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Cell death and caspases
Cellular fate is predominantly determined by the processes of 

division, differentiation, and death. A cell is considered dead 

when the plasma membrane has lost its integrity or when it is 

fragmented into so-called apoptotic bodies (Kroemer et al., 

2005), but a plethora of defi nitions based on morphological 

parameters tries to capture the manifold types of mammalian cell 

death and the routes toward it. Originally, apoptosis was de-

scribed as the type of cell death characterized by rounding and 

shrinking of the cell, chromatin condensation (pyknosis), nuclear 

fragmentation (karyorrhexis), and budding of discrete plasma 

membrane–lined portions of cytoplasm (blebbing; Kerr et al., 

1972). During apoptosis in mammalian tissues, the plasma mem-

brane remains intact until late stages, thereby preventing an un-

wanted infl ammatory response (Krysko et al., 2006). Autophagy 

is defi ned by a vacuolization of the cytoplasm. Autophagic vacu-

oles have two membranes and contain degenerating organelles 

and cytosolic content (Gozuacik and Kimchi, 2007). The third 

main type of cell death, necrosis, is characterized by cell swell-

ing (oncosis), organelle dilation, and subsequent rupture of the 

plasma membrane (Festjens et al., 2006).

The acquisition of apoptotic morphology is, in most cases, 

associated with and depends on the activation of Cys-dependent 

Asp-specifi c peptidases (caspases; Alnemri et al., 1996; Leist 

and Jäättelä, 2001). Caspases (clan CD, family C14) cleave 

their substrates after Asp, are synthesized as inactive zymo-

gens, and can be divided into two types based on their overall 

structure and activation modes. Effectors or executioner cas-

pases are activated by proteolytic separation of the large (p20) 

and small (p10) subunits, resulting in active (p20)2(p10)2 hetero-

tetramers. Initiator caspases have an N-terminal extension, the 

prodomain, that is needed to recruit them into protein com-

plexes that function as activation platforms, called apoptosomes 

(Riedl and Salvesen, 2007). Their activation does not require 

proteolytic cleavage but relies on conformational changes after 

oligomerization (Fuentes-Prior and Salvesen, 2004). Once trig-

gered, initiator caspases can ignite a cascade by the proteolytic 

activation of effector caspase zymogens. The effector caspases 

ultimately cleave numerous substrates, thereby causing the 

typical morphological features of apoptosis (Kumar, 2007; 

Timmer and Salvesen, 2007). Members of the CD clan of pro-

teases are characterized by their specifi city for the residue at the 

N-terminal side of the scissile bond, the P1 residue, in their 

substrates. For caspases, substrate recognition additionally re-

quires three or more residues N terminal to P1-Asp. Based on the 

optimal substrate oligopeptide sequence, caspase activity can be 

specifi cally measured by synthetic peptides C-terminally cou-

pled to a fl uorogenic moiety, such as 7-amido-4-methylcoumarin 

(AMC). Upon cleavage by caspases, an increase of fl uorescence 

is proportional to caspase activity. Despite their omnipresence 

during apoptosis, caspases are also involved in nonapoptotic 

events, including infl ammation, cell proliferation, and cell 

differentiation. Therefore, the reciprocal conclusion that cas-

pase activities are strictly correlated with apoptosis is invalid 

(Lamkanfi  et al., 2007).

As in animals, cell death is an essential part of the life 

cycle of plants. From seed germination until seed production, 

developmental cell death is manifested. A few well known 

examples are cell death during terminal differentiation of the 

vascular tracheary elements, leaf and fl ower senescence, elimi-

nation of reproductive organs in unisexual fl owers, pollen rejec-

tion in the self-incompatibility response, fruit dehiscence, or 

pod shattering (van Doorn and Woltering, 2005). In addition, 

plants attempt to block the invasion of biotrophic pathogens via 

the hypersensitive response, leading to localized cell death at 

the site of infection (Jones and Dangl, 2006). Typical animal 
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apoptotic features such as pyknosis, karyorrhexis, internucleo-

somal DNA cleavage, cell shrinkage, and the formation of 

apoptotic bodies have been observed in dying plant cells (van 

Doorn and Woltering, 2005). Importantly, during cell death, 

caspaselike activities are easily detected by synthetic fl uoro-

genic oligopeptide substrates, and cell death can often be atten-

uated by synthetic caspase-specifi c inhibitors (Woltering, 2004). 

With the sequencing of the complete genome of the model plant 

Arabidopsis thaliana (Arabidopsis Genome Initiative, 2000), 

these caspaselike activities have steered an intensive but frus-

trating search for caspase genes within plants.

The discovery of metacaspases 
and paracaspases
At the end of 2000, distant caspase relatives were discovered 

in silico in plants, fungi, and protozoa and were designated 

metacaspases (Uren et al., 2000). The sequences of previously 

found caspaselike proteins (paracaspases) in metazoans and in 

the slime mold Dictyostelium discoideum had been used in an 

iterative PSI-BLAST search of plant-expressed sequence tags 

(Aravind et al., 1999). Paracaspases contain a prodomain con-

sisting of a death domain and one or two Ig domains, whereas 

two types of metacaspases can be distinguished (Fig. 1 A). Type I 

metacaspases have an N-terminal extension reminiscent of 

the prodomain in initiator and infl ammatory caspases. Type II 

metacaspases lack such a prodomain but harbor a linker region 

between the putative large and small subunits (Uren et al., 2000; 

Vercammen et al., 2004). Both meta- and paracaspases contain 

a conserved catalytic His/Cys dyad, and structure predictions 

show that they bear the core of the caspase/hemoglobinase fold 

(Fig. 1 B), which is the determining structural feature of all clan 

CD Cys proteases (Rawlings and Barrett, 1993; Aravind and 

Koonin, 2002).

Phylogeny of the caspases, metacaspases, 
and paracaspases
In Eukaryota, paracaspases and caspases are restricted to animal 

genomes (kingdom Animalia), and metacaspases are present in 

the kingdoms Protozoa, Fungi, Plantae, and Chromista, whereas 

in Prokaryota, meta-/paracaspase-like proteins are found in both 

Archaea and Eubacteria (Fig. 2). Previous phylogenetic analysis 

of eukaryotic caspases, metacaspases, and paracaspases has sug-

gested that these groups are about equally distant from each 

other. These fi ndings have led to the hypothesis that eukaryotic 

metacaspases originate from a horizontal gene transfer (HGT) 

between the mitochondrial endosymbionts, α-proteobacteria, 

and the early eukaryotes (Koonin and Aravind, 2002). Still, the 

origin of caspases and paracaspases remains elusive in such a 

scenario. Furthermore, meta-/paracaspase-like proteins can be 

found not only in α-proteobacteria but also in all groups of Bacteria, 

including cyanobacteria, the ancestors of chloroplasts in plants. 

Also, it is striking that only type I metacaspases can be found in 

Protozoa, Fungi, and Chromista, whereas both type I and II are 

present in Plantae, including green plants, glaucophyta, and rho-

dophyta. Therefore, an alternative hypothesis would be that cas-

pases, paracaspases, and type I metacaspases have a common 

ancestor originating from HGT between mitochondrial endo-

symbionts and host eukaryotic cells. Type II metacaspases might 

possibly be derived from a second HGT event during the estab-

lishment of plastids from endosymbiotic cyanobacteria.

The alleged paracaspase of D. discoideum is a surprising 

element in this phylogenetic distribution because slime molds 

belong to the Protozoa kingdom. Phylogenetic analysis of the 

sequence of its putative catalytic p20 subunit reveals that it is 

almost equally related to that of caspases, metacaspases, para-

caspases, and their bacterial homologues, making its classifi cation 

as a separate paracaspase not well founded (our unpublished data). 

Figure 1. Structural properties of caspases, paracaspases, and metacaspases. (A) Schematic representation of the domains of caspases (C), metacaspases 
(MC), and paracaspases (PC). The catalytic domains consist of a large p20 (red) and small p10 subunit (green). Positions of the catalytic His and Cys resi-
dues are indicated by yellow bars. Prodomains of infl ammatory and proapoptotic initiator caspases and type I metacaspases are in gray. The N-terminal 
domain of paracaspases contains a death domain (black) and one or two Ig domains (blue). The C-terminal region of paracaspases, which is involved in 
ubiquitination, is shown in pink. (B) Topological diagram of the structure of human caspase 8 and metacaspase 9 of Arabidopsis thaliana. Catalytic His 
and Cys residues are labeled in red, (putative) S1 pocket–forming residues are in blue, and maturation sites are in green. Figure layout is adapted from 
the diagram for human caspase 8 in Fuentes-Prior and Salvesen (2004). The secondary structure of AtMC9 was predicted using the Protein Structure Predic-
tion Server (McGuffi n et al., 2000).
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Also, its prodomain lacks a death domain and Ig domains, 

which is typical of animal paracaspases. Therefore, it is tempting 

to classify the D. discoideum protease as a metacaspase rather 

than a paracaspase.

Catalytic properties of metacaspases
In the Arabidopsis genome, nine metacaspase genes are present: 

three of type I (Arabidopsis thaliana metacaspase 1 [AtMC1] to 

AtMC3) and six of type II (AtMC4 to AtMC9; Vercammen et al., 

2004). Upon overproduction in Escherichia coli, type II meta-

caspases autoprocess and display a Cys-dependent proteolytic 

activity against synthetic P1-Arg substrates, whereas AtMC9 also 

cleaves P1-Lys substrates, albeit with low effi ciency (Vercammen 

et al., 2004, 2006; Watanabe and Lam, 2005). Type I metacas-

pases from Arabidopsis do not autoprocess upon recombinant 

overproduction and, like mammalian initiator caspases, possibly 

require induced oligomerization within an activation platform 

(Fuentes-Prior and Salvesen, 2004). A positional scanning syn-

thetic combinatorial library screening with purifi ed recombinant 

AtMC9 confi rmed the preference for P1-Arg. The optimized 

tetrapeptide substrate Ac-Val-Arg-Pro-Arg-AMC had a kcat/KM 

of 4.6 × 105 M−1 s−1 and, thus, can be considered a very effi cient 

substrate for AtMC9 (Vercammen et al., 2006).

The P1 preference of clan CD proteases is dictated by con-

served amino acids distributed throughout the mature protease 

that together form the S1 pocket (Fuentes-Prior and Salvesen, 

2004). In caspases, Arg179, Gln283, and Arg341 (according to 

caspase-1 residue numbering) form a basic S1 pocket for optimal 

binding of the acidic P1-Asp within their substrates (Fuentes-

Prior and Salvesen, 2004). When the available sequences of 

eukaryotic metacaspases, paracaspases, and bacterial meta-/

paracaspase homologues are aligned to those of animal caspases, 

Gln283 is replaced by an Asp, and Arg341 is replaced by Asp or 

Glu in both para- and metacaspases. Arg179 of caspases aligns to 

Leu. Six residues more C terminal, a highly conserved Asp is 

present that aligns with Asp163 of bacterial gingipain R, which 

is known to coordinate binding of the P1-Arg of substrates of 

this peptidase (Eichinger et al., 1999). Together, these residues 

are ideally positioned to create a highly acidic S1 pocket that is 

perfectly suited to accept the basic P1 residues Arg and Lys (Fig. 

1 B). As the predicted S1 pocket–forming residues are strictly 

conserved in all known sequences of para- and metacaspases, 

the Arg/Lys specifi city is very probably shared by all of them. 

The determined P1 specifi city of metacaspases of other plants 

and of yeast and protozoa confi rmed this hypothesis (Bozhkov 

et al., 2005; Watanabe and Lam, 2005; González et al., 2007).

The fact that no close bacterial caspase homologues have 

been identifi ed yet would refl ect an animal-specifi c evolutionary 

process of gene duplications and progression of the caspases 

from Arg/Lys toward Asp specifi city. Until now, attempts to de-

tect the protease activity of paracaspases have been unsuccessful 

(Snipas et al., 2004), but paracaspases may have retained their 

preference for basic P1 residues in their substrates. The reason 

for the shift in caspase P1 specifi city remains unclear.

A biochemical particularity of AtMC9 is the presence of 

a second catalytic Cys, Cys29. Mutation analysis revealed that 

the primary Cys147 is necessary for autocatalytic processing and 

concomitant activation of AtMC9. However, once activated 

either autocatalytically or by exogenous AtMC9, proteolytic activ-

ity almost completely depends on Cys29 because replacement of 

this residue by Ala reduces protease activity by 99%. Furthermore, 

Cys147 but not Cys29 can be inactivated by S-nitrosylation. Thus, 

in the presence of nitric oxide, AtMC9 remains inactive until 

S-nitrosylation is reversed or until upstream proteases convert 

pro-AtMC9 into its mature form (Belenghi et al., 2007).

Are metacaspases involved in cell death?
The identifi cation of metacaspase genes prompted the assess-

ment of their potential involvement in cell death events in fungi, 

protozoa, and plants. The fi rst data came from studies in baker’s 

yeast (Saccharomyces cerevisiae). Overproduction of the single 

metacaspase YCA1 resulted in autocatalytic processing and 

rendered cells more sensitive to exogenous or aging-related oxi-

dative stress, as determined by reduced clonogenicity (Madeo 

et al., 2002). However, it may not be surprising that overproduc-

tion of an active protease, causing endogenous stress, resulted 

in a higher sensitivity to exogenous stress. A yeast strain with a 

disrupted YCA1 gene (∆yca1) was also shown to be threefold 

less sensitive to H2O2, and �5% of the cells escaped from aging-

related cell death (Madeo et al., 2002). Whether this observa-

tion refl ects a direct involvement of YCA1 in cell death or this 

desensitization is caused by indirect effects, such as an altered 

protein turnover disturbing the balance of pro– and anti–cell death 

mediators, remains unclear. Indeed, after treatment of ∆yca1 

cells with H2O2, levels of oxidized proteins were much higher 

than those of wild-type cells (Khan et al., 2005). Concomitantly, 

the proteasome activity of ∆yca1 cells increased and apoptosis 

decreased upon H2O2 treatment, as measured by phosphatidyl-

serine (PS) externalization and DNA fragmentation. The re-

duced capability of ∆yca1 cells compared with wild-type cells 

to cope with damaged proteins might explain the considerable 

Figure 2. Phylogenic distribution of caspases, metacaspases, paracas-
pases, and bacterial para-/metacaspase-like proteins. C, caspase; MC, 
metacaspase; PC, paracaspase; protoPC/MC, bacterial para-/metacaspase-
like proteins. Classifi cation of cellular life into one prokaryotic (Bacteria, 
including Archaebacteria) and fi ve eukaryotic kingdoms (Fungi, Protozoa, 
Chromista, Animalia, and Plantae) as described in Cavalier-Smith (2004). 
HGT events are indicated by dotted arrows.
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decrease in cell viability after extended culture (i.e., >30 d; 

Herker et al., 2004). Whereas PS exposure and DNA fragmenta-

tion are genuine apoptotic markers, clonogenicity assays might 

also refl ect other cellular states such as cell cycle arrest or meta-

bolic defi ciencies. Therefore, the clonogenicity results themselves 

do not exclude functions of metacaspases other than cell death 

involvement. In animal cells, PS exposure by dying cells func-

tions as an “eat-me” signal for phagocytotic cells. However, the 

physiological function of PS exposure by yeast and plant cells 

remains intriguing because they possess a rigid cell wall and, 

thus, are incapable of phagocytosis.

Extracts of H2O2-treated YCA1-overproducing yeast were 

highly active toward the synthetic caspase substrates Val-Glu-Ile-

Asp-AMC and Ile-Glu-Thr-Asp-AMC, suggesting that the YCA1 

metacaspase behaved as a bona fi de caspase (Madeo et al., 2002). 

These results were later contradicted: lysates from bacteria and 

H2O2-stimulated yeast overproducing YCA1 were not active 

against synthetic caspase substrates but cleaved P1-Arg and, to a 

lesser extent, P1-Lys substrates similarly to plant metacaspases 

(Watanabe and Lam, 2005). Thus, YCA1 involvement cannot be 

determined by using synthetic caspase substrates or inhibitors. 

Because YCA1-independent cell death (Büttner et al., 2007; for 

review see Váchová and Palková, 2007) and YCA1-independent 

caspaselike activities (Váchová and Palková, 2005; Hauptmann 

et al., 2006) have been reported, the involvement of metacaspase 

activity in yeast cell death remains debatable (for review see 

Váchová and Palková, 2007). The identifi cation of endogenous 

YCA1 substrates will be crucial in unraveling the signaling path-

ways regulated by this metacaspase.

The genome of the pathogenic fi lamentous fungus Asper-
gillus fumigatus contains two type I metacaspases, CasA and 

CasB. With double knockout mutants, neither of these metacas-

pases was found to be necessary for virulence. In addition, stress-

induced cell death did not depend on metacaspases despite the 

abrogation of apoptosis-related membrane PS exposure in CasA 

and CasB double knockout stationary-phase cultures. Interest-

ingly, both CasA and CasB were required for growth in the pres-

ence of agents inducing endoplasmic reticulum stress, suggesting 

a prosurvival role for metacaspases rather than an involvement 

in cell death processes (Richie et al., 2007).

Of the fi ve type I metacaspases of Trypanosoma brucei, 
only TbMCA4 caused retardation in growth, loss of respiratory 

competence, and subsequent decrease in clonogenicity when 

overproduced in baker’s yeast (Szallies et al., 2002). Surprisingly, 

TbMCA4, like TbMCA1, lacks a catalytic Cys at the canonical 

location, although an adjacent Cys is present. Nevertheless, using 

different synthetic tetrapeptides with Asn, Asp, Arg, or Lys at 

the P1 position, no proteolytic activity in lysates of E. coli or 

yeast overproducing TbMCA4 could be demonstrated. Triple-

null trypanosomes for TbMCA2, TbMCA3, and TbMCA5 had 

no altered cell death or enhanced susceptibility to stresses, but 

the rapid down-regulation of all three genes with induced 

RNAi resulted in an in vitro growth arrest (Helms et al., 2006). 

In Trypanosoma cruzi, two metacaspase genes, TcMCA3 and 

TcMCA5, have been reported. In untreated epimastigotes, the en-

coded proteins were distributed in the whole cell, but, after ex-

posure to fresh human serum, which induces rapid apoptosis-like 

cell death, relocalization to the nucleus was observed. Upon 

overproduction of TcMCA5, epimastigotes of T. cruzi were 

more sensitive to fresh human serum–induced cell death (Kosec 

et al., 2006). Overproduction in yeast of the single type I meta-

caspase from Leishmania major, LmjMCA, slightly enhanced 

sensitivity toward H2O2, as measured by PS exposure. Interest-

ingly, extracts of LmjMCA-overproducing yeast cells were 

proteolytically active toward P1-Arg synthetic substrates, dem-

onstrating the probably universal preference for basic P1 resi-

dues of metacaspases (González et al., 2007). Plasmodium 
berghei has three type I metacaspases, of which PbMC2 and 

PbMC3 lack one or both of the catalytic site residues, but knockout 

mutants of the PbMC1 gene did not display any obvious pheno-

type (Le Chat et al., 2007).

As discussed in the section Phylogeny of the caspases, 

metacaspases, and paracaspases, we propose to classify the 

slime mold paracaspase as a metacaspase. Upon starvation, 

D. discoideum differentiates into multicellular fruiting bodies 

consisting of a spore mass supported by a stalk. During this 

process, stalk cells die in a caspase-independent autophagic cell 

death (Cornillon et al., 1994; Olie et al., 1998). Both differentiation 

and cell death were demonstrated to be independent of meta-/

paracaspase action (Roisin-Bouffay et al., 2004).

In Norway spruce (Picea abies), metacaspases were stud-

ied in the context of developmental cell death during in vitro 

somatic embryogenesis. In this process, dying embryo suspen-

sor cells contained elevated activity against the synthetic fl uoro-

genic caspase-6 substrate Val-Glu-Ile-Asp-AMC. Accordingly, 

treatment with the synthetic inhibitor Val-Glu-Ile-Asp-fmk pre-

vented differentiation of the suspensor and subsequent suspen-

sor cell death (Bozhkov et al., 2004). Disruption of the type II 

metacaspase gene mcII-Pa abrogated the terminal differentia-

tion and death of the suspensor cells and drastically reduced 

caspaselike activity, suggesting that mcII-Pa had caspase activ-

ity and was involved in cell death (Suarez et al., 2004). Later in 

vitro experiments have shown that mcII-Pa had Arg but not 

Asp specifi city (Bozhkov et al., 2005). Because knocking down 

mcII-Pa not only disrupted cell death but also blocked embry-

onic differentiation, we speculate that mcII-Pa might be primar-

ily involved in suspensor differentiation rather than in suspensor 

cell death. Possibly, mcII-Pa regulates the actin reorganization 

observed during suspensor differentiation (Smertenko et al., 2003), 

like mammalian caspases do in the cytoskeletal rearrangements 

during apoptosis (Mashima et al., 1999).

In Arabidopsis, mere constitutive overexpression or disrup-

tion of metacaspase genes does not lead to an obvious phenotype 

(Vercammen et al., 2006; Belenghi et al., 2007; our unpublished 

data), and, thus, a role for metacaspases in cell death or other 

processes has not been identifi ed yet. Redundancy may exist 

between the various members of this family, or additional factors 

may be necessary to activate ectopically expressed metacaspases. 

A large amount of microarray data is available (http://www

.arabidopsis.org/info/expression/ATGenExpress.jsp) describing 

the expression of >20,000 Arabidopsis genes (Zimmermann 

et al., 2004). Analysis of these data for the nine metacaspase 

genes could at least give a hint to their functional roles. Several 

metacaspase genes are strongly induced in senescing fl owers, in 
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response to various pathogens and elicitors, and during various 

abiotic stresses (Sanmartín et al., 2005; our unpublished data). 

As a prominent role for cell death has been demonstrated in 

responses to biotic and abiotic stresses, it might be tempting 

to deduce from these expression profi les that metacaspases play 

a role in cell death signaling. Alternatively, plants might fi rst 

try to cope with stresses by rapid adaptation before sacrifi ce. 

In vivo reporter systems will be necessary to specifi cally pinpoint 

those cells expressing particular metacaspases. Also, metacaspase 

activity can be regulated on multiple posttranslational levels. 

For example, the activity of AtMC9 is regulated by autoprocess-

ing, pH, a protease inhibitor (AtSerpin1), and S-nitrosylation 

(Vercammen et al., 2004, 2006; Belenghi et al., 2007). Likewise, 

AtMC4 and AtMC5 activity depends on calcium (Vercammen 

et al., 2004; Watanabe and Lam, 2005). Therefore, specifi c in vivo 

activity assays would strongly contribute to our understanding of 

the role of individual metacaspases in plant development and 

stress response.

Conclusions and perspectives
To date, metacaspases of plants, fungi, and protozoa have been 

shown to have Arg/Lys-specifi c activity (Vercammen et al., 2004, 

2006; Bozhkov et al., 2005; Watanabe and Lam, 2005; González 

et al., 2007). Based on the available sequences, we speculate that 

all metacaspases and possibly also paracaspases share this speci-

fi city. As a consequence, the caspaselike activities reported to be 

involved in plant and fungal cell death most probably differ from 

the metacaspases. Other plant proteases exhibiting caspaselike 

activity and suggested to be involved in cell death include the 

legumains (also called vacuolar processing enzymes) and some 

subtilisins (Coffeen and Wolpert, 2004; Hara-Nishimura et al., 

2005; Hatsugai et al., 2006).

Until now, the role of metacaspases in cell death still 

remained enigmatic, and both up- and down-regulation of 

metacaspases have yielded confl icting data. However, such 

approaches bear the risk that a constitutive perturbation of 

genes that are essential for normal cellular homeostasis leads 

to overinterpretation. Alternative routes toward unraveling the 

function of metacaspases could involve the identifi cation of 

their substrates by using technologies that allow direct charac-

terization of in vivo protein processing on a proteome-wide 

scale (Gevaert et al., 2006). Knowing the degradome specifi city 

of metacaspases could reveal their role in cellular and devel-

opmental processes, including cell death. Overproduction of 

the cleavage fragments and/or of uncleavable mutant proteins 

would help elucidate the functional consequences of substrate 

cleavage by metacaspases.

We conclude that although metacaspases, paracaspases, 

and caspases contain a caspase fold and probably originated 

from a common ancestor gene, metacaspases and paracaspases 

are clearly distinct from caspases for the following reasons. 

First, the fact that these different proteases contain a caspase 

fold might not be a valid argument to group them together in 

the caspase family (clan CD, family C14; http://merops.sanger

.ac.uk/). Legumains (clan CD, family C13) and gingipains 

(clan CD, family C25) constitute separate families that also 

contain a caspase fold (Chen et al., 1998; Eichinger et al., 1999). 

Second, the P1 preference of metacaspases is basic, whereas 

that of caspases is acidic. If metacaspases and caspases shared 

similar functions, we assume that both the proteases and their 

specifi c degradome would have coevolved. In view of the crucial 

functions of many of their substrates, this hypothesis is unlikely. 

Third, previous phylogenetic analyses of clan CD peptidases have 

shown that caspases constitute a separate group distinct from 

other clan CD peptidases, including metacaspases and paracas-

pases (Koonin and Aravind, 2002). Therefore, we believe that it 

might be expedient to regroup metacaspases and paracaspases 

into a separate family in the CD clan of Cys peptidases.
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