
is noticed with larger delays. These are caused by the fact that
the node waits 2 cycles before searching a new parent. As a
node releases all of its children when it has lost his parent,
all the nodes below node D need to rejoin. This will give
cause to additional delay. The delay is the highest for node K.
Furthermore, data was being buffered in the nodes while being
disconnected. When nodes join the network, they empty their
data buffers. In this case this lengthens the cycles, increasing



the delay. The combination of joining and buffering effects
explains the large delay. This phase lasts about 2 seconds.
Notice that when the network connection is restored, delays are
low again. The delay at the application layer, i.e. layer 7 end-
to-end delay, experiences the same evolution as the delay at
layer 2+3. The delay is higher as there is a mismatch between
the moment the packet is delivered to the network layer and
the moment the packet can be sent in the following cycle.
As the cycle length is low, i.e. 110 ms in this scenario, the
delay remains below 0.3 seconds in steady state. Again, a
transitional phase happens. This figure was omitted due to
reasons of brevity.

The results of the second scenario are shown in figures 9
and 9. At 10s, node J chooses the sink as parent. Conse-
quently, the layer 2+3 delay for node J decreases. Looking at
the application delay, we once again see a small transitional
phase with higher delay.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented CICADA, a cross-layer
protocol for wireless body area networks. Based on a tree
structure, CICADA controls communication with distributed
slot assignment. Using both a control subcycle and a data
subcycle, CICADA makes low delays and energy efficiency
possible while preserving network flexibility.

CICADA can be improved in the future. The shape of the
tree has a strong influence on the efficacy of the protocol. In
the current implementation, the tree is formed depending on
link formation times. However, smarter strategies exist [18]
and will be investigated in future research. A possible solu-
tion might consist of adding extra information to the con-
trol scheme in order to communicate parameters like signal
strength, load, remaining energy, etc.

Another possible future amelioration is the addition of on-
the-fly slot resizing. This way, when less data is generated,
slots and cycles can become shorter, further decreasing delays.
Currently CICADA does not support traffic from the sink to
the nodes. Implementing it would involve introducing uplink
slots in the control cycle and adding a lightweight routing
table to the nodes. A final improvement is the inclusion of slot
synchronization, similar to [19]. CICADA has a tree structure
so we expect this to be straightforward.
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Fig. 8. Layer 2+3 end-to-end delays in the sample network.
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Fig. 9. Layer 2+3 end-to-end delays in a mobile network.
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Fig. 10. Layer 7 end-to-end delays in a mobile network.


