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1.1 Introduction

This introductory chapter describes some basic concepts in survival analysis.
It contains notation and basic results on which the methodology developed in
this thesis is based. Section 1.2 introduces the concept of survival data and
describes what distinguishes survival analysis from other statistical fields.
Section 1.3 describes basic quantities of survival analysis in a univariate
setting. In Section 1.4 the concept of censoring is explained and Section
1.5 reviews models used to analyze univariate survival data. Section 1.6
introduces the concept of multivariate survival data, the main topic of this
thesis. The frailty model is introduced in Section 1.7. Possible frailty dis-
tribution and estimation methods for the frailty model are discussed. The
copula model is introduced in Section 1.8. Finally, Section 1.9 describes the
examples used in this thesis to illustrate the developed methodology.

1.2 Survival data

Survival data, failure time data, lifetime data or time-to-event data are dif-
ferent names to describe data that deal with the time to an event. This
event may be death (literally survival data), but also other events such as
pregnancy, the recurrence of symptoms, the recovery from an illness or the
occurrence of an infection are possible endpoints. Time-to-event data do
not only arise in the field of demography, medicine or epidemiology; many
other disciplines such as economics, engineering or sociology have to deal
with time-to-event data. Consider, for instance, the time to leaving unem-
ployment in economy (Nickell, 1979), the time to failure of a mechanical
component of a machine in engineering (Lanternier et al., 2008) or the time
to first use of marijuana in sociology (Turnbull and Weiss, 1978). In this
thesis data sets from veterinary medicine will be used and focus will be on
the time to infection of a cow udder quarter with a bacterium (Laevens
et al., 1997).
A specific feature of survival data that distinguishes them from other data,
is the presence of censoring. For a censored subject, the event time itself
has not been observed; it is only known to fall into a certain interval (with
possibly 0 as lower limit and/or 8 as upper limit). Contrary to missing
observations, censored observations still provide some information on the
variable of interest (for more details on censoring, see Section 1.4).
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1.3 Basic functions in survival analysis

Let fptq denote the density function of T, an absolutely continuous, non-
negative random variable representing the event time of interest and F ptq “
P pT ă tq “

şt
0
fpsqds the corresponding cumulative distribution function.

Let Sptq denote the nonincreasing survival function defined as the probabil-
ity that T exceeds a value t (Kaplan and Meier, 1958):

Sptq “ 1 ´ F ptq “ P pT ě tq “
ż 8

t

fpsqds.

An important concept in survival analysis is the hazard function hptq defined
as

hptq “ lim
∆tÑ0`

P pt ď T ă t` ∆t|T ě tq
∆t

.

It represents the instantaneous failure rate at time t, given that the subject
does not fail until time t. hptq∆t may be viewed as the approximate proba-
bility of a subject failing in the next instant.
The survival, density and hazard functions have the following one-to-one
relationships:

fptq “ ´dSptq
dt

hptq “ fptq
Sptq “ ´d logSptq

dt

Sptq “ exp p´Hptqq

where Hptq “
şt
0
hpsqds is the cumulative hazard function.

The Laplace transform of a random variable T is also an important concept
in survival analysis:

Lpsq “ Erexpp´sT qs “
ż 8

0

expp´stqfptqdt. (1.1)

1.4 Censoring and truncation

1.4.1 Left, right and interval censoring

As mentioned above, the presence of censoring is a specific feature that
makes survival analysis different from other statistical disciplines. Depend-
ing on the situation different types of censoring exist: an observation is right-
censored if the actual (unobserved) event time is larger than the (observed)
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censoring time. A typical situation that yields right-censored observations is
one in which the study has to end at a predefined point in time, for example
due to time constraints or resource limitations. Other possible reasons for
right censoring are drop out or loss to follow up of subjects (because they
moved or do not show up at planned visits). On the other hand, an observa-
tion is left-censored when the actual (unobserved) event time is smaller than
the (observed) censoring time, i.e., when the event of interest has already
occurred before the subject is observed in the study. Interval-censored data
arise when the exact time-to-event is not known; it is only known that the
event occurred within a certain interval of time. For instance, when a sub-
ject is not monitored continuously, but only examined at scheduled visiting
times, we only know that the event of interest happened between the last
visit at which the event had not taken place yet and the first visit at which
the event has taken place.
Formally, let T be the real, possibly unobserved, event time. If an obser-
vation is interval-censored, let L and U denote the lower and upper bound
of the interval, respectively, then L ă T ď U . Left- and right-censored ob-
servations can be considered special cases of interval-censored observations.
For a left-censored observation L is the start of the at risk time (time 0) and
U is the censoring time. Similarly U “ 8 and L is the censoring time (for
example the end of the study or the last visiting time the subject was seen
before the end of the study) for right-censored observations. When the event
time is known exactly, L “ U . Intervals can be recorded as open, half open
or closed; if T is continuous, they represent the same observed information
about T . The recording of closed intervals allows for exact observations. To
cover all situations we will use the notation tL,U u.
Figures 1.1 and 1.2 present the different types of censoring. In Figure 1.1
observations are either exact or right-censored. Consider, for example, a
study in which time to culling in heifers is studied for an entire lactation
period (roughly 300-350 days, different for every cow) (De Vliegher et al.,
2005). Each cow enters the study at the first day of its lactation (time 0)
and if the cow is culled during the lactation the exact culling day is known
(cow 1 in Figure 1.1 for example is culled at day 200 of its lactation period).
The observations for cows 2 and 3 are right-censored: the observation for
cow 2 because it was not culled before the end of its lactation period (its
censoring time is 350 days), the observation for cow 3 because it was perhaps
sold at day 100 of its lactation period. In Figure 1.2 observations are either
interval-, left- or right-censored. For an example we refer to the mastitis
data (Section 1.9.2), a study on intramammary infections in cows. Each
cow enters the study at the first day of its lactation (time 0) and is monthly
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screened for bacterial infections at the udder quarter level. In Figure 1.2 we
consider the left front udder quarter of a few cows. The observation for the
udder quarter of cow 1 is interval-censored: the udder quarter got infected
between the visit of October and the visit of November. The observations
for the udder quarters of cows 2 and 3 are right-censored: the udder quarter
of cow 2 was not infected before the end of the study, cow 3 again could have
been sold or could have been culled. The end of the study is the censor-
ing time for cow 2. The censoring time for cow 3 is the last visiting time at
which the cow was still on the farm. The udder quarter of cow 4 was already
infected before the first visiting time in June and is thus left-censored. The
first visiting time is its censoring time.

Time to culling (days)

C
ow

 n
um

be
r

0 50 100 150 200 250 300 350

3

2

1

Figure 1.1: Exact and right-censored observations. An ’x’ denotes an ob-
served event, an ’o’ a censored observation, an ’Ĳ’ an unobserved event.

Different types of right and interval censoring exist (Klein and Moeschberger,
2003). The censoring mechanism that stops the study at the same fixed time
point for all subjects is called Type I right censoring. In the case of Type
II right censoring the study stops if a prespecified number of subjects has
experienced the event. Sometimes the event of interest can not be observed
because the subject is removed from the study. This is termed random cen-
soring. Two possible causes of random censoring are accidental deaths and
subject withdrawal from the study. In some studies, the censoring scheme
is a combination of random censoring and type I censoring. In such studies
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Time to infection (months)
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Start J J A S O N D J F M A End

4

3

2

1

Figure 1.2: Left-, right- and interval-censored observations. An ’Ĳ’ denotes
an unobserved event, an ’o’ a censored observation.

some subjects are randomly censored, for example due to drop out, whereas
others are type I censored when the fixed study period ends. The mastitis
study, introduced in Section 1.9.2, is an example of a study with a combi-
nation of randomly censored and type I censored observations.
Case I interval-censored data or current status data occur when there is
only a (fixed) censoring time and it is only known that the event occurred
either before or after the censoring time. Therefore, each observation time
is either left- or right-censored. Case I interval-censored data are for exam-
ple encountered in tumorigenicity experiments where an animal needs to be
sacrificed to determine whether a (nonlethal) tumor is present or absent.
The time to tumor onset is not observed directly, it is only known to be less
than or greater than the time of sacrifice.
Case II interval censoring refers to the situation with two (fixed) censoring
times pL,Uq, where L ă U and L,U P p0,8q, and the available information
restricts to whether the event time T is either smaller than L, between L

and U or larger than U .
The extension of case II interval-censored data to the situation in which
there are k (fixed) censoring times is called case k interval censoring (Sun,
2006).
Grouped event time data (Lawless, 2003) occur if the predetermined visiting
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schedule is followed exactly by all study subjects. But often, subjects miss
certain appointments and return with a changed status or visit the clinic at
times that are convenient to them instead of at predetermined observation
times.
When there are two related events in a survival study, say V and Y , V ď Y ,
and T “ Y ´ V is the event time of interest, observations on both V and Y
can be right- or interval-censored. This type of data is called doubly cen-
sored survival data (De Gruttola and Lagakos, 1989; Sun et al., 2004) and
is often seen in disease progression studies where the two events may repre-
sent infection and the onset of a disease, respectively. In AIDS studies, for
example, observations are often doubly censored with V the time of HIV in-
fection, determined by periodic blood tests and therefore interval-censored,
and Y the onset of AIDS, often determined by the CD4 cell count in blood,
tested periodically and thus also interval-censored.

1.4.2 Noninformative censoring

We will assume throughout this thesis noninformative censoring, a com-
monly used assumption in survival analysis. This means that the censor-
ing procedure does not contain any information on the parameters used to
model the event time. Without this assumption statistical inference is much
harder.
Right-censored data consist of either exact event times or right-censored ob-
servations. The likelihood for a sample of size n is then given by (Klein and
Moeschberger, 2003)

L “
nź

i“1

rp1 ´Gpyiqq fpyiqsδi rp1 ´ F pyiqq gpyiqs1´δi ,

with fp.q the density function of the event times with corresponding cumu-
lative distribution function F p.q, gp.q the density function of the censoring
times with corresponding cumulative distribution function Gp.q and δi the
censoring indicator, taking the value one if the event has been observed,
otherwise δi takes the value zero. Under the assumption of noninformative
censoring the factors p1 ´Gpyiqq and gpyiq are not informative for inference
on the survival function and can therefore be deleted from the likelihood,
resulting in the following simplified likelihood:

L «
nź

i“1

pfpyiqqδi pSpyiqq1´δi .
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The noninformative censoring condition in case of interval-censored data can
be formally defined in different ways. Self and Grossman (1986) proposed
the following definition

dFT |L,U pt|l, uq “ dFT ptq
P pT P tl, uuq1tt:tPtl,uuuptq,

with 1 the indicator function, equal to one if the condition is true and zero
otherwise. This definition states that the only information provided by the
censoring interval tl, uu about the event time is that the interval contains t.
Equivalent definitions are given by Gomez et al. (2004)

dFL,U |T pl, u|tq “ dFL,U pl, uq
P pT P tl, uuq1tpl,uq:tPtl,uuupl, uq

i.e., the observables pl, uq are not influenced by the specific value of T P
tl, uu, and by Heitjan and Rubin (1991)

dFL,U |T pl, u|tq “ dFL,U |T pl, u|t1q on
 

pl, uq : t P tl, uu and t1 P tl, uu
(

i.e., two specific values of T that are consistent with the observables always
provide the same information.
Therefore, the contribution of an individual with observed interval tl, uu to
the likelihood, dFL,U pl, uq “ P pL P dl, U P du, T P tl, uuq, can be simpli-
fied to P pl ă T ď uq “ Splq ´ Spuq. Oller et al. (2004) showed that the
three definitions above are equivalent and justify the use of the simplified
likelihood

L «
nź

i“1

Spliq ´ Spuiq

for interval-censored data.
In the mastitis study the visits made by the veterinarian to the herds were
planned in advance, independently of the event of interest (i.e. infection),
therefore, we assume that the censoring mechanism is noninformative. How-
ever, if the veterinarian was asked to visit the herd for a particular cow
showing clinical signs of infection, the noninformative censoring condition
would not be valid because the event of interest, the infection, induced the
visit.

1.5 Regression models in survival analysis

1.5.1 The proportional hazards model

The most popular regression model for right-censored survival data, espe-
cially in the field of medicine and biostatistics, is the proportional hazards
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model (Cox, 1972). For a given vector of covariates x, the hazard function
hptq is expressed as the product of an unspecified baseline hazard function
h0ptq and a positive function of the covariates, usually the exponential of a
linear function of x:

hptq “ h0ptq exppxtβq,

with xt the transpose of the vector x and β the vector of regression pa-
rameters. Therefore, the model assumes a common baseline hazard for all
subjects in the study population and specifies that the exponentially trans-
formed covariates act multiplicatively on the hazard function.
An important feature of the proportional hazards model is the separation of
the time effect in the baseline hazard and the covariate effect in the exponen-
tial function. Therefore, the ratio of the hazard functions for two subjects
with different covariate information is constant over time. Consider for ex-
ample the simple two-sample situation where x can be 0 or 1 depending on
the group the subject belongs to. Then the hazard ratio is equal to

h0ptq expβ
h0ptq “ expβ.

The baseline hazard function h0ptq can be assumed to have a particular para-
metric form or can be left unspecified. A popular choice for the parametric
baseline hazard is

h0ptq “ λγtγ´1 with λ ą 0, γ ą 0,

leading to event times that are Weibull distributed with shape parameter
γ and scale parameter λ (Weibull, 1951). The Weibull distribution is a
popular choice for the event times in survival analysis because it is a fairly
flexible distribution that describes the evolution of the hazard well in prac-
tice. For γ ă 1 the hazard decreases monotonically over time, for γ ą 1
the hazard is monotone increasing and for γ “ 1 the hazard is constant
over time, corresponding to exponentially distributed event times. Figure
1.3 shows Weibull hazard functions with scale parameter equal to 0.9 and
different shape parameters. Other possible choices for the distribution of the
event times include the exponential and Gompertz distribution (Klein and
Moeschberger, 2003). The form of the baseline hazard h0ptq can also be left
unspecified, but the effect of the covariates on the hazard function still needs
to be modeled parametrically. Since the model then contains a parametric
factor xtβ and a nonparametric baseline hazard, it is called semiparamet-
ric. One of the main reasons for the popularity of the semiparametric Cox



1.5. REGRESSION MODELS IN SURVIVAL ANALYSIS 13

0 100 200 300 400

Time (days)

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

H
az

ar
d

γ=1

γ=1.9

γ=0.5

Figure 1.3: Weibull hazard functions with different shape parameters

proportional hazards model is the existence of a simple and efficient infer-
ence procedure for the regression parameters in case of right-censored data,
namely the partial likelihood maximization procedure introduced by Cox
(1972, 1975). This likelihood no longer contains the baseline hazard h0ptq,
but is only a function of the unknown regression parameters β, which can be
estimated through maximization of the likelihood. Asymptotic properties
for the partial likelihood estimator for β are well established (Gill, 1984).
Furthermore, the technique is implemented in most statistical software pack-
ages, which further explains its popularity.

1.5.2 The accelerated failure time model

A useful, however less frequently used, alternative to the proportional haz-
ards model is the accelerated failure time (AFT) model (Lawless, 2003).
The AFT model is best described in terms of the survival function:

Sptq “ S0pΦtq,

with S0p.q the baseline survival function and Φ pΦ ą 0q the acceleration
factor, often put equal to exppxtβq. If we think in terms of a treated and a
control group (the baseline), interpretation is as follows: the percentage of
subjects in the treatment group that lives longer than t equals the percentage
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of subjects in the control group that lives longer than Φt. Values of Φ below
one are in favour of the treatment, as the event time is then prolonged under
treatment. Values of Φ larger than one are in favour of the control. The
effect of covariates on the hazard function is given by

hptq “ exppxtβqh0
`
exppxtβqt

˘
.

Again, a parametric form for the baseline hazard can be assumed (Klein and
Moeschberger, 2003) and parameters can be estimated using the method of
maximum likelihood. Techniques to fit parametric AFT models are avail-
able in most commercial statistical software packages. Semiparametric pro-
cedures however are computationally demanding and not implemented in
commonly used statistical software packages. This probably caused the pro-
portional hazards model to be more popular in practice.
However, in the AFT model the regression parameter indicates an increasing
or decreasing effect on time in a direct way, a concept that is more easily
understandable for non-statisticians, whereas in the proportional hazards
model, the effect is on the hazard, which is probably harder to understand
for practitioners. Another advantage of the AFT model is that the param-
eter estimates of the covariates included in the model do not change when
other, important, covariates are omitted. This property does not hold for
the proportional hazards model (Hougaard, 1999). A more detailed com-
parison of the proportional hazards model and the AFT model can be found
in Orbe et al. (2002). In this thesis most models are based on the fully
parametric proportional hazards formulation.

1.5.3 The loglinear model representation

Most statistical software packages, e.g. SPlus, R and SAS, do not report the
parameter estimates for the parametric proportional hazards model or the
accelerated failure time model. Instead they supply parameter estimates for
the loglinear model. Therefore, we will introduce this model here and show
the relationships between the parameter estimates of the loglinear model
and the proportional hazards and accelerated failure time model in the case
of Weibull distributed event times.
In the loglinear model the event time is modeled directly, instead of modeling
the hazard function (proportional hazards model) or the survival function
(accelerated failure time model)

logpT q “ µ` xtα ` σE,
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with T the event time, µ the intercept, x the vector of covariates, α the
vector of regression parameters, σ the scale parameter and E the random
error term. If a Gumbel distribution is assumed for the error term E

E „ fEpeq “ exp pe´ exppeqq for ´ 8 ă e ă 8

the event times follow a Weibull distribution.
The survival function in case of Weibull distributed event times in the log-
linear model is

Sptq “ exp
”
´ exp p´µ{σq t1{σ exp

`
xt p´α{σq

˘ı
. (1.2)

For the Weibull accelerated failure time model the survival function can be
written as

Sptq “ exp
`
´λtγ exp

`
γxtβ

˘˘
. (1.3)

Comparing (1.2) and (1.3) it can be seen that the following relationships
hold

λ “ expp´µ{σq γ “ σ´1 β “ ´α.

The survival function in the Weibull proportional hazards model is given by

Sptq “ exp
`
´λtγ exp

`
xtβ

˘˘
. (1.4)

Comparing (1.2) and (1.4) it can be seen that the two models correspond
with

λ “ expp´µ{σq γ “ σ´1 β “ ´α{σ. (1.5)

Therefore, the parameter estimates from the loglinear model can easily be
transformed into parameter estimates for either the Weibull accelerated fail-
ure time model or the Weibull proportional hazards model.
Obtaining variance estimates for the parameters of the Weibull accelerated
failure time model and the Weibull proportional hazards model based on
variance estimates from the loglinear model is less straightforward. Approx-
imations can be obtained using the delta method (Oehlert, 1992). Variance
estimates (or approximations) for the parameters from the Weibull acceler-
ated failure time model are given by:

Varpλ̂q « expp´µ̂{σ̂q2σ̂´2varpµ̂q ` expp´µ̂{σ̂q2µ̂2σ̂´4varpσ̂q
´2 expp´µ̂{σ̂q2µ̂σ̂´3covpµ̂, σ̂q

Varpγ̂q « σ̂´4varpσ̂q
Varpβ̂kq “ varpα̂kq.
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Variance approximations for the parameters from the Weibull proportional
hazards model are given by

Varpλ̂q « expp´µ̂{σ̂q2σ̂´2varpµ̂q ` expp´µ̂{σ̂q2µ̂2σ̂´4varpσ̂q
´2 expp´µ̂{σ̂q2µ̂σ̂´3covpµ̂, σ̂q (1.6)

Varpγ̂q « σ̂´4varpσ̂q (1.7)

Varpβ̂kq « σ̂´2varpα̂kq ` α̂2
kσ̂

´4varpσ̂q ´ 2α̂kσ̂
´3covpα̂k, σ̂q, (1.8)

with βk and αk the kth component in the regression parameter vector of the
Weibull accelerated failure time model or proportional hazards model and
the loglinear model, respectively.

1.6 Multivariate survival data

So far, the basic concepts in survival analysis are introduced in a univariate
setting. Classical survival analysis techniques assume that survival times of
different subjects are independent. Although this assumption may be valid
in many situations, it will be violated in others. Indeed, survival times are
frequently not independent of each other because the subjects have some
feature in common. For example, animals within a litter will be more alike
than animals from different litters because of genetic and environmental in-
fluences. Such data are known as clustered or correlated survival data. In
the main example of this thesis udder quarter infection times are clustered
within the cow. In recent years, extensive research on clustered survival
data has been carried out. Marginal models ignore the correlation between
event times but provide consistent parameter estimates (Wei and Glidden,
1997). An appropriate version of the asymptotic variance-covariance matrix
of the estimators which takes into account the clustering is also available.
The frailty model (Duchateau and Janssen, 2008) models the correlation
between event times by introducing a common random effect called frailty.
The event times are independent conditionally on the frailty. In the copula
model, the copula couples the marginal survival functions and the joint sur-
vival function and determines the type of correlation (Genest and MacKay,
1986). Contrary to the marginal model, the frailty model and the copula
model provide a measure for the strength of the correlation between event
times next to the estimated covariate effects. For a discussion on frailty
models and copula models we refer to the next sections and Chapter 3. For
a discussion on the marginal model we refer to Chapter 4.
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1.7 The frailty model

In this section and the next section we will focus on two models that are
widely used to fit multivariate survival data: the frailty model and the cop-
ula model. Both models provide an estimate of the correlation between
event times in a cluster. The frailty model can also be used in a univariate
setting to account for unobserved heterogeneity. In this section the univari-
ate, shared and correlated frailty model are introduced and possible frailty
distributions and estimation methods for the frailty model are described.
In the next section we introduce the copula model and briefly describe the
two-stage estimation approach for copulas.
In general, frailty is defined as susceptibility to a certain event. This suscep-
tibility can be individual (the univariate frailty model) or can be (partly)
shared by different members of a cluster (the shared frailty model, the cor-
related frailty model). In the different frailty models, the frailty term is a
positive random variable following some distribution, for example gamma,
positive stable or lognormal. The frailty proportional hazards model is a
proportional hazards model in which the hazard of a subject depends on
covariates and on an unobserved frailty term Z, which acts multiplicatively
on the baseline hazard.
In the following sections different frailty models (univariate, shared and
correlated frailty model), frailty distributions (the gamma, positive stable
and lognormal distribution) and estimation methods (maximum likelihood,
Expectation-Maximization (EM)-algorithm, penalized partial likelihood) for
the shared frailty model will be described.

1.7.1 The univariate frailty model

Ordinary survival analysis assumes that the population under study is ho-
mogeneous, this means that the risk of experiencing the event of interest
is the same for every subject in the population with the same covariate in-
formation. However, subjects can differ greatly among themselves due to
covariates such as age, gender, length, socio-economic status, education level
or housing (in animal studies). If covariates are known, they can be included
in the analysis, but it is nearly always impossible to include all important
covariates in the model. It may be impossible to measure the covariate due
to financial or time constraints or the investigator might be unaware of its
existence. Therefore, there is always variability in the hazard function in a
study population. This variability not explained by observed covariates is
called unobserved heterogeneity.
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One way of dealing with unobserved heterogeneity is the use of univariate
frailty models. In the univariate frailty model each study subject has its
own frailty, and it is assumed that the more frail subjects will experience
the event earlier than the lesser frail. The concept of frailty was first in-
troduced in survival analysis by Beard (1959) to improve the modeling of
mortality in a heterogeneous population. However, Beard (1959) used the
term longevity factor rather than frailty. The actual term frailty was intro-
duced by Vaupel et al. (1979).
In the univariate frailty model the variance of the frailties, θ, determines
the degree of heterogeneity between subjects in the study population: the
larger the variance, the more heterogeneity in the population.
For a total of n subjects, the univariate frailty model is given by

hjptq “ h0ptqzj exppxt
jβq, j “ 1, . . . , n

with hjptq the hazard for subject j, h0ptq the baseline hazard, xj the vector
of covariates for the jth subject, β the vector of regression parameters and zj
the frailty for the jth subject, coming from a density fZpzq. The correlation
between the frailties zj is equal to zero.

1.7.2 The shared frailty model

Statistical models for time-to-event data, including the Cox proportional
hazards model, implicitly assume that observations are statistically inde-
pendent. This assumption does not hold in all situations. In the mastitis
data set given in Section 1.9.2, for example, the infection times of the four
udder quarters are obviously correlated within cow and also the two diag-
nosis times (RX and US) in the time to diagnosis data set, introduced in
Section 1.9.1, are not independent.
Shared frailty models were developed by Clayton (1978) to deal with this
type of data, called correlated or multivariate survival data. In the shared
frailty model subjects in the same cluster share the same frailty term, hence
the name shared frailty model.
Since the frailty Z is common to all subjects in a cluster, it is responsible for
creating correlation between the event times in a cluster. This correlation
is always positive and the type of correlation is determined by the choice
of the frailty distribution. The variance of the frailties is a measure for the
heterogeneity between clusters. Given the frailties, observations in a cluster
are independent.
Assume we have a total of n subjects coming from k different clusters, clus-
ter i, i “ 1, . . . k, having ni subjects pn “ řk

i“1 niq. The shared frailty model
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is given by

hijptq “ h0ptqzi exppxt
ijβq,

with hijptq the conditional hazard function at time t for the jth subject of
the ith cluster, j “ 1, . . . , ni, i “ 1, . . . k, h0ptq the baseline hazard, xij the
vector of covariates for the jth subject of the ith cluster, β the vector of
regression parameters and zi the frailty for the ith cluster, coming from a
density fZpzq. The correlation between the frailties of different clusters is
equal to zero. The correlation between individual frailties of the members
in a cluster is equal to one.

1.7.3 The correlated frailty model

Another approach to model multivariate survival data is the correlated
frailty model. In the correlated frailty model each subject in a cluster has
its specific frailty term. The individual frailties of the members of a cluster
are correlated, thereby inducing correlation between the event times in a
cluster (Yashin et al., 1995). The shared frailty model and the univariate
frailty model can be interpreted as special cases of the correlated frailty
model where the correlation between the frailties in a cluster is equal to one
and zero, respectively.
Assume again a total of n subjects coming from k different clusters, the
correlated frailty model is given by

hijptq “ h0ptqzij exppxt
ijβq,

with hijptq, h0ptq, xij and β defined as in Section 1.7.2 and zij the frailty
term for the jth subject of the ith cluster, coming from a density fZpzq. The
correlation between individual frailties of the members in a cluster is equal
to ρ. The correlation between frailties of different clusters is equal to zero.

1.7.4 Frailty distributions

As mentioned in the previous section different distributions have been pro-
posed for the frailty term. In this section we will discuss the gamma distribu-
tion, the lognormal distribution and the positive stable distribution in more
detail. Both the gamma and the positive stable distribution belong to the
three parameter family of power variance function distributions, introduced
by Hougaard (1986b).
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The gamma distribution

The most common choice for the frailty distribution is the one-parameter
gamma distribution gammap1{θ, 1{θq (Vaupel et al., 1979). The density is
given by

fZpzq “ z1{θ´1 expp´z{θq
Γp1{θqθ1{θ

, (1.9)

with θ ą 0, Γp1{θq “
ş8
0
t1{θ´1 expp´tqdt, EpZq “ 1 and VarpZq “ θ. The

Laplace transform is
Lpsq “ p1 ` θsq´1{θ . (1.10)

The popularity of the gamma distribution as a frailty distribution is based
on mathematical and computational aspects: the gamma distribution has a
simple distribution and simple Laplace transform. This will make inference
less complicated. Most importantly, assuming a gamma distribution for the
frailty enables us to integrate out the frailties from the conditional likelihood,
resulting in a simple and closed form expression for the marginal likelihood
which can then be maximized to obtain parameter estimates. For more de-
tails, see Section 1.7.5. In a similar way simple, closed form expressions for
the marginal survival and hazard function can be derived. Unfortunately,
there are no biological reasons that justify the choice of a gamma distribu-
tion for the frailty variable, however arguments for the use of the gamma
distribution for frailties in duration analysis are given by Abbring and Van
Den Berg (2007).

The lognormal distribution

In practice, the gamma distribution and the lognormal distribution are most
often used to model the frailty term and in most software packages only
those two options are available as frailty distribution. The use of the log-
normal distribution for the frailty term originates from the mixed model
framework, where a normal distribution is assumed for the random effect
W . McGilchrist (1993) proposes the following model

hptq “ h0ptq exppxtβ ` wq,
the frailty is then Z “ exppW q. Two variants of the lognormal model can
be used. One idea is to assume a normal density with EpW q “ 0 and
VarpW q “ σ2 for the random effect W . The corresponding density function
of Z is then the following lognormal density

fZpzq “ 1

z
?
2πσ2

exp

ˆ
´plog zq2

2σ2

˙
.
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The mean and variance of the frailty are then given by

EpZq “ exp
`
σ2{2

˘

VarpZq “ expp2σ2q ´ exppσ2q.

The other option is to restrict the expected value of the frailty Z to one,
however, this approach is not often used.
There is no simple expression for the Laplace transform.

The positive stable distribution

The positive stable distribution was introduced as a frailty distribution by
Hougaard (1986a). The distribution is given by

fZpzq “ ´ 1

πz

8ÿ

k“1

Γpkθ ` 1q
k!

´
´z´θ

¯k

sinpθkπq, (1.11)

with 0 ď θ ă 1. This distribution has infinite mean and the variance is
therefore also undetermined. Despite the fact that the form of the distribu-
tion is complicated, the Laplace transform has the simple form

Lpsq “ exp
´

´sθ
¯
. (1.12)

The most interesting feature of the positive stable distribution is the fact
that it is the only frailty distribution that preserves the proportional haz-
ards assumption in the marginal hazards after integrating out the frailty.

Diagnostics

Few results are available on comparing models with different frailty distri-
butions. Most research on diagnostic tests for the frailty distribution has
been undertaken for the bivariate gamma frailty model.
Oakes (1982, 1989) discuss a diagnostic test for the gamma frailty distribu-
tion for bivariate data without censoring based on the cross ratio function.
The cross ratio function is the ratio of the hazard of the first subject of a
pair experiencing the event at t1, given that the second subject experiences
the event at t2 over the hazard that the first subject experiences the event
at t1, given that the second subject has not experienced the event yet at t2.
For the gamma distribution the cross ratio function is constant and equal
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to θ ` 1. Oakes (1982, 1989) propose a nonparametric estimate of the cross
ration function for bivariate data without censoring based on an observable
risk set. If the gamma distribution is an appropriate frailty distribution
the nonparametric estimate should be equal to θ ` 1. The technique can
also be applied to check the validity of the assumption of a positive stable
distribution as the frailty distribution. For the positive stable distribution
the cross ratio function ψpt1, t2q is given by

ψpt1, t2q “ 1 ` θ ´ 1

θ logSf pt1, t2q .

Shih and Louis (1995a) propose a diagnostic test for the multivariate gamma
frailty model based on the evolution of the conditional posterior mean of the
frailties over time. The average of the posterior frailty means should take
constant value one for all timepoints if the gamma distribution assumption
for the frailty is correct.
Other diagnostic techniques to evaluate the frailty distribution assumption
can be found in Glidden (1999); Cui and Sun (2004); Economou and Caroni
(2005).

1.7.5 Estimation methods for the frailty model

In this section we will discuss estimation methods for the univariate or shared
frailty model. They will be presented in the context of shared frailty models.
For a discussion on estimation methods for the correlated frailty model, we
refer to Chapter 6.
Parameter estimates in the frailty model are obtained by maximizing the
marginal likelihood. The marginal likelihood is obtained by either integrat-
ing out the frailties directly from the conditional likelihood or it is based
on the derivatives of the marginal survival function, which can be obtained
by integrating out the frailties from the conditional survival function using
the Laplace transform (see (1.1)). The former approach is usually used in
the gamma frailty model and the lognormal frailty model while the latter
is used in the positive stable model because the form of the positive stable
distribution is complicated but its Laplace transform is simple.
We first describe in general how the marginal survival function can be ob-
tained from the conditional survival function using the Laplace transform.
The joint conditional survival function is given by

Siptni
q “ exp

“
´zi

`
H0pti1q exp

`
xt
i1β

˘
` . . .`H0ptini

q exp
`
xt
ini

β
˘˘‰

,
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with tni
“ pt1, . . . , tni

q, ni the number of members in a cluster and H0ptq “şt
0
h0psqds the cumulative baseline hazard. The joint marginal survival func-

tion is obtained from the joint conditional survival function by integrating
out the frailty with respect to the frailty distribution

Sptni
q “

ż 8

0

exp

˜
´z

niÿ

j“1

Hptijq
¸
fZpzqdz

“ E

«
exp

˜
´Z

niÿ

j“1

Hptijq
¸ff

, (1.13)

with Hptijq “ H0ptijq exp
´
xt
ijβ

¯
the cumulative hazard function for the

jth subject of the ith cluster. The last line of equation (1.13) is the Laplace
transform of Z, Lpsq “ E rexp p´Zsqs, evaluated at s “ řni

j“1Hptijq. There-
fore, we can write

Sptni
q “ L

˜
niÿ

j“1

Hptijq
¸
. (1.14)

We now discuss the marginal likelihood for the gamma, positive stable and
lognormal frailty model in detail.

The gamma frailty model

In the gamma frailty model a closed form expression for the marginal like-
lihood of cluster i, i “ 1, . . . , k, can be obtained by integrating out the
frailties from the conditional likelihood:

Lmarg,ipζq “
8ż

0

niź

j“1

ph0pyijqz exppxt
ijβqqδij expp´H0pyijqz exppxt

ijβqq

ˆ z1{θ´1

θ1{θΓp1{θq exp p´z{θq dz,
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with ζ “ pξ, θ,βq, ξ containing the parameters of the baseline hazard.
The marginal loglikelihood is then given by (Klein, 1992)

lmargpζq “
kÿ

i“1

«
di log θ ´ log Γp1{θq ` log Γp1{θ ` diq

´p1{θ ` diq log
˜
1 ` θ

niÿ

j“1

H0pyijq exppxt
ijβq

¸

`
niÿ

j“1

δij
`
xt
ijβ ` log h0pyijq

˘
ff
,

with di “
niř
j“1

δij the number of observed events in cluster i.

If a parametric assumption is made for the baseline hazard, the marginal
likelihood is fully parametric and classical maximum likelihood techniques
can be used to estimate the parameters. Standard errors can be obtained
from the inverse of the observed information matrix.
If the baseline hazard is left unspecified, the model is semiparametric and
direct maximization of the marginal likelihood is no longer possible. A com-
bination of partial likelihood ideas and the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) can then be used to obtain parameter esti-
mates (Klein, 1992). The EM algorithm iterates between an expectation and
maximization step until convergence. In the expectation step, the expected
values of the unobserved frailties conditional on the observed information
and the current parameter estimates are obtained. In the maximization
step, these expected values are considered to be fixed and new estimates of
the parameters of interest are obtained by maximization of the likelihood,
given the expected values.
Another way to obtain parameter estimates in the semiparametric gamma
frailty model is the penalized partial likelihood approach. This approach
is based on the observation that the likelihood consists of two parts. The
first part consists of the likelihood of the data given the frailties and can
be transformed into a partial likelihood expression. The second part corre-
sponds to the distribution of the frailties, and is considered to be a penalty
term, i.e., frailties far away from the mean 1 contribute a large penalty to
the likelihood. More details on the EM-algorithm and the penalized partial
likelihood approach for the gamma frailty model can be found in Duchateau
et al. (2002).
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The lognormal frailty model

Since the Laplace transform of the lognormal density is intractable, frailties
can not be integrated out analytically and a closed form expression for the
marginal likelihood does not exist. In a parametric setting numerical inte-
gration will be needed to integrate out the frailties to obtain the marginal
likelihood which can then be maximized.
For the semiparametric lognormal frailty model the penalized partial like-
lihood approach can be used to estimate the parameters (McGilchrist and
Aisbett, 1991; McGilchrist, 1993).

The positive stable frailty model

Although the marginal likelihood expression with the positive stable den-
sity has a closed form, it is much more complex then the one for the gamma
density. It is therefore easier to base the construction of the marginal like-
lihood on the joint marginal survival function which can easily be derived
making use of the simple Laplace transform (1.12). For the positive stable
distribution expression (1.14) becomes

Sptni
q “ exp

»
–´

˜
niÿ

j“1

Hptijq
¸θ

fi
fl .

From the joint marginal survival function we can construct the marginal
loglikelihood. For simplicity, we will only give the explicit expression for the
marginal loglikelihood for bivariate data, needed in Section 3.4

lmargpζq “
kÿ

i“1

«
2ÿ

j“1

δij log
`
h0 pyijq exp

`
xt
ijβ

˘˘
` di log θ

´
˜

2ÿ

j“1

H0pyijq exp
`
xt
ijβ

˘
¸θ

`dipθ ´ 1q log
˜

2ÿ

j“1

H0pyijq exp
`
xt
ijβ

˘
¸

` Ci,di

ff
,

with di “
niř
j“1

δij , ζ “ pξ, θ,βq, ξ containing the parameters of the baseline

hazard. Ci,di is a term that depends on the number of events in the cluster.
In case of zero events or one event Ci,0 “ Ci,1 “ 0, in case of two events Ci,2
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takes the following form

Ci,2 “ log

¨
˝1 ` θ´1p1 ´ θq

˜
2ÿ

j“1

H0pyijq exp
`
xt
ijβ

˘
¸´θ

˛
‚.

If a parametric assumption is made for the baseline hazard, the marginal
likelihood is fully parametric and classical maximum likelihood techniques
can be used to estimate the parameters. Standard errors can be obtained
from the inverse of the observed information matrix.
Estimation methods for the semiparametric positive stable frailty model
can be found in Wang et al. (1995), Fine et al. (2003) and Martinussen and
Pipper (2005).

1.8 The copula model

Copulas are functions that join or couple multivariate distribution functions
to their onedimensional marginal distribution functions (Nelsen, 2006). Let
X and Y be two random variables with F pxq “ P pX ď xq and Gpyq “
P pY ď yq the distribution functions of X and Y , respectively. Let Hpx, yq “
P pX ď x, Y ď yq the joint distribution function. According to the theo-
rem of Sklar (Sklar, 1959) there exists a copula C such that for all px, yq
Hpx, yq “ CpF pxq, Gpyqq.
In this thesis we will focus on survival copulas. In a survival copula the
copula function couples the marginal survival functions of the different sub-
jects in a cluster and their joint survival function. Copula models are used
to model clustered data with small and equal cluster size. An ordering in
the cluster such that the first marginal survival function always refers to the
same subject within a cluster (for example, the first marginal survival func-
tion is always the marginal survival function of the front left udder quarter)
is also needed. Let n be the number of cluster members. Especially for
bivariate data (n “ 2) the copula approach is often used, although multi-
variate extensions are discussed in the literature (Massonnet et al., 2009).
The joint survival function is given by

S ptnq “ S pt1, . . . , tnq “ Cθ pS1pt1q, . . . , Snptnqq

with tn “ pt1, . . . , tnq and Sjptq, j “ 1, . . . , n the marginal survival func-
tions of the n subjects in a cluster. These marginal survival functions are
obtained from the marginal approach not taking into account the cluster-
ing in the data (see Section 4.3.1). Cθ is the copula function defined on
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pv1, . . . , vnq P r0, 1sn and takes values in r0, 1s. Its existence (and uniqueness
if the marginal survival functions are all continuous) follows from Sklar’s
theorem (Sklar, 1959). One class of copulas are Archimedean copulas which
will be used in Chapter 3. For an in-depth discussion on copulas see Nelsen
(2006).
Inferential procedures for copula models typically use a two-stage approach
(e.g., see Shih and Louis (1995b)). In the first stage the marginal survival
functions are estimated (parametric, semiparametric or nonparametric esti-
mation has been considered). In the second stage, estimates for the param-
eters in the copula function are obtained by maximization of the likelihood
with respect to the copula function parameter, after we have replaced the
marginal survival functions by the corresponding estimated versions (ob-
tained in the first stage) in the likelihood expression. This procedure is
based on the attractive feature of copula models that marginal distribu-
tions do not depend on the choice of the correlation structure, therefore, the
marginal distributions and the correlation can be modeled separately.
When modeling the marginal survival functions in a semiparametric or non-
parametric way the two-stage approach is a natural way to obtain parame-
ter estimates. For marginal survival functions modeled in a parametric way
maximum likelihood estimation for all the parameters simultaneously (i.e.,
the parameters of the marginal survival functions and the parameters of the
copula) is also possible.

1.9 Data sets

In the following sections we present two data sets which will be used in
the further chapters to demonstrate the developed methodology. The first
example is a data set on the time to diagnosis of fracture healing in dogs
by two different imaging techniques. The cluster is the dog and the two
observation times (one for each imaging technique) are correlated within
the dog. The second example is a data set on the time to infection in an
udder quarter of a dairy cow. In this case the cow is the cluster and the
individual observations at the udder quarter level are correlated within the
cow. More details on the data sets can be found in the following sections.

1.9.1 Diagnosis data set

Medical imaging has become an important tool in the veterinary hospital
to assess whether and when a fracture has healed. In dogs, the standard
technique to evaluate fracture healing is based on radiography (RX). In
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humans, however, fracture healing has been identified at an earlier stage by
ultrasonography (US) than by RX. Furthermore, techniques based on US
are cheaper and there would be no roentgen exposure of dogs and staff. To
investigate the ability of US to diagnose fracture healing and compare the
timing to diagnosis of fracture healing with RX in dogs, Risselada et al.
(2005) set up a trial in which fracture healing is evaluated by both US
and RX. In total, 106 dogs, treated in the veterinary university hospital
of Ghent, are included in the trial and evaluated for time to diagnosis of
fracture healing with the two techniques. Mean time to US identification of
healing was 51 ˘ 23 days, range 5-107 days, for RX the mean time was 60 ˘
27 days, range 1-163 days. Only 7 dogs are censored for time to diagnosis of
fracture healing evaluated by RX; no censoring occurs for time to diagnosis
of fracture healing evaluated by US. The censoring is due to the fact that
dog owners do not show up anymore. The data for a few dogs are given in
Table 1.1.

Table 1.1: Diagnosis data set. The first column contains the dog identi-
fication number, the second column gives the time (in days) to diagnosis,
the third column gives the censoring status taking value one (status=1) if
healing is observed and zero (status=0) otherwise. The last column gives
the diagnostic technique (RX=radiography, US= ultrasonography).

Dogid Time to diagnosis Status Method

1 63 1 RX
1 30 1 US
2 83 1 RX
2 83 1 US
. . .
106 35 0 RX
106 35 1 US
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1.9.2 Mastitis data set

An introduction to mastitis

Intramammary infection and mastitis

Mastitis, as a reaction to an intramammary infection (IMI), is economi-
cally the most important disease in the dairy sector of the western world
because it is closely associated with reduced milk yield and milk quality.
Control costs such as expenditures for treatment and preventive measures
and extra labour time to execute treatment and preventive measures in-
crease the total economic impact (Seegers et al., 2003). Therefore, control
of IMI is an important component of dairy herd health programs. But, how
should we approach and define IMI?
Mastitis, or inflammation of the mammary gland, is an innate defence mech-
anism (Burvenich et al., 2007) that is activated at the occasion of an IMI or
udder injury. In the lactating cow mostly bacterial infections are concerned.
Following invasion of bacteria through the teat canal and cistern, there is
an abrupt influx of phagocytic cells from the circulation into the udder and
its cisterns. These cells engulf and kill the invading organism. Invasion and
phagocytosis is accompanied by the release of bioactive molecules that may
be harmful for the udder and the cow. The clinical signs of mastitis are an
expression of the host defence intended to destroy the invader and to repair
the mammary tissue (Jain, 1979). There is, however, large variation in the
clinical symptoms.
Cows can be diagnosed with mastitis on basis of the variation in these clin-
ical symptoms.
Clinical mastitis is accompanied by swelling and pain of the udder, and a
strong decline in milk production with changes in milk composition. Next
to this, several degrees of general illness can be seen, such as, fever, general
depression and decreased food intake. Clinical mastitis in cows can be easily
diagnosed. In some cases, mastitis can occur without any apparent clinical
symptom (subclinical mastitis). The diagnosis of subclinical mastitis has to
be made in a laboratory on basis of the counting of the number of somatic
cells (somatic cell count, SCC). The isolation of a pathogen can also be per-
formed in the laboratory.
Theoretically, the internal environment of a healthy udder quarter is ex-
pected to be sterile; and consequently SCC should be equal to zero. How-
ever, phagocytes are always attracted from the circulation during milking
because of minimal injury of the udder.
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Under practical conditions, SCC in milk samples from healthy quarters is
very low. However, there is no general agreement on the absolute SCC in
these healthy milk samples; there is no precise computation. It is expected
that the subjective probability for mastitis to occur is extremely low when
SCC in a milk quarter sample is less than 100 000 cells per ml. The probabil-
ity is close to 0. An elevation of SCC ą 100 000 cells per ml is an indication
of mastitis. Whether accompanied by clinical signs or not, mastitis is always
associated with an increase in SCC. Therefore, one tool to monitor udder
health and milk quality is SCC (O’Brien et al., 1999).
Another tool is detecting the presence of a (specific) pathogen. This is based
on the demonstration of an udder pathogen in a milk sample in the labora-
tory. Although logical reasoning expects that detection of such a pathogen
in milk samples should represent the golden standard, it is not. For several
reasons there are many false negative results. Due to specific properties of
the pathogen and of the host, the pathogen can not always be isolated in the
milk sample. For example, the cyclical shedding pattern of Staphylococcus
aureus can cause a single milk sample to be negative while the udder quar-
ter is infected. It is recommended to take and test two to three consecutive
milk samples to increase the sensitivity (Sears et al., 1990). Milk samples of
a suspected Escherichia coli (E. coli) infection are also often bacteriologi-
cally negative. The defence mechanism of the host is very effective against
infection with E. coli and often the bacterium has already been removed at
the time of sampling. In this thesis we focus on time to IMI with a specific
pathogen.
The prevalence of an IMI is defined as the number of infected udder quar-
ters at a given time divided by the total number of udder quarters (infected
and uninfected) in the study. Incidence is a measure of the risk of an udder
quarter to get infected within a specified period of time. It is defined as the
number of newly infected udder quarters within a specified time period di-
vided by the total number of udder quarters initially at risk. Thus, incidence
conveys information about the risk of getting infected, whereas prevalence
indicates how widespread the occurrence of infections is.

IMI and mastitis: an interaction of different factors

The detection of an IMI is a concurrence of three groups of actors : 1) the
involved pathogen, 2) the management of the herd and 3) the physiology of
the cow (see Figure 1.4).
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The pathogens
Bacteria responsible for IMI’s can be divided into two groups: contagious
and environmental pathogens. Contagious pathogens are well adapted to
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Figure 1.4: The interaction between the involved pathogen, the management
of the herd and the physiology of the cow involved in the possibility to detect
an intramammary infection

survival and colonization in the animal tissues. They frequently cause
chronic subclinical IMI’s. The main source of these pathogens in a dairy
herd is the infected gland and transmission to uninfected udder quarters
and cows occurs mainly during milking by contaminated milking equip-
ment, milker’s hands, cloths, etc... The primary source of environmental
pathogens is the cow’s surroundings. Environmental pathogens can not col-
onize the teat canal and need moisture and sticky dirt to breach the teat
canal. This dichotomic classification model has been used during decades
and has proved to be useful under practical conditions. However, over the
last years some papers have defended the thesis that a gradual classification
model would be more realistic. This is based on the fact that some environ-
mental strains expressed some adaptation to the bovine udder.
The most important causal pathogens that induce contagious IMI’s are
Staphylococcus aureus (Staph. aureus) and Streptococcus agalactiae (Strep.
agalactiae). Next to the fact that these IMI’s tend to be chronic and sub-
clinical, recurrent clinical episodes may occur.
IMI with Strep. agalactiae occurs mainly at the beginning and at the end
of lactation. The most important sources of infection are the cow’s udder
and damaged teat skin. It spreads during milking through the equipment
and is considered highly contagious. The bacterium has several virulence
factors to resist defence mechanisms of the udder. Most infected cows show
few clinical signs of mastitis but SCC is elevated and milk production de-
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creased. The infection can also be acute with mild to moderate symptoms.
Strep. agalactiae is very sensitive to penicillin and its survival outside the
udder is limited. It has been eradicated from most herds in many countries.
It will not be considered in this thesis.
Staph. aureus is more difficult to eradicate than Strep. agalactiae. A staphy-
lococcol IMI can occur at all stages of lactation, but is most common during
drying-off and immediately after calving. Staphylococci are able to actively
colonize teat skin lesions and the teat canal. Once they adhered to the milk
fat globules, the bacteria can move upwards in the udder. After entering
the milk cisterns, staphylococci spread quickly in the udder. During chronic
staphylococcal IMI, bugs may appear in epithelial cells, neutrophils and
macrophages where they may be kept alive because of their ability to re-
sist phagocytosis (Barrio et al., 2000). Therefore antibiotic therapy is often
ineffective. Increased SCC and damaged milk secreting tissue occurs. The
prognosis for Staph. aureus IMI is poor because only a few antibiotics exist
that penetrate cells and affect the pathogens inside. Furthermore, their ef-
fect is poor. The more chronic the infection with Sthaph. aureus the poorer
the prognosis. Peracute clinical mastitis, characterized by tissue oedema
and necrosis can occur. In this thesis, infection with Staph. aureus will be
considered.
Important environmental pathogens are Escherichia coli (E. coli) and Strep-
tococcus uberis (Strep. uberis). The rate of IMI with E. coli is higher at
the end of the dry period (colostrogenesis) and early lactation than during
lactation. The udder quarter gets infected through faecal contamination in
bedding material. Colonization of the teat canal is not a prerequisite and
the bacteria are probably propelled directly through the teat canal. IMI
with E. coli tends to be of short duration but can become chronic. IMI with
E. coli is not further considered in this thesis.
IMI with Strep. uberis occurs usually at the beginning of lactation and at
the end of the dry period. Strep. uberis is found in the cow’s environment
and on the cow’s epithelia, faeces, teat skin, etc. Colonization of the teat
canal is not a prerequisite and the bacteria are probably propelled directly
through the teat canal. Some strains of Strep. uberis have capsules that
alter phagocytosis. This would explain the poorer cure rate compared to
the other Streptococci. The symptoms of Strep. uberis IMI are mild to
moderate in most cases and SCC is elevated (Hoeben et al., 1999). IMI
with Strep. uberis will be considered in this thesis.
Streptococcus dysgalactiae (Strep. dysgalactiae) is generally considered as
environmental pathogen, but has also characteristics of a contagious pathogen.
It doesn’t fit in the classical dichotomic infection model. Strep. dysgalactiae
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resides mainly in the cow’s udder and in teat injuries, but also elsewhere in
the cow and its surroundings. It is less contagious than Strep. agalactiae
and adhesion in the udder epithelium is weaker. Infection with Strep. dys-
galactiae is most apparent at the beginning of lactation. Clinical symtoms of
Strep. dysgalactiae mastitis are more severe and the disease is often acute.
IMI with Strep. dysgalactiae will be considered in this thesis.
Corynebacterium bovis (C. bovis) is considered as a minor pathogen. In-
crease in SCC is low and milk production losses are limited. It is rarely
isolated in cases of clinical mastitis. IMI with C. bovis will also be consid-
ered in this thesis.

Management factors
Management factors influencing prevalence and incidence of IMI’s are di-
rected towards prevention of IMI occurrence and towards curing infected
udder quarters or cows. A good manager needs to know the basics of the
pathogenesis of IMI’s as mentioned afore because management practices
can be different according to the problem. Preventive measures against
IMI with contagious pathogens are mostly related to the milking process:
wearing gloves during milking, using automatic take-offs, using postmilking
teat dipping, milking problem cows last and yearly inspection of the milking
system (Dufour et al., 2011). Preventive measures against IMI with envi-
ronmental pathogens concern the general hygiene and food management of
the herd. They include providing dry bedding (preferably sand), cleaning
the calving pen after each calving, keeping environmental temperatures cool
(good ventilation), but also the use of techniques to keep cows standing fol-
lowing milking. Prevention of teat injuries is important for the prevention of
IMI with contagious as well as environmental pathogens. The effectiveness
of administrating antibiotics to treat IMI’s depends on the pathogen. Dry
cow therapy is recommended as a treatment for existing infections and as a
preventive measure for new infections. Culling of chronically infected cows
should be considered.

Cow factors
One could think that the bacterial characteristics alone are responsible to
explain variation in IMI’s. The cow is however not helpless against IMI’s.
Since an udder becomes infected through the teat canal, the teat canal is
the first line of defence against IMI’s. It represents a physical and chemical
barrier against the penetration of pathogens, but when the teat opening is
dilated the risk of infection may be higher. Epithelial desquamation and
the shear stress of the milk flow are mechanisms that inhibit bacterial col-
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onization. Neutrophils accumulate beneath and between the epithelium of
the teat canal wall and fight off bacterial infections. Since teat end condi-
tion deteriorates with increasing parity (Neijenhuis et al., 2001), parity is
considered an important cow-factor.
The cow’s innate defence mechanisms consist of humoral and cellular com-
ponents. Phagocytosis and intracellular killing by bovine neutrophils are
important host defence mechanisms during mastitis caused by Staph. au-
reus. At our department the phagocytosis and overall killing of a non slime-
producing Staph. aureus and its slime-producing variant was studied and
it was concluded that the presence of slime was responsible for a decreased
phagocytic ingestion and overall killing by these phagocytic cells (Barrio
et al., 2000).
However, susceptibility of the mammary gland to new infections seems also
to be affected by the physiology of the lactating cow. IMI’s are markedly
increased during early involution (drying off ; active involution, first week
or two, highest incidence of new infections) and during the periparturient
period (colostrogenesis) (Oliver and Sordillo, 1988). These periods coincide
with unique local and systemic physiological phenomena that interrupt or
induce lactation. Considerable changes in mammary tissue remodeling and
nutritional demands occur that interfere with the defence system (eg. neu-
trophil function) of the udder. The increase in IMI’s at drying off do not
fall within the scope of this thesis.
Kehrli et al. (1989) hypothesized that an immunocompromised condition
during the periparturient period, predisposes the dairy cow to new infections
and/or the progression of subclinical mastitis into clinical disease. At that
moment a cause and effect relationship between a faltering innate defence
system and the development of intramammary infection was not proved.
However, one year later it was also shown that the severity of clinical E. coli
mastitis was correlated with the decreased production of reactive oxygen
species (ROS) (Heyneman et al., 1990) and decreased chemotaxis (Lohuis
et al., 1990) of circulating neutrophils, isolated before the intramammary
infection.
It is unlikely that periparturient immunosuppression is the result of a single
physiological factor; more likely, several entities act in concert, with pro-
found effects on the function of many organ systems of the periparturient
dairy cow. Their defence system is unable to modulate the complex net-
work of innate immune responses, leading to incomplete resolution of the
pathogen and the inflammatory reaction. During the last 30 years, most
efforts have been focused on neutrophil chemotaxis, phagocytosis, and bac-
terial killing. How these functions modulate the clinical outcome of mastitis,
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and how they can be influenced by hormones and metabolism has been the
subject of intensive research (Burvenich et al., 2007).
It is now clear that the stage of lactation influences the function of the innate
immune system and by this the susceptibility to disease (Burvenich et al.,
2004, 2007). The impact of the physiology of the animal on periparturient
inflammatory disease is most pronounced for IMI with E.coli, to a lesser ex-
tend with Staph. aureus (Dosogne et al., 2001) and of minimal importance
with S.uberis (Hoeben et al., 1999).
The ageing cow is also more susceptible to IMI for the same reasons as
afore-mentioned (Burvenich et al., 2003). Blood neutrophil function was
higher in younger animals than in cows after their 4th parturition. The
drop in neutrophil ROS production around parturition is more pronounced
in multiparous cows (Mehrzad et al., 2002). The pronounced reduction in
ROS production and viability in milk neutrophils of multiparous cows may
be involved in the underlying mechanisms that make older animals more
susceptible to periparturient infectious diseases. Moreover, white blood cell
viability and oxidative burst have been found to be significantly different
between primiparous cows and multiparous cows during the periparturient
period.
In conclusion, it is clear that host factors have an effect on IMI’s with several
pathogens. Together with the characteristics of the pathogen and manage-
ment factors, they explain variation in IMI’s in the cow.

Studying IMI’s and mastitis

Different types of research have been conducted to investigate incidence,
prevalence and predicting factors of mastitis and/or IMI’s. Case studies
mainly describe individual cases. Experimental studies are conducted to
investigate the causal effect of risk or protective factors (independent vari-
ables) on the outcome (the dependent variable). Epidemiological studies
can not proof a causal effect between a risk or protective factor and the
outcome. Epidemiological evidence can only show that this factor is associ-
ated (correlated) with a higher incidence of disease (mastitis or IMI) in the
population exposed to that factor.

Case studies
Mastitis research may be based on individual case studies. In a case study
the researcher reports, for example, the clinical picture, treatment and recov-
ery process of a single case. In a mastitis study, for example, a veterinarian
visits the farm and investigates the udder of a cow for clinical signs of mas-



36 CHAPTER 1. INTRODUCTION

titis and/or tries to isolate pathogens from a milk sample. The veterinarian
can administer a certain treatment and the cow is followed up to see whether
the treatment is successful. A case study is usually purely descriptive and
concerns only the cow under study. No conclusions about the general pop-
ulation of dairy cows with mastitis or a (specific) IMI can be drawn. It can
however lead to the formulation of an interesting research hypothesis based
on the experiences with that cow.

Experimental studies
In an experimental study on mastitis/IMI (for an example of an experi-
mental study see for instance Vangroenweghe et al. (2004)) a hypothesis
(for example a hypothesis deducted in a case study) is tested. Experimen-
tal studies are always hypothesis driven. The hypothesis should be clearly
identified before carrying out the experiment. The hypothesis consists of
two parts: the null hypothesis states what the researcher is trying to reject,
the alternative hypothesis formulates what the researcher is trying to proof.
Preferably only one, or at least a very small number of hypotheses is formu-
lated. For example, the experimental study of Vangroenweghe et al. (2004)
hypothesized that the application of 2 different inoculum doses of E. coli
elicits differences in the innate immune response (alternative hypothesis),
the null hypothesis being no difference. An experimental study is carefully
planned. Due to ethical and financial reasons the number of study subjects
(the sample size) is often small. The needed number of study subjects is
calculated based on information on the expected difference, the expected
variability in the observations and the desired power. The study subjects
are very comparable to reduce variability in the observations. For example,
for cows, restrictions concerning breed, parity, diet, health status, SCC or
milk production can be applied. Study subjects are randomized to a specific
group (for example to a specific inoculum dose). Randomization is very im-
portant in an experimental study (Vangroenweghe et al., 2004).
An experimental study on mastitis/IMI has several advantages. Since the
variability between the cows is low and group allocation is random, observed
differences in outcome can be attributed to the experimentally induced dif-
ference between the groups. Confounding or missing important covariates
are less encountered in experimental studies. In an experimental study the
timing of, for example, inoculation is known exactly and the reaction to
this inoculation can be monitored continuously or at least in small time
intervals (e.g. daily). Therefore, there is less uncertainty in the observa-
tions. Definitions of, for example, mastitis or IMI are often clearly stated.
A disadvantage is the limited (in number and in diversity) study population.



1.9. DATA SETS 37

Extrapolation of the obtained results to the general population of dairy cows
is usually not possible because the results depend on, for example, the con-
sidered breed and/or parity status and on the region or the season in which
the experiment took place.

Epidemiological studies
In an epidemiological study prevalence and/or incidence of mastitis/IMI’s
and correlations between risk or protective factors and incidence of masti-
tis/IMI’s are investigated. Usually large numbers of animals are included in
the study. This has the advantage that the population is very heterogeneous
and makes it possible to extrapolate the obtained results to the general pop-
ulation of dairy cows. There are also disadvantages. To obtain such large
numbers of animals usually different farms are included in the study. The
animals within a farm have some features in common, such as housing, diet,
hygiene,.... Since IMI’s are assessed at the udder quarter level and udder
quarters are obviously clustered within cow, two hierarchical levels (udder
quarters clustered within cow, cows clustered within herd) are present in the
data. This needs to be addressed in the statistical analysis to obtain valid
results. The heterogeneous population makes it also impossible to claim a
causal effect between a risk or protective factor and the outcome. The con-
sidered factor could actually influence another (maybe unobserved) factor,
which actually has a causal effect on the outcome. This is called confound-
ing and is often a problem in epidemiological studies.
Usually also a large number of risk or protective factors are recorded at the
udder quarter level, the cow level and the herd level. On the one hand this
yields a lot of possibly useful information, on the other hand it is impossible
to record everything and maybe useful factors are missing.
Many epidemiological studies on IMI’s are cross-sectional studies (Dufour
et al., 2011). The study population is examined only once. The researcher
visits the farm(s) at a certain point in time, establishes the infection status
of the udder quarters of the cows and collects data on, for example, parity,
stage of lactation, diet, housing,... A cross-sectional study is quick, but the
infection status of the udder quarters is only established at one point in
time. There is no information on when exactly the infection happened and
there is no information on the future infection status. Longitudinal studies
are found less in the literature (for an example of a longitudinal study see
for instance Lam et al. (1997)). A longitudinal study starts at a certain
point in time and follows the study population until an infection occurs and
often even thereafter, until the end of the study. This way a lot more in-
formation is available for the researcher. The timing of the infection can be
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recorded (early in lactation, late in lactation), the evolution of the infection
can be followed and risk factors that change over time can be recorded. On
the down side, longitudinal studies are very time and money consuming and
therefore less available. Furthermore it requires regular visits of the cows by
the researcher. It is practically impossible to monitor all the cows continu-
ously, therefore the exact time of infection is never known. It is only known
that an udder quarter got infected between the last visit at which it was
infection free and the first visit at which it was infected. This problem is
often encountered in epidemiological research and has an important impact
on statistical analysis conducted afterwards. To address this problem (called
interval censoring) together with the problem of clustering in the data (hi-
erarchical data) available statistical techniques have to be extended. The
development of techniques that can handle clustering and interval censoring
simultaneously is the main topic of this thesis. The developed methodology
will be illustrated using an epidemiological study, described in the next sec-
tion.

Mathematical modeling
To draw valid conclusions from conducted research, experimental or epi-
demiological, a proper statistical analysis of the observed data is essential.
As Box (1976) eloquently put it ”All models are wrong, but some are use-
ful”. Every model makes assumptions which often can not be verified and
while no model is perfect for the data, an appropriate model can provide
important insights in the studied matter. The statistical model should ex-
ploit the information in the data to its full extent and should model the
specific data structure correctly. For example, the dynamic information in
a longitudinal study should be fully exploited and not reduced to a static
problem. Clustering in the data should be accounted for, otherwise obtained
results are not valid. Often new statistical techniques need to be developed
to meet specific data characteristics or specific research questions. Without
attempting to create a perfect model (which does not exist) the developed
methodology in this thesis addresses two characteristics often encountered
in epidemiological studies: interval censoring caused by the dynamic char-
acter of the study and the clustering of udder quarters within cow.
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The mastitis data

In an extensive study, 1207 cows are selected from twenty-five dairy herds
located in the provinces of East and West Flanders, Belgium. They are fol-
lowed up for infection at the udder quarter level during a 20-month period
(February 1993 to September 1994) (Laevens et al., 1997).
Criteria for herd selection were willingness of the farmer to cooperate, par-
ticipation in the DHI program that was organized by the Flemish Cattle
Breeding Association, minimum herd size of 25 cows, and breed (Holstein
Friesian and Red and White). The infection status of the udder quarter
is determined on basis of isolation of a pathogen in a simple milk sample
in the laboratory. Milk samples were taken by trained technicians. The
teat ends were cleaned with dry udder cloths. Dirty teats were washed
and dried. Before milk samples were taken, teats were disinfected with
cotton moistened with a solution of ethyl alcohol (70%) and chlorhexidine
(200mg/100ml). The milk samples were transported immediately after col-
lection to a laboratory and streaked for initial isolation within two to three
hours after collection. Quarter milk samples were streaked onto a 90-mm
Petri dish with a blood agar base (Oxoid, Basingstoke, England) supple-
mented with 5% bovine blood; samples were also streaked onto an Edwards
medium (Oxoid) supplemented with 5% bovine blood. Agar plates were
incubated at 37˝C and read after 24h and 48h. Isolates were classified as
described by the National Mastitis Council (Harmon et al., 1990). The data
set contains information on times to infection with different bacteria: Staph.
aureus, Strep. dysgalactiae, Strep. agalactiae, Strep. uberis, coliforms (E.
coli, Klebsiella), C. bovis, . . . Four bacteria are selected (Staph. aureus, C.
bovis, Strep. dysgalactiae and Strep. uberis) and considered in this thesis.
Data on times to infection with these bacteria are used to illustrate the de-
veloped methodology.
Since the data set contains information on times to infection with a bac-
terium survival analysis techniques are the appropriate tool to model them.
Udder quarter infection data have often been reduced to binary data (Zadoks
et al., 2001): either an infection occurs in the udder quarter or not during
the complete lactation period. However, this reduces the amount of infor-
mation considerably: all information on the timing of the infection is lost.
Cows are monthly screened for bacterial infections at the udder quarter level
from the time of parturition, at which the cow was included in the study
and assumed to be infection free, until the end of the lactation period or
the end of the study period. However, due to a lack of staff in summer
months, cows are screened only in July or August meaning that at least one
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interval spans two months. Furthermore, the time between two successive
visits is not always exactly one month and the recorded visiting times for
each cow differ depending on when they were included in the study. Due to
the periodic follow-up, observations for udder quarters that experience an
event are interval-censored with lower bound the last visit with a negatively
tested milk sample and upper bound the first visit with a positively tested
milk sample. Observations can be right-censored if no infection has occurred
before the end of the lactation period, which is roughly 300-350 days but
different for every cow, before the end of the study or if the cow is lost to
follow-up during the study, for example due to culling. Each udder quarter
is separated from the three other quarters. Therefore, one quarter might
be infected while the other quarters remain infection-free. However, since
udder quarters are clustered within cow, observations from different udder
quarters of one cow can not assumed to be independent. Cows are further
clustered within herd.
The interval censoring and clustering in the data are two characteristics
of the mastitis data that need to be addressed in the statistical analysis.
Survival analysis techniques for univariate (unclustered) data are available
in the literature and commercial software packages (Sun, 2006). Also, the
use of appropriate techniques for clustered time to event data is widespread
(Wei and Glidden, 1997; Hougaard, 1999; Kelly and Lim, 2000). However,
techniques that address the interval censoring and clustering in data simul-
taneously are found less in the literature. The aim of this thesis is to develop
new techniques to model data that are simultaneously clustered and interval-
censored, two important characteristics present in the mastitis data. The
udder quarter is considered as the observational unit, clustered within cow.
Different covariates are recorded in the mastitis study: SCC, bedding, par-
ity, properties of the milking equipment, duration of milking, temperature,
herdsize, etc. The aim of this thesis was to develop new methodology for
interval-censored, clustered data; not to give a full risk factor analysis of
the mastitis data. We therefore select two relevant covariates for illustrative
purposes. Two types of covariates are considered.
Cow level covariates take the same value for every udder quarter of the cow
(e.g. number of calvings or parity). Several studies have shown that preva-
lence as well as incidence of intra mammary infections increases with parity
(Vecht et al., 1989; Weller et al., 1992). Several hypotheses have been sug-
gested to explain these findings, e.g. teat end condition deteriorates with
increasing parity (Neijenhuis et al., 2001). Because the teat end is a physical
barrier that prevents organisms from invading the udder, impaired teat ends
make the udder more vulnerable for intra mammary infections. Following
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Table 1.2: Mastitis data set. The first column contains the cow identification
number, the second, third, and fourth columns contain the time (in days) to
infection with Staphylococcus aureus (the lower bound, upper bound, and
midpoint of the interval, resp.), the fifth column gives the censoring sta-
tus taking value one (status=1) if infection is observed and zero (status=0)
otherwise. The last two columns give the parity (primiparous cow (par-
ity=0) or multiparous cow (parity=1)) and the udder quarter (RL=Rear-
Left, FL=Front-Left, RR=Rear-Right, FR=Front-Right).

Time to infection
Cowid Lower Upper Midpoint Status Parity Quarter

1 84 154 119 1 0 RL
1 50 84 67 1 0 FL
1 50 84 67 1 0 RR
1 50 84 67 1 0 FR
2 134 160 147 1 1 RL
2 44 106 75 1 1 FL
2 134 160 147 0 1 RR
2 134 160 147 0 1 FR
. . .
1206 221 248 234.5 0 1 RL
1206 221 248 234.5 0 1 FL
1206 221 248 234.5 0 1 RR
1206 221 248 234.5 0 1 FR
1207 247 279 263 0 0 RL
1207 247 279 263 0 0 FL
1207 247 279 263 1 0 RR
1207 247 279 263 0 0 FR
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categories for the parity covariate are available: (i) primiparous cows (one
calving, parity = 0), (ii) cows with between two and four calvings (parity
= 1) and (iii) cows with more than four calvings (parity = 2). In some
examples parity will be dichotomized into primiparous cows (parity=0) and
multiparous cows (parity=1) for reasons of simplicity.
Udder quarter level covariates change within the cow (e.g. position of the
udder quarter, front or rear). The difference in teat end condition between
front and rear quarters has also been put forward to explain the difference in
infection status (Adkinson et al., 1993; Barkema et al., 1997; Schepers et al.,
1997). A subset of the data for infection with Staph. aureus is presented in
Table 1.2.
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The research conducted in this thesis was inspired by the mastitis data
set given in Section 1.9.2. Specific characteristics of the mastitis data and
specific research questions for the mastitis data required the development
of new statistical techniques to analyze the data. The specific objectives of
this thesis were

‚ To evaluate differences and similarities between existing methodologies
to model clustered survival data

‚ To develop new techniques to model fourdimensional clustered, interval-
censored data based on the shared frailty model

‚ To develop new techniques to model different correlation structures
between the udder quarters based on the correlated frailty model

‚ To apply existing and newly developed statistical tools to gain insight
in the mastitis data, especially where it concerns the clustering aspect

Comparing existing methodology includes a comparison of the shared frailty
model and the copula model for right-censored data, revealing several differ-
ences and similarities between the two models. This comparison is described
in Chapter 3. The comparison also includes a review of the most frequently
used methods to analyze clustered, interval-censored data: the marginal
model, the fixed effects model and the copula model are considered and we
point out some disadvantages or shortcomings of these models in particu-
lar for the mastitis data. The implementation and use of these models in
commercial software packages is also discussed. This review can be found
in Chapter 4.

To model fourdimensional clustered, interval-censored data we propose an
extension of three models for right-censored data to interval-censored data:
the shared gamma frailty model, a specific copula model and the correlated
gamma frailty model. This approach assumes a correlation structure, such
that the correlation between any pair of two event times in the four udder
quarters is the same (symmetric correlation structure). Chapter 5 presents
the extension of the shared gamma frailty model, the copula model for
interval-censored data is described in Chapter 4 and the correlated gamma
frailty model for interval-censored data is discussed in Chapter 6.

To investigate the correlation structure between the udder quarters further
and to allow more complex correlation structures than the symmetric one,
fourdimensional correlated gamma frailty models are proposed that allow
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different correlations between the udder quarters. These models are de-
scribed in Chapter 6.

Application of the different models to the mastitis data provides answers
to questions concerning the effect of different types of covariates (at the
cow and udder quarter level). The newly developed models also provide
information on the most likely correlation structure, and on the size of the
correlation between the event times, clustered in the cow udder. Results of
the analysis of the mastitis data can be found in the chapters presenting the
used methodology.



Chapter 3

Similarities and differences
between the shared frailty
and copula model

Based on:
Goethals, K., Janssen, P., and Duchateau, L. (2008), ”Frailty models and
copulas: similarities and differences,” Journal of Applied Statistics, 35, 1071-
1079.
Goethals, K., Janssen, P., and Duchateau, L. (2011), ”Frailties and copulas,
not two of a kind,” Risk and Decision Analysis, accepted for publication.
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3.1 Introduction

It is often claimed in the literature (Manatunga and Oakes, 1999; Viswa-
nathan and Manatunga, 2001; Andersen, 2005) that there is equivalence
between an Archimedean copula model and a shared frailty model with a
particular frailty density, but in this chapter we will demonstrate that this
claim is in most cases incorrect. For the theoretical discussion we will re-
strict to bivariate survival data, i.e., clustered survival data with clusters of
size two, to keep notation simple. To illustrate our point the diagnosis data
set of Section 1.9.1, which contains bivariate data, will be used. Through-
out the theoretical discussion we will refer to this data set to make things
more clear. Our findings will also be confirmed using the Corynebacterium
bovis infection data set, which consists of 1196 clusters of four observations.
Therefore, the copula likelihood for bivariate data needs to be extended to
handle clusters of four observations. To deal with the interval censoring in
the data imputation of the midpoint will be used.

3.2 The copula and the frailty model

Consider the two clustered diagnostic times pT1, T2q (T1 for RX, T2 for US)
and let S1,c ptq and S2,c ptq be the marginal survival functions for the RX
and US imaging technique. The subindex c is added to denote that the joint
survival function is obtained from the copula presentation. For a twodimen-
sional survival copula model the joint survival function is given by

Sc pt1, t2q “ Cθ tS1,c pt1q , S2,c pt2qu ,

with Cθ a copula function, i.e., a function on the unit square
Cθ : r0, 1s2 Ñ r0, 1s : pu, vq Ñ Cθpu, vq parameterized by θ (possibly a
vector).
The shared frailty model, on the other hand, is given by

hijptq “ zihj,zptq,

with hijptq the hazard at time t in cluster i, i “ 1 . . . , k, for diagnosis
technique j (1=RX, 2=US), hj,zptq the conditional hazard at time t for a
cluster with frailty equal to one and diagnosis technique j and zi the frailty
term.
To compare copula models and shared frailty models we consider the family
of Archimedean copulas

Cθpu, vq “ p tqpuq ` qpvqu ,
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where pp.q is any nonnegative decreasing function with pp0q “ 1 and nonneg-
ative second derivative and qp.q is its inverse function; pp.q is parameterized
by θ. To make the link between copula and shared frailty models, we con-
sider functions pp.q that are Laplace transforms of frailty densities fZp.q

ppsq “ Lpsq “ E texp p´Zsqu “
ż 8

0

exp p´zsq fZpzqdz

leading to
Cθpu, vq “ L

 
L´1puq ` L´1pvq

(
.

For the copula model the joint survival function is

Sc pt1, t2q “ L
“
L´1 tS1,cpt1qu ` L´1 tS2,cpt2qu

‰
. (3.1)

For the shared frailty model the joint conditional survival function for cluster
i is Si pt1, t2q “ exp r´zi tH1,z pt1q `H2,z pt2qus with Hj,zptq “

şt
0
hj,zpsqds.

The joint survival function can be obtained by integrating out the frailties
with respect to the frailty density

Sf pt1, t2q “
ż 8

0

Si pt1, t2q fZpziqdzi
“ E rexp t´Z pH1,zpt1q `H2,zpt2qqus . (3.2)

The subindex f is added to denote that the joint survival function is obtained
from the conditional frailty model.
The joint survival function derived from the frailty model (3.2) and the joint
survival function specified for the copula model (3.1) are two different ways
to model P pT1 ą t1, T2 ą t2q.
Expression (3.2) is nothing but the Laplace transform of the frailty distri-
bution evaluated at s “ H1,z pt1q `H2,z pt2q so that

Sf pt1, t2q “ L tH1,z pt1q `H2,z pt2qu . (3.3)

Furthermore, the marginal survival function for each of the two imaging
techniques can be obtained by putting the diagnosis time for the other di-
agnostic technique equal to zero in (3.3) and thus Sj,f ptq “ L tHj,z ptqu. It
follows that

Hj,zptq “ L´1 tSj,f ptqu . (3.4)

Using this relationship, (3.3) can be written as

Sf pt1, t2q “ L
“
L´1 tS1,f pt1qu ` L´1 tS2,f pt2qu

‰
. (3.5)
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Remark that the correlation structure used to obtain the joint survival func-
tion from the marginal survival functions in expressions (3.1) and (3.5) is
the same. The arguments of the correlation structure, the marginal survival
functions, however, are not the same. From (3.1) and (3.5) it follows that
the two models are different in nature. This will be demonstrated in the next
section, where we compare the Clayton-Oakes copula with Weibull marginal
survival functions as arguments and the shared gamma frailty model with
conditional Weibull hazards. In Section 3.4 a similar comparison for the pos-
itive stable copula and the shared frailty model with positive stable frailty
density shows the exceptional character of this model, in the sense that both
models are the same.

3.3 The Clayton-Oakes copula and the gamma frailty
model

3.3.1 The diagnosis data

Assume that the marginal survival functions in the copula model are ob-
tained from Weibull hazards and use the two-stage approach of Shih and
Louis (1995b) to obtain parameter estimates. In the first step, parameter
estimates for λj and γj are obtained by fitting the following survival model
in each group (RX or US) separately

hj,cptq “ λjγjt
γj´1, (3.6)

with j “ 1 for the RX diagnosis and j “ 2 for the US diagnosis. The
parameter estimates (ML estimates) for the diagnosis data set are λ̂1 =
0.106 (0.024), γ̂1 “ 2.539p0.191q, λ̂2 “ 0.219p0.039q and γ̂2 “ 2.323p0.175q.
To model the correlation we use the joint survival function (3.1) with

Lpsq “ p1 ` θsq´1{θ and L´1psq “ ps´θ ´ 1q{θ (3.7)

with θ ě 0. Lp.q is the Laplace transform of the one-parameter gamma dis-

tribution (1.9). The corresponding copula Cθpu, vq “
`
u´θ ` v´θ ´ 1

˘´1{θ

is the Clayton-Oakes copula (Clayton, 1978; Oakes, 1982).
The joint survival function then becomes

Sc pt1, t2q “
”
tS1,cpt1qu´θ ` tS2,cpt2qu´θ ´ 1

ı´1{θ
. (3.8)
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Based on the joint survival function (3.8) the likelihood can be constructed
(see e.g. Shih and Louis (1995b)):

Lpζq “
kź

i“1

pfcpyi1, yi2qqδi1δi2
ˆ

´BScpyi1, yi2q
Byi1

˙δi1p1´δi2q

ˆ
´BScpyi1, yi2q

Byi2

˙p1´δi1qδi2

pScpyi1, yi2qqp1´δi1qp1´δi2q ,

with ζ “ pξ, θ,βq, ξ containing the parameters of the baseline hazard. So
we have four different possible contributions, depending on the censoring
status of the two subjects in the cluster. A cluster with two censored sub-
jects has contribution Li,p0,0q “ Scpyi1, yi2q, a cluster with two event times
has contribution Li,p1,1q “ fcpyi1, yi2q; the contribution of a cluster with one

event time and one censored observation is Li,p1,0q “ ´ BScpyi1,yi2q
Byi1

, respec-

tively Li,p0,1q “ ´ BScpyi1,yi2q
Byi2

, if we observe an event time for the first (second)
subject and a censored observation for the second (first) subject.
The likelihood contributions of the different clusters for a Clayton copula
are given by

Li,p0,0q “
”
tS1,cpyi1qu´θ ` tS2,cpyi2qu´θ ´ 1

ı´1{θ
,

for clusters with two censored observations,

Li,p1,0q “
”
tS1,cpyi1qu´θ ` tS2,cpyi2qu´θ ´ 1

ı´1{θ´1

tS1,cpyi1qu´θ´1 f1,cpyi1q,

for clusters with an event for the first subject and a censored observation
for the second subject,

Li,p0,1q “
”
tS1,cpyi1qu´θ ` tS2,cpyi2qu´θ ´ 1

ı´1{θ´1

tS2,cpyi2qu´θ´1 f2,cpyi2q,

for clusters with an event for the second subject and a censored observation
for the first subject, and finally

Li,p1,1q “ p1 ` θq
”
tS1,cpyi1qu´θ ` tS2,cpyi2qu´θ ´ 1

ı´1{θ´2

tS1,cpyi1qu´θ´1 tS2,cpyi2qu´θ´1 f1,cpyi1qf2,cpyi2q,

for clusters with two events.
In the second step we replace in the likelihood Sj,cp.q by Ŝj,cp.q, obtained by
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replacing λj , γj by λ̂j , γ̂j (for j “ 1, 2), and we then maximize the likelihood

with respect to θ. In our example θ̂ is 0.890 (0.203). We will interpret
the estimate for the parameter θ through its relationship with Kendall’s τ .
Kendall’s τ is a global measure of correlation, defined as

τ “ P ppTi1 ´ Tk1qpTi2 ´ Tk2q〉 0q ´ P ppTi1 ´ Tk1qpTi2 ´ Tk2q ă 0q ,

with pTi1, Ti2q, pTk1, Tk2q the event times in two randomly chosen pairs.
Values for τ are between -1 and 1, 1 corresponding to a perfect correlation,
-1 meaning a perfect inverse correlation. If Kendall’s τ is equal to 0, the
event times are independent. The relationship between Kendall’s τ and θ

in the Clayton copula is given by τ “ θ{pθ ` 2q. Therefore, in our example
τ̂ “ 0.308. Since the marginal survival functions and the copula are modeled
in a parametric way, the likelihood obtained from the joint survival function
can also be maximized jointly for the marginal survival function parameters
and the copula function parameter, leading to parameter estimates λ̂1 =
0.145 (0.030), γ̂1 = 2.341 (0.181), λ̂2 = 0.233 (0.042), γ̂2 = 2.212 (0.181)
and θ̂ = 1.066 (0.308) (see Table 3.1). The estimate of Kendall’s τ is 0.348.
Durrleman et al. (2000) give a detailed comparison between the two-stage
approach and the (joint) maximization of the likelihood.
For the frailty model we start from a conditional Weibull hazard with differ-
ent rλ and rγ parameters for the two diagnostic techniques (this is similar to
the way in which the marginal survival functions in the copula model were
modeled)

hijptq “ zirλjrγjtrγj´1, (3.9)

with z1, . . . , zk independent realizations of the one parameter gamma distri-
bution with mean one and variance rθ (see (1.9)).
The Laplace transform for the gamma distribution and its inverse is given
in (3.7). Plugging (3.7) into (3.3) leads to the joint survival function

Sf pt1, t2q “
”
1 ` rθ tH1,zpt1q `H2,zpt2qu

ı´1{rθ
.

Making use of (3.4) this can be rewritten as

Sf pt1, t2q “
”
1 `

”
tS1,f pt1qu´rθ ´ 1

ı
`
”
tS2,f pt2qu´rθ ´ 1

ıı´1{rθ

“
”
tS1,f pt1qu´rθ ` tS2,f pt2qu´rθ ´ 1

ı´1{rθ
.

This expression looks similar to the copula form representation in (3.8).
There is, however, the substantial difference that Sj,f ptq �“ Sj,cptq, j “
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1, 2. The marginal survival function Sj,f ptq “
´
1 ` rθrλjtrγj

¯´1{rθ
is not of the

Weibull form. Note that the frailty parameter also shows up in Sj,f p.q.
Parameter estimates for shared frailty models with a parametric baseline
function can be easily obtained through maximization of the observable
likelihood (see Section 1.7.5). Estimates for the parameters rλ1, rγ1, rλ2, rγ2
and rθ of the frailty model are given by 0.079 (0.021), 3.827 (0.369), 0.218
(0.046), 3.456 (0.333) and 0.909 (0.266), respectively (see Table 3.1). The
estimate for Kendall’s τ is 0.312.
The parameter estimates for rλj , rγj are the parameter estimates from the
conditional hazard whereas the parameter estimates from the copula model
refer to the marginal hazard and survival functions. To compare the two
models, note that the marginal hazard function in the frailty model is given
by

hj,f ptq “ rλjrγjtrγj´1
´
1 ` rθrλjtrγj

¯´1

, (3.10)

whereas the marginal hazard in the copula model is given by (3.6) and does
not contain θ. Figure 3.1 shows the marginal hazards in the copula model
and in the frailty model, the picture uses the estimated parameters. For
rγj ą 1, as is the case in our example, the conditional hazard in (3.9) is a
monotone increasing function. With rγj ą 1 the marginal hazard function

(3.10) reaches a maximum in t “
!

prγj ´ 1q{prθrλjq
)1{rγj

. The marginal hazard

in the copula model is monotone increasing. Therefore, the marginal hazard
functions in the two models can never be the same.
We also fitted the copula and frailty model using the semiparametric (Cox)
model and the nonparametric model for the (conditional) hazards.
The semiparametric copula model is given by

hj,cptq “
"
h0ptq for RX
h0ptq exppβq for US

and the nonparametric copula model by

hj,cptq “
"
h1ptq for RX
h2ptq for US

with h0ptq, h1ptq and h2ptq unspecified hazard functions. Estimation for
the semiparametric and nonparametric copula model is typically based on
the two-stage approach (Shih and Louis, 1995b; Spiekerman and Lin, 1998;
Andersen, 2005). For the semiparametric model, we obtain in the first
stage an estimate of β through partial likelihood maximization and we use
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Figure 3.1: The marginal hazard functions from the shared frailty model
and the copula model with gamma frailty density for the time to diagnosis
of being healed data assessed by either US or RX.

the Breslow estimator of S0ptq “ expp´
şt
0
h0ptqq (Breslow, 1974). For the

nonparametric approach, we use the Nelson-Aalen estimator of Sj,cptq “
expp´

şt
0
hjptqq, j “ 1, 2 (Nelson, 1972; Aalen, 1978). In the second stage

we replace the marginal survival functions in the likelihood by their corre-
sponding estimates and then maximize with respect to θ.
The semiparametric frailty model is given by

hijptq “
#
zirh0ptq for RX

zirh0ptq expprβq for US

and the nonparametric frailty model by

hijptq “
#
zirh1ptq for RX

zirh2ptq for US



56 CHAPTER 3. SHARED FRAILTY VS COPULA

with again rh0ptq, rh1ptq and rh2ptq unspecified hazard functions.
Estimation for the semiparametric frailty model is based on the EM-algorithm
(see Section 1.7.5). Estimation for the nonparametric frailty model is also
based on the EM-algorithm but introducing imaging technique as stratifica-
tion factor.
Parameter estimates in the semiparametric copula model are β̂ = 0.508
(0.087) and θ̂ = 0.997 (0.193) with τ̂ = 0.333; in the semiparametric (Cox)

gamma frailty model estimates are given by r̂β= 0.828 (0.164) and r̂θ = 1.246
(0.310) with τ̂ = 0.384. In the nonparametric copula approach the estimate

Table 3.1: Diagnosis data: Estimates and their standard errors (Est (SE))
of the copula function parameter and the Weibull parameters of the Clayton
copula model (using the two-stage approach or joint estimation) and of the
shared gamma frailty model.

Para- Frailty model Para Copula model
meter meter two-stage joint estimation
rλRX 0.079 (0.021) λRX 0.106 (0.024) 0.145 (0.030)
rγRX 3.827 (0.369) γRX 2.539 (0.191) 2.341 (0.181)
rλUS 0.218 (0.046) λUS 0.219 (0.039) 0.233 (0.042)
rγUS 3.456 (0.333) γUS 2.323 (0.175) 2.212 (0.181)
rθ 0.909 (0.266) θ 0.890 (0.203) 1.066 (0.308)

for θ is 1.236 (0.219), τ̂ “ 0.382; in the nonparametric gamma frailty model
the estimate for rθ is 1.210 (0.289), τ̂ “ 0.377.
From the copula model as well as the frailty model it can be concluded
that there is substantial positive correlation between the diagnosis times
obtained by RX and US. Both models show that a fracture healing can be
diagnosed earlier using US. The estimate of β in the copula model needs to
be interpreted at the marginal level: diagnosis of fracture healing is earlier
with US comparing two random dogs. The interpretation of the estimate
of rβ in the frailty model is at the conditional level: diagnosis of fracture
healing is earlier with US comparing two dogs with the same frailty. At the
marginal level in the frailty model it can be seen that the hazard of diagnosis
of fracture healing is smaller for RX than for US (meaning that the diagnosis
of fracture healing will take longer using RX) until a certain point in time
after which the hazard of diagnosis of fracture healing is slightly higher for
RX. It is clear that the hazards are no longer proportional at the marginal
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level.

3.3.2 The Corynebacterium bovis infection data

We will again assume Weibull hazards and use the two-stage approach of
Shih and Louis (1995b) in the copula model to obtain parameter estimates.
In the first step, parameter estimates for λj and γj are obtained by fitting
the model (3.6) in each group separately. Now there are four groups cor-
responding to the front left udder quarters (FL, j=1), the rear left udder
quarters (RL, j=2), the front right udder quarters (FR, j=3) and the rear
right udder quarters (RR, j=4). The parameter estimates for the infection
data set are λ̂1 = 0.148 (0.010), γ̂1 = 1.305 (0.052), λ̂2 = 0.128 (0.009), γ̂2
= 1.310 (0.055), λ̂3 = 0.157 (0.010), γ̂3 = 1.255 (0.049), λ̂4 = 0.139 (0.010)
and γ̂4 = 1.264 (0.052) (see Table 3.2).
The fourdimensional joint survival function is

Sc pt1, t2, t3, t4q “
”
tS1,cpt1qu´θ ` tS2,cpt2qu´θ (3.11)

` tS3,cpt3qu´θ ` tS4,cpt4qu´θ ´ 3
ı´1{θ

.

Based on the joint survival function (3.11) the likelihood can be constructed
(Massonnet et al., 2009). In the second step we again replace in the like-
lihood Sj,cp.q by Ŝj,cp.q, obtained by replacing λj , γj by λ̂j , γ̂j (for j “
1, 2, 3, 4), and we then maximize the likelihood with respect to θ. In this
example θ̂ is 3.055 (0.124), τ̂ “ 0.604.
Joint maximization of the likelihood for the marginal survival function pa-
rameters and the copula function parameter leads to the following parameter
estimates λ̂1 = 0.141 (0.009), γ̂1 = 1.281 (0.048), λ̂2 = 0.121 (0.008), γ̂2 =
1.298 (0.052), λ̂3 = 0.150 (0.010), γ̂3 = 1.246 (0.046), λ̂4 = 0.128 (0.009), γ̂4
= 1.251 (0.049), and θ̂ = 3.277 (0.186) (see Table 3.2), τ̂ = 0.604.
For the frailty model different rλ and rγ parameters are assumed for the four
quarters in the conditional Weibull hazards. The joint survival function
takes the form

Sf pt1, t2, t3, t4q “
”
tS1,f pt1qu´rθ ` tS2,f pt2qu´rθ

` tS3,f pt3qu´rθ ` tS4,f pt4qu´rθ ´ 3
ı´1{rθ

.

Estimates for the parameters rλ1, rγ1, rλ2, rγ2, rλ3, rγ3, rλ4, rγ4 and rθ of the
frailty model are given in Table 3.2. The estimate for τ is 0.666. The two
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models are again compared through the marginal hazards (see (3.6) for the
copula model and (3.10) for the frailty model). Figure 3.2 illustrates that the
marginal hazards in the copula model and in the frailty model are different.
The semiparametric copula model for the infection data is given by
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Figure 3.2: The marginal hazard functions from the frailty model and the
copula model with gamma frailty density for the time to infection with
Corynebacterium bovis for front left (FL) and rear right (RR) udder quar-
ters.

hj,cptq “

$
’’&
’’%

h0ptq for FL
h0ptq exppβ1q for RL
h0ptq exppβ2q for FR
h0ptq exppβ1 ` β2 ` β3q for RR

with β1 the effect of front versus rear, β2 the effect of left versus right and
β3 the effect of the interaction. The nonparametric copula model is given
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by

hj,cptq “

$
’’&
’’%

h1ptq for FL
h2ptq for RL
h3ptq for FR
h4ptq for RR

with h0ptq, h1ptq, h2ptq, h3ptq and h4ptq unspecified hazard functions. Param-
eter estimates for the semiparametric copula model are β̂1 = -0.137 (0.038),
β̂2 = 0.017 (0.035), β̂3 = 0.025 (0.052) and θ̂ = 3.386 (0.136). The estimate
for Kendall’s τ is 0.629. In the nonparametric copula model θ̂ is equal to
3.367 (0.135), τ̂ = 0.627.
The semiparametric frailty model is given by

hijptq “

$
’’’&
’’’%

zirh0ptq for FL

zirh0ptq expprβ1q for RL

zirh0ptq expprβ2q for FR

zirh0ptq expprβ1 ` rβ2 ` rβ3q for RR

with rβ1 the effect of front versus rear, rβ2 the effect of left versus right and
rβ3 the effect of the interaction. The nonparametric frailty model is given by

hijptq “

$
’’’&
’’’%

zirh1ptq for FL

zirh2ptq for RL

zirh3ptq for FR

zirh4ptq for RR

with again rh0ptq, rh1ptq, rh2ptq, rh3ptq and rh4ptq unspecified hazard functions.
Estimates for the parameters rβ1, rβ2, rβ3 and rθ in the semiparametric frailty
model are -0.247 (0.070), 0.075 (0.068), -0.034 (0.098) and 3.872 (0.228),
respectively. The estimate of Kendall’s τ is 0.662. In the nonparametric
frailty model the estimate for rθ is equal to 3.920 (0.229). The estimate of
Kendall’s τ is 0.662.
From the copula model as well as the frailty model it can be concluded that
there is a strong positive correlation between the infection times of the four
udder quarters of a cow. Both models show that the hazard of being infected
is higher for front udder quarters than for rear udder quarters. No significant
difference can be found between left udder quarters and right udder quarters.
The estimate of β in the copula model needs to be interpreted at the marginal
level: the hazard of infection of a front udder quarter of a cow is higher
than the hazard of infection of a rear udder quarter of another cow. The
interpretation of the estimate of rβ in the frailty model is at the conditional
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Table 3.2: Corynebacterium bovis infection data: Estimates and their stan-
dard errors (Est (SE)) of the copula function parameter and the Weibull
parameters of the Clayton copula model (using the two-stage approach or
joint estimation) and of the shared gamma frailty model.

Para- Frailty model Para- Copula model
meter meter two-stage joint estimation
rλFL 0.237 (0.021) λFL 0.148 (0.010) 0.141 (0.009)
rγFL 2.062 (0.069) γFL 1.305 (0.052) 1.281 (0.048)
rλRL 0.195 (0.018) λRL 0.128 (0.009) 0.121 (0.008)
rγRL 1.965 (0.070) γRL 1.310 (0.055) 1.298 (0.052)
rλFR 0.268 (0.023) λFR 0.157 (0.010) 0.150 (0.010)
rγFR 1.977 (0.065) γFR 1.255 (0.049) 1.246 (0.046)
rλRR 0.213 (0.019) λRR 0.139 (0.010) 0.128 (0.009)
rγRR 1.871 (0.066) γRR 1.264 (0.052) 1.251 ( 0.049)
rθ 3.991 (0.231) θ 3.055 (0.124) 3.277 (0.186)

level: the hazard of infection of a front udder quarter of a cow is higher than
the hazard of infection of a rear udder quarter of another cow with the same
frailty.

3.4 The positive stable copula and frailty model

3.4.1 The diagnosis data

In the two-stage copula approach, the marginal survival functions corre-
sponding to (3.6) are used, but the copula function now uses the Laplace
transform

Lpsq “ exp
´

´sθ
¯

and L´1psq “ p´ log sq1{θ

with 0 ď θ ă 1. Lp.q is the Laplace transform of the positive stable distri-
bution (see (1.11)).
The corresponding copula takes the form

Cθpu, vq “ exp

„
´
!

p´ log uq1{θ ` p´ log vq1{θ
)θ

.
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Therefore, the joint survival function in the positive stable copula model is

Scpt1, t2q “ exp

„
´
”
t´ logS1,cpt1qu1{θ ` t´ logS2,cpt2qu1{θ

ıθ
. (3.12)

The parameter estimates λ̂1, γ̂1, λ̂2 and γ̂2 are obviously the same as for
the Clayton-Oakes copula model. As we did for the Clayton-Oakes copula,
we replace the Sj,cp.q’s in the (joint survival functions appearing in the)
likelihood and we maximize with respect to θ. Under this new dependency
structure the value of θ is estimated as 0.563 (0.045). Kendall’s τ in the
positive stable copula is given by τ “ 1 ´ θ “ 0.437.
Since the marginal survival functions and the copula are modeled in a para-
metric way, the likelihood can be maximized jointly for the marginal survival
function parameters and the copula function parameter. The estimates ob-
tained from this approach are shown in Table 3.3. In the frailty model

Table 3.3: Diagnosis data: Estimates and their standard errors (Est (SE))
of the copula function parameter and the Weibull parameters of the positive
stable copula model (using the two-stage approach or joint estimation) and
of the positive stable frailty model.

Frailty model Copula model
Parameter Parameter two-stage joint estimation

rλRX 0.020 (0.008) λRX 0.106 (0.024) 0.118 (0.025)
rγRX 4.560 (0.422) γRX 2.539 (0.191) 2.491 (0.172)
rλUS 0.059 (0.021) λUS 0.219 (0.039) 0.213 (0.037)
rγUS 4.240 (0.401) γUS 2.323 (0.175) 2.315 (0.180)
θ 0.546 (0.052) θ 0.563 (0.045) 0.546 (0.052)

approach, we fit the conditional model (3.9) to the data, with the positive
stable density (1.11) as frailty density. This complex expression for the pos-
itive stable density translates into the simple Laplace transform (1.12).
From (3.3) the joint survival function is

Sf pt1, t2q “ exp
”
´ tH1,zpt1q `H2,zpt2quθ

ı
.

Making use of (3.4) and (1.12) this can be rewritten as

Sf pt1, t2q “ exp

„
´
”
t´ logS1,f pt1qu1{θ ` t´ logS2,f pt2qu1{θ

ıθ
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which has the same form as (3.12).
Also for the shared frailty model with positive stable frailty density, the
frailties can be integrated out to obtain the observable likelihood which can
then be maximized with respect to all the parameters (Costigan and Klein,
1993). Parameter estimates for rλ1, rγ1, rλ2, rγ2 and θ are provided in Table 3.3.
For the positive stable copula with marginal Weibull hazards we have Sj,cptq “
exp p´λjtγj q; for the shared positive stable frailty model with conditional

Weibull hazards Sj,f ptq “ exp
´

´rλθj trγjθ
¯
.

So in both models the marginal survival functions are Weibull, i.e., the
event times are Weibull distributed. We can make the Weibull distributions
identical by taking

λj “ rλθj γj “ θrγj . (3.13)

Assuming bivariate survival data without censoring, the likelihood (which
is the product over the clusters of the bivariate densities) for the copula
function is

Lc “
kź

i“1

exp
´

´qθi
¯
λ1γ1t

γ1´1
i1 λ2γ2t

γ2´1
i2

#
q
2pθ´1q
i ` p1{θ ´ 1qqθ´2

i

pqi1qi2qpθ´1q

+
,

with qij “
´
λjt

γj
ij

¯1{θ
and qi “ qi1 ` qi2.

For the frailty model the likelihood is (after integrating out the frailties)

Lf “
kź

i“1

exp
´

´rqθi
¯
rλ1rγ1trγ1´1

i1
rλ2rγ2trγ2´1

i2

!
θ2rq2pθ´1q

i ` θp1 ´ θqrqθ´2
i

)
,

with rqij “
´
rλjtrγjij

¯
and rqi “ rqi1 ` rqi2.

From (3.13) we easily see that

rqij “ qij . (3.14)

Using (3.13) and (3.14) one can show that Lf can be rewritten as Lc. As
an illustration check in Table 3.3 that for the estimates obtained from the
maximization (jointly for all the parameters) of Lc, resp. maximization of
Lf , the relations (3.13) hold.
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3.4.2 The Corynebacterium bovis infection data

The fourdimensional joint survival function in the positive stable copula
model is

Scpt1, t2, t3, t4q “ exp
”
´
”
t´ logS1,cpt1qu1{θ

` t´ logS2,cpt2qu1{θ ` t´ logS3,cpt3qu1{θ ` t´ logS4,cpt4qu1{θ
ıθ

.

The parameter estimates λ̂1, γ̂1, λ̂2, γ̂2, λ̂3, γ̂3, λ̂4 and γ̂4 are the same as for
the Clayton-Oakes copula model. The value of the parameter θ is estimated
as 0.552 (0.009). Kendall’s τ is thus 0.448.
Parameter estimates obtained by joint maximization of the likelihood for the
marginal survival function parameters and the copula function parameter
are shown in Table 3.4.
The joint survival function in the frailty model is given by

Sf pt1, t2, t3, t4q “ exp
”
´
”
t´ logS1,f pt1qu1{θ

` t´ logS2,f pt2qu1{θ ` t´ logS3,f pt3qu1{θ ` t´ logS4,f pt4qu1{θ
ıθ

.

Parameter estimates for rλ1, rγ1, rλ2, rγ2, rλ3, rγ3, rλ4, rγ4, and θ are provided in
Table 3.4.
From Table 3.4 it is clear that also for the infection data the relations (3.13)
hold. The fact that the parameters of the copula and frailty model can be
identified, as discussed in (3.13), seems to be an exclusive property of the
combination of Weibull distributed event times and frailties from a positive
stable distribution. We were not able to find such relationships between the
parameters for other event time distribution - frailty distribution combina-
tions. If the exponential distribution is assumed, which is a special case of
the Weibull distribution with γ “ 1, for the event times together with a pos-
itive stable distribution for the frailties for example, this property no longer
holds. Under these assumptions the population hazard function in the cop-
ula model hj,cptq “ λj is constant, but in the frailty model the marginal

hazard function is no longer constant, but Weibull: hj,f ptq “ θrλθj tθ´1.

3.5 Conclusions

In this chapter we discussed similarities and differences between copula mod-
els and frailty models for bivariate and fourdimensional survival data. We
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Table 3.4: Corynebacterium bovis infection data: Estimates and their stan-
dard errors (Est (SE)) of the copula function parameter and the Weibull pa-
rameters of the positive stable copula model (using the two-stage approach
or joint estimation) and of the positive stable frailty model.

Para - Frailty model Para- Copula model
meter meter two-stage joint estimation
rλFL 0.025 (0.0003) λFL 0.148 (0.010) 0.168 (0.010)
rγFL 2.229 (0.098) γFL 1.305 (0.052) 1.078 (0.044)
rλRL 0.020 (0.0002) λRL 0.128 (0.009) 0.152 (0.010)
rγRL 2.146 (0.095) γRL 1.310 (0.055) 1.038 (0.044)
rλFR 0.029 (0.001) λFR 0.157 (0.010) 0.179 (0.011)
rγFR 2.144 (0.021) γFR 1.255 (0.049) 1.037 (0.042)
rλRR 0.022 (0.001) λRR 0.139 (0.010) 0.159 (0.010)
rγRR 2.042 (0.030) γRR 1.264 (0.052) 0.988 (0.042)
θ 0.484 (0.005) θ 0.552 (0.009) 0.484 (0.015)

focused on the comparison between the Clayton-Oakes copula model and the
shared gamma frailty model; and between the positive stable copula model
and the shared positive stable frailty model. For each of the two compar-
isons, the copula functions used for the bivariate or fourdimensional joint
survival functions are the same but the marginal survival functions are mod-
eled in a different way. To show the differences in a concrete example, we
use the Clayton-Oakes copula model with Weibull marginal survival func-
tions and the shared gamma frailty model with conditional Weibull survival
functions. A similar comparison between the positive stable copula model
and the shared positive stable frailty model shows that, in the exceptional
case of the Weibull hazard, there is a one-to-one match between the two
models.
With the more flexible semiparametric and nonparametric model specifi-
cation, parameter estimates of the copula model are typically obtained by
separate modeling of the marginal survival functions (in the first stage) and
the copula function (in the second stage). Therefore, there is complete sepa-
ration between the estimation of the marginal survival function parameters
and the copula function parameter. In the frailty model however, the frailty
parameter appears in the marginal survival functions, making separate es-
timation impossible.
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From a practical point of view, the choice between the two models depends
on different considerations. First of all, the data structure is a limiting fac-
tor. Copula models require small and equal cluster sizes. Data sets with
large and/or unequal cluster sizes are however frequently encountered and
can be handled by the frailty model. The interpretation of covariate effects
might be more straightforward in the copula model for a non-statistician.
Covariate effects need to be interpreted at the conditional level in the frailty
model, while interpretation of the covariate effects is at the marginal level
in the copula model.
For the diagnosis data it can be concluded that the time to diagnosis of
fracture healing in dogs can be shortened by using the ultrasound technique
and that the use of models that take into account the correlation in the data
was necessary because of existing positive correlation in the data. Consid-
ering that the US technique is cheaper and that there would be no roentgen
exposure of dogs and staff, diagnosis with US is a promising technique. Ear-
lier diagnosis of a healed fracture by US can prevent unnecessarily long limb
immobilization and allow earlier dynamization.
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4.1 Introduction

In this chapter we start with a short overview of available nonparamet-
ric, parametric and semiparametric methods to analyze univariate interval-
censored data in Section 4.2. Next, some statistical techniques, available
in commercial software packages, to model multivariate interval-censored
data are discussed in Section 4.3. The advantages and disadvantages of the
discussed marginal, fixed effects and copula model are illustrated using the
mastitis data described in Section 1.9.2. A major drawback of the discussed
copula model is the necessity to use a two-step procedure in which midpoint
imputation in the second step is required because only the likelihood for
right-censored data is available in the literature. This problem is solved
in Section 4.4 in which we describe the construction of the likelihood for
fourdimensional interval-censored data in the copula model.

4.2 Univariate interval-censored data

One approach towards modeling interval-censored data is to reduce the
problem of analyzing interval-censored event time data to analyzing right-
censored event time data, called the imputation approach. That way ex-
isting nonparametric, semiparametric and parametric inference procedures
and statistical software developed for right-censored data can be used. Two
imputation approaches are generally used: single point imputation and mul-
tiple imputation. Single point imputation is commonly used in practice for
its simplicity. In single point imputation it is assumed that the underlying
true event time is equal to a value within the observed interval. Common
choices for that value are the midpoint, the upper bound or the lower bound
of the interval. If the intervals are narrow, the three choices will not give
very different results. Another option is to randomly select a value in the
observed interval. The multiple imputation approach is based on the data
augmentation algorithm given in Tanner and Wong (1987) and iterates be-
tween an imputation and an estimation step until convergence. Authors that
considered the multiple imputation approach include Satten et al. (1998),
Bebchuk and Betensky (2000) and Pan (2000). However, the imputation
approach may lead to biased estimates if the intervals are wide and varying
(Odell et al., 1992; Goggins et al., 1998). Furthermore, the standard errors
of the coefficients will be underestimated since the event times are treated as
known when, actually, they are not (Goggins et al., 1998). In the next sub-
sections we discuss some specific methods that explicitly model the interval
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censoring in the data.

4.2.1 Nonparametric methods

For right-censored data, the nonparametric maximum likelihood estimate
(NPMLE) of the survival function is given by Kaplan and Meier (1958). In
the case of interval-censored data the survival function can also be estimated
nonparametrically, however, nonparametric inference is much more compli-
cated for interval-censored data. In general, the NPMLE of the survival
function does not have a closed form and can only be determined using iter-
ative algorithms. The first NPMLE for interval-censored data was proposed
by Peto (1973) using the constrained Newton-Raphson method. However,
the most commonly known NPMLE for interval-censored data is Turnbull’s
estimate (Turnbull, 1976), who developed the self-consistency algorithm,
which is an EM-like algorithm (Dempster et al., 1977). Other algorithms to
maximize the likelihood function are the iterative convex minorant (ICM)
algorithm, first introduced by Groeneboom and Wellner (1992) and later
modified by Jongbloed (1998) and the EM-ICM algorithm, proposed by
Wellner and Zhan (1997), which combines the self-consistency algorithm
and the ICM algorithm.
Sometimes a smooth estimate of the survival function is more desirable than
Turnbull’s step-wise estimate. One way of smoothing the survival or equiv-
alently the density function is proposed by Kooperberg and Stone (1992),
who smooth the density function using splines. Figure 4.1 shows the non-
parametric estimate of Turnbull and the smooth estimate of Kooperberg
and Stone of the survival function for the interval-censored time to infection
for the left front udder quarters of primiparous cows. Other approaches
to obtain smooth estimates include kernel-based methods and penalized or
local likelihood methods (Sun, 2006).

4.2.2 Parametric methods

If only interval-censored data of the form tLi, Uiu; i “ 1, . . . , n are avail-
able, and if noninformative censoring is assumed, the likelihood function is
proportional to

Lpζq «
nź

i“1

rSpliq ´ Spuiqs , (4.1)

with ζ “ pξ,βq, ξ containing the parameters of the baseline hazard. If we
assume a parametric form for the survival function Sp.q standard maximum
likelihood theory can be applied to obtain parameter estimates. The main
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Figure 4.1: Survival function estimates of the interval-censored time to in-
fection for the left front udder quarters of primiparous cows. Nonparametric
estimate of Turnbull (solid line), smooth estimate of Kooperberg and Stone
(dotted line).

advantage of parametric methods is that their implementation is straight-
forward and available in commercial software packages.

4.2.3 Semiparametric methods

The ordinary partial likelihood maximization procedure for right-censored
data can not be used in the case of interval-censored data. Several authors
propose methods to analyze interval-censored data semiparametrically, but
the proposed methods are computationally demanding and not available
in commercial software packages. Finkelstein (1986) and Goetghebeur and
Ryan (2000) propose a full likelihood approach in which the baseline haz-
ard is estimated nonparametrically simultaneously with the regression co-
efficients. The method of Finkelstein (1986) is based on the grouped data
assumption, but the method of Goetghebeur and Ryan (2000) relaxes this
assumption. Satten (1996) and Goggins et al. (1998) investigate a marginal
likelihood approach based on the likelihood given by the sum over all rank-
ings of the underlying and unobserved failure times that are consistent with
the observed censoring intervals. This approach focuses only on the re-
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gression coefficients. Betensky et al. (2002) and Cai and Betensky (2003)
consider methods in which the baseline hazard is approximated by finite-
dimensional functions.

4.3 Multivariate interval-censored data

For the analysis of multivariate interval-censored data, one has to deal si-
multaneously with the interval censoring problem and the clustering. To
simplify the analysis either the interval-censored nature of the data or the
correlation structure in the data could be ignored. For instance, when ignor-
ing the interval censoring, the imputation approach, in which the midpoint,
lower or upper bound of the interval is imputed as an exact event time, can
be used and standard analytic techniques for multivariate survival data can
be applied (Wei and Glidden, 1997; Hougaard, 2000; Kelly and Lim, 2000).
However, as mentioned before, this approach may lead to biased estimates if
the intervals are wide and varying (Odell et al., 1992; Goggins et al., 1998)
and the standard errors of the coefficients will be underestimated (Goggins
et al., 1998). Another alternative is to ignore the correlation between the
observations and to analyze the data using methods for univariate interval-
censored data (see Section 4.2). However, it is well known that clustering in
the data needs to be accounted for in the analysis, otherwise inferences and
standard errors will not be correct (Wei and Glidden, 1997).
Therefore, it would be best to use models that can deal with the clus-
tering and interval censoring simultaneously. In this section we give an
overview of statistical techniques to model multivariate interval-censored
survival data available in commercial software packages. In the first subsec-
tion the marginal model, the fixed effects model and the two-stage copula
model will be discussed. In the next subsection an overview is given of three
commercial software packages that can fit these models and the last sub-
section describes the results obtained when applying these models to the
mastitis data. Focus is on parametric frequentist approaches, Bayesian and
semi- or nonparametric frequentist methods are not discussed.

4.3.1 The models

If there is no interest in the correlation parameter, a marginal model or a
fixed effects model for interval-censored data could be used for the analysis.
However, techniques to model data which are simultaneously clustered and
interval-censored and provide an estimate of the correlation received less
attention in the literature. Possible options are the frailty model and the
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copula model. For a discussion on frailty models for interval-censored data
we refer to Chapter 5. The copula model is discussed in this subsection and
in the next section.

The marginal model

In the marginal model approach the clustering is not taken into account and
the event times are treated as if they were independent of each other even if
they belong to the same cluster. In this model the only difference between
subjects is their covariate information. Therefore, parameter estimates will
refer to a randomly selected subject from the population, not taking into
account which cluster the subject belongs to. That is why these models
are also called population-averaged models. In the proportional hazards
formulation the model is given by

hijptq “ h0ptq exppxt
ijβq, (4.2)

with hijptq the hazard at time t for subject j of cluster i (i “ 1, . . . , k),
h0ptq the baseline hazard, xij the vector of covariates for the corresponding
subject and β the vector of covariate effects.
Since the existing correlation between subjects is ignored, one might be
concerned with the consistency of the parameter estimates. Bogaerts et al.
(2002) proof that, even though the correlation between the observations is
ignored, these estimates are consistent under a correct parametric specifi-
cation, but the likelihood-based estimates of their variance, the inverse of
the information matrix, are not because of the ignored correlation between
event times. Following the approach of Royall (1986), Bogaerts et al. (2002)
derive consistent estimators for the variance under model misspecification
for interval-censored multivariate survival data. Another way to obtain a
consistent estimate of the variance is to use the grouped jackknife technique
(Lipsitz et al., 1994). Denote the p-dimensional vector of parameter esti-
mates using the whole data set by ζ. We now leave out each of the k clusters
of observations one by one and fit model (4.2) to each new data set, result-
ing for the data set with cluster i deleted, in parameter vector estimate ζ̂´i,
i “ 1 . . . , k. The grouped jackknife estimate is then given by (Wu, 1986)

ˆ
k ´ p

k

˙ kÿ

i“1

´
ζ̂´i ´ ζ̂

¯´
ζ̂´i ´ ζ̂

¯t

. (4.3)

We will use the grouped jackknife technique to obtain estimates for the
variance when analyzing the mastitis data with the marginal model.



74 CHAPTER 4. MODELS FOR INTERVAL-CENSORED DATA

The fixed effects model

One way of actually modeling the cluster effect is to add a fixed cluster effect
to model (4.2). The hazard is now given by

hijptq “ h0ptq exppxt
ijβ ` ciq,

with ci the fixed effect for the ith cluster. This model is overparameterized.
Therefore, the restriction ci “ 0 for a certain i (i “ 1, . . . , k) is added. An
estimate and variance for each fixed cluster effect is provided which is not
really of interest; we merely want to adjust the model to account for the
clustering in the data.

The copula model

None of the models discussed above gives an actual estimate of the clustering
effect in the data. If the correlation between the observations itself is of
interest the copula model can be used to obtain an estimate of the strength
of the clustering. For a description of the copula model, see Section 1.8. In
this chapter we assume a Clayton-Oakes copula model (see 3.11). In the
first stage of the estimation procedure (see Section 1.8), the marginal model
(4.2) is fit to the data, using the interval-censored nature of the data. In
the second stage, on the other hand, the midpoint imputation approach is
used since the likelihood for interval-censored data is not available in the
literature. The likelihood for right-censored data that then needs to be
optimized to obtain an estimate for θ is given in Massonnet et al. (2009).

4.3.2 Software

While we have discussed the different model types in terms of the propor-
tional hazards formulation (see Section 1.5.1), the software packages SAS,
S-Plus and R discussed in this section use the loglinear model representation
(see Section 1.5.3). To transform the parameters obtained in the software’s
output to the proportional hazards formulation, we will make use of for-
mulas (1.6) to (1.8). The software package STATA fits the models in the
proportional hazards formulation.

SAS

The current version of SAS is SAS 9.2. Parametric survival models for event
time data that can be right-, left- or interval-censored can be fitted by using
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the proc lifereg procedure. All time points should be recorded as an in-
terval. If the lower bound of the interval is missing, the upper bound is used
as a left-censored value. Similarly, if the upper bound is missing, the lower
bound is taken as a right-censored value. A censoring interval with the same
endpoints is considered to be an exact event time, otherwise it represents an
interval-censored observation. Possible survival distributions are exponen-
tial, Weibull, lognormal, loglogistic, normal, logistic and generalized gamma.

The marginal model. The option covsandwich (aggregate) to obtain a
robust variance estimate is only available in the proc phreg procedure and
not in the proc lifereg procedure. The user is forced to implement the
grouped jackknife technique by writing a loop in which the clusters of ob-
servations are left out one by one, the model is fitted k times and then using
formula (4.3).

The fixed effects model. The user has to declare the cluster variable as
categorical using the class statement. When fitting an overparameterized
model the coefficient of the effect with the largest alphanumeric value is put
equal to zero. The proc lifereg procedure gives us an estimate of σ and
its variance which enables us to calculate the variances of λ̂ and β̂.

The copula model. Estimates for the baseline hazard parameters and the
covariate effects in the first stage of the estimation procedure for the copula
model are obtained by fitting a marginal model through the proc lifereg

procedure. To obtain an estimate for θ the user is forced to write his own
program.

S-Plus and R

Both S-Plus and R use the S language and share many of the same functions.
R is a free software package and can be downloaded from http://www.r-
project.org. Current versions are S-Plus 8.2 and R 2.13.0.
The censorReg or survReg function in S-Plus or the survreg function in R
fits a parametric survival model to arbitrarily censored event time data. In
the censorReg function the response is usually an object of class censor as
computed by the censor function. The response for the survReg/survreg

function in S-Plus/R is usually an object of class surv as computed by the
surv function. The type of censoring is indicated by the status indicator
and should be 0 for right-censored data, 1 for an exact event time, 2 for left-
censored data and 3 for interval-censored data. In case of a right-censored
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observation the censor or surv function takes the lower bound of the in-
terval as time point. The time point for a left-censored observation is the
upper bound of the interval. Possible survival distributions are exponential,
Weibull, normal, lognormal, logistic, loglogistic, extreme value, Rayleigh
and t. It is important to note that in the censorReg function the expo-
nential distribution is not defined as the Weibull distribution with the scale
parameter fixed to one as in the survR(r)eg function, but as the minimum
extreme value distribution with the scale parameter fixed to one.

The marginal model. A robust variance estimator can be obtained in Cox
models using the cluster(id) option in coxph. If the values in id are
not unique, but instead identify clusters of correlated observations, then the
variance estimate is based on the grouped jackknife technique. This is not
an option in SurvR(r)eg or censorReg. The grouped jackknife technique
as described in Section 4.3.1 can however be implemented by the user in
S-Plus or R by writing a loop leaving out the clusters of observations one
by one, fitting the model k times and using formula (4.3).

The fixed effects model. The function as.factor is used to interpret the
cluster variable as a categorical variable. When fitting the overparameter-
ized fixed effects model, S-Plus and R put the coefficient of the fixed effect
that starts with the lowest alphanumeric value to zero. Since the censorReg
and survR(r)eg functions provide us only with the estimate and its vari-
ance of logpσq, σ̂ needs to be calculated as expplogpσ̂qq and its variance is
σ̂2varplogpσ̂qq. An estimate and corresponding variance of γ can be obtained
using (1.5) and (1.7), but it is not possible to calculate the variances of λ̂
or β̂ since only the covariance of µ̂ and logpσ̂q or α̂ and logpσ̂q is given in-
stead of the covariance of these parameters and σ̂. Obviously this is a major
drawback of the censorReg and survR(r)eg functions.

The copula model. Estimates for the baseline hazard parameters and the
covariate effects in the first stage of the estimation procedure for the copula
model are obtained by fitting a marginal model through the censorReg or
survR(r)eg functions. The second stage of the estimation procedure needs
to be implemented by the user himself.

STATA

Contrary to SAS and S-Plus/R that provide parameter estimates of the log-
linear model representation, Stata fits the model in the proportional hazards
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formulation unless the option time is specified. The option time is only valid
for the exponential and Weibull models since they have both a proportional
hazards and an accelerated failure time parameterization. Intcens is a Stata
module written by Jamie Griffin (Griffin, 2005) that performs a parametric
interval-censored survival analysis. The program fits various distributions
by maximum likelihood to non-negative data which can be left-, right- or
interval-censored. The supported distributions are exponential, Weibull,
Gompertz, log-logistic, log-normal, 2 and 3 parameter gamma and inverse
Gaussian. This module requires a Stata version 8.2 or later, current version
is Stata 11. Before performing the analysis you have to declare your data
to be event time data by the stset command with the failure(failvar)

option. If the failure option is not specified, all records are assumed to end
in failure. If it is specified, failvar is interpreted as an indicator variable;
0 and missing mean censored, and all other values are interpreted as rep-
resenting failure. It is also possible to define your own list of values that
indicate failure (StataCorp., 2005).

The marginal model. The option robust indicates that the sandwich es-
timator of variance needs to be used instead of the traditional calculation.
Adding the option cluster(varname), where varname specifies to which
group each observation belongs, states that the observations are indepen-
dent across groups (clusters), but not necessarily within groups.

The fixed effects model. The user needs to specify the xi option to indi-
cate that the cluster variable is categorical. The coefficient of the effect that
starts with the smallest alphanumeric value is put equal to zero, this can
be seen in the output. Intcens gives us an estimate of γ and β and its
standard error. An estimate for λ needs to be calculated as exppν̂q where ν̂
is given in the output as const and its variance is pexp pν̂qq2 var pν̂q.

The copula model. Estimates for the baseline hazard parameters and the
covariate effects in the first stage of the estimation procedure for the cop-
ula model are obtained by fitting a marginal model through the Intcens

module. The user is forced to implement the second stage himself.

4.3.3 Analysis of the mastitis data

The mastitis data set (see Section 1.9.2) is an example of a data set that is
simultaneously clustered and interval-censored: the udder quarter infection
times are clustered within the cow udder and the udder quarter infection
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status is followed up only periodically. However, the information available
in udder quarter infection data is often not exploited to its full extent and
the specific data structure is not always modeled correctly. Because of the
complexity of interval-censored data, udder quarter infection data have of-
ten been reduced to binary data (Schukken et al., 1999; Zadoks et al., 2001):
either an infection occurs in the udder quarter or not during the complete
lactation period. However, this reduces the amount of information consid-
erably.
We investigate the effect of the udder quarter location (front or rear), an
udder quarter level covariate, and the effect of parity (multiparous versus
primiparous), a between cow covariate, on time to infection with four differ-
ent bacteria, i.e. Staphylococcus aureus (Staph. aureus), Corynebacterium
bovis (C. bovis), Streptococcus dysgalactiae (Strep. dysgalactiae) and Strep-
tococcus uberis (Strep. uberis). We assume a Weibull distribution for the
baseline hazard. The likelihood that needs to be maximized in the marginal
model and the fixed effects model for the mastitis data is an extension of
expression (4.1) to data that can be interval-censored and right-censored
and is given by

Lpζq «
nź

i“1

rSpliq ´ Spuiqsδi Spliq1´δi ,

with ζ “ pξ,βq, ξ containing the parameters of the baseline hazard. The
parameter estimates and their standard errors for the four bacteria are given
in Table 4.1 for the different models.

In the marginal model we obtain the following results. The rear udder quar-
ters have a (marginally) significant higher hazard of infection than the front
udder quarters for Staph. aureus, with hazard ratio (“ exppβ̂lq) (HR) =
1.33 (95% confidence interval (CI) [1.03;1.70]), but a significantly lower haz-
ard rate for the rear udder quarters is observed for C. bovis, with HR =
0.88 (95% CI [0.83;0.93]). For the two other bacteria, no significant differ-
ences were found, with the hazard ratio equal to 1.40 (95% CI [0.93;2.11]
(marginally insignificant)) for Strep. dysgalactiae and equal to 1.19 (95%
CI [0.92;1.54] (marginally insignificant)) for Strep. uberis. The hazard of
infection for multiparous cows was significantly higher compared to heifers
for C. bovis (HR = exppβ̂pq=1.52, 95% CI [1.28;1.80]) and Strep. uberis (HR
= 2.18, 95% CI [1.40;3.38]). The hazard of infection for multiparous cows
was also higher compared to heifers for Staph. aureus (HR = 1.23, 95% CI
[0.87;1.75]) and Strep. dysgalactiae (HR = 1.12, 95% CI [0.69;1.80]), but
not significantly. For the derivation of the 95% confidence intervals, it is
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required to use the jackknife estimate of the standard error. Both the naive
standard error estimate and the jackknife estimate are given in Table 4.1. It
is apparent that the jackknife estimate of the standard error can be either
lower, as is the case for the udder quarter location covariate, or higher, as
is the case for the parity covariate, than the naive standard error estimate.
In the marginal model the hazard ratio represents the hazard of infection
for a randomly chosen rear udder quarter versus the hazard of infection for
a randomly chosen front udder quarter from whatever other cow.
In the copula model the estimates of the marginal model can be used to ob-
tain the marginal survival functions, required as input in the copula model.
The copula model estimate for θ is equal to 5.151 for Staph. aureus, 2.971
for C. bovis, 3.048 for Strep. dysgalactiae and 5.273 for Strep. uberis, leading
to values for Kendall’s τ of 0.72, 0.60, 0.60 and 0.73, respectively. Infection
times within a cow are highly correlated for all four bacteria. The hazard
ratio needs to be interpreted in the same way as in the marginal model.
The fixed effects model was also fitted to the data. This model has to be
used with caution for the type of clustered survival data presented here. To
start with, the interpretation of the parameter λ is quite different. As the
fixed effect of the first cow has been put to zero, the parameter estimate for
λ actually corresponds to the parameter for the first cow only, its hazard be-
ing equal to λ exppxijβqγtγ´1 . As the first cow did not have any infections,
it is actually impossible to estimate this parameter, therefore, the estimate
is typically put at an arbitrary low value with a high standard error. There-
fore, with the hazard given for any other cow i by λ exppxijβ`ciqγtγ´1 , the
estimate of the fixed cow effect is large for cows with infections to counter-
act the effect of the small value for the estimate of λ , and also these fixed
effects have large standard errors. The hazard ratio for rear udder quarters
versus front udder quarters is given by 1.53 (95% CI [1.27;1.84]), 0.71 (95%
CI [0.65;0.79]), 1.55 (95% CI [1.17;2.05]) and 1.22 (95% CI [0.99;1.50]) for
Staph. aureus, C. bovis, Strep. dysgalactiae and Strep. uberis, respectively.
Contrary to the marginal and copula model, the effect of the udder quarter
location covariate is also significant for infection with Strep. dysgalactiae.
The hazard ratio for multiparous versus heifer cannot be obtained in the
fixed effects model, because there is complete confounding between the cow
fixed effects and the parity covariate, in the sense that the parity covariate
can be written as a linear function of the cow fixed effects. Nevertheless,
statistical software packages typically provide an estimate for this hazard
ratio. For instance, if the parity covariate is introduced first in the model
(and therefore not adjusted for the fixed cow effects), an impossibly high
estimate for βp equal to -23 results, with the HR given by exp(-23). On
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Table 4.1: Parameter estimates (Est) and their standard errors (SE) for the
marginal model, the fixed effects model and the copula model with parity (
with βp the effect of a multiparous cow) and udder quarter location (with
βl the effect of a rear udder quarter) as covariates and Weibull baseline haz-
ard for infection with either Staphylococcus aureus, Corynebacterium bovis,
Streptococcus dysgalactiae or Streptococcus uberis.

Bact- Para- Marginal Fixed effects Copula
erium meter Est Est Est

(Naive/Jackknife SE) (SE) (Jackknife SE)
Staphylo- θ - - 5.151
coccus λ 0.013 (0.002/0.002) - 0.013 (0.002)
aureus γ 0.996 (0.063/0.049) 1.301 (0.052) 0.996 (0.049)

βl 0.285 (0.133/0.124) 0.424 (0.095) 0.285 (0.124)
βp 0.210 (0.144/0.179) - 0.210 (0.179)

Coryne- θ - - 2.971
bacterium λ 0.115 (0.006/0.009) - 0.115 (0.009)

bovis γ 1.285 (0.027/0.031) 2.345 (0.049) 1.285 (0.031)
βl -0.129 (0.046/0.030) -0.337 (0.049) -0.129 (0.030)
βp 0.417 (0.051/0.086) - 0.417 (0.086)

Strepto- θ - - 3.048
coccus λ 0.005 (0.001/0.001) - 0.005 (0.001)

dysgalactiae γ 1.008 (0.104/0.057) 1.301 (0.052) 1.008 (0.057)
βl 0.335 (0.219/0.209) 0.424 (0.095) 0.335 (0.209)
βp 0.110 (0.133/0.245) - 0.110 (0.245)

Strepto- θ - - 5.273
coccus λ 0.007 (0.002/0.001) - 0.007 (0.001)
uberis γ 1.047 (0.075/0.061) 1.248 (0.087) 1.047 (0.061)

βl 0.173 (0.150/0.132) 0.201 (0.105) 0.173 (0.132)
βp 0.779 (0.194/0.224) - 0.779 (0.224)



4.3. MULTIVARIATE INTERVAL-CENSORED DATA 81

the other hand, if the parity covariate is introduced in the model after the
fixed cow effects (and therefore adjusted), the estimate for βp equals 0, with
the HR given by 1. Both results are obviously meaningless. The fixed
effects model is a conditional model. The hazard ratio reflects the hazard
of infection of a rear versus a front udder quarter within the same cow.

4.3.4 Conclusions

The use of the fixed effects model is discouraged for the mastitis data and
other (infection) data consisting of many small clusters. The high number
of clusters that need to be added as fixed effects often causes computa-
tional problems in the software packages due to insufficient memory making
it impossible to fit the fixed effects model. If the fitting of the model is
successful, parameter estimates can be strange and interpretation should
be careful. For example, the parameter λ of the Weibull distribution only
corresponds to the first cow. If the observations of all the udder quarters of
this cow are censored, this parameter can not be estimated. However, most
software packages still provide a (senseless) estimate for this parameter and
its standard error. It is further impossible to obtain parameter estimates
for cow level covariates because there is complete confounding between the
cow fixed effects and the cow level covariates. But still, statistical software
packages provide a senseless estimate for these effects. Finally, estimable
fixed effects need to be interpreted at a conditional level.
A more valuable alternative for the fixed effects model is the marginal model.
Parameter estimates are consistent and consistent estimators of the variance
are available or the grouped jackknife technique can be used to obtain con-
sistent variance estimates. However, the techniques to obtain consistent
variance estimates are not available in SAS or SPlus/R. The use of correct
variances is important in order to draw correct conclusions concerning the
covariate effects. The marginal model does not provide an estimate of the
strength of the clustering in the data, but if interest is only in the covariate
effects, the use of the marginal model is recommended. It is applicable for
data sets consisting of variable cluster sizes and the number of clusters is
no restriction. Finally, the interpretation of the covariate effects is at the
marginal level.
If interest is also in the strength of the clustering in the data, the cop-
ula model should be used. Copula models can only be used when cluster
sizes are equal and preferably small. Another important drawback of copula
models for interval-censored data at the moment is the necessity to use a
two-stage procedure. In the first stage the interval-censored nature of the
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data is taken into account when fitting a marginal model to the data, but
in the second stage imputation of, for example, the midpoint as an exact
event time is necessary because only the likelihood for right-censored data
is available in the literature (Massonnet et al., 2009). In the next section
this problem is solved by describing the construction of the likelihood for
the fourdimensional copula model for interval-censored data.

4.4 A fourdimensional copula model for interval-
censored data

In the previous section a copula model is fitted to fourdimensional interval-
censored data by a two-stage procedure. In the first stage, a univariate
marginal model for interval-censored data is used to obtain estimates for
the marginal survival functions. In the second stage however, the estimated
marginal survival functions are plugged in a likelihood expression for right-
censored data. The midpoint of the interval is then used as an exact event
time in case of an event. This method only accounts for the interval-censored
nature of the data in the first stage.
Sun et al. (2006) propose a two-stage estimation procedure to estimate the
correlation when bivariate interval-censored event time data are available. In
both stages the interval-censored nature of the data is accounted for. In the
first stage the marginal survival functions are estimated nonparametrically
and then θ is estimated by maximizing the loglikelihood with the marginal
survival functions replaced by their estimates in the second stage. They
proof that under certain regularity conditions θ̂ is consistent and asymp-
totically normal. They give a consistent estimator for the variance of θ̂,
but since the calculation of this estimator could be very technically involved
they propose to use the bootstrap procedure for variance estimation.
In this section we will extend their approach to the fourdimensional case,
but since we only consider parametric marginal survival functions, a one-
stage estimation procedure can be used.

4.4.1 Construction of the likelihood

Bivariate data

For bivariate data that can be right- or interval-censored the likelihood con-
sists of four different possible contributions, depending on the censoring
status of the two subjects in the cluster (Sun et al., 2006). A cluster with
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two interval-censored observations has contribution

Li,p1,1q “ P pli1 ď Ti1 ď ui1, li2 ď Ti2 ď ui2q
“ P pli1 ď Ti1 ď ui1, Ti2 ě li2q ´ P pli1 ď Ti1 ď ui1, Ti2 ě ui2q
“ P pTi1 ě li1, Ti2 ě li2q ´ P pTi1 ě ui1, Ti2 ě li2q

´P pTi1 ě li1, Ti2 ě ui2q ` P pTi1 ě ui1, Ti2 ě ui2q
“ Spli1, li2q ´ Spui1, li2q ´ Spli1, ui2q ` Spui1, ui2q
“ Cθ pS1pli1q, S2pli2qq ´ Cθ pS1pui1q, S2pli2qq

´Cθ pS1pli1q, S2pui2qq ` Cθ pS1pui1q, S2pui2qq .

Figure 4.2 depicts P pli1 ď Ti1 ď ui1, li2 ď Ti2 ď ui2q in a twodimensional
plot. Figure 4.3 shows how this chance is constructed. The top left panel
represents P pTi1 ě li1, Ti2 ě li2q, the top right panel illustrates the subtrac-
tion of P pTi1 ě ui1, Ti2 ě li2q, the bottom left panel shows the subtrac-
tion of P pTi1 ě li1, Ti2 ě ui2q and the bottom right panel illustrates that
P pTi1 ě ui1, Ti2 ě ui2q needs to be added again since this part was sub-
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Figure 4.2: Visual representation of the likelihood contribution of a cluster
with two interval-censored observations for the copula model in a twodimen-
sional plot.
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tracted twice. The contribution of a cluster where the first observation is

T1

T
2

l1 u1

l2

u2

T1

T
2

l1 u1

l2

u2

T1

T
2

l1 u1

l2

u2

T1

T
2

l1 u1

l2

u2

Figure 4.3: Visual representation of the construction of the likelihood con-
tribution of a cluster with two interval-censored observations for the copula
model in a twodimensional plot.
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interval-censored and the second observation is right-censored is

Li,p1,0q “ P pli1 ď Ti1 ď ui1, Ti2 ě li2q
“ P pTi1 ě li1, Ti2 ě li2q ´ P pTi1 ě ui1, Ti2 ě li2q
“ Spli1, li2q ´ Spui1, li2q
“ Cθ pS1pli1q, S2pli2qq ´ Cθ pS1pui1q, S2pli2qq .

The contribution of a cluster where the first observation is right-censored
and the second observation is interval-censored is

Li,p0,1q “ P pTi1 ě li1, li2 ď Ti2 ď ui2q
“ P pTi1 ě li1, Ti2 ě li2q ´ P pTi1 ě li1, Ti2 ě ui2q
“ Spli1, li2q ´ Spli1, ui2q
“ Cθ pS1pli1q, S2pli2qq ´ Cθ pS1pli1q, S2pui2qq .

A cluster with two right-censored observations has contribution

Li,p0,0q “ P pTi1 ě li1, Ti2 ě li2q
“ Spli1, li2q
“ Cθ pS1pli1q, S2pli2qq .

In the contributions above Spr, sq is the joint marginal survival function, the
lower bound of the interval is used as the censoring time for a right-censored
observation. In the copula model the joint marginal survival function is
a copula function Cθpv1, v2q with arguments pv1, v2q the marginal survival
functions S1prq and S2psq.
The loglikelihood is then given by

logLpζq “
kÿ

i“1

„
p1 ´ δi1qp1 ´ δi2q logLip0,0qpli1, li2q

`δi1p1 ´ δi2q logLip1,0qpli1, li2, ui1q
`p1 ´ δi1qδi2 logLip0,1qpli1, li2, ui2q

`δi1δi2 logLip1,1qpli1, li2, ui1, ui2q

,

with ζ “ pξ, θ,β), ξ containing the parameters of the baseline hazard, k the
number of clusters, δij , j “ 1, 2 equal to 1 if the jth observation of the ith

pair is interval-censored and equal to 0 if the jth observation of the ith pair
is right-censored.
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Trivariate data

We will first describe the construction of the different likelihood contribu-
tions for the trivariate copula model for interval-censored data in order to
keep formulae surveyable. The construction of the different likelihood con-
tributions for the fourdimensional copula model for interval-censored data
can be obtained in a similar way. The likelihood for trivariate data that can
be right- or interval-censored consists of eight different possible contribu-
tions, depending on the censoring status of the three subjects in the cluster.
A cluster with three interval-censored observations has contribution

Li,p1,1,1q “ P pli1 ď Ti1 ď ui1, li2 ď Ti2 ď ui2, li3 ď Ti3 ď ui3q
“ P pli1 ď Ti1 ď ui1, li2 ď Ti2 ď ui2, Ti3 ě li3q

´P pli1 ď Ti1 ď ui1, li2 ď Ti2 ď ui2, Ti3 ě ui3q . (4.4)

The first term in the right hand side of (4.4) is equal to

P pli1 ď Ti1 ď ui1, Ti2 ě li2, Ti3 ě li3q
´P pli1 ď Ti1 ď ui1, Ti2 ě ui2, Ti3 ě li3q ,

which is equal to

P pTi1 ě li1, Ti2 ě li2, Ti3 ě li3q ´ P pTi1 ě ui1, Ti2 ě li2, Ti3 ě li3q
´P pTi1 ě li1, Ti2 ě ui2, Ti3 ě li3q ` P pTi1 ě ui1, Ti2 ě ui2, Ti3 ě li3q .

The second term in the right hand side of (4.4) is equal to

P pli1 ď Ti1 ď ui1, Ti2 ě li2, Ti3 ě ui3q
´P pli1 ď Ti1 ď ui1, Ti2 ě ui2, Ti3 ě ui3q ,

which is equal to

P pTi1 ě li1, Ti2 ě li2, Ti3 ě ui3q ´ P pTi1 ě ui1, Ti2 ě li2, Ti3 ě ui3q
´P pTi1 ě li1, Ti2 ě ui2, Ti3 ě ui3q ` P pTi1 ě ui1, Ti2 ě ui2, Ti3 ě ui3q .

Bringing all the terms together, the contribution for a cluster with three
interval-censored observations is

Li,p1,1,1q “ Spli1, li2, li3q ´ Spui1, li2, li3q ´ Spli1, ui2, li3q ` Spui1, ui2, li3q
´Spli1, li2, ui3q ` Spui1, li2, ui3q ` Spli1, ui2, ui3q ´ Spui1, ui2, ui3q
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or in terms of the copula

Li,p1,1,1q “ Cθ pS1pli1q, S2pli2q, S3pli3qq ´ Cθ pS1pui1q, S2pli2q, S3pli3qq
´Cθ pS1pli1q, S2pui2q, S3pli3qq ` Cθ pS1pui1q, S2pui2q, S3pli3qq
´Cθ pS1pli1q, S2pli2q, S3pui3qq ` Cθ pS1pui1q, S2pli2q, S3pui3qq
`Cθ pS1pli1q, S2pui2q, S3pui3qq ´ Cθ pS1pui1q, S2pui2q, S3pui3qq .

The contribution of a cluster with two interval-censored observations (obser-
vation one and two) and one right-censored observation (observation three)
is

Li,p1,1,0q “ P pli1 ď Ti1 ď ui1, li2 ď Ti2 ď ui2, Ti3 ě li3q
“ P pli1 ď Ti1 ď ui1, Ti2 ě li2, Ti3 ě li3q

´P pli1 ď Ti1 ď ui1, Ti2 ě ui2, Ti3 ě li3q . (4.5)

The first term in the right hand side of (4.5) is equal to

P pTi1 ě li1, Ti2 ě li2, Ti3 ě li3q ´ P pTi1 ě ui1, Ti2 ě li2, Ti3 ě li3q .

The second term in the right hand side of (4.5) is equal to

P pTi1 ě li1, Ti2 ě ui2, Ti3 ě li3q ´ P pTi1 ě ui1, Ti2 ě ui2, Ti3 ě li3q .

Bringing all the terms together, the contribution for a cluster with two
interval-censored observations (observation 1 and 2) and one right-censored
observation (observation 3) is

Li,p1,1,0q “ Spli1, li2, li3q ´ Spui1, li2, li3q ´ Spli1, ui2, li3q ` Spui1, ui2, li3q
“ Cθ pS1pli1q, S2pli2q, S3pli3qq ´ Cθ pS1pui1q, S2pli2q, S3pli3qq

´Cθ pS1pli1q, S2pui2q, S3pli3qq ` Cθ pS1pui1q, S2pui2q, S3pli3qq .

The contributions where the first or second observation is right-censored
and the other observations are interval-censored can be derived in a similar
way. The contribution of a cluster with one interval-censored observation
(observation one) and two right-censored observations (observations two and
three) is

Li,p1,0,0q “ P pli1 ď Ti1 ď ui1, Ti2 ě li2, Ti3 ě li3q
“ P pTi1 ě li1, Ti2 ě li2, Ti3 ě li3q

´P pTi1 ě ui1, Ti2 ě li2, Ti3 ě li3q
“ Spli1, li2, li3qq ´ Spui1, li2, li3q
“ Cθ pS1pli1q, S2pli2q, S3pli3qq ´ Cθ pS1pui1q, S2pli2q, S3pli3qq .
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The contributions where the second or third observation is interval-censored
and the other observations are right-censored can be derived in a similar way.
A cluster with three right-censored observations has contribution

Li,p0,0,0q “ P pTi1 ě li1, Ti2 ě li2, Ti3 ě li3q
“ Spli1, li2, li3q
“ Cθ pS1pli1q, S2pli2q, S3pli3qq .

In the contributions above Spq, r, sq is the joint marginal survival func-
tion, the lower bound of the interval is used as the censoring time for a
right-censored observation. In the copula model the joint marginal survival
function is a copula function Cθpv1, v2, v3q with arguments pv1, v2, v3q the
marginal survival functions S1pqq, S2prq and S3psq. The loglikelihood con-
sists of eight terms, representing the eight possible censoring configurations
for trivariate data.

Fourdimensional data

The same reasoning can be applied in four dimensions. The likelihood for
right- and interval-censored data consists of 16 contributions. Four contribu-
tions represent the case where one of the observations in a cluster is interval-
censored and the others are right-censored (Li,p1,0,0,0q, Li,p0,1,0,0q, Li,p0,0,1,0q

and Li,p0,0,0,1q), six contributions represent the case where two of the obser-
vations are interval-censored and the others are right-censored (Li,p1,1,0,0q,
Li,p1,0,1,0q, Li,p1,0,0,1q, Li,p0,1,1,0q, Li,p0,1,0,1q and Li,p0,0,1,1q), four contributions
represent the case where one of the observations is right-censored and the
others are interval-censored (Li,p1,1,1,0q, Li,p1,1,0,1q, Li,p1,0,1,1q and Li,p0,1,1,1q),
one contribution stands for four right-censored observations (Li,p0,0,0,0q) and
one contribution depicts four interval-censored observations (Li,p1,1,1,1q). The
contributions are given by

Li,p1,1,1,1q “ P pli1 ď T1 ď ui1, li2 ď T2 ď ui2, li3 ď T3 ď ui3, li4 ď T4 ď ui4q
“ Spli1, li2, li3, li4q ´ Spui1, li2, li3, li4q ´ Spli1, ui2, li3, li4q ` Spui1, ui2, li3, li4q
´Spli1, li2, ui3, li4q`Spui1, li2, ui3, li4q`Spli1, ui2, ui3, li4q´Spui1, ui2, ui3, li4q
´Spli1, li2, li3, ui4q`Spui1, li2, li3, ui4q`Spli1, ui2, li3, ui4q´Spui1, ui2, li3, ui4q
`Spli1, li2, ui3, ui4q´Spui1, li2, ui3, ui4q´Spli1, ui2, ui3, ui4q`Spui1, ui2, ui3, ui4q

for a cluster with four interval-censored observations.
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Li,p1,1,1,0q “ P pli1 ď T1 ď ui1, li2 ď T2 ď ui2, li3 ď T3 ď ui3, ui4 ď T4q

“ Spli1, li2, li3, li4q ´ Spui1, li2, li3, li4q ´ Spli1, ui2, li3, li4q ` Spui1, ui2, li3, li4q

´Spli1, li2, ui3, li4q`Spui1, li2, ui3, li4q`Spli1, ui2, ui3, li4q´Spui1, ui2, ui3, li4q

for a cluster where the first three observations are interval-censored and
the fourth observation is right-censored. The contributions for the other
scenarios where one observation is right-censored can be obtained in a sim-
ilar way.

Li,p1,1,0,0q “ P pli1 ď T1 ď ui1, li2 ď T2 ď ui2, li3 ď T3, li4 ď T4q

“ Spli1, li2, li3, li4q ´ Spui1, li2, li3, li4q ´ Spli1, ui2, li3, li4q ` Spui1, ui2, li3, li4q

for a cluster where the first two observations are interval-censored and the
third and fourth observation is right-censored. The contributions for the
other scenarios where two observations are interval-censored can be obtained
in a similar way.

Li,p1,0,0,0q “ P pli1 ď T1 ď ui1, li2 ď T2, li3 ď T3, li4 ď T4q
“ Spli1, li2, li3, li4q ´ Spui1, li2, li3, li4q

for a cluster where the first observation is interval-censored and the other
observations are right-censored. The contributions for the other scenarios
where one observation is interval-censored can be obtained in a similar way.

Li,p0,0,0,0q “ P pli1 ď T1, li2 ď T2, li3 ď T3, li4 ď T4q
“ Spli1, li2, li3, li4q.

for a cluster with four right-censored observations. To write down the log-
likelihood, we first introduce some additional notation, analogue to the no-
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tation in Massonnet et al. (2009).

∆i “
4ź

j“1

p1 ´ δijq

∆ipjq “ δij

4ź

k“1;k‰j

p1 ´ δikq

∆ipj, kq “ δijδik

4ź

l“1;l‰j,k

p1 ´ δilq, j ‰ k

∆ipj, k, lq “ δijδikδilp1 ´ δimq, m ‰ j, k, l; j ‰ k, j ‰ l, k ‰ l

∆ip1, 2, 3, 4q “
4ź

j“1

δij , (4.6)

with δij equal to 1 if the jth observation of the ith cluster is interval-censored
and equal to 0 if the jth observation of the ith cluster is right-censored.
δik, δil, δim are defined similarly. The joint marginal survival functions
Spp, q, r, sq in the contributions above can now be replaced by a copula
function Cθpv1, v2, v3, v4q with arguments pv1, v2, v3, v4q the marginal sur-
vival functions S1ppq, S2pqq, S3prq and S4psq. The lower bound of the in-
terval is used as the censoring time for a right-censored observation. The
loglikelihood is then given by

logLpζq “
kÿ

i“1

«
∆i logLi,δipli1, li2, li3, li4q

`
4ÿ

j“1

r∆ipjq logLi,δipli1, li2, li3, li4, uijqs

`
ÿ

j‰k

r∆ipj, kq logLi,δipli1, li2, li3, li4, uij , uikqs

`
ÿ

j‰k,j‰l,k‰l

r∆ipj, k, lq logLi,δipli1, li2, li3, li4, uij , uik, uilqs

`∆ip1, 2, 3, 4q logLi,δipli1, li2, li3, li4, ui1, ui2, ui3, ui4q
ff
,

with ζ “ pξ, θ,β), ξ containing the parameters of the baseline hazard,
δi “ pδi1, δi2, δi3, δi4q, and k the number of clusters. If a parametric dis-
tribution is chosen for the marginal survival functions, maximum likelihood
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estimates can be obtained by maximizing this loglikelihood in a one-stage
estimation approach using, for instance, the Newton Raphson procedure.
Standard errors are obtained by taking the inverse of the Hessian matrix at
the end of the optimization procedure.
In general, for a cluster with n members, there are 2n contributions in the
loglikelihood depending on the censoring status of the n members in the
cluster. Moreover, the contribution representing n interval-censored ob-
servations also consists of 2n terms. The contributions representing n ´ l

interval-censored observations, consist of 2n´l terms, l “ 1, . . . , n. There-
fore, the loglikelihood becomes complex with increasing cluster size and its
practical use is limited to lower cluster sizes.

4.4.2 Analysis of the mastitis data

To analyze the mastitis data the following copula function for fourdimen-
sional data is used

S pt1, t2, t3, t4q “
”
tS1pt1qu´θ ` tS2pt2qu´θ

` tS3pt3qu´θ ` tS4pt4qu´θ ´ 3
ı´1{θ

.

A Weibull distribution is assumed for the marginal survival functions. The
program is written in R. Parameter estimates and their standard errors
obtained in the proposed model are given in Table 4.2. The rear udder
quarters have a significantly higher hazard of infection than the front udder
quarters for Staph. aureus, with HR = 1.32 (95% CI [1.05;1.66]), but a
significantly lower hazard rate for the rear udder quarters is observed for C.
bovis, with HR = 0.86 (95% CI [0.82;0.91]). For the two other bacteria, no
significant differences were found, with the hazard ratio equal to 1.40 (95%
CI [0.93;2.12]) for Strep. dysgalactiae and to 1.16 (95% CI [0.89;1.51]) for
Strep. uberis. The hazard of infection for multiparous cows was significantly
higher compared to heifers for C. bovis (HR = 1.41, 95% CI [1.23;1.61]) and
Strep. uberis (HR = 2.18, 95% CI [1.37;3.45]). The hazard of infection for
multiparous cows was also higher compared to heifers for Staph. aureus (HR
= 1.24, 95% CI [0.87;1.76]) and Strep. dysgalactiae (HR = 1.11, 95% CI
[0.67;1.82]), but not significantly.
The estimate for θ is 5.084 (0.830) for Staph. aureus, 3.244 (0.186) for C. bo-
vis, 3.022 (1.266) for Strep. dysgalactiae and 5.033 (0.953) for Strep. uberis,
with values of Kendall’s τ equal to 0.72, 0.62, 0.60 and 0.72, respectively.
The estimates obtained in the one-stage copula model are similar to the ones
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obtained in the two-stage approach in which imputation of the midpoint was
used in the second stage.

Table 4.2: Parameter estimates (Est) and their standard errors (SE) for
the one-stage parametric copula model for fourdimensional interval-censored
data with parity (with βp the effect of a multiparous cow) and udder quarter
location (with βl the effect of a rear udder quarter) as covariates and Weibull
baseline hazard for infection with either Staphylococcus aureus, Corynebac-
terium bovis, Streptococcus dysgalactiae or Streptococcus uberis.

Para- Staphylococ- Corynebacte- Streptococcus Streptococ-
meter cus aureus rium bovis dysgalactiae cus uberis

Est(SE) Est(SE) Est(SE) Est(SE)

θ 5.084 (0.830) 3.244 (0.186) 3.022 (1.266) 5.033 (0.953)
λ 0.013 (0.002) 0.117 (0.008) 0.005 (0.002) 0.007 (0.002)
γ 1.009 (0.065) 1.261 (0.031) 1.005 (0.104) 1.039 (0.076)
βl 0.278 (0.118) -0.149 (0.027) 0.338 (0.210) 0.147 (0.135)
βp 0.215 (0.180) 0.341 (0.068) 0.102 (0.253) 0.778 (0.235)

4.5 Conclusions

In this chapter we described some statistical techniques to model clustered,
interval-censored data, available in commercial software packages. Only
parametric models are considered, nonparametric and semiparametric mod-
els are much more complicated for interval-censored data. Some advantages
and disadvantages of the different models are discussed. Especially in the
fixed effects model caution is needed when introducing covariates at the clus-
ter level because of the problem of confounding. It is important to interpret
the hazard ratio correctly in the different models. In the marginal model
and the copula model the hazard ratio represents the hazard of infection
for a randomly chosen rear udder quarter versus the hazard of infection for
a randomly chosen front udder quarter from whatever other cow. On the
other hand, the fixed effects model is a conditional model. The hazard ratio
reflects the hazard of infection of a rear versus a front udder quarter within
the same cow. The copula model is the only model that provides an estimate
for the clustering in the data. The different techniques were applied to the
mastitis data, investigating the effect of covariates at the cow level and the
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effect of covariates at the udder quarter level.
We also described an extension of the fourdimensional copula model for
right-censored data to data that can be right-censored and interval-censored.
In general the number of possible contributions in this likelihood is equal to
2n with n the number of members in a cluster. Also, the number of terms
in a contribution for a cluster with n interval-censored observations is equal
to 2n. Therefore, the likelihood becomes complex with increasing cluster
size. It is recommended to restrict the use of the copula model for interval-
censored data to lower dimensions. Application of this model to the mastitis
data gives similar results as the copula model with midpoint imputation in
the second stage.
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5.1 Introduction

The most common and widely used survival analysis models are developed
for independent, right-censored data. However, ordinary survival analysis
techniques often need to be extended due to the particular data structure.
The methodology presented in this chapter was especially developed for the
mastitis data set, introduced in Section 1.9.2. This data set has two char-
acteristics that require extension of the currently available survival analysis
techniques if they have to be dealt with simultaneously. First, the data
are hierarchically structured, with observation units (the udder quarters)
grouped in clusters (the cow), so that the event times within a cow can
not be assumed to be independent (Adkinson et al., 1993). Second, since
the udder quarters are sampled only approximately monthly, the time to
infection is not known exactly; it is only known that the infection happened
between the last visit with a negative test and the first visit with a positive
test, therefore, the infection time is interval-censored.
To handle the problem of interdependence for right-censored observations
different models have been suggested among which the frailty model (see
Section 1.7) is often used. For the analysis of independent interval-censored
data a number of inferential techniques have been described (see Section
4.2). But analysis methods for settings where observations are at the same
time correlated and interval-censored received less attention. Chapter 4
reviewed some methods available in commercial software packages and dis-
cussed their advantages and disadvantages. A fourdimensional one-stage
copula model for interval-censored data was also described. Bellamy et al.
(2004) proposed a method to fit clustered interval-censored data assuming
a normal distribution for the random effect and integrating out the random
effects numerically using Gaussian Quadrature. For more details on the
model proposed by Bellamy et al. (2004) see Section 5.3.
In this chapter we propose an extension of the parametric shared gamma
frailty model to interval-censored data. We show that a closed form ex-
pression of the marginal likelihood can be obtained by integrating out the
gamma-distributed frailties, which can then be maximized to obtain param-
eter estimates. Variance estimates are obtained from the observed informa-
tion matrix.
The technique allows the inclusion of covariates in the model. We want to
investigate the effect of covariates that change within cow (e.g. front and
rear udder quarters) and covariates that change between cows (e.g. parity,
i.e., the number of previous calvings). But it also provides an estimate of
the correlation between udder infection times within a cow, which is of in-
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terest because it is a measure of the infectivity of the agent which causes
the disease (Barkema et al., 1997).
The details on the model are given in Section 5.2. In Section 5.3 we illus-
trate the approach by analyzing the mastitis data. The performance of the
method is evaluated based on a simulation study, presented in Section 5.4.
Conclusions are given in the last section.

5.2 The parametric shared gamma frailty model
with interval-censored data

We consider the following proportional hazard frailty model (see also Section
1.7.2)

hijptq “ h0ptqzi exp
`
xt
ijβ

˘
, i “ 1, . . . , k, j “ 1, . . . , ni (5.1)

with hijptq the hazard at time t for udder quarter j of cow i, h0ptq the
baseline hazard at time t, xij the vector of covariates for the corresponding
udder quarter and β the vector of covariate effects. We further assume that
the frailties z1, . . . , zk are independent realizations from a one-parameter
gamma distribution with mean one and variance θ (see (1.9)).
The udder quarter infection times in the mastitis study are either right-
censored or interval-censored. Cluster i consists of ni “ 4 observations (one
observation per udder quarter) of which ri are right-censored and di are
interval-censored. We write Rij to denote the right-censored infection time
for udder quarter j of cow i. If the information on the infection time is
subject to interval censoring we denote the lower and upper bound of the
interval as Lij and Uij . Per cluster we define two sets of indices according
to whether the infection time is right-censored or interval-censored:

Ri “ tj P t1, 2, 3, 4u : Tij ą Riju
Di “ tj P t1, 2, 3, 4u : Lij ă Tij ď Uiju ,

with Ri XDi “ φ and Ri YDi “ t1, 2, 3, 4u and Tij the unobservable infec-
tion time.
Assuming that the censoring process is not informative for the survival pro-
cess (see Section 1.4.2) the conditional data likelihood contribution for clus-
ter i consists of the product of differences of the conditional survival func-
tions evaluated at the observed lower and upper time point for the interval-
censored quarters and of the conditional survival function evaluated at the
censoring time for the right-censored quarters

Li pθ, ξ,β | ziq “
ź

jPRi

SijpRijq
ź

jPDi

tSijpLijq ´ SijpUijqu ,
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which results in

Li pθ, ξ,β | ziq “ exp

#
´

ÿ

jPRi

HijpRijq
+

ˆ
ź

jPDi

rexp t´HijpLijqu ´ exp t´HijpUijqus

“ exp p´ziCiq ˆ
ź

jPDi

 
exp

`
´ziL˚

ij

˘
´ exp

`
´ziU˚

ij

˘(
, (5.2)

where ξ contains the parameters of the baseline hazard,

Hijp.q “ H0p.qzi exp
´
xt
ijβ

¯
, Ci “ ř

jPRi
H0 pRijq exp

´
xt
ijβ

¯
,

L˚
ij “ H0 pLijq exp

´
xt
ijβ

¯
and U˚

ij “ H0 pUijq exp
´
xt
ijβ

¯
, with H0p.q the

cumulative baseline hazard.
To be able to write down the product in the second factor of p5.2q in a
general way, we define the following column vector ai of length 2di with di
the number of elements in Di

ai “ pcaikq2dik“1 “
â

jPDi

ˆ
expp´ziL˚

ijq
´ expp´ziU˚

ijq

˙
,

where
Â

jPDi
represents the Kronecker product of the vectors´

exp
´

´ziL˚
ij

¯
,´ exp

´
´ziU˚

ij

¯¯t

, j P Di. The first element of this column

vector, for example, is exp
´

´zi
ř

jPDi
L˚
ij

¯
. The last element is

˘ exp
´

´zi
ř

jPDi
U˚
ij

¯
with a positive sign if the number of U˚

ij ’s in the sum

of the exponent is even and a negative sign if the number is odd. The
number of U˚

ij ’s in aik will be denoted as nik.
Expression (5.2) can then be rewritten as

Li pθ, ξ,β | ziq “ exp p´ziCiq

¨
˝

2diÿ

k“1

aik

˛
‚.

This expression still contains the unobserved frailty term zi. We can however
integrate out the frailty term which is assumed to have the gamma density
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(1.9). We then obtain the marginal likelihood

Li pθ, ξ,βq “
ż 8

0

z
p1{θ´1q
i exp p´zi{θq

θ1{θΓp1{θq exp p´ziCiq

¨
˝

2diÿ

k“1

aik

˛
‚dzi

“ 1

θ1{θΓp1{θq

2diÿ

k“1

ż 8

0

z
p1{θ´1q
i exp

"
´zi

ˆ
Ci ` 1

θ

˙*
aikdzi

“
2diÿ

k“1

p´1qnik

`
Ci ` 1

θ
` log pik

˘1{θ
θ1{θ

,

with pi the column vector:

pi “ pcpikq2dik“1 “
â

jPDi

ˆ
exppL˚

ijq
exppU˚

ijq

˙
.

To obtain the full marginal likelihood pLq we take the product of the k
cluster-specific marginal likelihoods

śk
i“1 Lipθ, ξ,βq. Maximum likelihood

estimates can then be obtained by maximizing the full marginal likelihood
using, for instance, the Newton Raphson procedure. As the second par-
tial derivatives can be obtained for all parameters in the model (see the
Appendix), an explicit expression for the information matrix is available,
from which an estimate of the asymptotic variance-covariance matrix can
be obtained. Different distributional assumptions for the baseline hazard
are possible as will be discussed in the next section.

5.3 Analysis of the mastitis data

The proposed method will now be applied to the time to infection with C.
bovis data set. 39.28% of the udder quarters were infected with C. bovis
during the lactation period. We will investigate the effect of parity on the
time to infection with C. bovis, which is a covariate at the cow level. Three
categories will be considered: (i) primiparous cows (one calving, parity =
0), (ii) cows with between two and four calvings (parity = 1) and (iii) cows
with more than four calvings (parity = 2). We have to categorize due to
the fact that for some of the levels of parity only a small number of cows
is available. We will also investigate whether there is a difference between
front and rear udder quarters regarding to the time to infection with C.
bovis. The location of the udder quarter (front or rear) is an udder quarter
level covariate and thus changes within the cow.
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Different choices of the distributional assumption for the baseline hazard are
possible (Klein, 1992). Because of its mathematical simplicity we first look at
the exponential distribution with constant hazard function h0ptq “ λ. As a
constant hazard rate is probably not realistic in describing the time to intra-
mammary C. bovis infection, we look at the Weibull distribution with hazard
function h0ptq “ λγtγ´1. The hazard is monotone decreasing for γ ă 1 and
monotone increasing for γ ą 1 (see Section 1.5.1). We further consider an-
other two-parameter distribution, the loglogistic distribution with hazard
function h0ptq “ λγtγ´1{p1 ` λtγq. The numerator is the same as in the
Weibull hazard, but the denominator makes that the hazard is monotone
decreasing for γ ď 1 and for γ ą 1 the hazard increases initially to a maxi-
mum at time tpγ ´ 1q {λu1{γ and then decreases to zero as time approaches
infinity. The values of the loglikelihood are -6067.746 and -5651.909 for the
model with an exponential and Weibull hazard, respectively; the Weibull
distribution should definitely be preferred over the exponential (likelihood
ratio test, p-value ă 0.001). The comparison of the models with Weibull
and loglogistic baseline hazards is based on the Akaike Information Criterion
since these models are not nested within each other. To calculate the AIC
we use the standard formula AIC “ ´2 logL` 2 ˆ pnumber of parametersq
(Izumi and Ohtaki, 2004) . The AIC for the loglogistic and Weibull distribu-
tion are 11365.896 and 11315.818, respectively. Therefore, we will proceed
with the Weibull distribution.
In order to assess the validity of the gamma frailty model with Weibull
baseline hazard, we compare the marginal survival functions obtained by
the nonparametric estimator for interval-censored data proposed by Turn-
bull (1976) (see Section 4.2.1) with the marginal survival function obtained
from the gamma frailty model with Weibull baseline hazard. Figure 5.1
shows that for all possible combinations of the covariate levels for parity
(category 0, 1 or 2) and udder quarter location (front or rear) the marginal
survival function from the gamma frailty model follows the nonparametric
estimate closely.
The parameter estimates obtained from the method proposed in the previous
section with Weibull baseline hazard are shown in the first column of Table
5.1. Parameter estimates are obtained using infection times in terms of
quarters of a year rather than days to avoid too small values for the estimate
of λ. The parameter estimate λ̂ referring to hazard rates in terms of quarters
of a year can be back-transformed to the parameter corresponding to the
daily hazard rate λ̂d using λd “ λ ˆ p91.31q´γ . For the figures and the
interpretation in the text, we make use of the rescale to days to make the
interpretation easier.
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Table 5.1: Parameter estimates (Est) and their standard errors (SE) for a
gamma frailty model with parity (with β̂p1 the effect of parity category 1

and β̂p2 the effect of parity category 2) and udder quarter location (with

β̂l the effect of the rear udder quarter) as covariates and Weibull baseline
hazard. Results are shown for the proposed method (exact), midpoint and
upper bound of the interval as exact event times and Gaussian Quadrature
(lognormal frailties).

Exact Midpoint Upper bound Gaussian Quadrature
Est (SE) Est (SE) Est (SE) Est (SE)

θ 3.820 (0.223) 3.823 (0.222) 3.751 (0.219) -
σ2 - - - 4.949 (0.362)
λ 0.137 (0.016) 0.138 (0.016) 0.084 (0.010) 0.023 (0.003)
γ 1.987 (0.042) 1.984 (0.040) 2.437 (0.049) 2.092 (0.045)
βl -0.277 (0.050) -0.276 (0.050) -0.277 (0.050) -0.279 (0.051)
βp1 0.756 (0.148) 0.756 (0.147) 0.763 (0.148) 0.693 (0.169)
βp2 1.309 (0.228) 1.307 (0.226) 1.334 (0.225) 1.244 (0.253)

The parameter estimate γ̂ is above 1, and the hazard is thus increasing with
time. The hazard ratio of cows with more than four calvings versus prim-
iparous cows (exppβ̂p2q) equals 3.7 (p-value ă 0.001) with 95% confidence
interval [2.37;5.79]. The hazard ratio of cows with two to four calvings ver-
sus primiparous cows (exppβ̂p1q) equals 2.13 (p-value ă 0.001) with 95%
confidence interval [1.59;2.85]. The hazard ratio of rear versus front udder
quarters (exppβ̂lq) is 0.76 (p-value ă 0.001) with 95% confidence interval
[0.69;0.84]. The estimate for θ is 3.82 (0.223). From this estimate, Kendall’s
tau can be obtained and is equal to 0.66. Thus, infection times within the
cow are highly correlated.
The proposed method is now compared to the naive method of imputing the
midpoint or the upper bound of the interval as exact event time. Although
using the midpoint gives us similar results (see Table 5.1), imputation of
the upper bound has a large effect on the parameter estimates λ̂ and γ̂. Es-
pecially the overestimation of γ is eye-catching and leads to a more rapidly
increasing hazard compared to the hazard obtained using imputation of mid-
point or using the exact method based on interval-censored data. This can
be seen clearly in Figure 5.2 in which the estimated hazard functions for
the three models for a front udder quarter of a primiparous cow with frailty
equal to one are depicted. The choice of the upper bound as exact event
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Figure 5.1: Estimated marginal survival functions for all possible combina-
tions of the covariate levels of parity (category 0, 1 or 2) and udder quarter
location (front or rear). The stepwise function corresponds to the nonpara-
metric estimate for interval-censored data (Turnbull, 1976), whereas the
continuous curve is obtained from the gamma frailty model with Weibull
baseline hazard.
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time makes that no events take place within the first 30 days after calving.
Therefore, the model based on imputation of the upper bound leads to
a faster increasing hazard function to accommodate for the fact that the
hazard rate should be as low as possible in the first 30 days.
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Figure 5.2: Estimated hazard functions from the gamma frailty model for
a front udder quarter of a primiparous cow with frailty equal to one, either
taking into account the interval censoring (Exact) or imputing the midpoint
(MP) or the upper bound (UB).

It is also interesting to compare our results with the estimates obtained
from the method proposed by Bellamy et al. (2004). In equation (5.1) the
frailty zi acts multiplicatively on the hazard rate and is gamma-distributed.
The model formulation in Bellamy et al. (2004) expresses the frailty term as
expwi with wi the random effect working additively on the log hazard rate
and assumes a normal distribution for the random effect (see Section 1.7.4).
In what follows we write θ for the variance of the frailty zi and σ

2 for the
variance of the random effect wi. We consider the following model

hijptq “ h0ptq exp pwiq exp
`
xt
ijβ

˘
, i “ 1, . . . , k, j “ 1, . . . , ni (5.3)

with h0ptq “ λγtγ´1 and wi „ N
`
0, σ2

˘
. Since a normal distribution is

assumed for the random effects wi, the frailties follow a lognormal distri-
bution and it is no longer possible to obtain a closed form expression for



5.3. ANALYSIS OF THE MASTITIS DATA 105

the marginal likelihood by integrating out the frailties exactly. So Bellamy
et al. (2004) used Gaussian Quadrature to integrate out the frailties and
then maximized the marginal likelihood. Compared to Bellamy et al. (2004)
we use the proportional hazards model representation (see Section 1.5.1) in-
stead of the accelerated failure time model representation (see Section 1.5.2).
With βl the effect of the rear udder quarter, βp1 the effect of the first parity
category and βp2 the effect of the second parity category, the parameter esti-

mates correspond to σ̂2 “ 4.949p0.362q, λ̂ “ 0.023p0.003q, γ̂ “ 2.092p0.045q,
β̂l “ ´0.279p0.051q, β̂p1 “ 0.693p0.169q and β̂p2 “ 1.244p0.253q.
It is not straightforward to compare the gamma frailty model (5.1) with
model (5.3) with normally distributed random effects. The frailties corre-
sponding to the random effects with mean equal to zero in the last model
do not have mean one. In this particular case, the mean is estimated by
exp

`
0.5σ̂2

˘
“ 11.88. Therefore, it is good practice to compare the two

models in terms of a medically relevant quantity such as the median time to
infection (M). Both the random effects model and the frailty model induce
heterogeneity in median time to infection between cows. The density func-
tion for the median time to infection in the gamma frailty model is given
by

fM pmq “ γ

¨
˝ log 2

θλ exp
´
xt
ijβ

¯

˛
‚
1{θ

1

Γ p1{θq

ˆ
1

m

˙1` γ
θ

exp

¨
˝´ log 2

θλmγ exp
´
xt
ijβ

¯

˛
‚.

In case of normally distributed random effects the density function for M is
(Legrand et al., 2005)

fM pmq “ γ

m
?
2πσ2

exp

»
–´ 1

2σ2

$
&
%log

¨
˝ log 2

mλ exp
´
xt
ijβ

¯

˛
‚

,
.
-

2fi
fl .

The two density functions for a front udder quarter of a primiparous cow
look rather similar (Figure 5.3), but compared to the model with normally
distributed random effects, the gamma frailty model assumes that the me-
dian times to infection are less skew to the right and, therefore, have a
somewhat higher peak at the more central median time to infection values.
As a comparison to the results obtained in Chapter 4 the proposed method
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Figure 5.3: Density functions for the median time to infection from the
frailty model with gamma and lognormal distributed frailty for the front
udder quarter of a primiparous cow.

was also fit to the infection with C. bovis, Staph. aureus, Strep. dysgalactiae
and Strep. uberis data sets with udder quarter location (front or rear) and
dichotomous parity (multiparous or primiparous) as covariates. Results are
given in Table 5.2.

The hazards of infection for the different bacteria are given in Figure 5.4
based on the frailty model and depicted for a cow with frailty equal to 1.
The hazard of infection is about 10 times higher for C. bovis compared
to the other bacteria. Furthermore, the hazard of infection continues to
increase for C. bovis until the end of the lactation period, whereas for the
other three bacteria, the hazard of infection levels off quickly to a constant
level where it remains. The fact that the hazard of infection increases over
time is reflected by the estimates of γ being all above 1. The rear udder
quarters have a significantly higher hazard of infection than the front udder
quarters for Staph. aureus, with HR = 1.40 (95% CI [1.08;1.83]), but a
significantly lower hazard rate for the rear udder quarters is observed for C.
bovis, with HR = 0.76 (95% CI [0.69;0.84]). For the two other bacteria, no
significant differences were found, with the hazard ratio equal to 1.42 (95%
CI [0.92;2.17]) for Strep. dysgalactiae and to 1.19 (95% CI [0.89;1.59]) for
Strep. uberis. The hazard of infection for multiparous cows was significantly
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Table 5.2: Parameter estimates (Est) and their standard errors (SE) for a
gamma frailty model with parity (with β̂p the effect of a multiparous cow)

and udder quarter location (with β̂l the effect of the rear udder quarter) as
covariates and Weibull baseline hazard for infection with either Staphylo-
coccus aureus, Corynebacterium bovis, Streptococcus dysgalactiae or Strep-
tococcus uberis.

Staphylococcus Corynebacterium Streptococcus Streptococcus
aureus bovis dysgalactiae uberis
Est (SE) Est (SE) Est (SE) Est (SE)

θ 5.575 (0.921) 3.842 (0.224) 3.305 (1.392) 5.791 (1.077)
λ 0.014 (0.003) 0.137 (0.016) 0.005 (0.002) 0.007 (0.002)
γ 1.109 (0.070) 1.984 (0.042) 1.029 (0.106) 1.125 (0.080)
βl 0.338 (0.135) -0.276 (0.050) 0.349 (0.218) 0.175 (0.148)
βp 0.238 (0.211) 0.867 (0.143) 0.110 (0.265) 0.888 (0.244)

higher compared to heifers for C. bovis (HR = 2.38, 95% CI [1.80;3.15]) and
Strep. uberis (HR = 2.43, 95% CI [1.51;3.92]). The hazard of infection
for multiparous cows was also higher compared to heifers for Staph. aureus
(HR = 1.27, 95% CI [0.84;1.92]) and Strep. dysgalactiae (HR = 1.12, 95%
CI [0.66;1.88]), but not significantly. Another important and interesting
parameter of the frailty model is the variance of the frailties θ . The variance
between cows is very high for all four bacteria. The highest estimate is
obtained for Strep. uberis with θ̂ “ 5.791p1.077q , followed by Staph. aureus
(θ̂ “ 5.575p0.921q), C. bovis (θ̂ “ 3.842p0.224q) and Strep. dysgalactiae
(θ̂ “ 3.305p1.392q).
Though the parameter estimates are consequently lower in the marginal
and copula models than in the frailty model for the C. bovis data set, the
conclusions concerning the significance of the covariates for the different
bacteria are the same in the frailty model and the marginal and copula
models. The fixed effects model will not be included in our comparison
since there are problems in estimating the covariate effects. The conclusions
concerning the hazard are also similar especially for Strep. dysgalactiae,
but some differences for C. bovis, Staph. aureus and Strep. uberis can be
noted. The estimate for γ in the C. bovis data set is smaller in the marginal
and copula models compared to the frailty model, leading to a less steeply
increasing hazard. The estimate for γ in the Staph. aureus and Strep.
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Figure 5.4: Estimated hazard functions for infection with either Staphylo-
coccus aureus, Corynebacterium bovis, Streptococcus dysgalactiae or Strep-
tococcus uberis based on the proposed frailty model for a cow with frailty
equal to 1.
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uberis data set is almost one in the marginal and copula models, leading to
an almost constant hazard. In all three models θ is largest for infection with
Staph. aureus and Strep. uberis.
Note that the introduction of the parity covariate has reduced the frailty
variance estimate θ . For instance, for Strep. uberis the frailty variance
estimate was equal to 6.322 without covariates. Thus the parity covariate
can explain part of the between cows variability. This is not the case for the
udder location covariate, as it is orthogonal to the frailty terms, meaning
that it is independent of the frailty terms and will not alter the estimates of
the frailty variance.

5.4 Simulation study

To evaluate the performance of the proposed methodology, a simulation
study was done. For the simulation study, we first took a random subset of
100 cows of the mastitis data set, looking at infection with any bacterium.
The true values for the simulation study then correspond to the parameter
estimates obtained by fitting the proposed model to this subset with a sin-
gle covariate, the udder location parameter. Using the same data structure
as the example subset, 1000 data sets consisting of 100 clusters each, with
four observations per cluster, were generated. The frailties (zi) were gener-
ated from the one-parameter gamma distribution (1.9) with Epziq “ 1 and
Varpziq “ θ “ 1.8. The data were simulated from the frailty model (5.1)
assuming Weibull distributed event times with scale parameter λ equal to
0.9, shape parameter γ equal to 1.9 and β equal to 0.2. A binary covariate
x takes the value 1 for the first two observations in a cluster and 0 for the
other two. The percentage of censoring in the data sets lies around 25%,
which is the percentage of censoring in the subset.
Asynchronous intervals of 30 days are generated around the simulated infec-
tion time as follows: the number of days a particular cow was in lactation
before the first visit was simulated from the uniform distribution with a
minimum of 1 and a maximum of 29. Visits are held at fixed time points
(0-30-60-90-....) but since each cow entered the study at a different moment,
namely the first day of its lactation, the endpoints of the intervals are ad-
justed to the number of days in lactation, so they can take any arbitrary
value. All cows are assumed to be infection-free at the start of their lac-
tation period, so if an udder quarter is already infected at the first visit,
it is assumed that the infection took place between the start of the cow’s
lactation period and the first visit. The end of the study was set at one
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year so that udder quarters with simulated infection time longer than one
year are right-censored. The upper bound of the last interval is used as the
censoring time.
For each of the 1000 data sets three models were fitted: the model proposed
in Section 5.2 using the interval-censored data and the two naive models
ignoring the interval censoring and imputing the midpoint or upper bound
as exact event time.
The mean of the 1000 obtained estimates for the parameters θ, λ, γ and β
is compared with the true value and differences between the three models
are investigated. Standard errors are obtained by taking the inverse of the
Hessian matrix at the end of the optimization procedure. The empirical
standard error obtained from the 1000 data sets is also calculated. Finally,
we also determine the coverage, defined as the percentage of the 1000 data
sets that contains the true population parameter within their 95 % confi-
dence interval.
The results of the simulation study suggest that the estimates obtained with
our proposed model and by imputation of the midpoint are close to the true
population parameters of interest (see Table 5.3). For the upper bound im-
putation, however, the estimate of λ is biased downward and the estimate of
γ upward. The coverage is good if the interval-censored nature of the data
is taken into account or if imputation of the midpoint is used. As can be
expected because of the large bias for λ and γ, coverages for these parame-
ters are unacceptable when the upper bound imputation is used. Based on
these simulations, it might seem that our new technique has no advantage
over imputation of the midpoint. However, this is not always the case. For
instance, consider the same simulation setting as before (λ “ 0.9, β “ 0.2,
θ “ 1.8, 30-day intervals) but change the value of the parameter γ to 0.5.
Changing the value of the parameter γ from 1.9 to 0.5 means that the haz-
ard is no longer increasing but decreasing over time. At the start of the
study all udder quarters are at risk and, in case of an increasing hazard, few
events take place in the beginning and a lot of udder quarters are still at
risk towards the end of the study when more events take place. Therefore,
a lot of information is available throughout the study and is used to obtain
parameter estimates. For a decreasing hazard (γ ă 1) a lot of events take
place in the beginning leaving only few udder quarters at risk near the end
of the study. So, when the interval-censored nature of the data is ignored in
this setting, there is not enough information left to obtain adequate param-
eter estimates. As can be seen in Table 5.3 the exact method performs well
in estimating all parameters including γ, but the techniques of imputing the
midpoint or upper bound both fail in estimating the parameter γ and im-
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Table 5.3: The averages of estimated model parameters (Est), the empirical
standard error (Emp SE) and coverage (Cov) from 1000 simulated data
sets using the proposed method (Exact), midpoint and upper bound of the
interval as exact event times. True values for the parameters are given by
λ “ 0.9, β “ 0.2, θ “ 1.8 and γ “ 1.9 or 0.5 for the first resp. the second
part of the table

Exact Midpoint Upper bound
Est (Emp SE, Cov) Est (Emp SE, Cov) Est (Emp SE, Cov)

γ “ 1.9

λ̂ 0.896 (0.156, 93.6) 0.881 (0.151, 92.4) 0.596 (0.101, 21.5)
γ̂ 1.900 (0.104, 93.7) 1.887 (0.095, 93.9) 2.267 (0.115, 6.3)

β̂ 0.202 (0.124, 93.6) 0.198 (0.121, 94.1) 0.206 (0.126, 93.4)

θ̂ 1.804 (0.285, 94.3) 1.760 (0.276, 93.1) 1.882 (0.286, 96.3)

γ “ 0.5

λ̂ 0.917 (0.170, 94.5) 0.878 (0.181, 90.0) 0.709 (0.139, 62.1)
γ̂ 0.492 (0.039, 94.2) 0.735 (0.045, 0.0) 0.881 (0.056, 0.0)

β̂ 0.199 (0.145, 95.3) 0.212 (0.156, 93.4) 0.211 (0.156, 93.5)

θ̂ 1.842 (0.359, 92.7) 2.141 (0.397, 89.7) 2.156 (0.398, 89.3)

putation also performs worse compared to the exact method in estimating
the other parameters.
Situations in which censoring intervals are broader are also investigated.
Therefore, intervals of width 60, 90 and 120 days are generated around the
simulated infection times in the same manner as before. Figure 5.5 shows
what happens with the estimates of the four model parameters when inter-
vals become broader for the exact technique (empty box) and the midpoint
imputation method (shaded box). The dashed horizontal line represents the
true value of the parameter. The box represents the inter-quartile range and
the solid line the median of the 1000 simulated data sets. The whiskers are
drawn to the nearest value not beyond 1.5 times the inter-quartile range.
It can be seen that the exact method performs better than the midpoint
imputation approach in estimating the parameters θ, λ and β. The latter
tends to underestimate these parameters. The bias is larger when inter-
vals are broader. When the exact method is used, coverages are good, but
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with the imputation technique coverages become smaller when intervals are
broader. For example, when the interval spans 120 days, the coverage for λ
is 59.8% with midpoint imputation versus 95.2% with the exact technique.
The parameter γ however is underestimated by the exact technique while
it is overestimated by midpoint imputation. For both techniques, coverages
are smaller when intervals are broader. For the considered simulation stud-
ies it is clear that the exact method outperforms the two methods based on
imputation.

5.5 Conclusions

In this chapter we proposed a shared gamma frailty model for clustered,
interval-censored data with different baseline hazard functions. The model
could even be made more flexible with the use of penalized splines for the
baseline hazard using the same techniques (Rondeau et al., 2003). This is
not discussed in this thesis. Assuming a gamma distribution for the frailty
enables us to integrate out the frailties analytically and to obtain a closed
form expression for the marginal likelihood, which can then be maximized
with an optimization procedure such as the nlm function in R to obtain pa-
rameter estimates. Furthermore exact expressions for the second derivatives
of the likelihood and thus estimates for the variances of the parameters can
be obtained by inverting the matrix of second derivatives.
We compare our technique to the technique proposed by Bellamy et al.
(2004) who propose normally distributed random effects. Under this as-
sumption no closed form of the likelihood can be obtained and frailties are
integrated out using Gaussian Quadrature. Some of the parameters appear-
ing in the two models have the same meaning (γ and β) and can therefore
be compared. To link the λ parameter in the proposed model to parameters
in the model proposed by Bellamy et al. (2004) is more difficult. This is due
to the specification of the cluster effects in terms of normally distributed
random effects with mean zero, i.e. a lognormal distribution at the frailty
level, but with a mean different from one. It is therefore not straightforward
to compare these two hazard functions and we can expect large differences
between them for large values of the variance of the lognormal and gamma
distributions (Therneau and Grambsch, 2000). Indeed the larger the value
of the variance parameter the more different the distributions are. The two
models can however be meaningfully compared when the models are trans-
lated in terms of the density function of the median infection time. The two
models result in comparable density functions.
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Figure 5.5: Boxplots for the estimated model parameters from 1000 simu-
lated data sets using the proposed method (empty box) and the midpoint
of the interval as exact event time (shaded box) for different interval widths
(30-60-90-120). True values for the parameters are given by λ “ 0.9, β “ 0.2,
θ “ 1.8 and γ “ 1.9.

The proposed technique was applied to a data set consisting of 1196 cows
who were approximately monthly screened for the presence of a bacterial
infection at the udder quarter level, but the method is valid in a variety of
situations since little or no data constraints apply to the proposed method.
The data set needs to consist of a number of clusters from which the mem-
bers can not be observed continuously. Contrary to the one-stage copula
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model discussed in Chapter 4 the number of cluster members can be vari-
able. Intervals can be of variable length, though the parameter γ tends to be
more and more biased when intervals become broader. The first simulation
setting shows that accurate estimates are obtained using the proposed tech-
nique and imputation of the midpoint. However, in the second simulation
setting where the parameter γ is smaller than one, imputation of the mid-
point fails. Using the upper bound as an exact event time leads to biased
estimates especially for λ and γ in both simulation settings. Also, when
censoring intervals get broader, using the midpoint imputation technique
leads to biased estimates for all parameters. Overall, the simulation studies
show that our technique outperforms the imputation techniques.

5.6 Appendix

5.6.1 Information matrix

The loglikelihood for cluster i in the proposed methodology is given by

li “ log “
2diÿ

k“1

p´1qnik

`
Ci ` 1

θ
` log pik

˘1{θ
θ1{θ

.

The second partial derivative for β in case of one covariate of the loglike-
lihood is given here as an example. The other partial derivatives can be
obtained in a similar way.
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with s the following column vector:

s “ pcskq2dik“1 “
diâ

j“1

ˆ
1

´1

˙

and

Ci,β “
ÿ

jPRi

HpRijqxij exp pxijβq

pk,β “
diâ

j“1

ˆ
xij exppL˚

ijq
xij exppU˚

ijq

˙

Ci,ββ “
ÿ

jPRi

HpRijq pxijq2 exp pxijβq

pk,ββ “
diâ

j“1

˜
pxijq2 exppL˚

ijq
pxijq2 exppU˚

ijq

¸

To obtain the second partial derivative for the full marginal loglikelihood,
we have to sum over the k cluster-specific second partial derivatives.

5.6.2 Software

Description of the variables

lower: the lower bound of the interval
upper: the upper bound of the interval
fail: the censoring indicator (1 in case of an event, 0 in case of right censor-
ing)
X1, X2, X3: the covariates of interest
cluster: the cluster variable
theta, lambda, gamma and beta: the model parameters

The nlmixed-program

This program can be used to fit the model proposed by Bellamy et al. (2004)
(see (5.3)) in SAS.
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proc nlmixed data=Mastitis data qpoints=10 cov;

bounds gamma>0, theta>0, lambda>0;

G_t = exp(-exp(b)*lambda*(upper/91.31)**gamma

*exp(beta1*X1+beta2*X2+beta3*X3));

G1_t = exp(-exp(b)*lambda*(lower/91.31)**gamma

*exp(beta1*X1+beta2*X2+beta3*X3));

if fail=1 then lik=G1_t-G_t;

else if fail=0 then lik=G_t;

llik=log(lik);

model y~general(llik);

random b~normal(0,theta) subject =cluster;

run;

The R-program

This program can be used to fit the proposed methodology (see (5.1)) in R.

#Give the number of covariates

ncovar<-3

#Calculate the number of clusters.

clusternames<-levels(as.factor(cluster))

ncluster<-length(clusternames)

# Create a data set with the variables cluster,

# the lower bound,the upper bound,

# the censoring indicator and the covariates.

datasetint<-as.matrix(cbind(cluster,lower/91.31,

upper/91.31,fail,X1,X2,X3))

# create subsets for right-censored

and interval-censored observations

cendata<-datasetint[datasetint[,4]==0,]

intdata<-datasetint[datasetint[,4]==1,]

# Create a list of signs that corresponds to the n_ik

(here restricted to 4 events)

signs<-list(1,c(1,-1))

for(i in 3:5) signs[[i]]<-kronecker(signs[[i-1]],c(1,-1))

# Function to calculate the loglikelihood per cluster



5.6. APPENDIX 117

CalcLogLikClust <-function(i,x)

{

theta<-exp(x[1]) lambda0<-exp(x[2]) gamma<-exp(x[3])

beta<-x[4:(3+ncovar)]

if(ncovar==1) #univariate case

{

cenX<-cendata[cendata[,1]==clusternames[i],5]

if (length(cenX)==0)Ci<-0

else {Ci<-sum(lambda*as.vector(cendata[cendata[,1]==

clusternames[i],3])^gamma*exp(cenX*beta))}

intL<-intdata[intdata[,1]==clusternames[i],2]

# if there are no events in that cluster

nevents <- length(intL)

crossprod <- 1

if(nevents>0)

{

intX<-intdata[intdata[,1]==clusternames[i],5]

intRster <- lambda*(intdata[intdata[,1]==

clusternames[i],3]^gamma)*exp(intX*beta)

intLster <- lambda*(intL^gamma)*exp(intX*beta)

crossprod<-c(exp(intLster[1]),exp(intRster[1]))

if(nevents>1)

{

for(ik in 2:nevents)

{

crossprod <- kronecker(crossprod,

c(exp(intLster[ik]),exp(intRster[ik])));

}

}

}

}

else #multivariate

{

cenX<-cendata[cendata[,1]==clusternames[i],5:(4+ncovar)]

if (length(cendata[cendata[,1]==clusternames[i],5])==0)Ci<-0

else

{

Ci<-sum(lambda*(as.vector(cendata[cendata[,1]

==clusternames[i],3])^gamma)*exp(cenX%*%beta))
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}

# if there are no events in that cluster

crossprod <- 1

intL<-intdata[intdata[,1]==clusternames[i],2]

nevents <- length(intL)

if(nevents>0)

{

intX<-intdata[intdata[,1]==clusternames[i],5:(4+ncovar)]

expiXb <- exp(intX%*%beta)

intRster <- lambda*(intdata[intdata[,1]

==clusternames[i],3]^gamma)

*expiXb

intLster <- lambda*(intL^gamma)*expiXb

crossprod<-c(exp(intLster[1]),exp(intRster[1]))

if(nevents>1)

{

for(ik in 2:nevents)

{

crossprod <- kronecker(crossprod,

c(exp(intLster[ik]),exp(intRster[ik])));

}

}

}

}

# Loglikelihood for 1 cluster

log(1/(theta^(1/theta))*sum((1/((sum(lambda*

(as.vector(cendata[cendata[,1]==clusternames[i],3])^gamma)

*exp(cenX*beta))+1/theta+log(crossprod))^(1/theta)))

*signs[[nevents+1]]))

}

# Calculate full marginal loglikelihood (formula 5)

CalcLogLik <- function(x)

{

-sum(sapply(1:ncluster,CalcLogLikClust,x=x))

}
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# Maximising the full marginal loglikelihood

to obtain parameter estimates

init<-c(1,1,1,1)

print(results <- nlm(CalcLogLik,init,print.level=2,

hessian=TRUE))

# Calculate covariance matrix

covmatr<-solve(results$hessian)





Chapter 6

The fourdimensional
correlated gamma frailty
model

Based on:
Goethals, K., Wienke, A., Janssen, P., and Duchateau, L. (2011), ”Exten-
sions of the correlated gamma frailty model to investigate the correlation
structure between udder quarter infection times,” in preparation.
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6.1 Introduction

Shared frailty models have some limitations (Xue and Brookmeyer, 1996).
First, the unobserved factors are necessarily the same for all members within
a cluster, which is not always realistic. Second, shared frailty induces only
positive correlation between the event times of the members in a cluster.
However, in some cases event times for members within the same cluster
may be negatively correlated. Third, Xue and Brookmeyer (1996) men-
tion that the correlation between event times within a cluster is based on
marginal distributions of event times. They refer to Clayton and Cuzick
(1985) who discuss the confounding between the correlation parameter and
the population heterogeneity when covariates are present in a proportional
hazards model with gamma distributed frailty, implying that the joint distri-
bution can be identified from the marginal distributions (Hougaard, 1986b).
To avoid these problems, the correlated gamma frailty model was proposed
by Yashin et al. (1995). It is a natural extension of the shared frailty model
and of the univariate frailty model. In this model individual frailty consists
of two parts: a part representing unobserved risk factors common for all
members of a cluster, introducing correlation between the event times and
a part representing individual unobserved risk factors. The combination of
the two sources of heterogeneity forms the total individual frailty, therefore,
the frailties of the members of a cluster are correlated but not necessarily
shared (with correlation equal to one).
The remainder of this chapter is organized as follows: Section 6.2 describes
the bivariate correlated gamma frailty model, in Section 6.3 different fourdi-
mensional correlated gamma frailty models are introduced to model different
correlation structures between the frailties of the four udder quarters in the
mastitis data set. In Section 6.2 and Section 6.3 techniques are described for
right-censored data; the midpoint of the interval is used as an exact event
time. In Section 6.5 the interval-censored nature of the data is taken into
account.

6.2 The bivariate correlated gamma frailty model

In the bivariate correlated frailty model frailties are not necessarily the same
for the two subjects in a cluster. The bivariate correlated gamma frailty
model was first introduced by Yashin et al. (1995) in the context of twin
data. They used data on monozygotic and dizygotic twins to distinguish
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genetic vs. environmental influences in the ageing process.
As in the univariate and shared frailty model, the frailty works multiplica-
tively on the baseline hazard and members of a pair are independent given
the frailty. The correlated frailty model is given by

hijptq “ h0ptqzij exppxt
ijβq,

with hijptq the conditional hazard function at time t for the jth observation
of the ith pair, j “ 1, 2, i “ 1, . . . k, h0ptq the baseline hazard, xij the vector
of covariates for the jth observation of the ith pair, β the vector of regres-
sion parameters and zij the frailty for the jth member of the ith pair, coming
from a density fZpzq. The correlation between the frailties of the members
of a pair is denoted by ρ.
We assume in this chapter that the frailties follow a gamma distribution
(1.9). The bivariate distribution of frailty is constructed using three inde-
pendent gamma-distributed random variables. To ease notation we describe
the construction of the bivariate distribution of frailty in one cluster, there-
fore dropping the index i. Assume that Y0, Y1 and Y2 are independent
gamma-distributed random variables with parameters (kl, αl), l “ 0, 1, 2,
respectively. Then assume that the frailties (Z1, Z2) for the two members
of a pair are given by Z1 “ Y0 ` Y1 and Z2 “ Y0 ` Y2. Yashin et al. (1995)
made two extra assumptions: they assumed that the scale parameters α0,
α1 and α2 of the gamma-distributed random variables Y0, Y1 and Y2 are
the same, i.e., α0 “ α1 “ α2 “ α. Furthermore they assumed that the
shape parameters k1 and k2 for the distributions of Y1 and Y2 are the same,
k1 “ k2, forcing Z1 and Z2 to have the same distribution. This condition
was relevant in their setting (twin studies), because there is no need for dif-
ferent distributions for the frailty for twin members, but can be omitted in
other applications. Z1 and Z2 are then gamma-distributed random variables
with parameters (k0 ` k1, α). They are correlated since both contain the
common part Y0. We further add the restriction k0 ` k1 “ α. The frailties
Z1 and Z2 therefore have mean 1 and their variance is denoted by σ2:

EpZ1q “ EpZ2q “ k0 ` k1

α
“ 1

VpZ1q “ VpZ2q “ k0 ` k1

α2
“ 1

α
“ σ2. (6.1)

The correlation ρ between the frailties Z1 and Z2 can be calculated as

ρ “ CorrpZ1, Z2q “ CovpZ1, Z2qa
VpZ1qVpZ2q

.
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The variance of Z1 and Z2 is given in (6.1), the covariance between Z1 and
Z2 is calculated using the following formula

CovpZ1, Z2q “ CovpY0 ` Y1, Y0 ` Y2q “ V pY0q “ k0

α2
.

The covariance and correlation between Z1 and Z2 are therefore given by:

CovpZ1, Z2q “ k0

α2

ρ “ k0

α
.

Since ρ “ k0{α, k0 “ ρα “ ρ{σ2 and since pk0 ` k1q{α2 “ σ2, k1 “ 1{σ2 ´
k0 “ p1 ´ ρq{σ2. Using k0 ě 0 and k1 ě 0, it follows that

0 ď ρ ď 1.

It is further assumed that given the frailties Z1 and Z2, the event times
T1 and T2 are independent. Under this condition the marginal bivariate
survival function Spt1, t2q can be obtained from the conditional bivariate
survival function as follows:

Spt1, t2q “ EpSpt1, t2|Z1, Z2qq
“ E pS1pt1|Z1qS2pt2|Z2qq
“ E

´
e´Z1H1pt1qe´Z2H2pt2q

¯

“ E
´
e´pY0`Y1qH1pt1qe´pY0`Y2qH2pt2q

¯

“ E
´
e´Y0pH1pt1q`H2pt2qq´Y1H1pt1q´Y2H2pt2q

¯
. (6.2)

Making use of the Laplace transform of the gamma distribution (1.10), the
marginal bivariate survival function (6.2) can be written as

Spt1, t2q “
ˆ
1 ` H1pt1q `H2pt2q

α

˙´k0

ˆ
1 ` H1pt1q

α

˙´k1
ˆ
1 ` H2pt2q

α

˙´k1

“
`
1 ` σ2H1pt1q ` σ2H2pt2q

˘´ρ

σ2

`
1 ` σ2H1pt1q

˘ ρ´1

σ2
`
1 ` σ2H2pt2q

˘ ρ´1

σ2 .
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In the univariate frailty model the marginal univariate survival function can
be obtained as

Sptq “ L pHptqq “
`
1 ` σ2Hptq

˘p´1{σ2q
,

with Hptq the cumulative baseline hazard. The marginal univariate density
function can then be obtained as fptq “ dSptq{dt. The cumulative baseline
hazard is then

Hptq “ Sptq´σ2 ´ 1

σ2
. (6.3)

Using (6.3) the marginal bivariate survival function can be written as

Spt1, t2q “ pS1pt1qS2pt2qq1´ρ

`
S1pt1q´σ2 ` S2pt2q´σ2 ´ 1

˘ρ{σ2
. (6.4)

Based on this joint survival function the likelihood for right-censored data
can be constructed:

Lpζq “
kź

i“1

pfpyi1, yi2qqδi1δi2
ˆ

´BSpyi1, yi2q
Byi1

˙δi1p1´δi2q

ˆ
´BSpyi1, yi2q

Byi2

˙p1´δi1qδi2

pSpyi1, yi2qqp1´δi1qp1´δi2q ,

with ζ “ pξ, σ2, ρ,βq, ξ containing the parameters of the baseline hazard, k
the number of clusters and δij , j “ 1, 2 equal to one in case of an event and
equal to zero in case of a censored observation. A cluster with two censored
subjects has contribution Spyi1, yi2q, a cluster with two event times has
contribution fpyi1, yi2q, the contribution of a cluster with one event time

and one censored observation is ´ BSpyi1,yi2q
Byi1

(´ BSpyi1,yi2q
Byi2

) if we observe an
event time for the first (second) subject and a censored observation for the
second (first) subject.
The partial derivatives of the joint survival function, needed to construct
the likelihood, are

BSpt1, t2q
Btj

“ ´Spt1, t2qSjptjq´σ2´1fjptjq
ˆ
ρ
´
S1pt1q´σ2 ` S2pt2q´σ2 ´ 1

¯´1

` p1 ´ ρqSjptjqσ
2
¯

j “ 1, 2
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B2Spt1, t2q
Bt1Bt2

“ Spt1, t2q pS1pt1qS2pt2qq´σ2´1 f1pt1qf2pt2q
„ˆ
ρ
´
S1pt1q´σ2 ` S2pt2q´σ2 ´ 1

¯´1

` p1 ´ ρqS1pt1qσ2

˙

ˆ
ρ
´
S1pt1q´σ2 ` S2pt2q´σ2 ´ 1

¯´1

` p1 ´ ρqS2pt2qσ2

˙

`ρσ2
´
S1pt1q´σ2 ` S2pt2q´σ2 ´ 1

¯´2


“ fpt1, t2q.

The loglikelihood then takes the form

logLpζq “
kÿ

i“1

„
p1 ´ δi1qp1 ´ δi2q logSpyi1, yi2q `

δi1p1 ´ δi2q log ´BSpyi1, yi2q
Byi1

` p1 ´ δi1qδi2 log
´BSpyi1, yi2q

Byi2
`δi1δi2 log fpyi1, yi2q


. (6.5)

If a parametric distribution is chosen for the baseline hazard, this closed
form expression of the loglikelihood can be maximized with respect to the
unknown parameters using standard maximization procedures, such as the
Newton Raphson procedure. Standard errors can be obtained from the
inverse of the observed information matrix. Representation (6.4) of the
joint survival function also allows separate estimation of the marginal sur-
vival functions and the correlation parameters in a two-stage approach. The
marginal survival functions can be estimated parametrically, nonparamet-
rically or semiparametrically in the first stage and the estimated marginal
survival functions can then be plugged into the loglikelihood (6.5) to obtain
estimates for the parameters ρ and σ2. This approach is therefore semi-
parametric if a nonparametric or semiparametric estimator is used for the
marginal survival functions in the first stage. Using this approach however,
a correlated copula model is fitted instead of a correlated frailty model, be-
cause the marginal survival functions no longer depend on the frailty vari-
ance. Parameter estimates and their interpretation will not be the same.
Iachine (1995) proposes an extended version of the EM-algorithm appropri-
ate for the analysis of bivariate survival data using the correlated gamma
frailty model.
Without the two extra restrictions (α0 “ α1 “ α2 “ α and k1 “ k2) Y0,
Y1 and Y2 are independently gamma-distributed random variables: Y0 „
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gammapk0, α0q, Y1 „ gammapk1, α1q and Y2 „ gammapk2, α2q. The individ-
ual frailties are then constructed as follows:

Z1 “ α0

α1

Y0 ` Y1 „ gammapk0 ` k1, α1q

Z2 “ α0

α2

Y0 ` Y2 „ gammapk0 ` k2, α2q.

The restrictions k0 ` k1 “ α1 and k0 ` k2 “ α2 are added. Therefore, the
frailties Z1 and Z2 have mean 1, EpZ1q “ EpZ2q “ 1 and the variances are
VpZ1q “ 1

α1
“ σ21, VpZ2q “ 1

α2
“ σ22. Assuming different variances for the

different members in a pair can be necessary in some data sets, take for
example pairs that consist of a father and his adopted son. In this setting
there is need for different frailty distributions for the members of the pair.
The covariance and correlation are now given by

CovpZ1, Z2q “ k0

α1α2

ρ “ k0?
α1α2

“ k0σ1σ2.

Consequently k0 “ ρ
σ1σ2

and since k0`kl “ αl “ 1
σ2

l

, kl “ 1
σ2

l

´k0 “ 1
σ2

l

´ ρ
σ1σ2

(l=1,2). Using k0 ě 0, k1 ě 0 and k2 ě 0, it can be seen that the range of
the correlation coefficient ρ depends on the values of σ1 and σ2:

0 ď ρ ď min

"
σ1

σ2
,
σ2

σ1

*
.

If σ21 ‰ σ22, the correlation between the frailties is always smaller than one.
This restriction on the range of ρ can be a serious limitation, especially when
the values of σ21 and σ22 differ substantially.
The marginal bivariate survival function is

Spt1, t2q “ S1pt1q1´
σ1ρ

σ2 S2pt2q1´
σ2ρ

σ1

´
S1pt1q´σ2

1 ` S2pt2q´σ2

2 ´ 1
¯ρ{pσ1σ2q

.

The partial derivatives of the marginal bivariate survival function, needed
to construct the likelihood, are

BSpt1, t2q
Btj

“ ´Spt1, t2qfjptjqSjptjq´σ2

j ´1

„
σjρ

σi

´
S1pt1q´σ2

1 ` S2pt2q´σ2

2 ´ 1
¯´1

`p1 ´ σjρ

σi
qSjptjqσ

2

j


j “ 1, 2; i “ 1, 2; i ‰ j
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B2Spt1, t2q
Bt1t2

“ Spt1, t2qS1pt1q´σ2

1
´1S2pt2q´σ2

2
´1f1pt1qf2pt2q

„„
σ1ρ

σ2

´
S1pt1q´σ2

1 ` S2pt2q´σ2

2 ´ 1
¯´1

`
ˆ
1 ´ σ1ρ

σ2

˙
S1pt1qσ2

1



„
σ2ρ

σ1

´
S1pt1q´σ2

1 ` S2pt2q´σ2

2 ´ 1
¯´1

`
ˆ
1 ´ σ2ρ

σ1

˙
S2pt2qσ2

2



`
„
ρσ1σ2

´
S1pt1q´σ2

1 ` S2pt2q´σ2

2 ´ 1
¯´2



and the loglikelihood takes the form of (6.5). Parameter estimates can be
obtained after maximization of the loglikelihood.
Though the gamma distribution is the most widely used frailty distribution
in the correlated frailty model (Yashin et al., 1995; Zdravkovic et al., 2004;
Wienke et al., 2005b), also other distributions have been considered for the
frailties in the literature. A correlated lognormal frailty model was intro-
duced by Xue and Brookmeyer (1996) and applied to a data set on mental
health in patients under psychiatric care. Other authors that use the log-
normal distribution as a frailty distribution include Yau and McGilchrist
(1997) and Ripatti and Palmgren (2000). The advantage of the correlated
lognormal frailty model over the correlated gamma frailty model is its flex-
ibility because it is not based on an additive composition of the frailties as
the correlated gamma frailty model. It is also easily extendable to more di-
mensions. On the other hand, it is no longer possible to obtain a closed form
expression for the marginal likelihood and numerical integration is required
to obtain parameter estimates. The power variance function is suggested as
a frailty distribution in the correlated frailty model by Yashin and Iachine
(1999). As an extension of this model Wienke et al. (2010) propose a bivari-
ate correlated frailty model with compound Poisson frailty. It allows for a
non-susceptible fraction in the population overcoming the common assump-
tion in survival analysis that all subjects are susceptible to the event under
study.
Though the correlation between the frailties in the correlated gamma frailty
model discussed above is necessarily positive, Yashin and Iachine (1999)
give an alternative derivation of the model, which does not make use of the
concept of frailty, and allows a negative correlation between the frailties.
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This is interesting for different reasons. First, this model can be used in the
analysis of correlated event times where both positive and negative correla-
tion may occur. Second, if the correlation between the frailties is allowed
to be negative, ρ “ 0 becomes an internal point of the parameter space
and the classical likelihood ratio test to test H0 : ρ “ 0 has an asymptotic
χ2-distribution.
The identifiability of the correlated gamma frailty model is discussed in
Yashin and Iachine (1997). Whereas the univariate gamma frailty model
without observed covariates is not identifiable if the underlying hazard func-
tion is not specified parametrically, the correlated gamma frailty model and
the shared gamma frailty model is identifiable without such specification.

6.3 The fourdimensional correlated gamma frailty
model

Most applications of the correlated frailty model concern bivariate data, in
particular in the context of genetics (see for example Yashin and Iachine
(1997); Zdravkovic et al. (2004); Wienke et al. (2005b)). Correlated frailty
models applied to cluster sizes larger than two and/or with application in a
different discipline are found less in the literature.
Giard et al. (2002) suggest a fourdimensional correlated gamma frailty model
to describe the ageing process of a twin pair. The ageing process is simplified
to a process consisting of the three states ’healthy’, ’ill’ and ’deceased’.
Therefore, two event times are considered for each twin member: the time
to disease and the time to death, resulting in four possibly correlated event
times for each twin pair. The frailties then represent susceptibility to disease
or susceptibility to death. The model is applied to data on prostate cancer
in male Swedish twins. Wienke et al. (2002) consider a competing risk
situation in twins where censoring can be informative and non-informative.
For each twin member the time to a first and second cause of death is
considered, resulting in four possibly correlated event times for each twin
pair. The frailties represent susceptibility to the two causes of death for
the two members of the twin pair. The model is applied to cause-specific
mortality data, where focus is on mortality from coronary heart disease.
Jonker and Boomsma (2010) propose a fourdimensional correlated gamma
frailty model to estimate the degree of heredity, environmental effects and
twin effects of the age at which people contact a social helper for the first
time. The data set consists of clusters of size four, each cluster consists of a
twin pair and two other siblings.
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In this section we describe fourdimensional correlated gamma frailty models
to investigate the correlation structure between the frailties of the four udder
quarters of a dairy cow. Tij , i “ 1, . . . , k, j “ 1, 2, 3, 4, is the time to infection
with C. bovis and the frailties Zij , i “ 1, . . . , k, j “ 1, 2, 3, 4, represent
individual susceptibility to get infected for the four udder quarters.

6.3.1 The fourdimensional correlated gamma frailty model
with equal correlation between the frailties (model 2)

The extension of the bivariate correlated gamma frailty model to the multi-
variate case is straightforward (Yashin and Iachine, 1999), but the likelihood
function becomes complex with increasing cluster size. For right-censored
data the likelihood in the bivariate case consists of four terms (one term
for each censoring scenario), in the trivariate case there are eight likelihood
contributions depending on the censoring status of the members in a cluster
and with cluster size four sixteen terms can contribute to the likelihood. In
general there are 2n contributions to the likelihood with n the number of
members within a cluster.
Figure 6.1 visualizes the construction of the frailties and the pairwise cor-
relation structure for the model described in this section, applied to the
infection with C. bovis data set. To ease notation the index i represent-
ing the cluster is dropped. Z1, Z2, Z3 and Z4 represent the frailty for the
front left (FL), front right (FR), rear left (RL) and rear right (RR) udder
quarter, respectively. The individual frailties in this fourdimensional corre-
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Figure 6.1: Construction of the frailties and the pairwise correlation struc-
ture for the fourdimensional correlated gamma frailty model with equal cor-
relation (ρ) between the frailties. Z1, Z2, Z3 and Z4 represent the frailty
for the front left (FL), front right (FR), rear left (RL) and rear right (RR)
udder quarter, respectively.
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lated gamma frailty model are constructed using five independent gamma-
distributed random variables Y0, Y1, Y2, Y3 and Y4 with parameters pkl, αlq,
l=0,. . . ,4, respectively. Y0 represents the common part of the frailty and Y1,
Y2, Y3 and Y4 represent the individual parts, of the frailty. We assume that
the scale parameters of the gamma-distributed random variables Y0, Y1, Y2,
Y3 and Y4 are the same, i.e., α0 “ α1 “ α2 “ α3 “ α4 “ α. We further
assume that the shape parameters for the distribution of Y1, Y2, Y3 and Y4
are the same, i.e., k1 “ k2 “ k3 “ k4. The frailties are then given by

Z1 “ Y0 ` Y1 „ gammapk0 ` k1, αq
Z2 “ Y0 ` Y2 „ gammapk0 ` k1, αq
Z3 “ Y0 ` Y3 „ gammapk0 ` k1, αq
Z4 “ Y0 ` Y4 „ gammapk0 ` k1, αq.

The restriction k0 ` k1 “ α is added. Therefore, the frailties have mean 1:

EpZ1q “ EpZ2q “ EpZ3q “ EpZ4q “ k0 ` k1

α
“ 1

and we denote their variance by σ2

VpZ1q “ VpZ2q “ VpZ3q “ VpZ4q “ k0 ` k1

α2
“ 1

α
“ σ2.

The covariance between the frailties can be obtained as follows:

CovpZi, Zjq “ CovpY0 ` Yi, Y0 ` Yjq “ V pY0q “ k0

α2

with i, j “ 1 . . . , 4; i ă j. The correlation between the frailties is then

ρ “ CorrpZi, Zjq “ CovpZi, Zjqa
VpZiqVpZjq

“ k0

α
.

Since ρ “ k0
α
, k0 “ ρα “ ρ

σ2 and since k0`k1
α2 “ σ2, k1 “ 1

σ2 ´ k0 “ 1´ρ
σ2 .

Using k0 ě 0 and k1 ě 0, the range of the correlation coefficient ρ is

0 ď ρ ď 1.

We further assume that given the frailties Z1, Z2, Z3 and Z4, the event times
T1, T2, T3 and T4 are independent. Under this condition the marginal sur-
vival function Spt1, t2, t3, t4q can be obtained from the conditional survival
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function as follows:

Spt1, t2, t3, t4q “ EpSpt1, t2, t3, t4|Z1, Z2, Z3, Z4qq
“ E pS1pt1|Z1qS2pt2|Z2qS3pt3|Z3qS4pt4|Z4qq
“ E

´
e´Z1H1pt1qe´Z2H2pt2qe´Z3H3pt3qe´Z4H4pt4q

¯

“ E
´
e´pY0`Y1qH1pt1qe´pY0`Y2qH2pt2q

e´pY0`Y3qH3pt3qe´pY0`Y4qH4pt4q
¯

“ E
´
e´Y0pH1pt1q`H2pt2q`H3pt3q`H4pt4qq

e´Y1H1pt1qe´Y2H2pt2qe´Y3H3pt3qe´Y4H4pt4q
¯
. (6.6)

Making use of the Laplace transform of the gamma distribution (1.10), the
marginal joint survival function (6.6) can be written as

Spt1, t2, t3, t4q “
ˆ
1 ` H1pt1q `H2pt2q `H3pt3q `H4pt4q

α

˙´k0

ˆ
1 ` H1pt1q

α

˙´k1
ˆ
1 ` H2pt2q

α

˙´k1

ˆ
1 ` H3pt3q

α

˙´k1
ˆ
1 ` H4pt4q

α

˙´k1

“
`
1 ` σ2H1pt1q ` σ2H2pt2q ` σ2H3pt3q ` σ2H4pt4q

˘´ρ

σ2

`
1 ` σ2H1pt1q

˘ ρ´1

σ2
`
1 ` σ2H2pt2q

˘ ρ´1

σ2

`
1 ` σ2H3pt3q

˘ ρ´1

σ2
`
1 ` σ2H4pt4q

˘ ρ´1

σ2 .

Using relationship (6.3) the marginal survival function can be written as

Spt1, t2, t3, t4q “ pS1pt1qS2pt2qS3pt3qS4pt4qq1´ρA´ρ{σ2

, (6.7)

with A “ S1pt1q´σ2 ` S2pt2q´σ2 ` S3pt3q´σ2 ` S4pt4q´σ2 ´ 3. For ρ “ 1
the shared gamma frailty model is obtained, for ρ “ 0 the univariate frailty
model is obtained.
The partial derivatives of the marginal survival function, needed to construct
the likelihood, are

BSpt1, t2, t3, t4q
Btj

“ ´Spt1, t2, t3, t4qSjptjq´σ2´1fjptjq
”
ρA´1 ` p1 ´ ρqSjptjqσ

2
ı

for j “ 1, 2, 3, 4
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B2Spt1, t2, t3, t4q
BtjBtk

“ Spt1, t2, t3, t4qpSjptjqSkptkqq´σ2´1fjptjqfkptkq
”“
ρA´1 ` p1 ´ ρqSkptkqσ2‰“

ρA´1 ` p1 ´ ρqSjptjqσ
2‰

`σ2ρA´2
ı

for j, k “ 1, 2, 3, 4; j ă k

B3Spt1, t2, t3, t4q
BtjBtkBtl

“ ´Spt1, t2, t3, t4qpSjptjqSkptkqSlptlqq´σ2´1

fjptjqfkptkqflptlq"“
ρA´1 ` p1 ´ ρqSlptlqσ

2‰”“
ρA´1 ` p1 ´ ρqSkptkqσ2‰

“
ρA´1 ` p1 ´ ρqSjptjqσ

2‰ ` σ2ρA´2
ı

`
“
ρA´1 ` p1 ´ ρqSjptjqσ

2‰“
σ2ρA´2

‰

`
“
ρA´1 ` p1 ´ ρqSkptkqσ2‰“

σ2ρA´2
‰

`2σ4ρA´3

*
for j, k, l “ 1, 2, 3, 4; j ă k ă l

B4Spt1, t2, t3, t4q
BtjBtkBtlBtm

“ Spt1, t2, t3, t4q
´
SjptjqSkptkqSlptlqSmptmq

¯´σ2´1

fjptjqfkptkqflptlqfmptmq#
“
ρA´1 ` p1 ´ ρqSmptmqσ2‰

„“
ρA´1 ` p1 ´ ρqSlptlqσ

2‰

”“
ρA´1 ` p1 ´ ρqSkptkqσ2‰“

ρA´1 ` p1 ´ ρqSjptjqσ
2‰

`σ2ρA´2
ı

`
“
ρA´1 ` p1 ´ ρqSjptjqσ

2‰“
σ2ρA´2

‰

`
“
ρA´1 ` p1 ´ ρqSkptkqσ2‰“

σ2ρA´2
‰

` 2σ4ρA´3


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`
“
σ2ρA´2

‰”“
ρA´1 ` p1 ´ ρqSkptkqσ2‰

“
ρA´1 ` p1 ´ ρqSjptjqσ

2‰ ` σ2ρA´2
ı

`
“
ρA´1 ` p1 ´ ρqSlptlqσ

2‰”“
σ2ρA´2

‰

“
ρA´1 ` p1 ´ ρqSjptjqσ

2‰

`
“
ρA´1 ` p1 ´ ρqSkptkqσ2‰“

σ2ρA´2
‰

` 2σ4ρA´3
ı

`
“
2σ4ρA´3

‰“
ρA´1 ` p1 ´ ρqSjptjqσ

2‰

`2
“
σ2ρA´2

‰2 `
“
ρA´1 ` p1 ´ ρqSkptkqσ2‰“

2σ4ρA´3
‰

`6σ6ρA´4

+
. for j “ 1; k “ 2; l “ 3;m “ 4

To write down the loglikelihood, we first introduce some additional notation,
analogue to the notation in Section 4.4.

∆i “
4ź

j“1

p1 ´ δijq

∆ipjq “ δij

4ź

k“1;k‰j

p1 ´ δikq

∆ipj, kq “ δijδik

4ź

l“1;l‰j,k

p1 ´ δilq, j ‰ k

∆ipj, k, lq “ δijδikδilp1 ´ δimq, m ‰ j, k, l; j ‰ k; j ‰ l, k ‰ l

∆ip1, 2, 3, 4q “
4ź

j“1

δij , (6.8)

with δij equal to 1 if the jth member of the ith cluster is interval-censored
and equal to 0 if the jth member of the ith cluster is right-censored. The
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loglikelihood is then given by

logLpζq “
kÿ

i“1

«
∆i logSpt1, t2, t3, t4q

`
4ÿ

j“1

„
∆ipjq log

´BSpt1, t2, t3, t4q
Btj



`
ÿ

j‰k

„
∆ipj, kq log B2Spt1, t2, t3, t4q

BtjBtk



`
ÿ

j‰k;j‰l;k‰l

„
∆ipj, k, lq log

´B3Spt1, t2, t3, t4q
BtjBtkBtl



`∆ip1, 2, 3, 4q log B4Spt1, t2, t3, t4q
Bt1Bt2Bt3Bt4

ff
. (6.9)

with ζ “ pξ, σ2, ρ,β), ξ containing the parameters of the baseline hazard
and k the number of clusters. If a parametric distribution is chosen for
the baseline hazard, this closed form expression of the loglikelihood can be
maximized with respect to the unknown parameters. Standard errors can
be obtained from the inverse of the observed information matrix. Repre-
sentation (6.7) of the joint survival function also allows a semiparametric
two-stage approach. The marginal survival functions can be estimated non-
parametrically or semiparametrically in the first stage and the estimated
marginal survival functions can then be plugged into the loglikelihood (6.9)
to obtain estimates for the parameters ρ and σ2. In this approach a corre-
lated copula model is fitted to the data instead of a correlated frailty model.

6.3.2 The fourdimensional correlated gamma frailty model
with shared and correlated frailties (model 3)

We now present a fourdimensional correlated gamma frailty model where
the correlation structure between the frailties is not symmetric, i.e., not all
pairs of frailties have the same correlation. The correlation between the
frailties of a pair can be different depending on the specific pair considered.
It could make sense to assume an asymmetric correlation structure between
the udder quarters of a dairy cow. Correlation between the two front udder
quarters and the two rear udder quarters could be higher than between any
other udder quarter pair. Similarly the two left udder quarters and the two
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right udder quarters could be more correlated than any other udder quarter
pair. Figure 6.2 visualizes the construction of the frailties and the pairwise
correlation structure for the model described in this section. The individual
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Figure 6.2: Construction of the frailties and the pairwise correlation struc-
ture for the fourdimensional correlated frailty model with correlations be-
tween the frailties equal to one or ρ. Z1, Z2, Z3 and Z4 represent the frailty
for the front left (FL), front right (FR), rear left (RL) and rear right (RR)
udder quarter, respectively.

frailties are constructed using three independent gamma-distributed random
variables Y0, Y1 and Y2 with parameters pkl, αlq, l=0,1,2, respectively. Y0
represents the common part of the frailty for each member of the cluster.
Y1 and Y2 are common for only two members of the cluster, for example Y1
is common for the first two members and Y2 is common for the other two
members. There is no variable representing truly individual heterogeneity.
We again assume that the scale parameters of the gamma-distributed ran-
dom variables Y0, Y1, Y2 are the same, i.e., α0 “ α1 “ α2 “ α. We further
assume that the shape parameters for the distribution of Y1 and Y2 are the
same, i.e., k1 “ k2. The frailties are then given by

Z1 “ Y0 ` Y1 „ gammapk0 ` k1, αq
Z2 “ Y0 ` Y1 „ gammapk0 ` k1, αq
Z3 “ Y0 ` Y2 „ gammapk0 ` k1, αq
Z4 “ Y0 ` Y2 „ gammapk0 ` k1, αq

We further add the restriction k0 ` k1 “ α. The frailties therefore have
mean 1:

EpZ1q “ EpZ2q “ EpZ3q “ EpZ4q “ k0 ` k1

α
“ 1
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and we denote their variance by σ2

VpZ1q “ VpZ2q “ VpZ3q “ VpZ4q “ k0 ` k1

α2
“ 1

α
“ σ2.

The covariances between the frailties can be obtained as follows:

CovpZ1, Z2q “ CovpY0 ` Y1, Y0 ` Y1q “ V pY0 ` Y1q “ k0 ` k1

α2

CovpZ3, Z4q “ CovpY0 ` Y2, Y0 ` Y2q “ V pY0 ` Y2q “ k0 ` k1

α2

CovpZ1, Z3q “ CovpY0 ` Y1, Y0 ` Y2q “ V pY0q “ k0

α2

“ CovpZ1, Z4q
“ CovpZ2, Z3q
“ CovpZ2, Z4q.

The correlations between the frailties are then

CorrpZ1, Z2q “ k0 ` k1

α
“ 1

“ CorrpZ3, Z4q

CorrpZ1, Z3q “ k0

α
“ ρ

“ CorrpZ1, Z4q
“ CorrpZ2, Z3q
“ CorrpZ2, Z4q.

So the correlation between Z1 and Z2 and between Z3 and Z4 is equal to
one, as expected since member 1 and 2 and member 3 and 4 share all their
frailties by construction.
Since ρ “ k0

α
, k0 “ ρα “ ρ

σ2 and since k0`k1
α2 “ σ2, k1 “ 1

σ2 ´ k0 “ 1´ρ
σ2 .

Using k0 ě 0 and k1 ě 0, the range of the correlation coefficient ρ is

0 ď ρ ď 1.

We further assume that given the frailties Z1, Z2, Z3 and Z4, the event times
T1, T2, T3 and T4 are independent. Under this condition the marginal sur-
vival function Spt1, t2, t3, t4q can be obtained from the conditional survival
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function as follows:

Spt1, t2, t3, t4q “ EpSpt1, t2, t3, t4|Z1, Z2, Z3, Z4qq
“ E pS1pt1|Z1qS2pt2|Z2qS3pt3|Z3qS4pt4|Z4qq
“ E

´
e´Z1H1pt1qe´Z2H2pt2qe´Z3H3pt3qe´Z4H4pt4q

¯

“ E
´
e´pY0`Y1qH1pt1qe´pY0`Y1qH2pt2q

e´pY0`Y2qH3pt3qe´pY0`Y2qH4pt4q
¯

“ E
´
e´Y0pH1pt1q`H2pt2q`H3pt3q`H4pt4qq

e´Y1pH1pt1q`H2pt2qqe´Y2pH3pt3q`H4pt4qq
¯
. (6.10)

Making use of the Laplace transform of the gamma distribution (1.10), the
marginal survival function (6.10) can be written as

Spt1, t2, t3, t4q “
ˆ
1 ` H1pt1q `H2pt2q `H3pt3q `H4pt4q

α

˙´k0

ˆ
1 ` H1pt1q `H2pt2q

α

˙´k1
ˆ
1 ` H3pt3q `H4pt4q

α

˙´k1

“
`
1 ` σ2pH1pt1q `H2pt2q `H3pt3q `H4pt4qq

˘´ρ

σ2

`
1 ` σ2pH1pt1q `H2pt2qq

˘ ρ´1

σ2

`
1 ` σ2pH3pt3q `H4pt4qq

˘ ρ´1

σ2 .

Using (6.3) the marginal survival function can be written as

Spt1, t2, t3, t4q “ A´ρ{σ2

Bpρ´1q{σ2

Cpρ´1q{σ2

, (6.11)

with A “ S1pt1q´σ2 `S2pt2q´σ2 `S3pt3q´σ2 `S4pt4q´σ2 ´3, B “ S1pt1q´σ2 `
S2pt2q´σ2´1 and C “ S3pt3q´σ2`S4pt4q´σ2´1. For ρ “ 1 the shared gamma
frailty model is obtained, for ρ “ 0 two bivariate correlated gamma frailty
models are obtained.
The partial derivatives of the marginal survival function, needed to construct
the likelihood, are

BSpt1, t2, t3, t4q
Btj

“ ´Spt1, t2, t3, t4qSjptjq´σ2´1fjptjq
“
ρA´1 ` p1 ´ ρqB´1

‰
for j “ 1, 2
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BSpt1, t2, t3, t4q
Btj

“ ´Spt1, t2, t3, t4qSjptjq´σ2´1fjptjq
“
ρA´1 ` p1 ´ ρqC´1

‰
for j “ 3, 4

B2Spt1, t2, t3, t4q
BtjBtk

“ Spt1, t2, t3, t4qpSjptjqSkptkqq´σ2´1fjptjqfkptkq
”“
ρA´1 ` p1 ´ ρqB´1

‰2 ` ρσ2A´2

`p1 ´ ρqσ2B´2
ı

for j, k “ 1, 2; j ă k

B2Spt1, t2, t3, t4q
BtjBtk

“ Spt1, t2, t3, t4qpSjptjqSkptkqq´σ2´1fjptjqfkptkq
”“
ρA´1 ` p1 ´ ρqC´1

‰2 ` ρσ2A´2

`p1 ´ ρqσ2C´2
ı

for j, k “ 3, 4; j ă k

B2Spt1, t2, t3, t4q
BtjBtk

“ Spt1, t2, t3, t4qpSjptjqSkptkqq´σ2´1fjptjqfkptkq
”“
ρA´1 ` p1 ´ ρqC´1

‰“
ρA´1 ` p1 ´ ρqB´1

‰

`ρσ2A´2
ı

for j “ 1, 2; k “ 3, 4

B3Spt1, t2, t3, t4q
BtjBtkBtl

“ ´Spt1, t2, t3, t4qpSjptjqSkptkqSlptlqq´σ2´1

fjptjqfkptkqflptlq"“
ρA´1 ` p1 ´ ρqC´1

‰”“
ρA´1 ` p1 ´ ρqB´1

‰2

`σ2ρA´2 ` p1 ´ ρqσ2B´2
ı

`2ρσ2A´2
“
ρA´1 ` p1 ´ ρqB´1

‰
` 2σ4ρA´3

*

for j “ 1; k “ 2; l “ 3, 4
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B3Spt1, t2, t3, t4q
BtjBtkBtl

“ ´Spt1, t2, t3, t4qpSjptjqSkptkqSlptlqq´σ2´1

fjptjqfkptkqflptlq"“
ρA´1 ` p1 ´ ρqC´1

‰”“
ρA´1 ` p1 ´ ρqC´1

‰

“
ρA´1 ` p1 ´ ρqB´1

‰
` σ2ρA´2

ı

`
“
ρσ2A´2 ` p1 ´ ρqσ2C´2

‰“
ρA´1 ` p1 ´ ρqB´1

‰

`
“
ρA´1 ` p1 ´ ρqC´1

‰“
ρσ2A´2

‰
` 2σ4ρA´3

*

for j “ 1, 2; k “ 3; l “ 4

B4Spt1, t2, t3, t4q
BtjBtkBtlBtm

“ Spt1, t2, t3, t4q
´
SjptjqSkptkqSlptlqSmptmq

¯´σ2´1

fjptjqfkptkqflptlqfmptmq#
“
ρA´1 ` p1 ´ ρqC´1

‰„“
ρA´1 ` p1 ´ ρqC´1

‰

”“
ρA´1 ` p1 ´ ρqB´1

‰2 ` ρσ2A´2 ` p1 ´ ρqσ2B´2
ı

`2σ2ρA´2
“
ρA´1 ` p1 ´ ρqB´1

‰
` 2ρσ4A´3



`
“
ρσ2A´2 ` p1 ´ ρqσ2C´2

‰”“
ρA´1 ` p1 ´ ρqB´1

‰2

`ρσ2A´2 ` p1 ´ ρqσ2B´2
ı

`
“
ρA´1 ` p1 ´ ρqC´1

‰”
2
“
ρA´1 ` p1 ´ ρqB´1

‰
ρσ2A´2

`2ρσ4A´3
ı

` 4ρσ4A´3
“
ρA´1 ` p1 ´ ρqB´1

‰

`2ρσ2A´2
“
ρσ2A´2

‰
` 6ρσ6A´4

*
.

for j “ 1; k “ 2; l “ 3;m “ 4

The loglikelihood is given by (6.9). If a parametric distribution is chosen for
the baseline hazard, this closed form expression of the loglikelihood can be
maximized with respect to the unknown parameters. Standard errors can
be obtained from the inverse of the observed information matrix. Repre-
sentation (6.11) of the joint survival function also allows a semiparametric
two-stage copula approach.
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6.3.3 The fourdimensional correlated gamma frailty model
with correlation ρ1 and ρ2 between different frailties
(model 4)

Next, the model is extended in the sense that the correlation between the
frailties of the first two members of the cluster and between the last two
members of the cluster is not necessarily equal to one, but can take a value
ρ1. The correlations between other frailty-pairs is then equal to ρ2. Figure
6.3 visualizes the construction of the frailties and the correlation structure
between them for the model described in this section. The individual frail-
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Figure 6.3: Construction of the frailties and the pairwise correlation struc-
ture for the fourdimensional correlated frailty model with correlations be-
tween the frailties equal to ρ1 or ρ2. Z1, Z2, Z3 and Z4 represent the frailty
for the front left (FL), front right (FR), rear left (RL) and rear right (RR)
udder quarter, respectively.

ties will be constructed using six independent gamma-distributed random
variables Y0, Y1, Y2, Y3, Y4, Y5 and Y6 with parameters pkl, αlq, l=0,. . . ,6, re-
spectively. Y0 will represent the common part of the frailty for each member
of the cluster. Y1 and Y2 are common for only two members of the cluster,
for example Y1 is common for the first two members and Y2 is common for
the other two members. Y3, Y4, Y5 and Y6 represent truly individual hetero-
geneity. Since there is a frailty-part that represents individual heterogeneity
the model resembles more the originally proposed correlated frailty model
(Yashin et al., 1995), but it is extended by a frailty-part that is only com-
mon to some of the members in the cluster. We again assume that the scale
parameters of the gamma-distributed random variables Y0, Y1, Y2, Y3, Y4,
Y5 and Y6 are the same, i.e., α0 “ α1 “ α2 “ α3 “ α4 “ α5 “ α6 “ α. We
further assume that the shape parameters for the distribution of Y1 and Y2
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are the same, i.e., k1 “ k2 and that the shape parameters for the distribution
of Y3, Y4, Y5 and Y6 are the same, i.e., k3 “ k4 “ k5 “ k6. We will use k2 for
the shape parameter of Y3, Y4, Y5 and Y6. The frailties are then given by

Z1 “ Y0 ` Y1 ` Y3 „ gammapk0 ` k1 ` k2, αq
Z2 “ Y0 ` Y1 ` Y4 „ gammapk0 ` k1 ` k2, αq
Z3 “ Y0 ` Y2 ` Y5 „ gammapk0 ` k1 ` k2, αq
Z4 “ Y0 ` Y2 ` Y6 „ gammapk0 ` k1 ` k2, αq.

We further add the restriction k0 ` k1 ` k2 “ α. The frailties therefore have
mean 1:

EpZ1q “ EpZ2q “ EpZ3q “ EpZ4q “ k0 ` k1 ` k2

α
“ 1

and we denote their variance by σ2

VpZ1q “ VpZ2q “ VpZ3q “ VpZ4q “ k0 ` k1 ` k2

α2
“ 1

α
“ σ2.

The covariances between the frailties can be obtained as follows:

CovpZ1, Z2q “ CovpY0 ` Y1 ` Y3, Y0 ` Y1 ` Y4q “ V pY0 ` Y1q “ k0 ` k1

α2

CovpZ3, Z4q “ CovpY0 ` Y2 ` Y5, Y0 ` Y2 ` Y6q “ V pY0 ` Y2q “ k0 ` k1

α2

CovpZi, Zjq “ CovpY0 ` Y1 ` Yi`2, Y0 ` Y2 ` Yj`2q “ V pY0q “ k0

α2
,

for i=1,2; j=3,4. The correlations between the frailties are then

CorrpZ1, Z2q “ k0 ` k1

α
“ ρ1

“ CorrpZ3, Z4q

CorrpZi, Zjq “ k0

α
“ ρ2,

for i=1,2; j=3,4. The shape parameters k0, k1 and k2 can be expressed as:

ρ2 “ k0

α
ñ k0 “ ρ2α “ ρ2

σ2

ρ1 “ k0 ` k1

α
ñ k1 “ ρ1α ´ k0 “ ρ1 ´ ρ2

σ2

1 “ k0 ` k1 ` k2

α

ñ k2 “ α ´ k0 ´ k1 “ 1

σ2
´ ρ2

σ2
´ ρ1 ´ ρ2

σ2
“ 1 ´ ρ1

σ2
.
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Since the shape parameters need to be positive, the following restrictions on
the correlations hold:

k0 ě 0 ñ ρ2 ě 0

k1 ě 0 ñ ρ1 ě ρ2

k2 ě 0 ñ ρ1 ď 1

or summarizing

0 ď ρ2 ď ρ1 ď 1.

We again assume that given the frailties Z1, Z2, Z3 and Z4, the event times
T1, T2, T3 and T4 are independent. Under this condition the marginal sur-
vival function Spt1, t2, t3, t4q can be obtained from the conditional survival
function as follows:

Spt1, t2, t3, t4q “ E pSpt1, t2, t3, t4|Z1, Z2, Z3, Z4qq
“ E pS1pt1|Z1qS2pt2|Z2qS3pt3|Z3qS4pt4|Z4qq
“ E

´
e´Z1H1pt1qe´Z2H2pt2qe´Z3H3pt3qe´Z4H4pt4q

¯

“ E
´
e´pY0`Y1`Y3qH1pt1qe´pY0`Y1`Y4qH2pt2q

e´pY0`Y2`Y5qH3pt3qe´pY0`Y2`Y6qH4pt4q
¯

“ E
´
e´Y0pH1pt1q`H2pt2q`H3pt3q`H4pt4qq

e´Y1pH1pt1q`H2pt2qqe´Y2pH3pt3q`H4pt4qq

e´Y3H1pt1qe´Y4H2pt2qe´Y5H3pt3qe´Y6H4pt4q
¯

(6.12)

Making use of the Laplace transform of the gamma distribution (1.10), the
marginal survival function (6.12) can be written as

Spt1, t2, t3, t4q “
ˆ
1 ` H1pt1q `H2pt2q `H3pt3q `H4pt4q

α

˙´k0

ˆ
1 ` H1pt1q `H2pt2q

α

˙´k1
ˆ
1 ` H3pt3q `H4pt4q

α

˙´k1

ˆ
1 ` H1pt1q

α

˙´k2
ˆ
1 ` H2pt2q

α

˙´k2

ˆ
1 ` H3pt3q

α

˙´k2
ˆ
1 ` H4pt4q

α

˙´k2
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“
`
1 ` σ2pH1pt1q `H2pt2q `H3pt3q `H4pt4qq

˘´ρ2{σ2

`
1 ` σ2pH1pt1q `H2pt2qq

˘pρ2´ρ1q{σ2

`
1 ` σ2pH3pt3q `H4pt4qq

˘pρ2´ρ1q{σ2

ˆ
1 ` H1pt1q

α

˙pρ1´1q{σ2 ˆ
1 ` H2pt2q

α

˙pρ1´1q{σ2

ˆ
1 ` H3pt3q

α

˙pρ1´1q{σ2 ˆ
1 ` H4pt4q

α

˙pρ1´1q{σ2

Using (6.3) the marginal survival function can be written as

Spt1, t2, t3, t4q “ A´ρ2{σ2

Bpρ2´ρ1q{σ2

Cpρ2´ρ1q{σ2

pS1pt1qS2pt2qS3pt3qS4pt4qq1´ρ1 , (6.13)

with A “ S1pt1q´σ2 `S2pt2q´σ2 `S3pt3q´σ2 `S4pt4q´σ2 ´3, B “ S1pt1q´σ2 `
S2pt2q´σ2 ´1 and C “ S3pt3q´σ2 `S4pt4q´σ2 ´1. For ρ1 “ 1 the fourdimen-
sional correlated gamma frailty model with shared and correlated frailties
(6.11) is obtained. For ρ1 “ ρ2 “ ρ the fourdimensional correlated gamma
frailty model with equal correlation between the frailties (6.7) is obtained.
Taking ρ1 “ ρ2 “ 1 leads to the shared gamma frailty model.
The partial derivatives of the marginal survival function, needed to construct
the likelihood, are

BSpt1, t2, t3, t4q
Btj

“ ´Spt1, t2, t3, t4qSjptjq´σ2´1fjptjq
”
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2
ı

for j “ 1, 2

BSpt1, t2, t3, t4q
Btj

“ ´Spt1, t2, t3, t4qSjptjq´σ2´1fjptjq
”
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSjptjqσ
2
ı

for j “ 3, 4
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B2Spt1, t2, t3, t4q
BtjBtk

“ Spt1, t2, t3, t4qpSjptjqSkptkqq´σ2´1fjptjqfkptkq
”“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSkptkqσ2‰

“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰

`ρ2σ2A´2 ` σ2pρ1 ´ ρ2qB´2
ı

for j, k “ 1, 2; j ă k

B2Spt1, t2, t3, t4q
BtjBtk

“ Spt1, t2, t3, t4qpSjptjqSkptkqq´σ2´1fjptjqfkptkq
”“
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSkptkqσ2‰

“
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSjptjqσ
2‰

`ρ2σ2A´2 ` σ2pρ1 ´ ρ2qC´2
ı

for j, k “ 3, 4; j ă k

B2Spt1, t2, t3, t4q
BtjBtk

“ Spt1, t2, t3, t4qpSjptjqSkptkqq´σ2´1fjptjqfkptkq
”“
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSkptkqσ2‰

“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰

`ρ2σ2A´2
ı

for j “ 1, 2; k “ 3, 4
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B3Spt1, t2, t3, t4q
BtjBtkBtl

“ ´Spt1, t2, t3, t4qpSjptjqSkptkqSlptlqq´σ2´1

fjptjqfkptkqflptlq"“
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSlptlqσ
2‰

”“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSkptkqσ2‰

“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰

`σ2ρ2A´2 ` pρ1 ´ ρ2qσ2B´2
ı

`ρ2σ2A´2
“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰

`ρ2σ2A´2
“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSkptkqσ2‰

`2σ4ρ2A
´3

*
for j “ 1; k “ 2; l “ 3, 4

B3Spt1, t2, t3, t4q
BtjBtkBtl

“ ´Spt1, t2, t3, t4qpSjptjqSkptkqSlptlqq´σ2´1

fjptjqfkptkqflptlq"“
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSlptlqσ
2‰

”“
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSkptkqσ2‰

“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰

`σ2ρ2A´2
ı

`
“
ρ2σ

2A´2 ` σ2pρ1 ´ ρ2qC´2
‰

“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰

`ρ2σ2A´2
“
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSkptkqσ2‰

`2σ4ρ2A
´3

*
for j “ 1, 2; k “ 3; l “ 4
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B4Spt1, t2, t3, t4q
BtjBtkBtlBtm

“ Spt1, t2, t3, t4q
´
SjptjqSkptkqSlptlqSmptmq

¯´σ2´1

fjptjqfkptkqflptlqfmptmq#
“
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSmptmqσ2‰

„“
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSlptlqσ
2‰

”“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSkptkqσ2‰

“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰

`ρ2σ2A´2 ` pρ1 ´ ρ2qσ2B´2
ı

`σ2ρ2A´2
“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰

`σ2ρ2A´2
“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSkptkqσ2‰

`2ρ2σ
4A´3


`
“
ρ2σ

2A´2 ` pρ1 ´ ρ2qσ2C´2
‰

”“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSkptkqσ2‰

“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰

`ρ2σ2A´2 ` pρ1 ´ ρ2qσ2B´2
ı

`
“
ρ2A

´1 ` pρ1 ´ ρ2qC´1 ` p1 ´ ρ1qSlptlqσ
2‰

”“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰
ρ2σ

2A´2

`
“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSkptkqσ2‰
ρ2σ

2A´2

`2ρ2σ
4A´3

ı
` 2ρ2σ

4A´3

“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 ` p1 ´ ρ1qSjptjqσ
2‰

`2
“
ρ2σ

2A´2
‰2

`2ρ2σ
4A´3

“
ρ2A

´1 ` pρ1 ´ ρ2qB´1 `

p1 ´ ρ1qSkptkqσ2‰ ` 6ρ2σ
6A´4

*

for j “ 1; k “ 2; l “ 3;m “ 4

The loglikelihood is given by (6.9). If a parametric distribution is chosen for
the baseline hazard, this closed form expression of the loglikelihood can be
maximized with respect to the unknown parameters. Standard errors can
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be obtained from the inverse of the observed information matrix. Repre-
sentation (6.13) of the joint survival function also allows a semiparametric
two-stage copula approach.

6.4 Analysis of the mastitis data

The proposed models are applied to the time to infection with C. bovis data
set. All programs are written in R. A Weibull distribution is assumed for
the baseline hazard. We investigate the effect of the udder quarter location
(front or rear), an udder quarter level covariate, and the effect of parity
(multiparous versus primiparous), a between cow covariate, on the time to
infection with C. bovis. Special interest is now in the estimates of the corre-
lation parameters. Since the frailty is defined as an individual susceptibility
to experience the event, i.e., to get infected with C. bovis, the correlations
between the different frailties describe the correlations between the suscep-
tibility of the different udder quarters to get infected. We also compare the
estimates obtained in the proposed models with estimates obtained from fit-
ting a shared gamma frailty model (model 1) to the time to infection with C.
bovis data set. In the shared gamma frailty model the correlation between
the frailties of the different udder quarters is equal to one.
Different models were fitted to the data. Since the models are not nested
within each other, comparison of the models is based on the Akaike Infor-
mation Criterion (AIC). To calculate the AIC we use the formula AIC “
´2 logL` 2 ˆ pnumber of parametersq (Izumi and Ohtaki, 2004).
In the model with the correlation equal to one or ρ (model 3) and in the
model with the correlation equal to ρ1 or ρ2 (model 4) there is a restric-
tion on the magnitude of the correlation parameters: ρ ď 1 in model 3
and ρ2 ď ρ1 in model 4. First we investigate whether it is more sensible
to assume that the correlation between the frailties of the two front udder
quarters and between the frailties of the two rear udder quarters is bigger
than the correlation between the frailties of the two left udder quarters and
between the frailties of the two right udder quarters or whether it is more
sensible to make the opposite assumption. The AIC for the models with the
strongest correlation between the frailties of the two front udder quarters
and between the frailties of the two rear udder quarters is smaller (7806.464
for model 3 and 7807.008 for model 4 versus 7843.602 for model 3 and
7845.18 for model 4 when the opposite assumption is made). Therefore, we
will proceed with the assumption that the correlation is strongest between
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the frailties of the two front udder quarters and between the frailties of the
two rear udder quarters.
The parameter estimates and their standard errors for the different models
are given in Table 6.1. The parameter estimates in all models are compa-

Table 6.1: Parameter estimates (Est) and their standard errors (SE) for the
shared gamma frailty model (model 1) and three correlated gamma frailty
models (model 2, 3 and 4) with parity (β̂p is the effect of a multiparous cow)

and udder quarter location (β̂l is the effect of the rear udder quarter) as
covariates and Weibull baseline hazard.

Shared Corr=ρ Corr=1 or ρ Corr=ρ1 or ρ2
(model 1) (model 2) (model 3) (model 4)
Est (SE) Est (SE) Est (SE) Est (SE)

θ 3.846 (0.223) 3.914 (0.272) 4.132 (0.250) 4.338 (0.332)
λ 0.138 (0.016) 0.138 (0.017) 0.143 (0.018) 0.145 (0.019)
γ 1.981 (0.040) 1.991 (0.047) 2.038 (0.045) 2.074 (0.059)
ρ - 0.993 (0.015) 0.954 (0.017) -
ρ1 - - - 0.984 (0.016)
ρ2 - - - 0.936 (0.024)
βl -0.275 (0.050) -0.277 (0.050) -0.288 (0.053) -0.294 (0.054)
βp 0.866 (0.143) 0.875 (0.146) 0.881 (0.149) 0.907 (0.156)
AIC 7783.318 7785.114 7775.846 7776.732

rable. The estimate for γ in each model is above 1, therefore, the hazard is
increasing with time. The conclusions concerning the covariates are also the
same in all models. Since model 3 has the lowest value for the AIC, model 3
is selected as the best fitting model. We discuss the effect of the covariates
based on the estimates obtained in this model. The rear udder quarters have
a significantly lower hazard of infection than the front udder quarters, with
hazard ratio (HR) = 0.75 (95% confidence interval (CI) [0.68;0.83]). The
hazard of infection for multiparous cows was significantly higher compared
to heifers, HR = 2.41, 95% CI [1.80;3.23].
The estimate for θ is lowest in the shared frailty model. This makes sense,
since in the shared frailty model θ represents the variance of frailties that
represent heterogeneity due to only common unobserved risk factors, while
in the other (correlated) frailty models the frailties represent heterogeneity
due to a combination of common and individual unobserved risk factors.
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Comparing model 1 and model 2, it can be seen that the estimate for the
parameter ρ is lower in model 2 (ρ is equal to one in the shared frailty
model), while the estimate for θ is a bit higher in model 2 than in model 1.
This relation between ρ and θ is already described for the bivariate case in
Wienke et al. (2005a).
The correlations between the frailties of the different udder quarters are
high in all models. In model 2 the correlation between the frailties of the
different udder quarters is the same and equal to 0.993. The AIC for model
2 is higher than the AIC for the shared frailty model implying that the extra
parameter ρ does not improve the fit and the shared frailty model with ρ

equal to one is adequate. However introducing the possibility of a different
correlation between the frailties of the two front udder quarters and between
the frailties of the two rear udder quarters on the one hand and between
the frailties of the two left udder quarters and between the frailties of the
two right udder quarters on the other hand, significantly improves the fit,
resulting in a lower value for the AIC, despite the fact that an extra param-
eter needs to be introduced in the model. Comparing model 3 and model 4
we can conclude that it is good to suppose a different correlation between
the frailties of the two front udder quarters and between the frailties of the
two rear udder quarters on the one hand and between the frailties of the two
left udder quarters and between the frailties of the two right udder quarters
on the other hand, but that the strongest correlation can be assumed to be
equal to one.

6.5 The fourdimensional correlated gamma frailty
model for interval-censored data

In the previous section different correlated gamma frailty models were fitted
to fourdimensional interval-censored data by imputing the midpoint of the
interval as an exact event time. In this section the interval-censored nature
of the data is taken into account. The fourdimensional distribution of frailty
and the correlation structure is obtained in the same way as in the previous
section for all models. The joint survival function is also obtained as the
expectation of the conditional survival function and takes the form (6.7),
(6.11) or (6.13) for model 2, 3, 4, respectively.
In Section 4.4 the loglikelihood for the copula model for fourdimensional
interval-censored data is constructed. Since the likelihood is expressed in
terms of the joint survival function, it can also be applied here with the
joint survival function given by (6.7), (6.11) or (6.13) for model 2, 3, 4,
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respectively. The loglikelihood (6.9) therefore needs to be replaced by

logLpζq “
kÿ

i“1

«
∆i logLi,δipli1, li2, li3, li4q

`
4ÿ

j“1

r∆ipjq logLi,δipli1, li2, li3, li4, uijqs

`
ÿ

j‰k

r∆ipj, kq logLi,δipli1, li2, li3, li4, uij , uikqs

`
ÿ

j‰k;j‰l;k‰l

r∆ipj, k, lq logLi,δipli1, li2, li3, li4, uij , uik, uilqs

`∆ip1, 2, 3, 4q logLi,δipli1, li2, li3, li4, ui1, ui2, ui3, ui4q
ff
,

with ζ “ pξ, θ,β), ξ containing the parameters of the baseline hazard,
δi “ pδi1, δi2, δi3, δi4q, with δij , j “ 1, 2, 3, 4, equal to 1 if the jth member of
the ith cluster is interval-censored and equal to 0 if the jth member of the
ith cluster is right-censored, ∆i, ∆ipjq, ∆ipj, kq, ∆ipj, k, lq and ∆ip1, 2, 3, 4q
defined as in (4.6) and k the number of clusters. For the different likelihood
contributions Li,δi we refer to Section 4.4, with the joint survival function
Spp, q, r, sq given by (6.7), (6.11) and (6.13) for model 2, 3 and 4, respec-
tively.
Parameter estimates and their standard errors for the different models are
given in Table 6.2. Conclusions concerning the effect of covariates, the cor-
relation structure in the data and the best fitting model are the same as
when imputation of the midpoint is used.

6.6 Conclusions

In this chapter we proposed three fourdimensional correlated gamma frailty
models to model the correlation structure between the frailties of the four
udder quarters of a dairy cow. Model 4 could even be extended to a model
with three different correlations: a correlation equal to ρ1 between the frail-
ties of the two front udder quarters and between the frailties of the two rear
udder quarters, a correlation equal to ρ2 between the frailties of the two left
udder quarters and between the frailties of the two right udder quarters and
a correlation equal to ρ3 between the frailties of the udder quarters that are
positioned diagonally from each other. However, the model would become
quite complex and based on the results obtained in model 4, we believe
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Table 6.2: Parameter estimates (Est) and their standard errors (SE) for a
shared gamma frailty model (model 1) and three correlated gamma frailty
models (model 2, 3 and 4) with parity (β̂p is the effect of a multiparous cow)

and udder quarter location (β̂l is the effect of the rear udder quarter) as
covariates and Weibull baseline hazard.

Shared Corr=ρ Corr=1 or ρ Corr=ρ1 or ρ2
(model 1) (model 2) (model 3) (model 4)
Est (SE) Est (SE) Est (SE) Est (SE)

θ 3.842 (0.224) 3.883 (0.271) 4.119 (0.250) 4.280 (0.333)
λ 0.137 (0.017) 0.138 (0.017) 0.142 (0.018) 0.144 (0.019)
γ 1.984 (0.042) 1.991 (0.049) 2.041 (0.047) 2.070 (0.062)
ρ - 0.996 (0.015) 0.956 (0.016) -
ρ1 - - - 0.987 (0.016)
ρ2 - - - 0.942 (0.025)
βl -0.276 (0.050) -0.278 (0.051) -0.290 (0.054) -0.295 (0.055)
βp 0.867 (0.143) 0.872 (0.146) 0.882 (0.150) 0.903 (0.156)
AIC 11320.83 11322.76 11312.22 11313.53

introducing an extra parameter would not improve the fit for the infection
with C. bovis data. Based on the AIC, a model that allows a different cor-
relation between the frailties of the two front udder quarters and between
the frailties of the two rear udder quarters on the one hand and between
the frailties of the two left udder quarters and between the frailties of the
two right udder quarters on the other hand, with the extra simplification
that the strongest correlation is equal to one, provides the best fit to the
infection with C. bovis data.
The proposed models have several advantages. By assuming a gamma dis-
tribution for the frailties, the frailties can be integrated out from the condi-
tional likelihood and a closed form expression for the marginal likelihood is
obtained which can then be maximized by traditional estimation methods
(maximum likelihood estimation) to obtain parameter estimates and their
standard errors. The representation of the joint survival function in terms
of the marginal survival functions and the correlation parameters allows a
semiparametric two-stage copula estimation approach and makes the model
flexible. It is however important to keep in mind that the standard errors
of the estimates of the correlation parameters obtained in the second stage
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do not include the error that is created by using a nonparametric or semi-
parametric estimator for the marginal survival functions in the first stage.
Therefore, other methods such as, for example, a bootstrap approach should
be used to obtain standard errors of the parameter estimates. Using a fully
parametric approach has the advantage that standard errors can be obtained
directly from the information matrix.
The proposed models also have disadvantages, which may present limita-
tions in practical situations. The construction of the fourdimensional frailty
distribution imposes constraints on the correlations between the frailty vari-
ables. This restricts the possible range of correlation structures between the
frailties Z1, Z2, Z3 and Z4. However, if we restrict to the models presented
in this chapter, restrictions are reasonable for practical situations. It is fur-
ther important to realize that the parameter ρ in model 2 and model 3 and
the parameters ρ1 and ρ2 in model 4 describe the correlation between the
frailties and not the correlation between the event times. Lindeboom and
Van Den Berg (1994) investigate the relationship between the correlation
between frailties and the correlation between event times. They derive ex-
plicit expressions for the correlation between the event times in the special
case of a constant baseline hazard function. Unfortunately, such explicit
results are not available for more general situations.
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Mastitis, the inflammation of the udder of a dairy cow, is economically the
most important disease in the dairy sector of the western world because ud-
der infections are closely associated with reduced milk yield and milk quality
(Seegers et al., 2003). Therefore, mastitis control is an important compo-
nent of dairy herd health programs. As a consequence, it is important to
interpret the results from experimental or observational studies, carried out
to investigate, for example, possible risk factors for mastitis or the infec-
tiousness of mastitis in a correct way. To accomplish this goal, not only an
adequate experimental design is important; a proper statistical analysis of
the observed data is also essential. The statistical model should exploit the
information in the data to its full extent and should model the specific data
structure correctly. For the mastitis data it is therefore important to use
statistical models that take into account the clustering in the data and the
interval-censored nature of the data simultaneously.

If the only goal of a mastitis study is to investigate the effect of covari-
ates, the marginal model provides consistent estimates. An estimate of a
parameter is consistent if the difference between the estimate and the actual
parameter goes to an infinitesimally small value ǫ (ǫ ą 0) with probability 1
for the sample size n going to infinity. The likelihood-based estimates of the
variance of the covariate effects, usually provided in commercial software
packages, are however not consistent. To investigate and test the effect of
the covariates correctly, for example by constructing confidence intervals,
it is important that correct variances are used. Too small variances lead
to too narrow confidence intervals and therefore type I errors larger than
the proposed α. Too large variances lead to too wide confidence intervals,
maybe missing a significant covariate effect. Correct variances can be ob-
tained by using the grouped jackknife technique. The conclusions concerning
the effect of the location covariate (βl) and the parity covariate (βp) in the
mastitis data are not altered for any of the considered bacteria if the näıve
(likelihood-based) estimate of the variance would be used. However, wrong
conclusions could be drawn in other data sets, leading to false guidelines for
the practitioner.

If interest is only in the covariate effects, the fixed effects model is another
option to model clustered, interval-censored data. However, we recommend
using the marginal model over the fixed effects model because of different
disadvantages of the fixed effects model. First, the parameter estimate for
λ (the scale parameter of the Weibull distribution) corresponds to the pa-
rameter for one particular cow only. Therefore, the censoring status of the
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udder quarters in that cow determines whether this parameter can be esti-
mated or not (if all udder quarters are censored, the parameter can not be
estimated). However, most software packages still provide an arbitrary low
value for the estimate and standard error of the parameter even if it can not
be estimated. Second, the software also provides parameter estimates and
their variances for all the fixed cow effects which are not really of interest. If
the number of fixed cow effects is large, the software is sometimes not able
to fit the model due to insufficient memory. Third, it is impossible to obtain
estimates for cow level covariates in the fixed effects model, because there is
complete confounding between the cow fixed effects and the cow level covari-
ates. Nevertheless, statistical software packages typically provide a senseless
estimate for these effects.

In this thesis different models are proposed that can be used if interest is not
only in the effect of covariates, but also in the correlation in the data and/or
in the possible correlation structures in the data. The proposed models also
take into account the interval-censored nature of the mastitis data.
The first model discussed is the Clayton copula model. The copula model
can only be used for data consisting of small clusters of equal size. If a
parametric distribution is chosen for the marginal survival functions, either
a two-stage estimation approach or a one-stage estimation approach is pos-
sible. If the marginal survival functions are estimated nonparametrically or
semiparametrically, a two-stage estimation approach has to be used. The
standard error for the estimate of θ (the correlation parameter in the copula
model), obtained in the second stage of a two-stage estimation approach,
does not take into consideration the uncertainty related to the estimation of
the marginal survival functions in the first stage. Therefore, this standard
error is incorrect, especially with small sample sizes, and other methods such
as, for example, a bootstrap approach should be used to obtain a standard
error of the estimate for θ. Sun et al. (2006) proof for bivariate data that the
estimate for θ is consistent and asymptotically normal under certain regular-
ity conditions if the marginal survival functions are estimated nonparamet-
rically in the first stage of a two-stage estimation procedure. Investigating
the properties of θ̂ in four dimensions is a topic of further research. For the
infection with Staph. aureus, Strep. dysgalactiae and Strep. uberis data sets
parameter estimates and their standard errors are very similar in the one-
stage and parametric two-stage approach. Only the standard error for the
estimate of γ (the shape parameter of the Weibull distribution) in the one-
stage approach is slightly higher than the jackknife estimate obtained in the
two-stage approach. For the infection with C. bovis data set the estimates
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of θ, βl and βp differ depending on the approach used. The variance for the
estimate of βp (the effect of a multiparous cow) in the one-stage approach
is lower than the jackknife estimate obtained in the two-stage approach.
The one-stage approach is recommended in a fully parametric copula model
because it leads to correct variance estimators without a requirement for
bootstrap or jackknife techniques.
To interpret the parameter θ in the fourdimensional Clayton copula model
its relationship with Kendall’s τ is used. Kendall’s τ is a global measure of
correlation, defined in the bivariate case as

τ “ P ppTi1 ´ Tk1qpTi2 ´ Tk2q ą 0q ´ P ppTi1 ´ Tk1qpTi2 ´ Tk2q ă 0q ,

with pTi1, Ti2q, pTk1, Tk2q the event times in two randomly chosen pairs. Val-
ues for τ are between -1 and 1, 1 corresponding to a perfect correlation, -1
meaning a perfect inverse correlation. If Kendall’s τ is equal to 0, the event
times are independent. A multivariate definition of Kendall’s τ can be found
in Nelsen (1996). The relationship between Kendall’s τ and θ in the Clayton
copula is given by τ “ θ{pθ`2q. Using this relationship θ can be interpreted
as a measure of the correlation between the infection times within a cow.
The correlation in the copula model is necessarily positive. If the correlation
is high, an infection of one udder quarter can easily evolve in infection of the
other udder quarters. Therefore, it is important to take preventive measures
to keep the other udder quarters infection free if one of the udder quarters
of a cow is infected.

We further proposed a shared gamma frailty model for interval-censored
data in a parametric setting. This model allows different and large cluster
sizes. Assuming a gamma distribution for the frailties a closed form expres-
sion for the marginal likelihood can be obtained which can be maximized
to obtain parameter estimates. Exact expressions for the second derivatives
of the likelihood and thus estimates for the variances of the parameter es-
timates can be obtained by inverting the matrix of second derivatives or
can be obtained from the Hessian matrix at the end of the maximization
procedure. Although the proposed methodology and the R-program is valid
for any cluster size, its practical applicability at the moment is restricted
to data with at most eleven events in a cluster due to insufficient memory.
The Kronecker product in the program needs to be reprogrammed in a less
memory consuming way so that data with more than eleven events in a
cluster can be fitted.
A direct interpretation of the parameter θ in the shared gamma frailty model
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is not easy. θ is the variance between the frailties, thus representing between-
cow variability. Variance between cows induces correlation within the cow.
Thus, the larger the variance between the cows, the larger the correlation
within the cow. Figure 7.1 depicts the relationship between Kendall’s τ and
θ. It can be seen that for values of θ between zero and two the increase in
Kendall’s τ is steep, but that for larger values of θ the increase in Kendall’s
τ levels off. Therefore, correlation is high in all data sets considered in this
thesis with τ equal to 0.74, 0.66, 0.62 and 0.74 for infections with Staph.
aureus, C. bovis, Strep. dysgalactiae and Strep. uberis, respectively, but
a seemingly large difference in the value of θ (θ equal to 3 or 5) does not
translate in a large difference for the value of Kendall’s τ .
Another reason why the interpretation of the parameter θ is not straightfor-
ward in the shared gamma frailty model is the fact that the frailty operates
on the hazard of infection in a multiplicative way, while interest is usually in
the effect of the frailty on the infection times. Therefore, it is meaningful to
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Figure 7.1: Relationship between τ and θ with τ “ θ{pθ ` 2q

investigate how the frailties influence the median time to infection, a quan-
tity that has a biological meaning (Duchateau and Janssen, 2005). Density
functions for the median time to infection with C. bovis are depicted in Fig-
ure 7.2 for different values of θ. The larger the parameter θ the flatter the
density function, the smaller the parameter θ the higher the peak. Figure
7.2 shows that the biggest differences in the density function for the median
time to infection are obtained for values of θ between 0 and 1. For values of
θ larger than 1, differences are less pronounced. Therefore, the effect of the
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Figure 7.2: Density function for the median time to infection with
Corynebacterium bovis for different values of θ. Left panel: values of θ
between 0 and 1. Right panel: values of θ between 1 and 10.

clustering in the data (represented by the parameter θ) on the median time
to infection for the four bacteria is similar.

The interpretation of the covariate effects is different in the marginal and
copula model versus the fixed effects and frailty model. Covariate effects
in the marginal and copula model are at the marginal level, while covariate
effects in the fixed effects and frailty model are at the conditional level. For
the location covariate, for example, this means that in the marginal and
copula model the hazard ratio represents the ratio of the hazard of infection
for a randomly chosen rear udder quarter versus the hazard of infection for a
randomly chosen front udder quarter from whatever other cow. In the fixed
effects and frailty model the hazard ratio reflects the hazard of infection for
a rear versus a front udder quarter within the same cow.

To investigate possible correlation structures in the mastitis data, different
correlated gamma frailty models are proposed. The assumption of gamma-
distributed frailties makes it possible to obtain a closed form expression for
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the marginal likelihood, which can then be maximized to obtain parame-
ter estimates. Variance estimates can be obtained from the Hessian matrix
evaluated at the maximum likelihood solutions. If a parametric distribu-
tion is assumed for the marginal survival functions, two-stage and one-stage
estimation is possible. If the marginal survival functions are estimated non-
parametrically or semiparametrically, a two-stage estimation procedure has
to be used. In this thesis we restrict to parametric one-stage estimation.
In the proposed correlated frailty models σ2 is the variance of the frailties
of the udder quarters. We first discuss the interpretation of this parameter.
In the correlated frailty model σ2 needs to be interpreted as a measure of
the heterogeneity in the data. Since the frailties consist of a part that is
common for all or some udder quarters and a part that is specific to a certain
udder quarter it can be investigated whether variability is mostly at the cow
level or at the udder quarter level. This is not possible in the shared frailty
model: all variability is at the cow level.
Different correlated gamma frailty models with different correlation struc-
tures are proposed. In the shared gamma frailty model the correlation struc-
ture between the frailties is symmetric and the correlation between any
frailty-pair is equal to one as all the udder quarters share the same frailty.
The first correlated gamma frailty model is a straightforward extension of
the correlated gamma frailty model for bivariate data to fourdimensional
data. The correlation structure is still symmetric, but the correlation be-
tween any frailty-pair is equal to a value ρ, instead of equal to one. There-
fore, the correlation between the frailties can be less strong, meaning that
there is also considerable variability at the udder quarter level. Between
the members of a pair in bivariate data, only one correlation is possible.
In fourdimensional data different correlations between frailty-pairs can oc-
cur. The other proposed fourdimensional correlated gamma frailty models
make an asymmetric and thus more flexible correlation structure between
the frailties possible. In certain situations it can be unrealistic to assume
that the correlation between all frailties is the same. In the infection with
C. bovis data set all correlations are very high. Still, a model with a higher
correlation between the frailties of the front udder quarters and between the
frailties of the rear udder quarters fits the data better than models with a
symmetric correlation structure. For other data sets this asymmetry in the
correlation structure can be even more pronounced.
Since the correlation parameters represent correlation between frailties and
not correlation between infection times, it is hard to interpret them. Yashin
et al. (1995) present an approximate formula for the correlation between
infection times in terms of the correlation between frailties. Lindeboom and
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Van Den Berg (1994) derive explicit expressions for the correlation between
the infection times in the special case of a constant baseline hazard func-
tion. Unfortunately, such explicit results are not available for more general
situations and would therefore make an interesting and necessary topic of
further research.

For the data sets and the developed methodology for clustered, interval-
censored data considered in this thesis (the copula model (one-stage and
two-stage approach), the shared frailty model and the correlated frailty
model), using techniques for right-censored data with the midpoint of the
interval taken as an exact event time or using the proposed techniques for
interval-censored data, provides similar parameter estimates for the covari-
ate effects. Imputation of the upper bound leads to different parameter
estimates, especially for the parameter γ. However, simulation studies show
that ignoring the interval censoring, and instead for example, using impu-
tation of the midpoint can lead to biased estimates in other situations, for
example, in case of a decreasing hazard or when intervals are broad. There-
fore, we recommend to use the proposed techniques for interval-censored
data instead of midpoint imputation in practice.

The shared frailty model presented in this thesis is limited to one level of
clustering. The mastitis data however present two nested levels of cluster-
ing: udder quarters are clustered within cow and cows are clustered within
herds. It would be interesting to incorporate two levels of clustering in the
shared frailty model. This type of model is called a hierarchical model with
a frailty term (cow) nested in another frailty term (herd). If more than
one frailty term occurs, the frailty terms can no longer be integrated out
analytically to obtain a closed form expression for the marginal likelihood.
One possible estimation technique is based on numerical integration of the
frailties at the higher cluster level. The frailties at the lower level are as-
sumed to be gamma distributed and integrated out analytically (Rondeau
et al., 2006). An application of this model for right-censored data can be
found in Duchateau and Janssen (2008), p 277. It would be interesting to
implement this technique for the interval-censored times to infection in the
mastitis data. Another estimation approach is based on Bayesian methodol-
ogy and uses Gibbs sampling. The normal distribution is a common choice
for the distribution of the random effects in hierarchical models; complex
hierarchical structures can be easily described by the multivariate normal
distribution. It is furthermore easy to fit the models for interval-censored
data in a Bayesian context. However, Bayesian methods are not considered
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in this thesis. The impossibility to incorporate more than one level of clus-
tering is a bottleneck for the frailty model and the copula model presented
in this thesis. The problem could be addressed by including management
factors of the herd as fixed effects in the model. That way, parameter es-
timates are corrected for the included factors, but of course not all factors
can be measured or included. Incorporating a second random herd effect in
the models would mean a great step forward for these models and is defi-
nitely a subject of further research. Determining which level of clustering is
more important (clustering within cow or clustering within herd) is a diffi-
cult discussion. Interpretation of the results from an analysis with one level
of clustering should be careful and a full risk factor analysis of the mastitis
data should be postponed until a second level of clustering can be incorpo-
rated in the models. Nevertheless, the developed methodology in this thesis
already addresses the commonly encountered problems of interval censoring
and (one level of) clustering in the data and is therefore a step forward in
exploiting all the information available in data sets such as the mastitis data.

In this thesis a Weibull distribution is chosen for the marginal or conditional
baseline hazard. Choosing a parametric distribution for the baseline hazard
enables us to use standard maximum likelihood techniques in all models.
Different distributional assumptions are investigated in the shared gamma
frailty model; a Weibull distribution provides the best fit for the mastitis
data. A Weibull distribution is therefore assumed for all the models con-
sidered in this thesis to make comparison between the models possible. For
the infection with C. bovis data set for example, the conclusions concerning
the effect of the covariates is the same in all proposed models, therefore,
the choice for a specific model can be based on the specific interest of the
researcher. Usually, the choice of a specific parametric distribution for the
baseline hazard is not dictated by biological reasoning. Therefore, a semi-
parametric approach is sometimes preferred. The expression of the joint
survival function in terms of the marginal survival functions in the copula
model and the correlated frailty models allows a semiparametric two-stage
estimation approach. It would be interesting to investigate the possibility to
use the EM-algorithm for semiparametric estimation in the shared gamma
frailty model for interval-censored data and in the fourdimensional corre-
lated gamma frailty models for right-censored or interval-censored data, thus
using this more flexible approach with less assumptions to model interval-
censored, clustered udder quarter infection times.
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The mastitis data set and its complex structure is the source of inspiration
for this thesis. Standard survival analysis techniques assume that the popu-
lation under study is homogeneous and that the event times are independent.
Furthermore, the most common and widely used survival analysis models
are developed for right-censored data. The mastitis data set, however, has
two characteristics that require extension of the currently available survival
analysis techniques if they have to be dealt with simultaneously. First, the
data are hierarchically structured, with observational units (the udder quar-
ters) grouped in blocks (the cow), so that the event times within a cow can
not be assumed to be independent. Second, since the udder quarters are
sampled only (more or less) monthly, the time to infection is not known
exactly; it is only known that the infection happened between the last visit
with a negative test and the first visit with a positive test; therefore, the
infection time is interval-censored.
We first compare the existing methodologies to model hierarchical, interval-
censored event time data. We first consider the modeling of hierarchical
data, handling the interval censoring problem by imputing the midpoint
of the interval as an exact event time. The frailty model and the copula
model are two models that can be used to fit correlated, right-censored
event time data. Both models provide an estimate of the correlation be-
tween event times in a cluster. In Chapter 3 similarities and differences
between copula models and shared frailty models are discussed. Focus is
on the comparison between the Clayton-Oakes copula model and the shared
gamma frailty model; and between the positive stable copula model and the
shared positive stable frailty model. The comparison reveals that the corre-
lation structure used to obtain the joint survival function from the marginal
survival functions in both models is the same, but that the arguments in
the joint survival function, the marginal survival functions, are modeled in
a different way. The marginal survival functions in the copula model are as-
sumed to be Weibull distributed, but the marginal survival functions in the
frailty model are obtained by integrating out the frailty from the conditional
survival functions (assumed to be Weibull distributed) and contain the pa-
rameter θ, contrary to the marginal survival functions in the copula model.
The differences are shown by using the Clayton-Oakes copula model with
Weibull marginal survival functions and the shared gamma frailty model
with conditional Weibull survival functions. A similar comparison between
the positive stable copula model and the shared positive stable frailty model
shows that, in the exclusive case of a Weibull baseline hazard (with γ ‰ 1),
there is a one-to-one match between the two models. If, for example, the
exponential distribution (Weibull distribution with γ “ 1) is assumed for
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the event times together with a positive stable distribution for the frailties,
this property no longer holds.
In Chapter 4 the interval-censored nature and the hierarchical structure
is dealt with simultaneously. The most frequently used methods to analyze
clustered, interval-censored data, available in commercial software packages,
are discussed: the marginal model, the fixed effects model and the copula
model. We point out some disadvantages or shortcomings of these mod-
els, in particular related to the mastitis data. The marginal model and
the fixed effects model do not provide an estimate of the correlation and
should only be used if interest is restricted to the covariate effects. Since, in
the marginal model, the existing correlation between event times is ignored
when obtaining parameter estimates, the likelihood-based estimates of the
variance of the estimates are not consistent. Therefore, other techniques,
such as the grouped jackknife technique, should be used to obtain estimates
of the variance. In the fixed effects model the cluster effect is modeled by
adding a fixed effect for each cluster. However, caution is needed when
applying a fixed effects model to the mastitis data. Cow level covariates
can not be modeled in the fixed effects model because there is complete
confounding between the fixed effect factors for cow and the cow level co-
variates. In the copula model, a two-stage estimation approach is necessary
if one wants to model the interval censoring in the data. In the first stage,
a marginal model for interval-censored data can be fitted, but in the second
stage the only option is to maximize the likelihood for right-censored data,
using midpoint imputation for interval-censored observations, since the like-
lihood for interval-censored data is not available in the literature. Since it
would be interesting to model the interval censoring in both stages of the
two-stage estimation procedure in the copula model, we further describe the
construction of the likelihood for fourdimensional interval-censored data in
the copula model so that interval censoring is used throughout. Making a
parametric assumption for the baseline hazard allows, next to the two-stage
procedure, a one-stage estimation approach. Herewith we introduce a new
approach to model clustered, interval-censored data.
In Chapter 5 an extension of the parametric shared gamma frailty model to
interval-censored data is proposed. We show that a closed form expression
of the marginal likelihood can be obtained by integrating out the gamma-
distributed frailties, which can then be maximized to obtain parameter esti-
mates. Furthermore, second derivatives of the likelihood can be derived and
thus estimates for the variances of the parameters can be obtained by invert-
ing the matrix of second derivatives. The technique allows the inclusion of
covariates in the model and is characterized by little or no data constraints.



SUMMARY 183

Contrary to the one-stage copula model discussed in Chapter 4 the num-
ber of cluster members can be variable. Intervals can be of variable length,
though the parameter γ tends to be more and more biased when intervals
become broader. A simulation study shows that the proposed technique
outperforms imputation techniques, especially in the case of a decreasing
Weibull baseline hazard or when censoring intervals get broader.
To investigate the correlation structure between the udder quarters fourdi-
mensional correlated gamma frailty models are proposed in Chapter 6. The
proposed models allow different correlation structures between the hazards
of the udder quarters (and thus also between the event times). The corre-
lation between the hazards of two udder quarters is modeled by imposing
a correlation structure on the two frailties. First, the symmetric correlated
frailty model (with the correlation equal to ρ for all frailty pairs) is described
for fourdimensional data. Next, we define a model that is intermediate be-
tween the shared gamma frailty model and the symmetric correlated frailty
model. The correlation between the frailties of the front udder quarters and
between the frailties of the rear udder quarters is equal to one, while the
correlation between other frailty pairs is equal to ρ. The final model has
the most flexible correlation structure with the correlation between the frail-
ties of the front udder quarters and between the frailties of the rear udder
quarters equal to ρ1 and the correlation between other frailty pairs equal to
ρ2. By assuming a gamma distribution for the frailties, the frailties can be
integrated out from the conditional joint survival function and a closed form
expression for the marginal likelihood based on the derivatives of the fourdi-
mensional joint survival function is obtained which can then be maximized
to obtain parameter estimates and their standard errors. The representa-
tion of the joint survival function in terms of the marginal survival functions
and the correlation parameters allows a semiparametric two-stage estima-
tion approach. The models provide insight in the most likely correlation
structure, and in the strength of the correlation between the frailties of the
udder quarters, clustered in the cow. Each of the correlated frailty models
described above imposes certain constraints on the correlation between the
frailties, e.g. ρ2 ă ρ1, meaning that the correlation between the front or
rear udder quarters is necessarily stronger that the correlation between the
left or right udder quarters. However, in the context of the mastitis data
set such constraints seem to be realistic.
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Deze thesis werd gëınspireerd door een data set met gegevens rond bacteriële
infecties op het niveau van een uierkwartier bij de melkkoe, de mastitis data
set. Standaard technieken in de overlevingsanalyse veronderstellen dat de
bestudeerde populatie homogeen is en dat de infectietijden onafhankelijk
zijn. Bovendien zijn de bekendste technieken ontwikkeld voor rechts gecen-
sureerde gegevens. Twee eigenschappen van de mastitis data set maken het
echter noodzakelijk de beschikbare technieken in de overlevingsanalyse uit
te breiden. Vooreerst zit er een bepaalde hiërarchie in de data, de uierkwar-
tieren zijn gegroepeerd binnen een koe, waardoor we niet kunnen aannemen
dat de infectietijden binnen een koe onafhankelijk zijn. Verder is de exacte
infectietijd niet gekend gezien de uierkwartieren slechts ongeveer maande-
lijks bemonsterd worden; zodoende weten we enkel dat de infectie plaatsvond
tussen het laatste bezoek met een negatieve test en het eerste bezoek met
een positieve test. De infectietijd is daardoor interval gecensureerd.
We vergelijken eerst een aantal bestaande technieken die gebruikt worden om
hiërarchische, interval gecensureerde gegevens te modelleren. We bespreken
eerst het modelleren van hiërarchische gegevens waarbij de interval cen-
surering aangepakt wordt door het midden van het interval te gebruiken als
een exact gekende infectietijd. Het frailty model en het copula model worden
vaak aangewend om gecorreleerde, rechts gecensureerde overlevingsgegevens
te modelleren. Beide modellen geven een schatting van de correlatie tussen
de infectietijden in een groep. In hoofdstuk 3 bespreken we gelijkenissen en
verschillen tussen copula modellen en shared frailty modellen. We focussen
vooral op de vergelijking tussen het Clayton-Oakes copula model en het
shared gamma frailty model; en tussen het positive stable copula model en
het positive stable frailty model. Uit de vergelijking blijkt dat de correlatie
structuur die gebruikt wordt om de gemeenschappelijke overlevingsfunctie
in functie van de marginale overlevingsfuncties te beschrijven, hetzelfde is in
beide modellen, maar dat de argumenten van de gemeenschappelijke over-
levingsfunctie, de marginale overlevingsfuncties, in beide modellen anders
gemodelleerd worden. De marginale overlevingsfuncties in het copula model
volgen een Weibull distributie, maar de marginale overlevingsfuncties in het
frailty model bekomt men door de frailty uit te integreren uit de conditionele
overlevingsfuncties (die een Weibull distributie volgen) waardoor ze de pa-
rameter θ bevatten, integenstelling tot de marginale overlevingsfuncties in
het copula model. De verschillen worden aangetoond aan de hand van het
Clayton-Oakes copula model met Weibull marginale overlevingsfuncties en
aan de hand van het shared gamma frailty model met conditionele Weibull
overlevingsfuncties. Een gelijkaardige vergelijking tussen het positive stable
copula model en het positive stable shared frailty model toont aan dat in
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het uitzonderlijke geval van een Weibull (met γ ‰ 1) basis uitvalsfunctie de
twee modellen equivalent zijn. Als bijvoorbeeld verondersteld wordt dat de
infectietijden exponentieel verdeeld zijn, zijn de twee modellen niet langer
equivalent.
In hoofdstuk 4 worden technieken beschreven die de interval censurering
en de hiërarchie in de data tegelijkertijd modelleren. Modellen die vaak
gebruikt worden om hiërarchische, interval gecensureerde gegevens te ana-
lyseren en bovendien beschikbaar zijn in de commerciële software pakketten
worden besproken: het marginale model, het fixed effects model en het
copula model. We leggen de nadruk op enkele tekortkomingen of nade-
len van deze modellen, als we ze willen gebruiken om de mastitis data
te analyseren. Het marginale model en het fixed effects model geven ons
geen schatting van de correlatie in de data en kunnen dus enkel gebruikt
worden wanneer de onderzoeker enkel gëınteresseerd is in het effect van
de covariaten. Gezien de bestaande correlatie tussen de infectietijden ge-
negeerd wordt in het marginale model, zijn de variantieschatters niet con-
sistent. Daarom moeten andere technieken, zoals de gegroepeerde jackknife
techniek, aangewend worden om correcte variantieschatters te bekomen. In
het fixed effects model wordt voor elke cluster een vast effect toegevoegd.
Voorzichtigheid is echter geboden als men de mastitis data wil analyseren
met een fixed effects model. Het is niet mogelijk het effect van covariaten
op koe-niveau te modelleren omdat zij op hetzelfde niveau van de vaste ef-
fecten zitten. In het copula model kan enkel in de eerste stap van de schat-
tingsprocedure rekening gehouden worden met de interval censurering. In
de tweede stap wordt de aannemelijkheidssfunctie voor rechts gecensureerde
data gemaximaliseerd met het midden van het interval als de gekende in-
fectietijd. Het zou echter interessant zijn om rekening te kunnen houden
met de interval censurering in de gegevens in beide stappen van de twee-
stappen schattingsprocedure in het copula model. Daarom beschrijven we in
hoofdstuk 4 hoe de aannemelijkheidssfunctie voor vierdimensionale interval
gecensureerde gegevens in het copula model kan opgebouwd worden. Het
veronderstellen van een parametrische uitvalsfunctie maakt naast de twee-
stappen procedure ook een één-stap schattingsprocedure mogelijk. Dit is
een nieuwe aanpak om geclusterde, interval gecensureerde gegevens te mo-
delleren.
In hoofdstuk 5 stellen we een uitbreiding voor van het parametrische shared
gamma frailty model voor interval gecensureerde gegevens. We tonen aan
dat we de marginale aannemelijkheidsfunctie in een gesloten vorm kunnen
opschrijven door de frailties, die een gamma distributie volgen, uit te in-
tegreren. De marginale aannemelijkheidsfunctie kan dan gemaximaliseerd
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worden om de parameter estimates te bekomen. Variantieschatters kunnen
bekomen worden uit de inverse van de matrix van tweede afgeleiden van de
marginale aannemelijkheidsfunctie. Het model kan covariaten bevatten en
er zijn weinig of geen voorwaarden waaraan de data moeten voldoen. Het
aantal leden van de clusters kan variëren, integenstelling tot in het één-stap
copula model besproken in hoofstuk 4. De breedte van de intervallen kan
ook variëren, maar de vertekening van de parameter γ wordt wel groter
naargelang de intervallen breder worden.
Om de correlatie structuur binnen de uierkwartieren te bestuderen, stellen
we in hoofdstuk 6 vierdimensionale gecorreleerde gamma frailty modellen
voor. Deze modellen laten verschillende correlaties tussen uitvalsfuncties
van de uierkwartieren toe (en daardoor ook tussen de infectietijden). De
correlatie tussen de uitvalsfuncties van twee uierkwartieren komt tot stand
door een correlatie structuur op te leggen aan de frailties. Eerst beschrij-
ven we het symmetrische gecorreleerde gamma frailty model voor vierdi-
mensionale gegevens. In dit model is de correlatie tussen elk frailty-paar
gelijk aan ρ. Vervolgens definiëren we een model dat tussen het shared
gamma frailty model en het symmetrische gecorreleerde frailty model ligt.
De correlatie tussen de frailties van de voorste uierkwartieren en tussen
de frailties van de achterste uierkwartieren is 1 terwijl de correlatie tussen
andere frailty-paren gelijk is aan ρ. Het laatste model heeft de meest fle-
xibele correlatie structuur. De correlatie tussen de frailties van de voorste
uierkwartieren en tussen de frailties van de achterste uierkwartieren is niet
langer noodzakelijk gelijk aan 1, maar aan een waarde ρ1. De correlatie
tussen andere frailty-paren is gelijk aan ρ2. Door een gamma distributie te
veronderstellen voor de frailties, kunnen deze uitgëıntegreerd worden uit de
conditionele overlevingsfunctie. Vervolgens kan een gesloten vorm bekomen
worden voor de marginale aannemelijkheidsfunctie gebaseerd op de afgelei-
den van de vierdimensionale gemeenschappelijke overlevingsfunctie, die dan
gemaximaliseerd kan worden. Doordat de gemeenschappelijke overlevings-
functie wordt uitgedrukt in functie van de marginale overlevingsfuncties,
is een semiparametrische twee-stappen schattingsprocedure ook mogelijk.
Deze modellen geven ons inzicht in de meest waarschijnlijke correlatiestruc-
tuur en in de sterkte van de correlatie tussen de frailties van de uierkwar-
tieren. Elk van de beschreven gecorreleerde frailty modellen legt bepaalde
beperkingen op aan de correlatie tussen de frailties. Zo is bv, ρ2 ă ρ1
in het laatst beschreven model, waardoor de correlatie tussen de voor- of
achterkwartieren noodzakelijk sterker is dan de correlatie tussen de linker-
en rechterkwartieren. In de context van de mastitis data set lijken deze
beperkingen echter realistisch.
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