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Dust if you must.

But wouldn’t it be better,

To paint a picture, or write a letter,

Bake a cake, or plant a seed?

Ponder the difference between want and need.

Dust if you must.

But there is not much time

With rivers to swim and mountains to climb!

Music to hear, and books to read,

Friends to cherish and life to lead.

Dust if you must.

But the world’s out there

With the sun in your eyes,

the wind in your hair,

A flutter of snow, a shower of rain.

This day will not come round again.

Dust if you must.

But bear in mind,

Old age will come and it’s not kind.

And when you go, and go you must,

You, yourself, will make more dust.

—– Rose Milligan
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Preface

Die Zeit kam so geräuschlos und
entfernte sich, ohne dass man es
merkte.

Robert Walser

What does one write in a preface? It’s the place where people are thanked, and frankly,
it’s probably the only part of the thesis many people will understand. So, I wanted to try
to elaborate a bit on how I experienced this Phd... not that I intend to write a survival
guide, just my impressions of doing maths on the one hand, and being a part of the
mathematical world on the other hand... of this world that is so alien to many people
living in the real world, which is something I struggled with from time to time.

There are many people who deserve to be thanked for their support in different ways.
First of all, my advisors Jan and Karim, and the FWO for financing my research. I en-
joyed discussing mathematics with Jan, especially in the last year. He has such a broad
knowledge, and over the years I learnt from him more than from anyone else to look at
problems from different points of view (even if it takes time to get used to another view)
and how enriching this can be. No matter how pretty the view of the Matterhorn is in
Zermatt, you don’t know what you’re missing if you’ve never seen the view in Schön-
biel... but it takes a good walk to get there (just don’t try to climb the Mettelhorn on the
same day). Jan always tried to create a relaxing environment, and this was important,
especially during the months before submission.
Karim has given me many good questions to work on, and helped me in writing down
mathematics in a rigorous way. He has a more extended background knowledge for the
problems I worked on in the beginning than Jan, and he came up with good ideas to get
me on the right track. He also made it possible, during my stay in Konstanz, to meet
several mathematicians working in the same field, and I am very grateful to all of them
for taking time to discuss my work with me. Thanks to David Grimm for interesting
discussions on conics and for making me less afraid of varieties, to James O’ Shea and
David Leep for being a library for many quadratic form results. I also want to thank
David Leep for introducing me to Bézout domains, which form the basis for the - in my
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6 Preface

opinion - most important results of this thesis. Thanks to Jean–Pierre Tignol for many
interesting and enriching discussions (both in Konstanz and Louvain-la-neuve), which
were very important in the course of this thesis, and for making me less afraid of graded
algebras. And also for the very pleasant surprise that one time when we were on our way
to Konstanz and he cited a poem by Paul van Ostaijen from the top of his head! (And
I was so embarrassed I couldn’t think of a French poem to cite). Thanks to Thomas
Unger for making me less afraid of Morita equivalence (although I still try to avoid it
if I can). Making people less afraid of a mathematical theory is important. Just think
of the proof of the Milnor Conjecture... Vladimir Voevodsky himself explicitly thanked
Markus Rost and Alexander Vishik for making sure he wasn’t afraid anymore of the
theory of quadratic forms.

Further thanks go to Adrian Wadsworth, Anne Quéguiner–Mathieu, Raman Parimala
and Skip Garibaldi. I am also very grateful to Manuel Ojanguren, who is an extraordi-
nary mathematician and who - even though retired, but what does that even mean for
a mathematician - has been a tremendous help (in several languages) when Jan and I
were studying Azumaya algebras with involution over valuation rings. We learnt a lot of
new maths during that period, not without struggles and extra time pressure, but Manuel
would always write his emails in such a way, that they were an extra motivation to keep
us going.

Thanks to the people in my jury, for their comments and suggestions to improve this
dissertation!

I want to thank my parents and my sister for showing their interest in what I was doing,
even though it was difficult for them to really understand what all these mathematical
things are. I thank them for listening to my frustrations and complaints every so often...
The algebra group in Ghent, especially the algebra girls Claudia, Elizabeth and Lien...
We started studying mathematics at the same time and started a Phd at the same time.
This has created a special bond between us I think... And thanks to Jeroen for helping
me out with Latex and Sage a couple of times.
Last but not least, I want to thank Andrew, for many many things... for making me smile
when I needed it, just by saying “How does it work in characteristic two?”... for just
being there when I needed him.

When I started this Phd in 2009, I wasn’t sure what to expect. I had enjoyed working on
my master’s thesis, but a Phd is something on a whole other level, which I soon learnt.
Expecting to make progress every week, or even every month? Forget it... or relax your
definition of progress (and I am well aware that mine was (is?) too narrow). And another
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important point: advisors don’t know everything, they also make mistakes... or to cite
David Saltman... “It’s not an advisor’s job to be right”... something I tended to forget
from time to time...
In the beginning, I was very motivated to start working on the different questions Jan and
Karim gave me, and probably wanted to do too much at once. But there is so much to
learn first, different theories you hope to be able to use one day. And in the beginning you
think you have time, four years seems like ages... But I struggled immensely with some
of those theories, and sometimes started to perceive this as a waste of time, especially
since it didn’t look like I’d manage to use them in my own research. And time wasn’t
standing still, time was passing by unnoticed, geräuschlos... A year passed, two years
passed, and all of the sudden - it seemed - there was only one year left, and I thought
“What have I achieved in this period? That’s all?!” A pile of paper ended up in the bin
(the paper bin of course, recycling is important)... And even though Jan and Karim told
me that the results I had obtained were already good, I was not convinced... But then
after three years, and it still leaves me a little puzzled, things suddenly started working.
Suddenly, miraculously, things came together, results that were lying in the drawer could
be applied... And now that I look back on that period, I can’t help thinking about a
quote Jan once told me: “Sometimes you are looking for things you have to find by
coincidence...” And the non–mathematicians who have seen me then must have thought
I was crazy (it is quite possible that I am). Here’s this theorem they don’t understand a
thing about and is of no use to them whatsoever, and I’m practically extatic about it.

Tout mathématicien digne de ce nom a ressenti, même si ce n’est que quelques

fois, l’état d’exaltation lucide dans lequel une pensée succède à une autre

comme par miracle... (André Weil)

And this brings me to the last part of this preface... How does society look at what
we - mathematicians - do? Do they just consider us to be a bunch of weirdos? Well,
some people certainly do. It is very difficult to explain to non–mathematicians what
kind of work we do and why. It often made me feel a bit uncomfortable... thinking
where do I start, how do I start... sometimes I didn’t start at all... How can we explain
what we do in sound and common language, and justify what we do? Maybe we need
more storytellers... I’ve had the pleasure of meeting some during the last nine years,
and of listening to their stories... people who are good at what they do, and also good
at communicating it to a general audience... Perhaps, we sometimes live too much in
this academic bubble and forget about the world outside (and not just in mathematics,
but in academia in general). So, we could use more storytellers... but it’s a knife that
cuts both ways... we also need an audience that is willing to listen, an audience that has
not a priori decided that research in mathematics does not have a purpose, that abstract
mathematics is just abstract nonsense without applications in the real world, that surely
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everything (useful) in mathematics has already been discovered... “Wir sind gewohnt,
daß die Menschen verhöhnen was sie nicht verstehn,” Faust says. This is something that
I’ve experienced a few times. People ask what you do, and then ask about applications...
and then you see them think... Why does one spend (waste) money on a thing like that?
I haven’t been able to give people a satisfactory answer as to the usefulness of abstract
mathematical research... because I hadn’t yet found one myself... But I went looking for
answers, and I think I found some. Let’s go back to Euclid...

A youth who had begun to read geometry with Euclid, when he had learnt

the first proposition, inquired, “What do I get by learning these things?” So

Euclid called a slave and said “Give him threepence, since he must make

gain out of what he learns.”

So next time people ask me about applications of my work I will say... The world would
be a very sad place if we would have to make (immediate, visible) gain out of everything
we learn. Many things would disappear, many good things... (And if they look at me
with disdain, I’ll just give them threepence.) My work is not going to change the world,
I know that, but I got some people who know what it is about interested, so I think I can
be proud of what I have achieved... And for the people who are truly interested, who are
willing to listen, I would add what I think is maybe the nicest answer I found... Manuel
Ojanguren’s reply to the question “Mais si on décidait de ne plus faire de recherches et
d’en rester à nos connaissances actuelles?” So let me finish with this...

Alors on n’en resterait pas à nos connaissances actuelles. On oublierait

tout. La seule façon de faire en sorte que nos connaissances restent en

place, c’est de continuer à se laisser prendre au jeu... Si nous décidions tout

à coup que ce que nous savons suffit, peu à peu nous ne saurions plus rien.

Le savoir en mathématiques n’est pas une accumulation de faits, c’est un

savoir faire. Dès qu’on cesse de faire, on cesse de savoir. Il est impossible

de maintenir le même niveau sans essayer de progresser. (M. Ojanguren)

But, in all fairness, he also adds

Mais cela dit, je pense qu’on peut vivre heureux sans développer les math-

ématiques, ni les sciences.



Introduction

I don’t know why I should have to
learn algebra... I’m never likely to go
there.

Billy Connolly

In the 1970’s, M. Knebusch developed the generic splitting theory of quadratic forms
over fields (cf. [40, 41]). The basis of this theory is the following result. Given a non–
singular quadratic form over a field that is anisotropic (i.e. does not have a nontrivial
zero), one can in a generic way, namely by adding variables, construct a field extension
of the ground field in which the quadratic form is isotropic (i.e. has a nontrivial zero).
The latter is called a generic zero, and the constructed field is called a generic isotropy
field. Every field extension of the ground field where the quadratic form is isotropic,
is obtained by specialising the generic isotropy field (i.e. by specialising the variables).
Using this, M. Knebusch showed that the isotropy behaviour of a non–singular quadratic
form over any field extension of the ground field, is completely determined by its be-
haviour over a chain of generic isotropy fields.

Two aspects of the generic splitting theory of quadratic forms were the starting point for
this thesis. On the one hand, the isotropy behaviour of quadratic forms with respect to
places from one field to another, and on the other hand the concept of a generic isotropy
field for a quadratic form. Both aspects are studied in the context of algebras with in-
volution over fields, which are objects closely related to quadratic forms and bilinear
forms, in the sense that one can associate to each non–singular symmetric or alternating
bilinear form over a field its adjoint algebra with involution (cf. [45]). These are exactly
the split central simple algebras with involution of the first kind, which is orthogonal
if the bilinear space is symmetric, and symplectic otherwise. There also exist algebras
with involution of the second kind. The distinction is determined by the way in which
the involution restricts to the center of the algebra. If this restriction is the identity, the
involution is of the first kind, otherwise it is of the second kind.

In the last decades, algebras with involution have become an important point of study,
especially due to their intimate connection with certain classical algebraic groups. Since
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10 Introduction

1998, they have their very own standard work: The book of involutions ([45]). This
book brought together different viewpoints on involutions. It contains a study of invo-
lution analogues of many concepts for quadratic forms, such as the discriminant, the
Clifford algebra, similitudes and multipliers. It further presents many results related to
isotropy and hyperbolicity that are also rooted in quadratic form theory. Moreover, the
authors also extensively study involutions from an algebraic group point of view.
In this thesis, I focus on isotropy and hyperbolicity/metabolicity results for involutions
on the one hand, and on the other hand, on isomorphism problems that naturally came
up while working on isotropy questions.

Chronologically, I first studied whether there exists an involution analogue of the concept
of a generic isotropy field for quadratic forms. In order to do this, it was necessary to
understand the isotropy behaviour of involutions with respect to specialisation from one
field to another, by means of a place. I started by investigating this for algebras with
involution in the “algebraic geometric case”, namely for algebras with involution that
are defined over a ground field, which is contained in both fields involved in the place
(the context I needed it for). In order to go beyond this geometric case, the setting of
Azumaya algebras with involution over valuation rings naturally comes into the picture.

Specialisation and good reduction

Suppose that we are given a place from one field to another field. This is a map induced
by the morphism from a valuation ring of the first field to its residue field. Suppose
furthermore that we are given an object over the first field, say a bilinear space or an
algebra with involution. Under certain conditions, one can specialise this bilinear space
(resp. algebra with involution) to a bilinear space (resp. algebra with involution) over
the second field. It is then natural to ask whether the residue object inherits certain
properties from the original object. The kind of specialisation questions I consider for
algebras with involution over fields in this thesis, are motivated by specialisation results
for symmetric bilinear spaces, which I explain below.

We fix a field F and a valuation ring O of F, and we let λ be the associated place from
F to the residue field κ of O. Let (V,b) be a symmetric bilinear space over F (i.e. non–
singular). In order to be able to specialise (V,b) in a sensible way to a bilinear space
over κ, (V,b) needs to be defined overO, i.e. (V,b) is obtained by scalar extension from
a symmetric bilinear space over O. If this is the case, then (V,b) is said to have good
reduction with respect to λ. Symmetric bilinear spaces over O have in a natural way an
associated residue bilinear space over κ. Let (V,b) be a symmetric bilinear space over F
with good reduction with respect to λ. It is then natural to ask whether one can associate
in a sensible way a residue bilinear space over κ to (V,b). This comes down to asking
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whether symmetric bilinear spaces over O that become isometric over F, are also iso-
metric over κ. It has been shown in [42, (1.15)] that this is case if 2 is invertible in O,
and in fact, the result is somewhat stronger. Namely, symmetric bilinear spaces over O
that become isometric over F, are already isometric over O, if 2 is invertible in O (see
[66, (4.6.3)]). Let (V,b) be a symmetric bilinear space over F, with good reduction with
respect to λ. Then the result in [42, (1.20)] implies that if (V,b) is isotropic over F, then
its residue bilinear space is isotropic over κ.

If a symmetric bilinear space over F has good reduction with respect to λ, then its ad-
joint algebra with involution is obtained by scalar extension from an Azumaya algebra
with involution with centerO. The isotropy behaviour of the bilinear space under λ then
carries over to the adjoint algebra with involution. The aim of the first part of the thesis
is to study, not only in the split case, algebras with involution over F that are obtained by
scalar extension from Azumaya algebras with involution overO, and to investigate their
isotropy behaviour under λ. For algebras with involution of the first or second kind over
F, we use the shorthand term F−algebras with involution, and similarly, for algebras
with involution of the first or second kind over O, we use the term O−algebras with
involution.

In Theorem 4.9, I present an involution analogue of the aformentioned result for bilinear
spaces over a valuation ring. Namely, I show that an O−algebra with involution that
becomes isotropic (resp. metabolic) over F, is also isotropic (resp. metabolic) over κ. In
[45], the authors introduced a set, which measurs the isotropy of an algebra with involu-
tion over a field: the index. In terms of this notion, Theorem 4.9 says the following. Let
(A, σ) be an O−algebra with involution. Then the index of (A, σ)F is contained in the
index of (A, σ)κ.
It is well known that, if O is a Henselian valuation ring, then one can sometimes lift
properties from a residue object back to the original object. In that case, the place as-
sociated to O forms a two–way street for those properties. For instance, one can lift
isotropy (resp. hyperbolicity) of a symmetric bilinear space over O from κ to F, if 2
is invertible in O (see [66, (6.2.4)]). In Theorem 4.20, I present an involution version
of this result. Namely, I show that, excluding a few cases, one can lift isotropy (resp.
hyperbolicity) of an O−algebra with involution from κ back to F. Let (A, σ) be an
O−algebra with involution. In terms of the index, Theorem 4.20 states that the index of
(A, σ)F is equal to the index of (A, σ)κ.

In section 4.4, I introduce a notion of good reduction with respect to places, for algebras
with involution over fields. An F−algebra with involution is said to have good reduction
with respect to λ if it is obtained by scalar extension from anO−algebra with involution.
It is then natural to ask whether O−algebras with involution that become isomorphic
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over F, are also isomorphic over κ. In Theorem 4.37, I show that this is indeed the case
if 2 is invertible inO. In order to give the proof, the index result for Henselian valuation
rings (Theorem 4.20) is crucial. Inspired by the results concerning good reduction for
involutions, I started looking at related isomorphism problems for algebras with involu-
tion over valuation rings, and also more general domains. This forms the second part of
the thesis, and it turned out that the results in the Henselian case formed the cornerstone
for many of the arguments in this second part.

Some isomorphism problems

The core of the second part of the thesis is to study the following isomorphism problem,
and, continuing the flow of the first part of the thesis, mainly in a context related to val-
uation rings.

Question 1. Let R be a domain with fraction field F. Let (A, σ) and (A′, σ′) be
R−algebras with involution. Suppose that (A, σ)F ≅F (A′, σ′)F . Does this imply that
(A, σ) ≅R (A′, σ′)?

In the literature, one uses the term rationally isomorphic for objects that are defined over
a domain and become isomorphic over the fraction field of that domain. So, Question 1
asks for which domains R one can conclude that rationally isomorphic R−algebras with
involution are isomorphic. One cannot expect this to hold for domains in general. In
Example 5.2, inspired by discussions with M. Ojanguren, I give a simple counterexam-
ple of two involutions on a fixed algebra that become rationally isomorphic, but are not
isomorphic, in the case where R is a certain Henselian local domain.
Question 1 has been studied in the literature for regular local rings. In [56], the author
gives a positive answer in the case where R is a regular local ring containing a field of
characteristic different from 2, using the fact that there is a positive answer for discrete
valuation rings. The latter result follows from more general results on algebraic groups
in [55].

The first result concerning Question 1 that I present in this thesis, is that rationally iso-
morphic R−algebras with involution are isomorphic, in the case where R is a Henselian
valuation ring of F with 2 invertible in R (Theorem 4.34). This is a crucial step in the
proof of the good reduction statement in section 4.4. Question 1 is pursued further in
chapter 5, and the results there were obtained in collaboration with J. Van Geel. We show
that rationally isomorphic R−algebras with involution are isomorphic, in the case where
R is a valuation ring of F with 2 invertible in R. Furthermore, we noticed that the method
of proof could be adapted to work also in the case where R is an intersection of finitely
many valuation rings of F, i.e. R is a so–called semilocal Bézout domain. The main part
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of the proof is to give a local characterisation, for an R−algebra with involution (A, σ),
of the multipliers of (A, σ)F up to units in R. We do this by means of a norm argument
based on an approximation theorem for valuations by P. Ribenboim, and by using the
results for Henselian valuation rings from chapter 4.

In section 5.3, we show that the characterisation of multipliers mentioned above (and
hence a positive answer to Question 1), can be obtained in a more direct way in the case
where R is a discrete valuation ring. By exploiting the Noetherian property of such valua-
tion rings, we can prove a representation result for R−algebras with involution (Theorem
2.39). Using this result, the proof of the multiplier result in the case of discrete valuation
rings depends less on the results for Henselian valuation rings.
The case of discrete valuation rings naturally came forward when we considered the fol-
lowing question (suggested by K.J. Becher and A. Quéguiner–Mathieu), in which the
role of F is played by the function field of a quaternion algebra defined over a smaller
field k. It is well known that all k−valuations on such a function field are discrete.

Question 2. Let k be a field of characteristic different from 2 and let Q be a k−quaternion
division algebra. Let B be a central simple k−algebra Brauer equivalent to Q and let τ
and τ′ be two orthogonal involutions on B. Suppose that (B, τ)k(Q) ≅k(Q) (B, τ′)k(Q).
Does this imply that (B, τ) ≅k (B, τ′)?

This question comes down to Question 1 in a global setting, as opposed to the local
setting considered above. It is known that Question 2 has an affirmative answer in some
low degree cases, namely if the degree of B is at most 4, and if the degree of B is 6
and the discriminant of τ is trivial. The results in degree 2 and 4 follow from [72, (3.6),
(3.10)] and in degree 6 from [45, (15.7)]. In section 5.4, we look for conditions on (B, τ)
which allow us to decide whether a nonzero element in k(Q) is equal to a multiplier of
(B, τ)k(Q) times a unit in k. As a consequence, we obtain a positive answer to Question
2 in the case where τ becomes hyperbolic over a quadratic field extension of k splitting
Q (Corollary 5.44).

Generic isotropy and hyperbolicity fields

In the third part of the thesis (chapter 6), I turn my attention to the core of the generic
splitting theory of quadratic forms, namely the existence of a generic isotropy field.

Question 3. Let F be a field of characteristic different from 2 and let (B, τ) be an
F−algebra with involution of the first kind. When does there exist a field extension N/F
such that τN is isotropic (resp. hyperbolic), and for every field extension L/F such that
τL is isotropic (resp. hyperbolic), there is an F−place from N to L? We call a field with
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these properties a generic isotropy (resp. hyperbolicity) field for τ.

I show that a generic isotropy field need not always exist. There are already counterex-
amples of degree 4 algebras with involution (Corollary 6.42). For non–singular quadratic
forms over F, a generic isotropy field can be realised by considering the function field
of the projective quadric associated to the quadratic form. I also take the viewpoint of
varieties in the context of Question 3, by studying certain varieties naturally associated
to algebras with involution over fields, and whose rational points are isotropic ideals of
a certain dimension. These varieties have been studied in the literature ([52, 53]), espe-
cially due to their link with the algebraic groups related to algebras with involution. I
study the isotropy behaviour of F−algebras with involution over the function fields of
these varieties. In order to do this, I extensively use Schur index reduction formulas for
these function fields, proved in [52, 53].

Let (B, τ) be an F−algebra with involution of the first kind of degree at least 3. In Corol-
lary 6.47, I show that, if there exists a generic isotropy field for τ, then it can be realised
as the function field of one of the varieties mentioned above. In general, in order to
show that one of those function fields is a generic isotropy field for τ, it is necessary to
investigate the isotropy behaviour of τ over the other function fields as well. In some
cases, it is sufficient to check only one other function field. I present a result of this kind
in Corollary 6.62. However, in practice, it might still be difficult to check whether the
condition in Corollary 6.62 is satisfied. To this end, in the case where B has Schur index
2, I present a sufficient condition that can be easier to check in Proposition 6.63. I also
obtain explicit characterisations for the existence of a generic isotropy field for algebras
with involution of low degree (4,6 and partially 8).

The part of Question 3 concerning generic hyperbolicity fields is treated separately. In
that case, there are at most two varieties that need to be taken into account. Using this,
it is easy to show that symplectic involutions always have a generic hyperbolicity field.
In the orthogonal case, this depends on the behaviour of the Clifford algebra associated
to the algebra with involution.

Outline of the structure of the thesis

In chapter 1, I study Azumaya algebras with involution over valuation rings, and more
generally semilocal Bézout domains. The latter type of rings occurred naturally when
considering algebras with involution of the second kind over a valuation ring. In that
case, the center of the algebra need not be a valuation ring, but can be an intersection of
two valuation rings. In section 1.4, I zoom in on algebras with involution over fields, and
recall some properties of the Clifford algebra of an orthogonal involution. Furthermore,
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in the case of second kind involutions, following the approach of [45], I consider not only
simple algebras, but also semisimple algebras with two simple components. The reason
is that a central simple algebra with involution of the second kind becomes semisimple
after scalar extension to an algebraic closure of the fixed field of the involution inside
the center of the algebra.
I introduce the notion of balanced one–sided ideals, in order to treat the cases of simple
and semisimple algebras with involution in the sequel as uniformly as possible. The
condition balanced is trivial for ideals in central simple algebras, but restricts the set
of one–sided ideals to the interesting ones in the semisimple case, when considering
isotropy questions.

Sometimes it is useful to approach a problem for algebras with involution from a her-
mitian form point of view. To this end, in chapter 2, I study (skew–)hermitian spaces
over Azumaya algebras with involution with center a semilocal Bézout domain. I devote
special attention to the relation between similarity of such (skew–)hermitian spaces and
isomorphism of their adjoint algebras with involution. These results will be important
when considering Question 2 in later chapters. The last sections of chapter 2 concern the
study of representation problems, both for (skew–)hermitian spaces and algebras with
involution. Section 2.5 deals with the Noetherian case, and in section 2.6, I present some
representation results for (skew–)hermitian spaces over noncommutative valuation rings.
The results in the latter section are not used in the rest of the thesis.

I expect that many of the results presented in chapters 1 and 2 are not new, but since I
could not find a reference for them as such, I provide explicit proofs.

Chapter 3 connects the specialisation results in this thesis with the generic isotropy re-
sults. There, I collect properties of the varieties of isotropic ideals, associated to an
algebra with involution over a field. I also include the relevant Schur index reduction
formulas from [52, 53]. Furthermore, in Proposition 3.9, I present a first proof of The-
orem 4.9 in the version with the index of algebras with involution, in the restrictive
geometric setting, that is, in the setting where the algebra with involution is already de-
fined over some common subfield of F and κ.

Chapter 4 then deals with the full specialisation problem (section 4.2), and collects the
results for Henselian valuation rings (section 4.3). The lifting results for isotropy and
hyperbolicity are contained in section 4.3.1, and the isomorphism results on Question 1
are contained in section 4.3.2. The last section (section 4.4) is concerned with the good
reduction statements. In some of the arguments in sections 4.2 and 4.3.1, I use the theory
of value functions on vector spaces and algebras, developed in [62, 73, 74]. I give an
overview of the basics of this theory in section 4.1. The flow of chapter 4 continues in
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chapter 5, where Question 1 is the central point of study, both in a local setting (sections
5.1 and 5.2) as in a global setting (sections 5.3 and 5.4).

The last chapter (chapter 6) mainly concerns Question 3, which is treated in sections
6.3 – 6.8. The first two sections of chapter 6 include results on involution analogues of
Pfister forms, which were not yet mentioned in this introduction. Pfister forms play a
central role in quadratic form theory. There are two involution analogues, which have al-
ready been studied in the literature. One can consider the totally decomposable algebras
with involution, i.e. algebras with involution that are isomorphic to a tensor product of
quaternion algebras with involution. These reflect the decomposability of Pfister forms
into a tensor product of binary forms. On the other hand, one can start from the fact that
Pfister forms are either anisotropic or hyperbolic over any field extension of the ground
field, and consider algebras with involution with this property, which we call Pfister al-
gebras with involution. It was conjectured in [8] that Pfister algebras with involution
of degree a power of two are exactly the totally decomposable algebras with involution.
One implication of this conjecture has been confirmed by recent work of K.J. Becher,
N.A. Karpenko and J.–P. Tignol (see [8, 37]), namely that totally decomposable algebras
with involution are Pfister algebras with involution. The other implication has been con-
firmed in low degree cases but is open in general. In section 6.1, I include one new case
where the conjecture holds, namely for algebras of degree 8 with symplectic involution.
The argument I present there was communicated to me by J.–P. Tignol.
In section 6.2, I take the following quadratic form result as a starting point: if a Pfis-
ter form is a factor of another Pfister form, then the complementing factor can also be
chosen to be a Pfister form. I present a weak analogue of this result for algebras with
involution, where “Pfister form” is replaced by “Pfister algebra with involution” (Theo-
rem 6.22).

As indicated above, the remaining part of chapter 6 concerns the study of Question 3.
The generic hyperbolicity problem is treated first (section 6.3), followed by the generic
isotropy problem in section 6.4. The case of orthogonal involutions is pursued in more
detail in section 6.5. In section 6.6, I then give examples of some classes of algebras
with involution for which there does not exist a generic isotropy field. In section 6.7,
I zoom in on the question for which algebras with involution, the isotropy behaviour is
characterised by that of a quadratic form, especially in the case of totally decomposable
algebras with involution (Theorem 6.75). The closing section of this thesis provides
characterisations for the existence of a generic isotropy field for some low degree alge-
bras with involution.
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Je hebt een intuïtief gevoel, ziet een
platonische glimp van een oplossing
en je moet het blootleggen. Zoals de
dichter gedichten moet schrijven,
moet de wiskundige zijn wiskunde
doen. Zonder voel je je onbehaaglijk.

Hendrik Lenstra

In de jaren ’70 van de vorige eeuw ontwikkelde M. Knebusch de generieke splijtings-
theorie van kwadratische vormen (cf. [40, 41]). De basis van deze theorie is het bestaan
van een generiek isotropieveld voor een niet–singuliere kwadratische vorm, verschillend
van het hyperbolisch vlak. Dit veld wordt bekomen als een transcendente uitbreiding
van het grondveld (i.e. door het toevoegen van variabelen). Elke velduitbreiding van het
grondveld waar de kwadratische vorm isotroop wordt, wordt bekomen uit het generiek
isotropieveld door specialisatie. M. Knebusch maakte gebruik van dit feit om aan te
tonen dat het isotropiegedrag van de kwadratische vorm over een willekeurige velduit-
breiding van het grondveld, bepaald wordt door zijn gedrag over een keten van generieke
isotropievelden.

Twee aspecten van de generieke splijtingstheorie van kwadratische vormen waren het
startpunt voor deze thesis. Enerzijds het isotropiegedrag van kwadratische vormen on-
der plaatsen van een veld naar een ander veld, en anderzijds het concept van een generiek
isotropieveld voor een kwadratische vorm. Beide aspecten worden bestudeerd in de con-
text van algebra’s met involutie over velden. Dit zijn objecten die in nauw verband staan
met kwadratische en bilineaire vormen, in de zin dat men elke symmetrische of alter-
nerende bilineaire ruimte over een veld een geassocieerde algebra met involutie heeft
(cf. [45]). Dit zijn precies de gespleten centraal simplele algebra’s met involutie van
de eerste soort. Deze involutie is orthogonaal als de bilineaire ruimte symmetrisch is,
en symplectisch als de bilineaire ruimte alternerend is. Er bestaan ook algebra’s met
involutie van de tweede soort. Het onderscheid wordt bepaald door de restrictie van de
involutie tot het centrum van de algebra. Als deze restrictie de identiteit is, dan spreekt
men van een involutie van de eerste soort. In het andere geval spreekt men van een invo-
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lutie van de tweede soort.

In de laatste decennia zijn algebra’s met involutie een belangrijk punt van studie geweest,
in het bijzonder door hun nauwe relatie met bepaalde klassieke algebraïsche groepen.
Sinds 1998 hebben ze hun eigen standaardwerk: The book of involutions ([45]). Dit
boek benadert involuties vanuit verschillende invalshoeken. Het bevat een studie van
involutie analogons van veel concepten uit de theorie van kwadratische vormen, zoals
de discriminant, de Clifford algebra, similitudes en gelijkvormigheidsfactoren. In het
boek worden ook verschillende resultaten rond isotropie en hyperboliciteit aangehaald,
die geworteld zijn in de kwadratische vormen theorie. Verder wordt de connectie van
algebra’s met involutie met algebraïsche groepen ook grondig bestudeerd. In deze thesis
focus ik op isotropie en hyperboliciteits resultaten enerzijds, en anderzijds bestudeer ik
isomorfieproblemen die op een natuurlijke manier naar voren kwamen tijdens mijn werk
rond de isotropieproblemen.

Ik ben mijn onderzoek begonnen met het onderzoeken of er een involutie analogon mo-
gelijk is van het concept van een generiek isotropieveld voor kwadratische vormen. Om
dit te kunnen doen was het noodzakelijk om het isotropiegedrag van involuties onder
specialisatie van een veld naar een ander veld, onder de vorm van een plaats, te bestu-
deren. In eerste instantie deed ik dit in het “algebraïsch meetkundige geval”, namelijk
in het geval waarbij de algebra met involutie al gedefinieerd is over een kleiner veld, dat
een deelveld is van de beide velden waartussen de plaats gedefinieerd is. De algebra’s
met involutie die ik bestudeerde op dat moment waren precies van deze vorm. Later
onderzocht ik dit specialisatieprobleem in een ruimtere context. Daarbij kwam ik op een
natuurlijke manier terecht bij de setting van Azumaya algebra’s met involutie over een
valuatiering.

De resultaten van de thesis bestaan uit drie delen. Deze volgen niet helemaal de chrono-
logie van de resultaten. Het eerste deel behandelt specialisatie resultaten rond Azumaya
algebra’s met involutie over valuatieringen, en daarmee samenhangende goeie reductie
resultaten. In het tweede deel bestudeer ik bepaalde isomorfieproblemen die het werk
in het eerste deel van de thesis op een natuurlijke manier verderzetten. In het derde en
laatste deel van de thesis staat de studie van het bestaan van een generiek isotropieveld
voor algebra’s met involutie over velden centraal. Ik beschrijf hieronder de drie delen
meer in detail.

Specialisatie en goede reductie

Zij F een veld en O een valuatiering van F, en zij λ de geassocieerde plaats van F naar
het restklassenveld van κ van O. Onderstel dat we een bilineaire ruimte of een algebra
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met involutie gegeven hebben die gedefinieerd is over F. Onder bepaalde voorwaarden
kan men deze bilineaire ruimte (resp. algebra met involutie) specialiseren naar een bi-
lineaire ruimte (resp. algebra met involutie) over κ. Het is dan heel natuurlijk om de
vraag te stellen of dit residu object bepaalde eigenschappen overerft van het originele
object. In dit deel van de thesis bestudeer ik specialisatievragen voor algebra’s met invo-
lutie over velden, die gemotiveerd zijn door specialisatieresultsaten voor symmetrische
bilineaire ruimtes.

Zij (V,b) een symmetrische bilineaire ruimte over F (i.e. niet–singulier). Om (V,b) op
een goede manier te kunnen specialiseren naar een bilineaire ruimte over κ, moet (V,b)
gedefinieerd zijn over O. Dit betekent dat (V,b) bekomen wordt door scalaire extensie
uit een symmetrische bilineaire ruimte over O. In dit geval zegt met dat (V,b) goede re-
ductie heeft voor λ. Symmetrische bilineaire ruimtes over O hebben een geassocieerde
residu bilineaire ruimte over κ. Zij (V,b) een symmetrische bilineaire ruimte over F met
goeie reductie voor λ. Is het mogelijk om op een natuurlijke manier een symmetrische
bilineaire ruimte over κ te associëren aan (V,b)? Dit komt neer op de vraag of sym-
metrische bilineaire ruimtes over O die isometrisch worden over F, al isometrisch zijn
over κ. In [42, (1.15)] werd aangetoond dat dit het geval is als 2 inverteerbaar is in O,
en in feite is het resultaat iets sterker. Namelijk, symmetrische bilineaire ruimtes overO
die isometrisch worden over F, zijn al isometrisch over O (zie [66, (4.6.3)]). Onderstel
dat 2 inverteerbaar is in O en zij (V,b) een symmetrische bilineaire ruimte over F met
goede reductie voor λ. Dan impliceert het resultaat in [42, (1.20)] dat, als (V,b) isotroop
is over F, dat de geassocieerde residu bilineaire ruimte isotroop is over κ.

Als een symmetrische bilineaire ruimte over F goeie reductie heeft voor λ, dan komt de
geassocieerde algebra met involutie van een Azumaya algebra met involutie overO. Het
isotropiegedrag van de bilineaire ruimte onder λ wordt dan overgedragen op de geasso-
cieerde algebra met involutie. Het doel van het eerste deel van de thesis is het bestuderen
van algebra’s met involutie over F die komen van Azumaya algebra’s met involutie over
O, en dit niet enkel in het gespleten geval, en het onderzoeken van hun isotropiegedrag
onder λ.

Zij R een commutatieve ring. Zij S een commutatieve ring die ofwel gelijk is aan R,
ofwel van de vorm R[z], waarbij z een element is zodat z2 = az + b, met a,b ∈ R zodat
a2 + 4b inverteerbaar is in R. Zij A een Azumaya algebra met centrum S . Zij σ een
R−lineaire involutie op A, en als S ≠ R, onderstel dat de restrictie van σ tot S gelijk is
aan het niet–triviale R−automorfisme van S . Het paar (A, σ) noemen we een R−algebra
met involutie. Men zegt dat σ van de eerste soort is als S = R, en anders van de tweede
soort.
In de thesis werk ik bijna uitsluitend in de situatie waarin R een domein is dat integraal
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gesloten is in zijn breukenveld. In dat geval is S ofwel een domein, ofwel isomorf met
R × R. In het laatste geval is A ≅ B × Bop, voor een Azumaya algebra B over R. On-
derstel dat R een veld is. Dan is S ofwel een veld, en in dat geval is A een centraal
simpele S−algebra, ofwel is A semisimpel met twee simpele componenten. Het geval
van semisimpele algebra’s met involutie wordt ook beschouwd in [45], en is eigenlijk
heel natuurlijk om de volgende reden. Een centraal simpele algebra met involutie van de
tweede soort wordt semisimpel na scalaire extensie naar een algebraïsche sluiting van
het fixveld van de involutie binnen het centrum van de algebra. In een poging om het
gevallen van centraal simpele en semisimpele algebra’s met involutie zo uniform mo-
gelijk te behandelen, introduceer ik in sectie 1.4 de notie van een balanced éénzijdig
ideaal. De voorwaarde balanced is triviaal voor centraal simpele algebra’s, maar beperkt
de idealen in het semisimpel geval tot diegene die interessant zijn bij het beschouwen
van isotropievragen. Gebruikmakend van de notie balanced, kan ik ook een uniforme
definitie geven van de index van een algebra met involutie over een veld. Dit concept
werd geïntroduceerd in [45] als een soort van maat voor de isotropie van de involutie.

Het eerste specialisatieresultaat in deze thesis voor Azumaya algebra’s met involutie
wordt gegeven in Theorem 4.9. Dit is een involutie analogon van het hoger vermelde
resultaat voor bilineaire ruimtes. Zij (A, σ) een O−algebra met involutie. Dan zegt de
stelling dat een isotroop balanced rechts ideaal van (A, σ)F specialiseert tot een isotroop
balanced rechts ideaal van (A, σ)κ, en waarbij de F−dimensie van het eerste ideaal ge-
lijk is aan de κ−dimensie van het tweede ideaal. In het bijzonder zegt dit resultaat dat
als (A, σ)F isotroop (resp. metabolisch) is, dat dan (A, σ)κ ook isotroop (resp. metabo-
lisch) is. In termen van de index stelt het resultaat dat de index van (A, σ)F bevat is in
de index van (A, σ)κ.

Het is welbekend dat, in het geval datO een Henselse valuatiering is, het soms mogelijk
is om eigenschappen van een residu object over κ terug te liften naar het originele object
over F. In dat geval vormt de plaats geassocieerd aan O een tweerichtingsstraat voor
deze eigenschappen. Bijvoorbeeld, in het geval dat 2 inverteerbaar is in O, dan zegt
het resultaat in [66, (6.2.4)] dat isotropie (resp. hyperboliciteit) van een symmetrische
bilineaire ruimte over O, gelift kan worden van κ naar F. In Theorem 4.20, geef ik een
versie voor involuties van dit resultaat. Namelijk, ik toon aan, op een paar uitzonderings-
gevallen na, dat isotropie (resp. hyperboliciteit) van een O−algebra met involutie gelift
kan worden van κ naar F. In het bijzonder is dit steeds mogelijk als 2 inverteerbaar is in
O. Zij (A, σ) een O−algebra met involutie. In termen van de index zegt Theorem 4.20
dat de index van (A, σ)F gelijk is aan de index van (A, σ)κ.

In sectie 4.4 introduceer ik een notie van goede reductie voor algebra’s met involutie over
velden met betrekking tot plaatsen. Een F−algebra met involutie heeft goede reductie
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voor λ als die verkregen wordt door scalaire extensie uit een O−algebra met involutie.
De volgende vraag is dan zeer natuurlijk. Zijn O−algebra’s met involutie die isomorf
worden over F, ook isomorf over κ? In Theorem 4.37 bewijs ik dat dit inderdaad het
geval is als 2 inverteerbaar is in O. In het bewijs is het index resultaat voor Henselse
valuatieringen cruciaal (Theorem 4.20). De goede reductie resultaten voor involuties
hebben me geïnspireerd om ook andere isomorfie problemen voor algebra’s met involu-
tie te beschouwen. De studie van die problemen vormt het tweede deel van de thesis,
en de resultaten voor Henselse valuatieringen bleken ook voor de bewijzen daar een
belangrijke rol te spelen.

Enkele isomorfie problemen

De kern van het tweede deel van de thesis is de studie van het volgende isomorfiepro-
bleem, en in de geest van het eerste deel van de thesis, beschouw ik dit probleem vooral
in een context gerelateerd aan valuatieringen.

Vraag 1. Zij R een domein met breukenveld F. Zij (A, σ) en (A′, σ′) twee R−algebra’s
met involutie. Onderstel dat (A, σ)F ≅F (A′, σ′)F . Volgt hieruit dat (A, σ) ≅R (A′, σ′)?

In de literatuur gebruikt men de term rationaal isomorf voor objecten die gedefinieerd
zijn over een domein en die isomorf worden over het breukenveld van dat domein. In
die terminologie gaat Vraag 1 dus over het probleem voor welke domeinen R men kan
besluiten dat rationaal isomorfe R−algebra’s met involutie, isomorf zijn. Men kan zeker
geen positief antwoord verwachten voor domeinen in het algemeen. In Example 5.2 geef
ik, geïnspireerd door gesprekken met M. Ojanguren, een eenvoudig tegenvoorbeeld van
twee involuties op dezelfde algebra die rationaal isomorf zijn maar niet isomorf, waarbij
R een bepaald Hensels lokaal domein is.
Vraag 1 is reeds bestudeerd in de literatuur voor reguliere lokale ringen. In [56] geeft de
auteur een positief antwoord in het geval waar R een reguliere lokale ring is die een veld
van karakteristiek niet 2 bevat. In het bewijs maakt hij gebruik van het feit dat er een
positief antwoord is voor discrete valuatieringen. Dit volgt uit meer algemene resultaten
voor bepaalde algebraïsche groepen in [55].

Het eerste resultaat rond Vraag 1 in deze thesis is dat rationaal isomorfe R−algebra’s met
involutie isomorf zijn, in het geval dat R een Henselse valuatiering is van F en waarbij 2
inverteerbaar is in R (Theorem 4.34). Dit is een cruciale stap in het bewijs van het goede
reductie resultaat in sectie 4.4. Het isomorfie probleem in Vraag 1 wordt dan verder
bestudeerd in hoofdstuk 5. De resultaten daar zijn tot stand gekomen in samenwerking
met J. Van Geel. We geven een positief antwoord op Vraag 1 in het geval dat R een
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valuatiering is van F met 2 inverteerbaar in R. Toen we aan de bewijzen aan het wer-
ken waren, hebben we gemerkt dat de argumenten, mits een aantal aanpassingen, ook
konden gebruikt worden in het geval dat R een semilokaal Bézout domein is, i.e. een
doorsnede van eindig veel valuatieringen van F. Het belangrijktste deel van het bewijs
bestaat erin om voor een R−algebra met involutie (A, σ), op eenheden in R na een lokale
karakterisering te geven van de gelijkvormigheidsfactoren van (A, σ)F (Theorem 5.13).
We maken hierbij gebruik van een normargument, dat gebaseerd is op een approxima-
tiestelling voor valuaties van P. Ribenboim, en door gebruik te maken van de resultaten
voor Henselse valuatieringen in hoofdstuk 4.

In sectie 5.3 tonen we aan dat de karakterisering van gelijkvormigheidsfactoren in Theo-
rem 5.13 op een meer directe manier kan bekomen worden in het geval dat R een discrete
valuatiering is. Door de Noetherse eigenschap van zulke valuatieringen uit te buiten, kon
ik een representatieresultaat voor R−algebra’s met involutie bewijzen (Theorem 2.39).
Door dit laatste resultaat te gebruiken, is het bewijs van de karakterisering van gelijkvor-
migheidsfactoren minder afhankelijk van de resultaten voor Henselse valuatieringen.

Het geval van discrete valuatieringen kwam op een natuurlijke manier naar voor toen we
het volgende probleem beschouwden (aangegeven door K.J. Becher en A. Quéguiner–
Mathieu), waarin de rol van F gespeeld wordt door het functieveld van een quaternio-
nenalgebra, gedefinieerd over een kleiner veld k. Het is welbekend dat alle k−valuaties
van een dergelijk functieveld discreet zijn.

Vraag 2. Zij k een veld van karakteristiek verschillend van 2, en zij Q een k−quaternionen
delingsalgebra. Zij B een centraal simpele k−algebra Brauer equivalent met Q, en zij ver-
der τ and τ′ twee orthogonale involuties op B. Onderstel dat (B, τ)k(Q) ≅k(Q) (B, τ′)k(Q).
Volgt hieruit dat (B, τ) ≅k (B, τ′)?

Het is bekend dat er een positief antwoord is op Vraag 2 in enkele gevallen van lage
graad, als de graad van B hoogstens 4 is, en in het geval dat B graad 6 heeft en τ triviale
discriminant. De resultaten voor de gevallen van graad 2 en 4 volgen uit [72, (3.6),
(3.10)] en voor graad 6 uit [45, (15.7)]. In sectie 5.4 zoeken we naar voorwaarden op
(B, τ) om te kunnen besluiten wanneer een niet–nul element uit k(Q) gelijk is aan een
gelijkvormigheidsfactor van (B, τ)k(Q) maal een niet–nul element van k. De resultaten
die we daar bekomen, impliceren dat Vraag 2 een positief antwoord heeft in het speciale
geval waarbij τ hyperbolisch wordt over een kwadratische velduitbreiding van k die Q
splijt (Corollary 5.44).
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Generieke isotropie en hyperboliciteitsvelden

In het derde en laatste deel van de thesis (chapter 6) keren we terug naar de kern van
de generieke splijtingstheorie voor kwadratische vormen, namelijk het bestaan van een
generiek isotropieveld.

Vraag 3. Zij F een veld van karakteristiek verschillend van 2, en zij (B, τ) een F−algebra
met involutie van de eerste soort. Wanneer bestaat er een velduitbreiding N/F zodat τN

isotroop (resp. hyperbolisch) is, en zodat voor elke velduitbreiding L/F waarvoor τL

isotroop (resp. hyperbolisch) is, er een F−plaats bestaat van N naar L? We noemen een
veld met die eigenschappen een generiek isotropie (resp. hyperboliciteits) veld voor τ.

Ik toon aan dat een generiek isotropieveld niet altijd bestaat. Er zijn reeds tegenvoor-
beelden van graad 4 (Corollary 6.42). Voor niet–singuliere kwadratische vormen over F
verschillend van het hyperbolisch vlak, kan een generiek isotropieveld bekomen worden
door het functieveld te beschouwen van de projectieve kwadriek, die geassocieerd is met
de vorm. Ik vertrek ook vanuit de invalshoek van variëteiten bij de studie van Vraag 3.
Zij (B, τ) een F−algebra met involutie van de eerste soort. Ik bestudeer bepaalde vari-
ëteiten IVi(B, τ) (waarbij i een natuurlijk getal is in een zeker interval), wiens rationale
punten over een velduitbreiding M/F isotrope idealen zijn van (B, τ)M van een zekere
dimensie. Deze variëteiten werden reeds bestudeerd in de literatuur ([52, 53]), in het
bijzonder door hun link met de algebraïsche groepen die gerateerd zijn aan F−algebra’s
met involutie. Ik onderzoek het isotropiegedrag van F−algebra’s met involute over de
functievelden van deze variëteiten, en maak daarbij veelvuldig gebruik van Schur index
reductieformules voor deze functievelden uit [52, 53].

In Proposition 6.46 toon ik aan, onder bepaalde voorwaarden, dat als er een generiek
isotropieveld bestaat voor τ, dat het dan gerealiseerd kan worden als het functieveld van
een zekere IVi(B, τ). In het algemeen, om te kunnen aantonen dat het functieveld van
een zekere IVi(B, τ) een generiek isotropieveld is voor τ, is het noodzakelijk om het iso-
tropiegedrag van τ over de functievelden van de andere IV j(B, τ), j ≠ i, te onderzoeken.
In sommige gevallen is het voldoende om slechts één ander functieveld te onderzoe-
ken. Corollary 6.62 is een resultaat van deze aard. Het toont aan dat als τ orthogonaal
is, en deg(B) ⩾ 3 ind(B), dat het voldoende is om het isotropiegedrag van τ over het
functieveld van IV1(B, τ) te onderzoeken, om te kunnen besluiten of het functieveld van
IVind(B)(B, τ) een generiek isotropieveld is voor τ. In de praktijk kan het nog altijd
moeilijk zijn om het isotropiegedrag van τ over het functieveld van IV1(B, τ) precies te
bepalen. Om hieraan tegemoet te komen, heb ik in het geval dat B Schur index 2 heeft,
gezocht naar een aantal voldoende voorwaarden die mogelijk eenvoudiger na te gaan
zijn (Proposition 6.63). Ik heb ook een aantal expliciete karakteriseringen bekomen van
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een generiek isotropieveld voor algebra’s met involutie van lage graad (2, 4, 6 en ook
deels 8).

Het gedeelte van Vraag 3 rond generieke hyperboliciteitsvelden behandel ik apart. In dat
geval zijn er hoogstens twee variëteiten die een rol spelen. Het is dan eenvoudig om aan
te tonen dat symplectische involuties steeds een generiek hyperboliciteitsveld hebben.
In het orthogonaal geval hangt het bestaan af van het gedrag van de Clifford algebra
geassocieerd aan de algebra met involutie.

Structuur van de thesis

In hoofdstuk 1 bestudeer ik Azumaya algebra’s met involutie over valuatieringen, en
algemener semilokale Bézout domeinen. De laatste soort ringen kwamen op een natuur-
lijke manier naar voren toen ik Azumaya algebra’s met involutie van de tweede soort
beschouwde. In dat geval hoeft het centrum van de algebra geen valuatiering te zijn,
maar kan het een doorsnede van twee valuatieringen zijn. In sectie 1.3 bestudeer ik
het gedrag van Azumaya algebra’s met centrum een semilokaal Bézout domein, na sca-
laire extensie naar het breukenveld van dit domein. Om dit te doen beschouw ik het
natuurlijke morfisme van de Brauer groep van een domein naar de Brauer groep van zijn
breukenveld. Ik geef aan dat dit morfisme injectief is voor semilokale Bézout domeinen.
Verder maak ik ook de link met een aantal resultaten in de literatuur rond de Brauer
groep van een domein.
In sectie 1.4 ligt de focus op algebra’s met involutie over velden. Ik vermeld een aantal
gekende eigenschappen van de Clifford algebra van een orthogonale involutie. Verder
introduceer ik in die sectie ook de notie van balanced idealen, en een definitie van de
index in termen van die balanced idealen.

Soms kan het nuttig zijn om een probleem voor algebra’s met involutie te benaderen
vanuit het oogpunt van (scheef–)hermitische ruimtes. Om die wisselwerking te verdui-
delijken bestudeer ik in hoofdstuk 2 (scheef–)hermitische ruimtes over een Azumaya al-
gebra met involutie met centrum een semilokaal Bézout domein. Als een veralgemening
van het geval van bilineaire ruimtes over velden, kan men aan de (scheef–)hermitische
ruimtes die beschouwd worden in chapter 2 een Azumaya algebra met involutie asso-
ciëren. Er is speciale aandacht voor de relatie tussen gelijkvormigheid van (scheef–)
hermitische ruimtes en isomorfie van hun geassocieerde Azumaya algebra’s met involu-
tie. Deze resultaten zijn belangrijk bij het de studie van Vraag 2 in latere hoofdstukken.
De laatste twee secties van hoofdstuk 2 gaan over bepaalde representatiestellingen voor
(scheef–)hermitische ruimtes enerzijds, en Azumaya algebra’s met involutie anderzijds.
Sectie 2.5 behandelt het Noetherse geval, en in sectie 2.6 concentreer ik me op (scheef–)
hermitische ruimtes over niet–commutatieve valuatieringen. De resultaten in deze laat-
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ste sectie worden niet gebruikt in de rest van de thesis.

Ik verwacht dat veel van de resultaten in hoofdstuk 1 en 2 niet nieuw zijn, maar vermits
ik er geen referentie voor kon vinden in die vorm, geef ik op veel plaatsen expliciete
bewijzen.

Hoofdstuk 3 geeft een link tussen de specialisatieresultaten in deze thesis en de resultaten
rond generieke isotropie. In dat hoofdstuk geef ik een overzicht van de eigenschappen
van de variëteiten IVi(B, τ), geassocieerd aan een F−algebra met involutie (B, τ). Ik
vermeld ook de relevante Schur index reductieformules uit [52, 53] voor de functievel-
den van deze variëteiten. Bovendien geef ik in Proposition 3.9 een eerste bewijs van
de index versie van Theorem 4.9 in de de restrictieve algebraïsch meetkundige setting,
i.e. de setting waarbij de Azumaya algebra met involutie reeds gedefinieerd is over een
gemeenschappelijk deelveld van F en κ.

Hoofdstuk 4 bevat dan de studie van het algemenere specialisatieprobleem voor Azu-
maya algebra’s met involutie over valuatieringen (sectie 4.2), en bevat de resultaten voor
Henselse valuatieringen (sectie 4.3). De resultaten rond het liften van isotropie en hy-
perboliciteit worden aangetoond in sectie 4.3.1, and de isomorfieresultaten rond Vraag 1
in sectie 4.3.2. De laatste sectie bevat de goede reductie resultaten. In een aantal van de
argumenten in de secties 4.2 en 4.3.1, maak ik gebruik van de theorie van value functions
op vectorruimtes en algebra’s, ontwikkeld in [62, 73, 74]. Ik geef een overzicht van de
basisconcepten en eigenschappen uit deze theorie in sectie 4.1. Hoofdstuk 5 gaat verder
in de geest van hoofdstuk 4. De studie van Vraag 1 staat daar centraal, zowel in een
lokale context (secties 5.1 en 5.2) als in een globale context (secties 5.3 en 5.4).

In het laatste hoofdstuk draait het in de eerste plaats om Vraag 3. Deze wordt onderzocht
in secties 6.3 – 6.8. The eerste twee secties van chapter 6, bevatten resultaten rond twee
analogons van Pfister formen voor algebra’s met involutie, die nog niet vermeld werden
in deze samenvatting. Pfister vormen spelen een centrale rol in de theorie van kwa-
dratische vormen. Er zijn twee analogons voor involuties, die reeds bestudeerd werden
in de literatuur. Men kan totaal decomposeerbare algebra’s met involutie beschouwen.
Dit zijn algebra’s met involutie die isomorf zijn met een tensor product van quaternio-
nenalgebra’s met involutie. Dit analogon reflecteert de decomposeerbaarheid van Pfister
vormen als een tensor product van binaire vormen. Langs de andere kant kan men ver-
trekken van het feit dat Pfister vormen ofwel anisotroop, ofwel hyperbolisch zijn over
elke velduitbreiding van het grondveld. Algebra’s met involutie met deze eigenschap
noemen wij Pfister algebra’s met involutie. In [8] bracht de auteur de conjectuur naar
voren dat de Pfister algebra’s met involutie van graad een macht van twee, precies de to-
taal decomposeerbare algebra’s met involutie zijn. Eén impicatie van deze conjectuur is
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bevestigd door recent werk van K.J. Becher, N.A. Karpenko and J.–P. Tignol in [8, 37],
namelijk dat totaal decomposeerbare algebra’s met involutie Pfister algebra’s met invo-
lutie zijn. De andere implicatie is gekend in een paar specifieke gevallen maar is in het
algemeen nog open. Sectie 6.1 bevat één nieuw geval waar de conjectuur effectief geldt,
namelijk voor algebra’s van graad 8 met symplectische involutie. Het bewijs voor dit
geval werd mij doorgegeven door J.–P. Tignol.

In sectie 6.2 vertrek ik van het volgende resultaat voor kwadratische vormen: als een
Pfister vorm een factor is van een andere Pfister vorm, dan kan de andere factor ook als
Pfister vorm gekozen worden. Ik geef een zwak analogon van dit resultaat voor algebra’s
met involutie, waarbij “Pfister vorm” vervangen wordt door “Pfister algebra met involu-
tie” (Theorem 6.22).

Zoals hierboven aangegeven staat de studie van Vraag 3 centraal in de rest van hoofd-
stuk 6. Het probleem van het bestaan van een generiek hyperboliciteitsveld wordt eerst
behandeld (sectie 6.3), gevolgd door het generiek isotropieprobleem in sectie 6.4. Het
geval van orthogonale involuties wordt meer in detail bekeken in sectie 6.5. In de hier-
navolgende sectie geef ik een aantal voorbeelden van klassen van algebra’s met involutie
waarvoor er geen generiek isotropieveld bestaat. In sectie 6.7 focus ik op de vraag voor
welke algebra’s met involutie het isotropiegedrag gekarakteriseerd wordt door dat van
een kwadratische vorm. Ik bekijk dit probleem in het bijzonder voor totaal decompo-
seerbare algebra’s met involutie. Ik besluit de thesis met een aantal karakteriseringen
voor het bestaan van een generiek isotropieveld voor algebra’s met involutie van lage
graad.
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Algebras with involution over rings

We may always depend on it that
algebra, which cannot be translated
into good English and sound common
sense, is bad algebra.

William Kingdom Clifford

In this chapter, we study Azumaya algebras (with involution) with center a semilocal
Bézout domain, or a separable quadratic extension of a semilocal Bézout domain. For
such centers, we will see that many properties of central simple algebras over fields carry
over to Azumaya algebras. For instance, the theorem of Skolem and Noether holds, i.e.
all central automorphisms of the Azumaya algebra are inner. There is also an analogue
of Wedderburn’s theorem, characterising these kinds of Azumaya algebras as matrix al-
gebras over an Azumaya algebra without zero divisors.
We further show that isomorphism of Azumaya algebras over a semilocal Bézout domain
can be detected rationally, by studying the map from the Brauer group of a semilocal Bé-
zout domain to the Brauer group of its fraction field. This is done in section 1.3. In the
last section, we zoom in on algebras with involution over fields. We give an overview of
known results on the Clifford algebra of a central simple algebra with orthogonal invo-
lution, and we uniformise some arguments from [45] for right ideals, to work both for
simple and semisimple algebras.

We don’t claim that the results presented in this chapter are new. We expect that they will
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look very natural to people who are familiar with Azumaya algebras over rings. Since
we did not find references for the statements in the specific situation of valuation rings
and semilocal Bézout domains, we give explicit arguments for many of them, exploiting
the properties of valuation rings and semilocal Bézout domains.

We set some general notation and some conventions for the rest of this thesis. A ring will
always mean an associative ring with unit, and a domain will always mean a commutative
ring without zero divisors. Let C be a (not necessarily commutative) ring. We denote
the group of units in C by C× and the center of C by Z(C). Suppose that C has invariant
basis number, i.e. for any free right or left C−module, every C−basis of this module has
the same cardinality. This cardinality is usually called the rank, but we will use the term
dimension. Let M be a finitely generated, free right (resp. left) C−module. We denote
its dimension over C by dimC(M), and we call M a finite–dimensional right (resp. left)
C−module. Commutative rings have invariant base number by [49, (III.4.2)] and the
rings we will mostly be working with also have invariant basis number (e.g. left and
right Bézout rings, see [11, p. 78]). Let (e1, . . . , en) be a C−basis for M. Let C′ be a
ring extension of C. Since the tensor product over C commutes with direct sums by [61,
(2.8)], it follows that (e1 ⊗ 1, . . . , en ⊗ 1) is a C′−basis for MC′ = M ⊗C C′ (where C′

is considered as left C−module). We will denote ei ⊗ 1 again by ei. We will use this
repeatedly for different kinds of rings, without explicitly referring to [61] in the sequel.

1.1 Bézout rings

In this section, we study Bézout rings and elementary divisor rings, with an emphasis on
the case of commutative semilocal rings.

Let C be a (not necessarily commutative) ring. Let a,b ∈ C. Then one says that a
is a total divisor of b if CbC ⊂ aC ∩Ca. One calls C a right (resp. left) Bézout ring if
every finitely generated right (resp. left) ideal of C is principal. C is called an elementary
divisor ring if for any all m,n ∈ N and any (m×n)−matrix U over C, there exist invertible
matrices P,Q over C such that PUQ is a matrix where nonzero elements only appear on
the main diagonal and such that these diagonal entries are subsequent total divisors of
each other.

1.1 Proposition. Every elementary divisor ring is a left and right Bézout ring.

Proof. It suffices to show that left ideals with two generators are principal, and similarly
for right ideals. This is for instance shown in [35, p. 465]. �

The Jacobson radical of C is the intersection of the maximal right ideals of C, and is
denoted by J(C). It is shown in [46, (2.4.3)] that for an element y ∈ C, we have that
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y ∈ J(C) if and only if 1 − xyz ∈ C×, for all x, z ∈ C. It follows that J(C) is a two–sided
ideal of C. The ring C is called semilocal if C/J(C) is an (Artinian) semisimple ring. If
C is commutative then C is semilocal if and only if it has finitely many maximal ideals
(see e.g. [46, (7.20.2)]).

Let F be a field. A valuation ring of F is a subring O of F such that for every x ∈ F,
we have that x ∈ O or x−1 ∈ O. Let O and O′ be two valuation rings of F. They are
called comparable if O ⊆ O′ or O′ ⊆ O, and incomparable otherwise. We denote the
smallest overring of O and O′ inside F by OO′. Then O and O′ are called dependent
if OO′ ≠ F, and independent otherwise.

In the following propositions, we show that semilocal Bézout domains are closely related
to valuation rings, and that local Bézout domains are exactly valuation rings.

1.2 Proposition. Let T be a semilocal domain. Then T is a Bézout domain if and only
if the localisation of T at each of its maximal ideals is a valuation ring. In that case,
T is equal to the intersection of these valuation rings, which are, moreover, pairwise
incomparable.

Proof. Let m1, . . . ,m` be the different maximal ideals of T . It is clear that T ⊂ ∩`i=1Tmi .
For the converse, let x ∈ ∩`i=1Tmi be arbitrary. Then there exist a1, . . . ,a` ∈ T and
bi ∈ T∖mi for i = 1, . . . , ` such that x = a1/b1 = . . . = a`/b`. Using that b1T+. . .+b`T = T ,
one can easily show that x ∈ T .
Suppose that T is a semilocal Bézout domain. Let m be an arbitrary maximal ideal of T
and let a,b ∈ T . If one of a,b ∉ m, then it follows immediately that one of a/b,b/a ∈ Tm.
So, suppose that a,b ∈ m and nonzero. Then aT + bT = dT for some d ∈ T , since T
is a Bézout domain. We write a = da′,b = db′ with a′,b′ ∈ T . Then a/b = a′/b′ and
b/a = b′/a′. Since a′T + b′T = T , it follows that one of a′,b′ does not belong to m.
Hence, Tm is a valuation ring. Furthermore, the valuation rings Tm1 , . . .Tm` are pairwise
incomparable, since m1, . . . ,m` are different maximal ideals of T .

Suppose conversely that the localisation of T at each of its maximal ideals is a valuation
ring. Then T is an intersection of pairwise incomparable valuation rings. The fact that T
is a Bézout domain then follows from [24, (III.5.1)], where it is shown more generally
that semilocal Prüfer domains are Bézout domains. �

We can make the statement of Proposition 1.2 stronger.

1.3 Proposition. Let T be a semilocal domain. Then the following are equivalent:

(i) T is a Bézout domain.

(ii) T is an elementary divisor domain.
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(iii) T is the intersection of finitely many valuation rings of its fraction field.

Proof. We denote the fraction field of T by F. That (ii) implies (i) is the statement of
Proposition 1.1. For semilocal domains, the converse holds by [24, (III.6.6)]. We have
that (i) implies (iii) by Proposition 1.2, and the converse follows from [24, (III.5.1)] since
an intersection of finitely many valuation rings of F is also an intersection of finitely
many incomparable valuation rings of F. �

It is well known that the overrings of a valuation ring within its fraction field are again
valuation rings, and that the set of these overrings is linearly ordered. We show below
that the overrings of a semilocal Bézout domain within its fraction field are again semilo-
cal Bézout domains, but here, the set of overrings need not be linearly ordered anymore.
However, we can describe what the overrings look like. The maximal ideals of a semilo-
cal Bézout domain have been described in [21]. Since we use this result frequently, we
include it here for convenience.

1.4 Proposition. Let F be a field and letO1, . . . ,O` be pairwise incomparable valuation
rings of F. Let T = O1 ∩ . . . ∩ O`. For i = 1, . . . , `, letMi be the maximal ideal of Oi.
Then Oi = TMi∩T for i = 1, . . . , `, andM1 ∩ T, . . . ,M` ∩ T are the different maximal
ideals of T .

Proof. See [21, (3.2.6), (3.2.7)]. �

1.5 Lemma. Let T be a semilocal Bézout domain and denote its fraction field by F. Let
T ⊂ T ′ ⊂ F be an overring. Then T ′ is a semilocal Bézout domain, and T ′ does not have
more maximal ideals than T .

Proof. A proof of the fact that T ′ is a Bézout domain can be found in [7, Proposition
2, Theorem], where it is in fact shown that T ′ is a localisation of T at a multiplicatively
closed subset S.

Let m1, . . . ,m` be the different maximal ideals of T . Suppose for the sake of contradic-
tion that T ′ has at least `+1 different maximal ideals, sayM1, . . . ,M`+1. Let pi =Mi ∩T
for i = 1, . . . , ` + 1. Since T ′ is a localisation of T , there is a one-to-one correspon-
dence between prime ideals of T not intersecting S and prime ideals of T ′ (see e.g.
[36, Theorem 34]). It follows that p1, . . . ,p`+1 are different prime ideals of T . Since T
only has ` maximal ideals, at least two of these prime ideals must be contained in the
same maximal ideal. Without loss of generality, we may assume that p1,p2 ⊂ m1. Then
Tm1 ⊂ Tp1 ∩ Tp2 . Since T is a Bézout domain, it follows from Proposition 1.2 that Tm1

is a valuation ring, and hence its set of overrings within F is linearly ordered. Without
loss of generality, we may assume that Tp1 ⊂ Tp2 , and hence, p2 ⊂ p1. This implies that
M2 = p2T ′ ⊂ p1T ′ = M1, which yields M1 = M2, a contradiction. Hence, the statement
follows. �



1.1 31

1.6 Lemma. Let F be a field and let O1, . . . ,O` be pairwise incomparable valuation
rings of F. Let T = O1 ∩ . . . ∩O`.

(a) Let V1, . . . ,V` be valuation rings of F such that Oi ⊂ Vi for i ∈ {1, . . . , `}, with a
strict inclusion for at least one i. Then O1 ∩ . . . ∩O` ⊊ V1 ∩ . . . ∩ V`.

(b) Let T ⊊ T ′ ⊂ F. Then there exist valuation rings V1, . . . ,V` of F such that T ′ =

V1∩. . .∩V` and for each i ∈ {1, . . . , `}, there exists j ∈ {1, . . . , `} such thatO j ⊂ Vi.

Proof. We first show (a). Clearly, we have that T ⊂ V1 ∩ . . . ∩ V`. Suppose for the sake
of contradiction that T = V1 ∩ . . . ∩ V`. Since O1, . . . ,O` are pairwise incomparable,
it follows from Proposition 1.4 that O1 ∩ . . . ∩ O` = V1 ∩ . . . ∩ V` has ` different maxi-
mal ideals. If V1, . . . ,V` are not pairwise incomparable, then again invoking Proposition
1.4, it would follow that V1 ∩ . . . ∩ V` has at most ` − 1 maximal ideals, a contradic-
tion. Hence, V1, . . . ,V` are pairwise incomparable. Then Proposition 1.4 yields that
{V1, . . . ,V`} = {O1, . . . ,O`}. However, since Oi ⊊ Vi for at least one i, this gives a
contradiction.

Let T ⊊ T ′ ⊂ F. By Lemma 1.5, T ′ is a semilocal Bézout domain with at most `
maximal ideals. Let M1, . . . ,Mr be the different maximal ideals of T ′, and let Vi = T ′

Mi

for i = 1, . . . , r, and Vi = F for i = r+1, . . . , `. Then T ′ = V1 ∩ . . .∩V` by Lemma 1.3. Let
M1 be the maximal ideal of V1. ThenM1 ∩ T is a prime ideal of T , which is contained
in a maximal ideal of T , say m. Then Tm ⊂ TM1∩T ⊂ T ′

M1
= V1. This proves (b). �

We now give some properties of left and right Bézout rings without zero divisors, which
will be used to obtain a decomposition statement for certain hermitian and skew–hermi-
tian spaces in chapter 2.

1.7 Proposition. Let ∆ be a left and right Bézout ring without zero divisors. Let fur-
thermore (a1, . . . ,am) be a unimodular row over ∆, i.e. there exist b1, . . . ,bm ∈ ∆ such
that ∑m

i=1 aibi = 1. Then there exists an invertible (m × m)−matrix U over ∆ having
(a1, . . . ,am) as its first row, such that the inverse of U has (b1, . . . ,bm) as its first col-
umn.

Proof. The statement holds for Hermite rings by [11, (0.4.1)]. Left and right Bézout
rings without zero divisors are Hermite rings by [11, (2.3.4), (2.3.17)]. �

1.8 Remark. In the sequel, we only apply Proposition 1.7 in the case where ∆ is an
Azumaya algebra with center a semilocal Bézout domain. In that case, the proof can be
made more explicit.

1.9 Proposition. Let ∆ be a left and right Bézout ring without zero divisors. Every
finitely generated, torsion–free left or right ∆−module is free.



32 Chapter 1

Proof. This can be shown using Proposition 1.7. See [11, (2.3.19)], where the proof is
given for right modules. The proof for left modules is similar. �

Let m,n ∈ N. We denote the set of (m × n)−matrices over C by Mm,n(C), and if m = n,
then we we write Mn(C) for Mn,n(C). Suppose that n ⩾ m and let d1, . . . ,dm ∈ C. We
denote by diag(d1, . . . ,dm) the (n×m)−matrix with d1, . . . ,dm as consecutive entries on
the main diagonal, and 0 elsewhere.

We can use the elementary divisor property to prove that certain modules over an ele-
mentary divisor domain are free of finite dimension. This result will be used when we
study the isotropy behaviour of algebras with involution with respect to places from one
field to another in chapter 4. There, we will also give a different proof of the statement
below, using so–called value functions.

1.10 Proposition. Let T be an elementary divisor domain and denote its fraction field
by F. Let V be a finite–dimensional T−module and let V = V ⊗T F. Let W be a nonzero
F−subspace of V . Then W ∩ V is free as a T−module and

dimF(W) = dimT(W ∩ V).

Proof. Suppose that dimT V = n and let (e1, . . . , en) be a T−basis for V . Then (e1, . . . , en)

is an F−basis for V . Suppose that dimF W = m and let ( f1, . . . , fm) be an F−basis for
W. Clearly, m ⩽ n. Let U be the (n × m)−matrix (u ji) ji such that fi = ∑n

j=1 e ju ji, for
i = 1, . . . ,m. Let e be the row matrix with ei in the i-th column, and let f be the row
matrix with f j in the j-th column. We have that

eU = f .

Since F is the fraction field of T , we can write each entry of U as a fraction of elements
of T . Let δ be the product of all denominators of the entries. Let D be the (n×n)−matrix
δ ⋅ In. Then DU ∈ Mn×m(T). Since T is an elementary divisor domain, there exist
invertible matrices P,P′ over T such that P(DU)P′ is a diagonal (n × m)−matrix over
T . It follows that PUP′ is a diagonal matrix with entries in F, say

PUP′ = diag(d1, . . . ,dm),

with d1, . . . ,dm ∈ F.

We define row matrices e′ = (e′1, . . . , e
′
n) and f ′ = ( f ′1, . . . , f ′m) by

e′ = eP−1 and f ′ = f P′.
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Since the matrices P and P′ are invertible over T it follows that (e′1, . . . , e
′
n) is a T−basis

for V (and hence an F−basis for V), and ( f ′1, . . . , f ′m) is an F−basis for W. Moreover, we
have

e′ diag(d1, . . . ,dm) = e′PUP′ = eUP′ = f P′ = f ′.

Hence, f ′1 = e′1d1, . . . , f ′m = e′mdm. Note that, since ( f ′1, . . . , f ′m) is an F−basis for W,
d1, . . . ,dm are nonzero. It follows that (e′1, . . . , e

′
m) is an F−basis for W. We claim that

W ∩ V = e′1T ⊕⋯⊕ e′mT.

It is clear that e′1T ⊕ ⋯ ⊕ e′mT ⊂ W ∩ V since e′1, . . . , e
′
m ∈ W ∩ V . In order to see the

other inclusion, let w ∈ W ∩ V be arbitrary. Then w = ∑m
i=1 e′ibi, with b1, . . . ,bm ∈ F,

since (e′1, . . . , e
′
m) is an F−basis for W. Since (e′1, . . . , e

′
n) is a T−basis for V and w ∈ V ,

it follows that b1, . . . ,bm ∈ T . �

We do not know whether Proposition 1.10 holds more generally for a Bézout domain.

1.2 Azumaya algebras

Let R be a commutative ring. An associative R−algebra A is called separable over R
if it is projective as a module over A ⊗R A

op, where the module action is given by
(a ⊗ b)x = axb for all a,b, x ∈ A. If A is central, separable and finitely generated as
a module over R, then it is called an Azumaya algebra over R. An Azumaya algebra is
projective as a module over its center, by [43, (III.5.1.1)]. If R is a field, then a finite–
dimensional commutative R−algebra is separable over R if it is isomorphic to a finite
product of separable field extensions of R (see [43, p. 42]).

1.11 Proposition. LetA be an associative R−algebra, finitely generated as an R−module.
The following hold:

(a) Let T be a commutative R−algebra. If the R−algebra A is separable (resp. an
Azumaya algebra), then so is the T−algebra A⊗R T .

(b) Suppose that R is a field and that A is an Azumaya algebra over R. Then A is
central simple.

(c) A is an Azumaya algebra over R if and only if, for every maximal ideal m of R,
the R/m−algebra A/mA is central simple.

Proof. See [43, (III.5.1.9), (III.5.1.3), (III.5.1.10)] for (a)–(c). �

1.12 Proposition. Let A be an Azumaya algebra over R. Every two–sided ideal of A
has the form bA, for an ideal b of R, and furthermore, bA∩R = b.
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Proof. See [4, (3.2)]. �

For the rest of section 1.2, we assume that R is a domain, and we denote its fraction field
by F.

1.13 Corollary. Let A be an Azumaya algebra over R. Then J(A) = J(R)A.

Proof. Recall that J(A) is a two–sided ideal by [46, (2.4.3)]. By Proposition 1.12, there
exists an ideal b of R such that J(A) = bA. Furthermore, using the criterion in [46,
(2.4.3)] mentioned below Proposition 1.1, and the fact that A× ∩R = R×, it follows that
b ⊂ J(R), and hence, J(A) ⊂ J(R)A. We show the other inclusion. Let m be a maximal
ideal of R. Then mR is a maximal two–sided ideal of A by Proposition 1.12. Hence,
it follows from the definition of J(R) that J(R)A is contained in every maximal two–
sided ideal of A. Since, by [61, (22.15)], every one–sided maximal ideal of A contains
a two–sided maximal ideal of A, we get that J(R)A ⊂ J(A), whence the statement. �

By a separable quadratic R−algebra, we mean a commutative ring of the form R[z]
where z is an element such that z2 = az + b, with a,b ∈ R such that a2 + 4b ∈ R×. This
notion of separable quadratic R−algebra is more restrictive than the one defined in [43].
However, we will apply the results on Azumaya algebras in this section only in the case
where R is such that the notion introduced here coincides with the one in [43].

For the rest of section 1.2, we fix a commutative ring S , which is either equal to R, or a
separable quadratic R−algebra. In the latter case, we let a,b, z be as above and we write
f (x) = x2 − ax − b ∈ R[x]. If S is a domain then we denote its fraction field by K.

1.14 Proposition. The following hold:

(a) Suppose that S ≠ R. Then S is a domain if and only if f (x) is irreducible in R[x].

(b) Suppose that R is integrally closed in F. Then S is the integral closure of R in
S ⊗R F. Furthermore, S is a domain if and only if S ⊗R F is a field, and the latter
is then the fraction field of S . If S is not a domain, then S ≅ R × R.

Proof. If f (x) is irreducible then one can check that it generates a prime ideal in R[x].
This immediately yields (a).
Suppose that R is integrally closed in F. (b) trivially holds if S = R, so suppose that
S ≠ R. If S is not a domain, then S ≅ R × R by [43, (III.4.4.3)], and R × R is the integral
closure of R in S ⊗R F ≅ F × F. Since R is integrally closed in F, f (x) is irreducible in
R[x] if and only if it is irreducible in F[x]. Hence, S is a domain if and only if S ⊗R F
is a field. If S is a domain then S is the integral closure of R in the field S ⊗R F by [22,
(6.1.2)], since the discriminant of f (x) is a unit in R. �
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1.15 Proposition. There is a unique R−linear automorphism ι of S such that R = {x ∈

S ∣ ι(x) = x}. If S ≠ R then ι is given by ι(c + dz) = c + d(a − z), for all c,d ∈ R. If
S ≅ R × R then ι is given by the switch map.

Proof. The statement is trivial if S = R. So, suppose that S ≠ R. It is clear that ι ∶ S →
S ∶ c + dz↦ c + d(a − z) is an R−linear automorphism Since the discriminant of f (x) is
an element of R×, it follows that z ≠ a − z, and hence R = {x ∈ S ∣ ι(x) = x}. Since any
R−linear automorphism of S must map z to a root of f (x) in S , the uniqueness of ι is
clear. One easily checks that if S ≅ R × R then ι is given by the switch map. �

For the rest of section 1.2, we fix ι as in Proposition 1.15, and we also use the notation ι
for the induced nontrivial F−automorphism of S ⊗R F.

An involution on a ring is an anti–automorphism of order at most 2. Let A be an
Azumaya algebra over R or a separable quadratic R−algebra. Let furthermore σ be
an R−linear involution on A such that, if Z(A) ≠ R, then σ restricts to the nontrivial
R−automorphism of Z(A), given by Proposition 1.15. If Z(A) = R then σ is called an
involution of the first kind, otherwise σ is called an involution of the second kind. We
call the pair (A, σ) an R−algebra with involution. If S is not a domain then we call
(A, σ) degenerate.

Let A and A′ be Azumaya algebras over S . Then the tensor product A⊗S A
′ is an

Azumaya algebra over S by [43, (III.5.1.5)]. Let σ be an R−linear involution of the
first or second kind on A, and let σ′ be an R−linear involution of the same kind on
A′. Then the map σ ⊗S σ′ is an R−linear involution on A⊗S A

′ of the same kind
as σ (and σ′). We also denote the R−algebra with involution (A⊗S A

′, σ ⊗S σ
′) by

(A, σ) ⊗S (A′, σ′). Let R′ be a domain that is also an R−algebra. We write (A, σ)R′ =

(AR′ , σR′) = (A⊗R R′, σ⊗R idR′).

1.16 Proposition. Let (A, σ) be an R−algebra with involution and let R′ be a domain
that is also an R−algebra. Then (A, σ)R′ is an R′−algebra with involution.

Proof. We have thatAR′ ≅ A⊗Z(A)(Z(A)⊗RR′) is an Azumaya algebra over Z(A)⊗RR′

by Proposition 1.11 (a). The statement is then clear if σ is of the first kind. Suppose that
σ is of the second kind. It is clear that Z(A) ⊗R R′ ≅ R′[z] is a separable quadratic
R′−algebra. Furthermore, σR′ is an R′−linear involution on AR′ , which restricts to the
nontrivial R′−automorphism of Z(A) ⊗R R′. �

1.17 Examples. Let L be a field. A 4−dimensional central simple L−algebra Q is called
a quaternion algebra over L. Suppose that char(L) ≠ 2. The subset Q′ = {x ∈ Q ∣ x ∉

L and x2 ∈ L} ∪ {0} of Q is the set of pure quaternions of Q.
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(a) There is a unique involution of the first kind on Q that restricts to the identity
on L, and to minus the identity on Q′. This involution is called the canonical
(symplectic) involution on Q. We will encounter this involution later in the thesis.
It can be shown (see e.g. [66, §8.11]) that Q has an L−basis {1, i, j, i j} such that
i2, j2 ∈ L× and i j = − ji. In terms of this basis, we have that Q′ = {a1i+ a2 j+ a3i j ∣
a1,a2,a3 ∈ L}. We use the standard notation (a,b)L for Q in the case where
i2 = a ∈ L× and j2 = b ∈ L×.

(b) Let L̃/L be a quadratic separable field extension, and denote its nontrivial L−auto-
morphism by ι̃. Let γ be as in (a) the canonical involution on Q. Then Q̃ = Q⊗L L̃
is a quaternion algebra over L̃ and γ⊗L ι̃ is an involution of the second kind on Q̃.

Let (A, σ) and (A′, σ′) be R−algebras with involution. By an isomorphism of R−alge-
bras with involution (A, σ) → (A′, σ′), we mean an isomorphism ϕ ∶ A → A′ of
R−algebras such that ϕ ○ σ = σ′ ○ ϕ. We call (A, σ) and (A′, σ′) R−isomorphic if
there exists an isomorphism of R−algebras with involution (A σ) → (A′, σ′), and we
denote this by (A, σ) ≅R (A′, σ′). Suppose moreover that there exist R−isomorphisms
f ∶ S → Z(A) and f ′ ∶ S → Z(A′), and an isomorphism of R−algebras with involution
(A, σ) → (A′, σ′) that is S−linear with respect to f and f ′. Then we say that (A, σ)
and (A′, σ′) are S−isomorphic and we write (A, σ) ≅S (A′, σ′).

Let B be an Azumaya algebra over R. Define a new multiplication on B by a ∗ b = ba,
for all a,b ∈ B. The R−module B with the new operation ∗ as multiplication is also
an R−algebra, called the opposite algebra of B, and we denote it by Bop. The map
swB ∶ B × Bop → B × Bop ∶ (a,b) ↦ (b,a) defines an involution of the second kind on
B × Bop, called the switch involution.

1.18 Proposition. Let A be an Azumaya algebra over R×R. Then there exist Azumaya
algebras A1 and A2 over R such that A = A1 ×A2. Furthermore, if σ is an involution of
the second kind on A, then A2 ≅ A

op
1 and (A, σ) ≅R (A1 ×A

op
1 , swA1).

Proof. Let A1 = A(1,0) and A2 = A(0,1). These are R−algebras and it is clear that
A = A1 × A2. By Proposition 1.11 (c), for each maximal ideal m of R, we have that
A/A(m × R) is a central simple algebra over (R × R)/(m × R). Using the natural iso-
morphisms, this gives A1/mA1 the structure of a central simple R/m−algebra. Propo-
sition 1.11 (c) yields that A1 is an Azumaya algebra over R. Similarly, by considering
A/A(R ×m), we get that A2 is an Azumaya algebra over R.

Let σ be an involution of the second kind onA. Since σ restricts to the switch involution
on R × R, the map g ∶ A

op
1 → A2 defined by σ(x,0) = (0,g(x)) is an isomorphism of

R−algebras. Under the induced isomorphism A1 × A2 ≅ A1 × A
op
1 , the involution σ

corresponds to the switch involution swA1 . �
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1.19 Proposition. Assume that R is semilocal. Let A be an Azumaya algebra over S .
Then A is free as an R−module. If S is a domain, assume that it is semilocal. Then A is
also free as an S−module.

Proof. Since A is an Azumaya algebra over S , A is finitely generated, projective as an
S−module. Since S is a finite–dimensional R−module, it follows that A is also finitely
generated, projective as an R−module. By the main theorem of [31], finitely generated,
projective modules over a semilocal domain are free, proving the statement. �

1.20 Proposition. Assume that S is a semilocal domain, or that S ≅ R × R. Let A be an
Azumaya algebra over S . Then every S−automorphism of A is inner.

Proof. If S is a domain this follows from [4, (3.6)], since finitely generated, projective
modules over S are free by the main theorem of [31]. Suppose that S ≅ R × R. By
Proposition 1.18, there exist Azumaya algebrasA1 andA2 over R such thatA ≅ A1×A2.
Let ϕ ∈ AutR(A1 × A2). One easily checks that the restriction of ϕ to A1 (resp. A2) is
an R−automorphism of A1 (resp. A2). By the first part of the proof, it follows that there
exist u ∈ A×1 and v ∈ A×2 such that ϕ∣A1 = Int(u) and ϕ∣A2 = Int(v). This implies that
ϕ = Int(u, v). �

In the rest of this section, we are interested in the case where R is a semilocal Bézout
domain.

We use the following terminology. Let L be a field and let C be a subring of L. Let L′/L
a field extension. We say that a valuation ring O′ of L′ with maximal idealM′ is lying
over C if C ⊂ O′ and M′ ∩ C is a maximal ideal of C. In that case, we also say that
M′ is lying overM′ ∩ C. If C is a valuation ring of L, then we also say that O′ is an
extension of C to L′.

1.21 Proposition. Suppose that there exist different valuation rings O1, . . . ,Om of F
such that R = O1 ∩ . . .∩Om (i.e. R is a semilocal Bézout domain). If S is a domain, then
it is the intersection of the valuation rings of K lying over some Oi. In particular, S is a
semilocal Bézout domain.

Proof. Since O1, . . . ,Om are integrally closed in F, it follows that R is integrally closed
in F. Proposition 1.14 (b) then yields that S is the integral closure of R in F. By [21,
(3.1.3)], it follows that S is the intersection of the valuation rings of K lying over R. Let
S ′ be the intersection of the valuation rings of K lying over some Oi. Since K/F is a
finite field extension, there are only finitely many such valuation rings by [21, (3.2.9)].
Hence, S ′ is a semilocal Bézout domain by Proposition 1.3. Furthermore, it is clear
that S ⊂ S ′. For the other inclusion, note first that S ′ is integral over O1, . . . ,Om, since
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S ′ is contained in the integral closure of each Oi in K. Let x ∈ S ′ be arbitrary. Since
O1, . . . ,Om are integrally closed in F and x is integral over O1, . . . ,Om, it follows that
the minimal polynomial of x over F has its coefficients in R = O1 ∩ . . .∩Om, and hence,
x is integral over R. It follows that S ′ ⊂ S . �

1.22 Proposition. Suppose that R is a valuation ring. Denote its maximal ideal by m
and its residue field by κ. Suppose that S is a domain. Then one of the following cases
occurs:

(a) There is a unique valuation ring of K extending R. Then S is equal to this exten-
sion. Furthermore, S has the same value group as R, has maximal ideal mS and
its residue field is a separable quadratic extension of κ.

(b) There are two valuation rings of K extending R. These both have the same value
group as R and residue field κ. Furthermore, S is equal to their intersection, has
Jacobson radical mS , and S /mS ≅ κ × κ.

Proof. By Proposition 1.21, S is the intersection of the valuation rings of K = S ⊗R F
lying over R. By [21, (3.2.9)], since K/F is a quadratic extension, S is either a valuation
ring or the intersection of two (incomparable) valuation rings. Let f̄ (x) = x2 − āx − b̄ ∈

κ[x]. Note that the discriminant of f̄ (x) is nonzero, since a2 + 4b ∈ R×, and hence, f̄ (x)
is separable. It is easy to see that S is a valuation ring if and only if f̄ (x) is irreducible.
If this is the case, then mS is the unique maximal ideal of S , and hence, J(S ) = mS .
This also implies that the residue field of S is a separable quadratic extension of κ. By
[21, (3.2.3)], it follows that R and S have the same value group.
Suppose that S is the intersection of two incomparable valuation rings. Both of these
valuation rings have the same value group and residue field as R by [21, (3.3.4)]. We
have that S has two maximal ideals M1 and M2 by Proposition 1.4. Now f̄ (x) is
reducible over κ, and hence, S /mS ≅ κ × κ since f̄ (x) is separable. It follows that
mS =M1 ∩M2 = J(S ). �

1.23 Proposition. Suppose that R is a semilocal Bézout domain, and assume that S is
a domain. Let A be an Azumaya algebra over S and let σ and σ′ be two R−linear
involutions of the same kind on A.

(a) If σ and σ′ are of the first kind then there is an element s ∈ A× such that σ(s) = ±s
and σ′ = Int(s) ○σ.

(b) If σ and σ′ are of the second kind then there is an element s ∈ A× such that
σ(s) = s and σ′ = Int(s) ○σ.
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Proof. Since σ′ ○σ is an S−automorphism of A, Corollary 1.20 yields that there exists
s ∈ A× such that σ′ = Int(s) ○ σ. It follows that idA = σ′2 = Int(sσ(s)−1). This im-
plies that sσ(s)−1 = λ−1, for some λ ∈ S ×. In other words, σ(s) = λs. It follows that
s = σ2(s) = σ(λ)λs. Since s ∈ A×, we get that σ(λ)λ = 1. If σ and σ′ are of the first
kind, this implies that λ2 = 1 and hence, λ = ±1.
Suppose that σ and σ′ are of the second kind. Then 1 = σ(λ)λ = ι(λ)λ. In order to prove
the statement, it suffices to show a Hilbert 90 type statement for S , namely that there ex-
ists µ ∈ S × such that µ = λι(µ). For then Int(s) = Int(µs) and σ(µs) = σ(s)ι(µ) =

λι(µ)s = µs.

By Proposition 1.2, there exist pairwise incomparable valuation rings O1, . . . ,Om of F
such that R = O1 ∩ . . . ∩ Om. For i = 1, . . . ,m, let mi be the maximal ideal of Oi. After
renumbering if necessary, we may assume that there is an index ` ∈ {1, . . . ,m} such
that O1, . . . ,O` extend uniquely to K and O`+1, . . . ,Om have two extensions to K. For
i = 1, . . . ,m, let S i be the integral closure of Oi in K. By [21, (3.1.3)] and Proposition
1.21, S = S 1 ∩ . . . ∩ S m. For i = 1, . . . , `, we have that S i is a valuation ring, and S
has therefore a unique maximal idealMi lying over mi. For i = ` + 1, . . . ,m, S i is the
intersection of the two (incomparable) extensions of Oi to K and S has two maximal
idealsMi1 andMi2 lying over mi. By [49, (IX.2.1)], we have thatMi2 = ι(Mi1).

Let S̃ ∈ {S 1, . . . ,S m} be arbitrary, and let Õ = S̃ ∩ F. Using the Hilbert 90 theorem for
K/F, there exists µ̃ ∈ K such that λι(µ̃) = µ̃. Suppose first that S̃ is a valuation ring.
Since, by Proposition 1.22, the value groups of S̃ and Õ are equal, there exists a ∈ F
such that aµ̃ ∈ S̃ ×, and furthermore λι(aµ̃) = aλι(µ̃) = aµ̃. Suppose that S̃ = V1 ∩ V2,
with V1 and V2 the extensions of Õ to K. Then V1 and V2 have the same value groups as
Õ by Proposition 1.22, and V2 = ι(V1) by [21, (3.2.14)]. By the previous case, we may
assume that µ̃ ∈ V×

1 . Then ι(µ̃) ∈ V×
2 , and since λ ∈ R× ⊂ Õ

×, it follows that µ̃ ∈ V×
2 as

well.

So, for i = 1, . . . ,m, there exist µi ∈ S ×
i such that λι(µi) = µi. By the Chinese Remainder

Theorem for R, there exist elements α1 . . . , α` ∈ R such that αi ≡ 1 mod mi and αi ≡

0 mod m j for j ∈ {1, . . . ,m}∖{i}. By the Chinese Remainder Theorem for S , there exist
elements α`+1, . . . , αm ∈ S such that αi ≡ 1 modMi1 and αi is contained in all other
maximal ideals of S , i.e. αi ∈ M j for j = 1, . . . , `, αi ∈ Mi2 and αi ∈ M j1 ∩M j2 for
j ≠ i.
For i = 1, . . . , `, let µ′i = αiµi, and for i = `+1, . . . ,m, let µ′i = αi+λι(αi). Since ι(λ)λ = 1,
it follows that λι(µ′i) = µ

′
i for i = 1, . . . ,m. For i = 1, . . . , `, µ′i is contained in all maximal

ideals of S exceptMi, and for i = `+1, . . . ,m, µ′i is contained in all maximal ideals of S
exceptMi1 andMi2. It follows that µ = ∑m

i=1 µ
′
i ∈ S ×, and, furthermore, λι(µ) = µ. �
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1.24 Proposition. Let T be a semilocal Bézout domain, and let ∆ be an Azumaya alge-
bra over T . Then ∆ is a left and right Bézout ring.

Proof. We denote the fraction field of T by L. By Proposition 1.2, there exist pairwise in-
comparable valuation ringsO1, . . . ,Or of L such that T = O1 ∩ . . . ∩ Or. By Proposition
1.4, T has r different maximal ideals, sayM1, . . . ,Mr, and O1 = TM1 , . . . ,Or = TMr .
Let ∆i = ∆ ⊗T Oi for i = 1, . . . , r. Then ∆i is an Azumaya algebra over Oi by Propo-
sition 1.11 (a), and therefore integral over Oi. Furthermore, ∆ = ∩r

i=1∆i. The inclusion
∆ ⊂ ∩r

i=1∆i is clear. For the converse, let x ∈ ∩r
i=1∆i. Then there exist d1, . . . ,dr ∈ ∆

and ai ∈ T ∖ Mi for i = 1, . . . , r, such that x = d1/a1 = . . . = dr/ar. Using that
a1T + . . . + arT = T , it follows that x ∈ ∆.

By [50, (7.13)], ∆ and ∆1, . . . ,∆r are so–called Dubrovin valuation rings of the division
algebra ∆L. If we show that ∆i and ∆ j are pairwise incomparable if i ≠ j, i.e. ∆i ⊊ ∆ j,
then it follows from [50, (15.5) and (15.7)] that ∆ is a left and right Bézout ring, using
that ∆i is integral over Oi for i = 1, . . . , r, and that ∆i = ∆Oi inside ∆L.
So, suppose for the sake of contradiction that there exist i ≠ j such that ∆i ⊂ ∆ j. Then
Oi ⊂ ∆ j. Since ∆ j is an Azumaya algebra over O j, it is free over O j by Corollary
1.19, and an O j −basis of ∆ j is an L−basis of ∆ j ⊗O j L. It follows that O j = Z(∆ j) =

Z(∆ j ⊗O j L)∩∆ j = L∩∆ j ⊃ Oi, but this contradicts the fact thatOi andO j are pairwise
incomparable. This proves the statement. �

1.3 The Brauer group of a ring

The concept of the Brauer group of a field has been extended to commutative rings in
[4]. Let T be a commutative ring. A T−module P is called faithful if whenever t ∈ T is
such that tP = 0, then t = 0. Let a(T) be the set of isomorphism classes of all Azumaya
algebras with center T , and let a0(T) be the subset of a(T) consisting of the EndT(P),
with P a finitely generated, faithfully projective T−module. One can prove that a(T) and
a0(T) are closed under tensor products. Consider the following equivalence relation on
a(T). Let A1,A2 ∈ a(T). Then we say that A1 and A2 are Brauer equivalent, denoted
by A1 ∼ A2, if there exist algebras Ω1,Ω2 ∈ a0(T) such that A1⊗T Ω1 ≅ A2⊗T Ω2. We
denote a(T) modulo this equivalence relation by Br(T). This is called the Brauer group
of T . In [28, (1.5)], A. Grothendieck showed that every element of Br(T) has finite or-
der. Given an Azumaya algebra A over T , we denote its Brauer class in Br(T) by [A].
We use the term exponent for the order of [A] in Br(T). As for fields, Br(T) has the
structure of an abelian group, in which the equivalence class of T is the identity. For
more details we refer to [4].
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We say that T has the Wedderburn property if the following holds:

Let A be an Azumaya algebra over T . Then there exists an up to T−isomorphism
unique Azumaya algebra ∆ over T without zero divisors, and a finite–dimensional right
∆−module M such that A ≅ End∆(M) as T−algebras.

We thank M. Ojanguren for providing the main ideas for some of the proofs in this
section.

1.25 Proposition. Let T be a domain with fraction field L. Suppose that finitely gen-
erated, torsion–free T−modules are free. Let ∆ be an Azumaya algebra over T without
nontrivial idempotents. Then ∆ does not have zero divisors, and ∆ ⊗T L is a division
algebra.

Proof. We have that D = ∆ ⊗T L is a central simple L−algebra by Proposition 1.11 (a)
and (b). It is clear that if D is a division algebra, then ∆ does not have zero divisors,
and vice versa. In order to show that D is a division algebra, it suffices to show that D
does not have nontrivial idempotents. So, suppose for the sake of contradiction that D
contains a nontrivial idempotent x. Consider the right ideal xD of D and let I = xD ∩ ∆.
This is a right ideal of ∆ different from ∆ itself. If we can show that ∆/I is projective as
a ∆−module, then the exact sequence of right ∆−modules

0 // I // ∆ // ∆/I // 0

splits, which implies that ∆ ≅ I⊕∆/I. The projection from ∆ to I then yields a nontrivial
idempotent in End∆(I ⊕ ∆/I) ≅ ∆, where the T−algebra isomorphism ∆ → End∆(∆)

is given by left multiplication (where ∆ is considered as a right module over itself in
End∆(∆)).
Clearly, ∆/I is finitely generated over ∆, and then also over T . In order to show that ∆/I
is projective over ∆, it suffices to show that ∆/I is projective over T by [43, (VII.8.2.6)].
First of all, we have that ∆/I is torsion–free over T . For suppose that there are elements
a ∈ ∆∖I and 0 ≠ r ∈ T such that ar ∈ I, then a = (ar)r−1 ∈ xD∩∆ = I, a contradiction. The
hypothesis now yields that ∆/I is a free T−module, and hence, in particular a projective
T−module. �

1.26 Proposition. Let T be a semilocal Bézout domain or a polynomial ring in one
variable over a perfect field. Then T has the Wedderburn property.

Proof. This follows from [16, Corollary 1], combined with Proposition 1.25. �

The condition “perfect” in Proposition 1.26 may seem to come out of nowhere. It is used
in the proof of [16, Corollary 1] to guarantee that Azumaya algebras with center k[t] are
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up to Brauer equivalence extended from k. If k is not perfect then this is no longer true,
but the Brauer classes that are extended from k have been characterised in [4]. The result
of Proposition 1.26 can then be made more precise, as we show below.

1.27 Proposition. Let k be a field and let T = k[t] be the polynomial ring in one variable.
Then T has the Wedderburn property for Azumaya algebras over T of exponent not
divisible by char(k), i.e. let A be an Azumaya algebra over T of exponent r, where
char(k) ∤ r, then there exists an up to T−isomorphism unique Azumaya algebra ∆

over T without zero divisors and a finite–dimensional right ∆−module M such that A ≅

End∆(M).

Proof. In order to obtain the result of [16, Corollary 1], F.R. Demeyer used the fact from
[4, (7.5)] that, in the case where T is a polynomial ring over a perfect field, an Azumaya
algebra over T is up to Brauer equivalence obtained by scalar extension from a central
simple algebra over k, i.e. the map Br(k) → Br(k[t]) is surjective. In [4, p. 389], the
authors show that Br(k[t]) ≅ Br(k) × Br′(k[t]), where Br′(k[t]) is the kernel of the
homomorphism Br(k[t]) → Br(k), induced by the residue homomorphism k[t] → k. In
[4, (7.6)], it is then shown that an element of Br′(k[t]) has exponent a power of char(k).
Hence, it follows that Azumaya algebras over k[t] of exponent not divisible by char(k)
are up to Brauer equivalence extended from k. From this point on, one can follow the
proof of [16, Corollary 1] in order to obtain the statement. �

1.28 Proposition. Let T be a semilocal domain. Brauer equivalent Azumaya algebras
over T of the same T−dimension are isomorphic.

Proof. Let A,A′ be Azumaya algebras over T . Assume that dimT(A) = dimT(A
′)

and that [A] = [A′] ∈ Br(T). Then there exist finitely generated, faithfully projective
T−modules P1 and P2 such that

A⊗T EndT(P1) ≅ A
′⊗EndT(P2).

By the main theorem of [31], P1 and P2 are free as T−modules, and hence, there exist
n1,n2 ∈ N such that EndT(P1) ≅ Mn1(T) and EndT(P2) ≅ Mn2(T). Since dimT(A) =

dimT(A
′) by assumption, it follows that dimT(A⊗T Mn1(T)) = dimT(A

′⊗Mn2(T)),
and hence, n1 = n2. The cancellation law for Azumaya algebras over semilocal rings
(see [43, (III.5.2.3)] then yields that A ≅ A′. �

1.29 Proposition. Let T be a semilocal domain with fraction field L. Suppose that the
natural map Br(T) → Br(L) is injective. Let A and A′ be Azumaya algebras over T . If
AL ≅ A

′
L then A ≅ A′.
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Proof. By Corollary 1.19, A and A′ are free over T and hence,

dimT A = dimLAL = dimLA
′
L = dimT A

′.

Furthermore, since [AL] = [A′L] ∈ Br(L) and Br(T) → Br(L) is injective by assumption,
it follows that [A] = [A′] ∈ Br(T). Proposition 1.28 then yields that A ≅ A′. �

1.30 Proposition. Let T be a domain and denote its fraction field by L. Suppose that
finitely generated, torsion–free T−modules are free. Then the natural map Br(T) →

Br(L) is injective.

Proof. Let A be an Azumaya algebra over T such that AL is split, i.e. there exist a
simple rightAL−module V such thatAL ≅ EndL(V). Note that dimL(V)2 = dimL(AL) =

dimT(A). Let u ∈ V ∖ {0}. Consider the right A−module M = uA. Since V is a simple
right AL−module, it follows that ML = V . Since A is finitely generated as a T−module,
it follows that M is finitely generated as a T−module as well. Since V is free over L, it
follows that M is torsion–free as a T−module. The hypothesis yields that M is then free
as a T−module. We now have a T−algebra homomorphism ϕ ∶ A → EndT(M) defined
by mapping a ∈ A to the T−endomorphism of M given by right multiplication by a. This
induces a L−algebra homomorphism ϕL ∶ AL → EndL(V), which is an L−isomorphism.
It follows that ϕ is injective and hence, ϕ(A) ≅ A. By [4, (3.3)], there is an Azumaya
algebra B over T such that EndT(M) ≅ ϕ(A) ⊗T B. Since dimT A = dimL(V)2 =

dimT(M)2 = dimT(EndT(M)), it follows that B ≅ T , and hence A ≅ EndT(M). This
yields the injectivity. �

1.31 Corollary. Let T be a Bézout domain, and denote its fraction field by L. Then the
natural map Br(T) → Br(L) is injective.

Proof. By Proposition 1.30, all we need to show is that finitely generated, torsion–free
T−modules are free. Since T is a Bézout domain this follows from Proposition 1.9. �

1.32 Remark. If, in Proposition 1.30, one replaces the assumption that finitely gener-
ated, torsion–free T−modules are free, by the weaker assumption that finitely generated,
projective T−modules are free, then the map Br(T) → Br(L) need not be injective any-
more. An illustration of this fact is given in [4, p. 388], taking for T the local domain
R[x, y]/(x2 + y2).

1.33 Corollary. Let T be a semilocal Bézout domain with fraction field L. Let A and
A′ be Azumaya algebras over T × T . If AL×L ≅ A

′
L×L then A ≅ A′.
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Proof. By Proposition 1.18, there exist Azumaya algebras A1,A2,A
′
1,A

′
2 over T such

that A ≅ A1 ×A2 and A′ ≅ A′1 ×A
′
2. Suppose that

(A1)L × (A2)L ≅ (A′1)L × (A′2)L.

Since the simple components are unique up to isomorphism, we may assume without
loss of generality that (A1)L ≅ (A′1)L and (A2)L ≅ (A′2)L. Invoking Proposition 1.29
and Corollary 1.31, it follows that A1 ≅ A

′
1 and A2 ≅ A

′
2, and hence A ≅ A′. �

Corollary 1.33 still holds for a finite number of copies of T . The proof in the case of two
copies goes through completely. We formulate the statement for two copies of T since
we will use the result only in that situation.

1.34 Remarks.

(a) In the sequel, we will only need the isomorphism result from Proposition 1.29
for domains T that have the Wedderburn property and for which the map from
the Brauer group of T to the Brauer group of its fraction field L is injective. The
isomorphism statement can then also be proved differently. For let ∆ and ∆′ be
Azumaya algebras over T without zero divisors, and let n,n′ ∈ N be uniquely
determined such that A ≅ Mn(∆) and A′ ≅ Mn′(∆

′). The hypothesis implies that
[∆L] = [AL] = [A′L] = [∆′L] ∈ Br(L). The injectivity of Br(T) → Br(L) then
yields that [∆] = [∆′] ∈ Br(T), and hence ∆ ≅ ∆′ by the Wedderburn property.
Since AL ≅ A′L, this implies that n = n′ and hence, we get that A ≅ A′. So, by
Proposition 1.26 and Corollary 1.31, if T is a polynomial ring in one variable over
a perfect field, then the statements of Proposition 1.29 and Corollary 1.33 also
hold.

(b) The injectivity of the Brauer group map also holds in the case where T is a regular
domain (see [4, (7.2)]), and hence, the isomorphism result from Proposition 1.29
holds for a regular local ring. It is in general not known whether regular local rings
have the Wedderburn property. By [16, Corollary 1], they do satisfy the weaker
condition that each Azumaya algebra over a regular local ring T is isomorphic to
a matrix algebra over an Azumaya algebra without nontrivial idempotents over T ,
and the latter Azumaya algebra is uniquely determined up to isomorphism.

(c) Apart from the results in [16], there are other (earlier) Wedderburn type results
for Azumaya algebras in the literature. For example, in [3, (3.9)], it is shown that
if T is a Dedekind domain and A an Azumaya algebra over T , then there exists
an Azumaya algebra ∆ over T without zero divisors, and a finitely generated,
projective ∆−module P such that A ≅ End∆(P). However, in general this P need
not be free over ∆, and ∆ need not be unique up to isomorphism.
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1.4 Algebras with involution over fields

In this section we recall some concepts and results for algebras with involution over
fields, the standard reference being [45]. We also extend some notions for central sim-
ple algebras to the semisimple algebras we consider in the context of involutions of the
second kind. In particular, we introduce the notion of a “balanced ideal” in order to
treat involutions of the first and second kind in a more uniform way in arguments here
and later in the thesis. This condition balanced is trivial in the central simple case, but
restricts the set of ideals in the semisimple case.

Throughout this section F is a field and (B, τ) is an F−algebra with involution.

Let V be a finite–dimensional F−vector space. A bilinear form b ∶ V × V → F is called
symmetric if b(x, y) = b(y, x) for all x, y ∈ V , and it is called alternating if b(x, x) = 0
for all x ∈ V . For the concept of adjoint involutions of non–singular symmetric and
alternating bilinear forms, we refer to [45, p.1]. It is also contained in the study of
adjoint involutions of (skew–)hermitian spaces in section 2.2. Suppose that τ is of the
first kind. Then τ is called symplectic if it becomes adjoint to an alternating bilinear form
over any splitting field of B, and orthogonal otherwise. This is called the type of τ.

Discriminant and Clifford algebra

In this section we assume that char(F) ≠ 2. Suppose that τ is orthogonal and deg(B)

is even. Then there is a discriminant disc(τ) associated to τ, and a Clifford algebra
C(B, τ). These generalise the corresponding notions for non–singular quadratic forms
over F. We will recall some basics on quadratic forms in section 6.1. We have that

disc(τ) = (−1)deg(B)/2 NrdB(a)F×2 ∈ F×/F×2,

for every a ∈ B× such that τ(a) = −a. For more details on the discriminant we refer to
[45, §7]. For the definition of the Clifford algebra C(B, τ) we refer to [45, §8]. For the
convenience of the reader we list some properties of the Clifford algebra, which we will
use frequently later on. In [45], they are stated more generally for quadratic pairs, but for
orthogonal involutions (since char(F) ≠ 2), they translate to the versions we give below.

1.35 Proposition. Suppose deg(B) = 2m. Let disc(τ) = δ ∈ F×/F×2. Then the center
Z of C(B, τ) is isomorphic to F[X]/(X2 − δ). If δ ∉ F×2 then Z is a field and C(B, τ)
is a central simple Z−algebra of degree 2m−1. If δ ∈ F×2 then Z ≅ F × F and C(B, τ) =
C+ ×C−, with C+ and C− central simple F−algebras of degree 2m−1.

Proof. See [45, (8.10)]. �
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Let L/F be a separable quadratic extension. Let ϕ be the nontrivial F−automorphism of
L. For any central simple L−algebra C, the conjugate algebra is defined by ϕC = {ϕa ∣

a ∈ C}, with the following operations: ϕa+ϕb = ϕ(a+b), ϕaϕb = ϕ(ab), ϕ(αa) = ϕ(α)ϕa,
for all a,b ∈ C and all α ∈ L. It follows from [18, §8] that ϕC is also a central simple
L−algebra. Let s ∶ ϕC ⊗L C → ϕC ⊗L C be the map defined by s(ϕa⊗ b) = ϕb⊗ a. The
Norm or Corestriction of C is by definition

NL/F(C) = {u ∈ ϕC ⊗L C ∣ s(u) = u}.

It is shown in [45, (3.13)] that NL/F(C) is a central simple F−algebra, and that the
corestriction induces a map NL/F ∶ Br(L) → Br(F).

1.36 Proposition.

(a) Suppose that disc(τ) is trivial and let C(B, τ) = C+ ×C−.

1. Suppose that deg(B) ≡ 0 mod 4. Then [C+] + [C−] = [B] and 2[C+] =

2[C−] = 0 in Br(F).

2. Suppose that deg(B) ≡ 2 mod 4. Then [C+]+[C−] = 0 and 2[C+] = 2[C−] =

[B] in Br(F).

(b) Suppose that disc(τ) = δ ∈ F×/F×2 is nontrivial.

1. Suppose that deg(B) ≡ 0 mod 4. Then NF(
√
δ)/F([C(B, τ)]) = [B] in Br(F)

and 2[C(B, τ)] = 0 in Br(F(
√
δ)).

2. Suppose that deg(B) ≡ 2 mod 4. Then 2[C(B, τ)] = [BF(
√
δ)] in Br(F(

√
δ))

and NF(
√
δ)/F([C(B, τ)]) = 0 in Br(F).

Proof. See [45, (9.12)]. �

In [70], D. Tao obtained the following result concerning the nature of the Clifford algebra
of a tensor product of two algebras of even degree with involution of the same type. Note
that [45, (7.3)] implies that the discriminant of such an involution is trivial. Hence, the
Clifford algebra has two components in that case.

1.37 Theorem (Tao). Let (B1, ρ1) and (B2, ρ2) be F−algebras of even degree with in-
volution of the first kind, and of the same type. Let (B, τ) = (B1, ρ1) ⊗F (B2, ρ2).

(a) Suppose that ρ1 and ρ2 are both orthogonal. Denote by Q the quaternion algebra
(disc(ρ1),disc(ρ2))F . If at least one of deg(B1) and deg(B2) is divisible by 4,
then one of the components of C(B, τ) is Brauer equivalent to B ⊗F Q and the
other one to Q. If deg(B1) ≡ deg(B2) ≡ 2 mod 4, then one of the components of
C(B, τ) is Brauer equivalent to B1 ⊗F Q and the other to B2 ⊗F Q.
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(b) Suppose that ρ1 and ρ2 are both symplectic. If at least one of deg(B1) and deg(B2)

is divisible by 4, then one of the components of C(B, τ) is split, and the other
is Brauer equivalent to B. If deg(B1) ≡ deg(B2) ≡ 2 mod 4, then one of the
components of C(B, τ) is Brauer equivalent to B1 and the other one to B2.

Proof. See [70, (4.12), (4.14), (4.16)]. The result is also stated in [45, p. 150]. �

Balanced ideals

In this section, F is of arbitrary characteristic. We extend the notions of degree and
Schur index of a central simple algebra to B. We denote by deg(B) the square root of
dimF(B)/dimF(Z(B)). If B is simple, we let ind(B) be the usual Schur index of B as
a central simple Z(B)−algebra. If B is not simple then Z(B) ≅ F × F, and Proposition
1.18 yields that there exists a central simple F−algebra E such that B ≅ E × Eop. In that
case, we set ind(B) = ind(E).
Suppose that there exists a central simple F−algebra E such that B ≅ E × Eop. Let I be
a right ideal of B. Then I corresponds to a right ideal I1 × Iop

2 of E × Eop, with I1 a right
ideal of E and I2 a left ideal of E, and we identify I and I1 × Iop

2 under the isomorphism
B ≅ E × Eop.

We call a right ideal I of B balanced if it is free as a module over Z(B). For such an
ideal, dimZ(B)(I) is divisible by deg(B) ind(B), by Proposition 1.38 and [45, pp. 5–6].
We call

rdim(I) =
dimZ(B)(I)

deg(B)

the reduced dimension of I. It is clear that ind(B) ∣ rdim(I) and that rdim(I) ⩽ deg(B).
It extends the notion of reduced dimension for right ideals of central simple algebras
from [45] to cover the semisimple case as well.

1.38 Lemma. Let T be a domain and let M and N be finite–dimensional T−modules.
Then M×N is free as a (T ×T)−module if and only if dimT(M) = dimT(N), and in that
case dimT×T(M × N) = dimT(M) = dimT(N).

Proof. This follows from the fact that (T × T)n ≅ T n × T n as (T × T)−modules for all
n ∈ N, and that T n × T m is not a free (T × T)−module if n ≠ m. �

If B ≅ E × Eop for a central simple F−algebra E, and I is a balanced right ideal of B that
corresponds to the ideal I1 × Iop

2 of E ×Eop, then rdim(I) = dimF I1
deg(E) = rdim(I1) by Lemma

1.38.
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Replacing ‘right’ by ‘left’ in the above, we get analogous results for left ideals of B.

For a right ideal I of B, the left ideal

I0 = { x ∈ B ∣ xI = 0 }

I0 is the annihilator of I. Similarly, for a left ideal J of B, the right ideal

J0 = { x ∈ B ∣ Jx = 0 }

is the annihilator of J.

1.39 Proposition. Let I be a balanced right (resp. left) ideal of B. Then I0 is a balanced
left (resp. right) ideal of B and rdim(I) + rdim(I0) = deg(B).

Proof. If Z(B) is a field this is the statement of [45, (1.14)]. Assume that Z(B) ≅ F × F
and B ≅ E × Eop, for some central simple F−algebra E. Let I be a right ideal of B. The
proof for left ideals is analogous. We identify I with a right ideal I1×Iop

2 of E×Eop, where
I1 is a right ideal of E and I2 is a left ideal of E, under the isomorphism B ≅ E×Eop. One
can check that I0 ≅ I0

1 × (I0
2)

op. Since I is balanced, we have that rdim(I1) = rdim(I2)

and hence, rdim(I0
1) = rdim(I0

2), by the first part of the proof, since I1 and I2 are ideals
of the central simple F−algebra E. So, I0 is also balanced, and the first part of the proof
yields that

rdim(I) + rdim(I0) = rdim(I1) + rdim(I0
1) = deg(E) = deg(B).

�

A right (resp. left) ideal I of B is called isotropic with respect to τ if I ⊂ τ(I)0. We
also use the standard notation I⊥ for τ(I)0. The algebra with involution (B, τ), or τ
itself, is called isotropic if B contains a nonzero isotropic right ideal, and anisotropic
otherwise. Note that τ is isotropic if and only if there is a nonzero element x ∈ B such
that τ(x)x = 0. The algebra with involution (B, τ), or τ itself, is called hyperbolic if
there exists an idempotent x ∈ B such that τ(x) = 1 − x, and is called metabolic if
(B, τ) contains an isotropic balanced right ideal I of reduced dimension deg(B)/2. By
Proposition 1.39, the latter is equivalent to I = I⊥.

1.40 Proposition. Suppose that, if char(F) = 2, τ is not orthogonal. Then (B, τ) is
metabolic if and only if it is hyperbolic.

Proof. See [45, (6.7)]. �

1.41 Proposition. Let I be an isotropic balanced right ideal of (B, τ). Then rdim(I) ⩽
deg(B)/2.
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Proof. If Z(B) is a field this is stated in [45, (6.3)]. Let us consider the case (B, τ) ≅

(E × Eop, swE), with E a central simple F−algebra. We identify I with a right ideal
I1 × Iop

2 of E × Eop, where I1 is a right ideal of E and I2 is a left ideal of E, under the
isomorphism B ≅ E × Eop. Since I is balanced, we have that rdim(I) = rdim(I2) =

rdim(I1) = ` ⋅ ind(E) = ` ⋅ ind(B) for some ` ⩽ deg(B)/ ind(B). Since I is isotropic, it
follows that for any a, c ∈ I1 and any b,d ∈ I2, we have

0 = swE(a,b)(c,d) = (b,a)(c,d) = (bc,a ∗ d),

and hence, I2 ⊂ I0
1 . By Proposition 1.39, we have that

` ⋅ ind(B) + ` ⋅ ind(B) = rdim(I1) + rdim(I2) ⩽ rdim(I1) + rdim(I0
1) = deg(B),

whence the statement. �

1.42 Proposition. Suppose that (B, τ) is degenerate. Then τ is hyperbolic, and for any
` ∈ N such that 0 ⩽ ` ⩽

deg(B)
2 ind(B) , there exists an isotropic balanced right ideal of (B, τ) of

reduced dimension ` ⋅ ind(B).

Proof. We have that (B, τ) ≅ (E ×Eop, swE), for some central simple F−algebra E. The
element (1,0) ∈ E × Eop is idempotent and swE(1,0) = (0,1) = (1,1) − (1,0). Hence,
τ is hyperbolic. Let ` ∈ N such that 0 ⩽ ` ⩽

deg(B)
2 ind(B) . By the characterisation of left and

right ideals of E in [45, (1.12)] (see also Proposition 2.12 for the case of right ideals),
there exists a right ideal I1 of E with rdim(I1) = ` ⋅ ind(B) = ` ⋅ ind(E) ⩽ deg(B)/2 and
a left ideal I2 of E inside I0

1 of the same reduced dimension. Then I1 × Iop
2 is an isotropic

balanced right ideal of E × Eop of reduced dimension ` ⋅ ind(B). �

Using the concept of balanced ideals, we can now give a uniform definition of the con-
cept of the index of an F−algebra with involution. Namely, we define the index of (B, τ)
to be

ind(B, τ) = { rdim(I) ∣ I an isotropic balanced right ideal of (B, τ) }.

This definition coincides with the one given in [45, p. 73]. This is clear if Z(B) is a field
and the degenerate case follows from Proposition 1.42.
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Hermitian and skew–hermitian spaces

We could use up two eternities in
learning all that is to be learned about
our own world and the thousands of
nations that have arisen and flourished
and vanished from it. Mathematics
alone would occupy me eight million
years.

Mark Twain

In this chapter we study hermitian and skew–hermitian spaces over Azumaya algebras
with involution with center a semilocal Bézout domain, and in most cases we assume
that the Azumaya algebra does not have zero divisors. We will see that some state-
ments for (skew–)hermitian spaces over division algebras with involution carry over to
the (skew–)hermitian spaces we study here. For instance, there is a Witt cancellation
result (which follows from a more general Witt cancellation theorem by B. Keller for
semilocal algebras, see [43, (VI.6.7.2)]), and a Witt decomposition result. Furthermore,
any Azumaya algebra with involution with center a semilocal Bézout domain, can be
obtained as the adjoint algebra with involution of some (skew–)hermitian space over
an Azumaya algebra with involution without zero divisors, with the same center. We
will use this correspondence between (skew–)hermitian spaces and algebras with invo-
lution extensively in chapters 4 and 5, in particular the relation between similarity of
(skew–)hermitian spaces and isomorphism of their adjoint algebras with involution (see

51
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section 2.3). We also recall the concept of the anisotropic part of a simple algebra with
involution over a field of characteristic not 2, from [15].
The last sections of this chapter deal with representation theorems, on the one hand for
(skew–)hermitian spaces and on the other hand for Azumaya algebras with involution,
and the relations between them. We first present a representation result in the Noetherian
case, and then consider the non–Noetherian case in sections 2.6 and 2.7.

Throughout this section F denotes a field, and R denotes a domain with fraction field F.

2.1 Preliminaries

Let C be a (not necessarily commutative) ring. Let θ be an involution on C. Let V be
a finitely generated, projective right C−module. A sesquilinear form on V (with respect
to θ) is a bi–additive map h ∶ V × V → C such that for all x, y ∈ V and all α, β ∈ C, we
have that h(xα, yβ) = θ(α)h(x, y)β. Let ε = ±1. Then h is called an ε−hermitian form if
in addition h(y, x) = εθ(h(x, y)) for all x, y ∈ V . We call the pair (V,h) an ε−hermitian
module. Furthermore, h is called hermitian if ε = 1 and skew–hermitian if ε = −1. If
θ = idC then h is a bilinear form.

Let (V,h) be an ε−hermitian module. Let V∗ = HomC(V,C). This is a left C−module.
Define the right C−module θV∗ by θV∗ = {θϕ ∣ ϕ ∈ V∗} with the operations θϕ + θψ =θ

(ϕ + ψ), (θϕ)α =θ(θ(α)ϕ) for all ϕ,ψ ∈ V∗ and all α ∈ C. Then h is called non–singular
if the adjoint transformation

ĥ ∶ V →θV∗ ∶ x↦θϕ, where ϕ(y) = h(x, y) for all y ∈ V ,

is an isomorphism of right C−modules. We call (V,h) an ε−hermitian space if h is
non–singular.
Let ϕ ∶ (C, θ) → (C′, θ′) be a homomorphism of rings with involution, i.e. ϕ is a ring
homomorphism from C to C′ such that θ′ ○ϕ = ϕ○θ. Consider C′ as a left C−module via
ϕ. Let (V,h) be an ε−hermitian module over (C, θ). Then the map hC′ ∶ VC′ × VC′ → C′

defined by

hC′(x⊗ a′, y⊗ b′) = θ′(a′)ϕ(h(x, y))b′ for all x, y ∈ V and all a′,b′ ∈ C′,

is an ε−hermitian form on VC′ with respect to θ′. The ε−hermitian module (VC′ ,hC′) is
called the ε−hermitian module induced from (V,h) by scalar extension from C to C′.

2.1 Notation. Let (C, θ) be an R−algebra with involution and (V,h) an ε−hermitian
module over (C, θ), with ε = ±1. Let R′ be a domain that is also an R−algebra. Consider
the induced involution θR′ on CR′ . Then we denote the ε−hermitian module (VCR′ ,hCR′ )
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by (V,h)R′ . In the sequel, we will in particular consider the case where R′ is the fraction
field of R, or where R′ is the quotient of R by a maximal ideal.

Let h̃ be a sesquilinear form over V with respect to θ. Define a sesquilinear form h̃∗ on
V by h̃∗(x, y) = θ(h̃(y, x)) for all x, y ∈ V . An ε−hermitian form h over V is called even
if there exists a sesquilinear form h̃ over V such that h = h̃ + εh̃∗. We then call (V,h)
an even ε−hermitian module. If 2 ∈ C×, by taking h̃ = 1

2 h, one easily sees that every
ε−hermitian form over V with respect to θ is even.

Suppose that V is free over C and letB = (e1, . . . , en) be a C−basis for V . Then h defines
a matrix Ch = (h(ei, e j)i, j) ∈ Mn(C). The dual basis B# = (e#

1, . . . , e
#
n) is defined by the

property e#
i (e j) = δi j for i, j = 1, . . . ,n. Then (θe#

1, . . . ,
θe#

n) is a C−basis for θV∗. The
matrix of ĥ with respect to the bases (B,B#) is given by εCh. Hence, ĥ is an isomor-
phism if and only Ch is invertible. If h is non–singular, we may consider the elements
θe#

1, . . . ,
θe#

n as elements of V .

Let α1, . . . , αn ∈ C× be elements such that θ(αi) = εαi. Then the matrix diag(α1, . . . , αn)

defines a non–singular ε−hermitian form on Cn with respect to θ. We denote the corre-
sponding ε−hermitian space by ⟨α1, . . . , αn⟩θ.

Let U be a C−submodule of V . The orthogonal complement of U, which is equal to
{x ∈ V ∣ h(x, y) = 0 for all y ∈ U}, is denoted by U⊥. The subspace U is called totally
isotropic if U ⊂ U⊥. The ε−hermitian module (V,h) is called isotropic if it contains
a nonzero totally isotropic subspace U, and anisotropic otherwise. Equivalently, (V,h)
is isotropic if there exists an element 0 ≠ x ∈ V such that h(x, x) = 0. (V,h) is called
metabolic if it contains a direct summand U such that U⊥ = U. There is also a notion
of a hyperbolic ε−hermitian space (see [43, (I.3.5)]). The notions of hyperbolic and
metabolic coincide if 2 ∈ C×, and even in a more general situation, as the following
proposition shows.

2.2 Proposition. If (V,h) is an even ε−hermitian space, then (V,h) is metabolic if and
only if it is hyperbolic.

Proof. See [43, (I.3.7.3)]). �

Let (V,h) and (V ′,h′) be two ε−hermitian modules over (C, θ). They are called iso-
metric, denoted by (V,h) ≃ (V ′,h′), if there is a C−linear bijection ϕ ∶ V → V ′ such
that h(x, y) = h′(ϕ(x), ϕ(y)) for all x, y ∈ V . They are called similar if there exists a ∈ C
such that (V,h) ≃ (V ′,ah′). The orthogonal sum of (V,h) and (V ′,h′) is the ε−hermitian
space (V ⊕V ′,h ⊥ h′), where (h ⊥ h′)(x+ x′, y+ y′) = h(x, y)+ h′(x′, y′), for all x, y ∈ V
and all x′, y′ ∈ V ′. We call (V,h) and (V ′,h′) Witt equivalent if there exist hyperbolic
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ε−hermitian spaces (Ṽ , h̃) and (Ṽ ′, h̃′) over (C, θ) such that (V,h) ⊥ (Ṽ , h̃) ≃ (V ′,h′) ⊥
(Ṽ ′, h̃′), and denote this by (V,h) ∼ (V ′,h′). The set of Witt classes of ε−hermitian
spaces over (C, θ) forms a group for the orthogonal sum, and this group is denoted by
Wε(C, θ).

2.3 Proposition. Let ε = ±1. Let (V,h) be an ε−hermitian space over (C, θ). Let U be
a C−submodule of V that is finitely generated, projective over C. If h∣U is non–singular,
then (V,h) ≃ (U,h∣U) ⊥ (U⊥,h∣U⊥), and (U⊥,h∣U⊥) is also an ε−hermitian space over
(C, θ).

Proof. See [43, (I.6.3.1), (I.3.6.2)]. �

In the rest of this section we work with (skew–)hermitian spaces over Azumaya algebras
with involution without zero divisors.

2.4 Proposition. Assume that R is a semilocal Bézout domain. Let (∆, θ) be an R−algebra
with involution without zero divisors. Let ε = ±1 and let (V,h) be an ε−hermitian space
over (∆, θ). The following hold:

(a) V is free as a ∆−module.

(b) Let (V ′,h′) be another ε−hermitian space over (∆, θ). Assume that (V,h) and
(V ′,h′) are even. Let H be a hyperbolic plane over (∆, θ), i.e. a 2−dimensional
hyperbolic ε−hermitian space over (∆, θ). If (V,h) ⊥ H ≃ (V ′,h′) ⊥ H then
(V,h) ≃ (V ′,h′) (Witt cancellation).

Proof. By Propositions 1.21 and 1.24, ∆ is a left and right Bézout ring. Since V is
finitely generated, projective over ∆, it is torsion–free as a ∆−module, and Proposition
1.9 yields that V is free over ∆.
The isometry (V,h) ⊥ H ≃ (V ′,h′) ⊥ H yields that dim∆(V) = dim∆(V ′). We denote the
center of ∆ by S . By Corollary 1.13, we have that J(∆) = J(S )∆. By Proposition 1.22,
S is semilocal. Let M1, . . . ,Mr be the different maximal ideals of S . Then J(S ) =

M1 ∩ . . . ∩Mr = M1⋯Mr. By [49, (XVI.2.7)] and the Chinese Remainder Theorem,
it follows that

∆/J(∆) ≅ ∆⊗S S /J(S ) ≅
r

∏
i=1

∆⊗S S /Mi.

By Proposition 1.11 (c), ∆i = ∆ ⊗S S /Mi is a central simple S /Mi−algebra for i =
1, . . . , r. Hence, ∆ is semilocal. Let mi = Mi ∩ R. Then S /Mi is either equal to R/mi

or a separable quadratic extension of R/mi. In the first case, let ι be the identity on
S /Mi, and in the second case, let ι be the nontrivial element of Gal((S /Mi)/(R/mi)).
The involution θ on ∆ induces an involution θ ⊗S ι on ∆i. Since h is non–singular, the
induced ε−hermitian modules (V∆i ,h∆i) (i = 1, . . . , r) are nonzero. Since (V,h) and
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(V ′,h′) are even ε−hermitian spaces over (∆, θ), they are in particular unitary spaces
(see [43, Chapter I]). The statement now follows from a general Witt cancellation result
of B. Keller (see [43, (VI.5.7.2)]). �

2.5 Proposition. Assume that R is a semilocal Bézout domain. Let (∆, θ) be an R−algebra
with involution without zero divisors. Let ε = ±1. Then hyperbolic ε−hermitian spaces
over (∆, θ) of the same ∆−dimension are isometric.

Proof. This follows from the definition of a hyperbolic space in [43, (I.3.5)] and the fact
that ε−hermitian spaces over (∆, θ) are free over ∆ by Proposition 2.4 (a). �

2.6 Proposition. Assume that R is a semilocal Bézout domain. Let (∆, θ) be an R−algebra
with involution without zero divisors. Let ε = ±1 and let (V,h) be an ε−hermitian space
over (∆, θ). Then (V,h) is the orthogonal sum of an anisotropic ε−hermitian space over
(∆, θ) and a metabolic ε−hermitian space over (∆, θ). Furthermore, if (V,h) is an even
ε−hermitian space, then this decomposition is unique up to isometry.

Proof. If h is anisotropic there is nothing to prove. Suppose that h is isotropic. Let
0 ≠ x ∈ V be such that h(x, x) = 0. Let (m1, . . . ,mr) be a ∆−basis for V . Then x =

∑r
i=1 mixi, with x1, . . . , xr ∈ ∆. Since ∆ is a left Bézout ring, there exists d ∈ ∆ such

that ∆x1 + . . . + ∆xr = ∆d. It follows that there exist b1, . . . ,br, c1, . . . , cr ∈ ∆ such that
xi = bid and ∑r

i=1 cixi = d. So, we have x = (∑r
i=1 mibi)d. Let y = ∑r

i=1 mibi. Then
0 = h(x, x) = θ(d)h(y, y)d. Since ∆ does not have zero divisors and d ≠ 0, it follows
that h(y, y) = 0. We have that∑r

i=1 cibi = 1. By Proposition 1.7, there exists an invertible
matrix U over ∆ with (b1, . . . ,br) as its first column. Let (n1, . . . ,nr) = (m1, . . . ,mr)U.
Then n1 = y. Since U is invertible, this means that (y,n2, . . . ,nr) is a ∆−basis for V .
It follows that there exists ϕ ∈ Hom∆(V,∆) such that ϕ(y) = 1 (take the element y# of
the dual basis). Since h is non–singular, there exists y′ ∈ V such that 1 = ϕ(y) = h(y′, y).
Consider the right ∆−subspace U = y∆ + y′∆ of V , and note that in fact U = y∆ ⊕ y′∆.
The matrix of h∣U with respect to the basis (y, y′) is given by

(
0 ε

1 h(y′, y′)
) .

This matrix is invertible over ∆. Hence, h∣U is non–singular and isotropic. It is a so–
called metabolic plane. Proposition 2.3 yields that

(V,h) ≃ (U,h∣U) ⊥ (U⊥,h∣U⊥).

Furthermore, by Proposition 2.3, (U⊥,h∣U⊥) is also an ε−hermitian space over (∆, θ) and
hence, U⊥ is free over ∆. If it is anisotropic we are done. If h∣U⊥ is isotropic then we can
repeat the above procedure. Eventually we obtain a decomposition of the desired form.
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Suppose that (V,h) is an even ε−hermitian space. Then all ε−hermitian submodules of
(V,h) are also even by [43, (I.3.1.1)]. Hence, the decomposition obtained above consists
of even spaces. The uniqueness of the decomposition now follows from Propositions
2.2, 2.4 and 2.5. �

2.7 Remark. Note that Proposition 2.6 yields that an ε−hermitian space over (∆, θ) is
isotropic if and only if it contains a “unimodular” isotropic vector.

2.8 Proposition. Assume that R is a semilocal Bézout domain. Let (∆, θ) be an R−algebra
with involution without zero divisors and let ε = ±1. The following hold:

(a) Let (V,h) be an ε−hermitian space over (∆, θ). If (V,h)F is isotropic (resp.
metabolic), then (V,h) is already isotropic (resp. metabolic).

(b) Let (V,h) and (V ′,h′) be even ε−hermitian spaces over (∆, θ) of the same dimen-
sion over ∆. Then (V ′,h′) ⊥ (V,−h) is hyperbolic if and only if (V ′,h′) ≃ (V,h).

(c) Let (V,h) and (V ′,h′) be even ε−hermitian spaces over (∆, θ). If (V,h)F ≃

(V ′,h′)F then (V,h) ≃ (V ′,h′).

Proof. By Propositions 1.21 and 1.24, ∆ is a left and right Bézout ring without zero
divisors. We denote the center of ∆ by S .
Suppose that (V,h)F is isotropic. Let 0 ≠ x ∈ VF be such that hF(x, x) = 0. Then
there exists r ∈ R such that rx ∈ V . Then rx ≠ 0 and h(rx, rx) = 0. Hence, (V,h)
is isotropic. Suppose that (V,h)F is metabolic, but (V,h) non–metabolic. By Proposi-
tion 2.6, we can decompose (V,h) ≃ (V1,h1) ⊥ (V2,h2), with (V1,h1) anisotropic and
(V2,h2) metabolic. Then (V1,h1) remains anisotropic over F by the first part of the
proof. But this means that (V,h)F is not metabolic, a contradiction. This yields (a).

Let (V ′,h′) be an even ε−hermitian space over (∆, θ). If (V ′,h′) ≃ (V,h) then (V ′,h′) ⊥
(V,−h) is metabolic by [43, (I.3.7.8)], and hence hyperbolic by Proposition 2.2, since
both spaces are even. Suppose conversely that (V ′,h′) ⊥ (V,−h) is hyperbolic. Again
invoking [43, (I.3.7.8)] and Proposition 2.2, this implies that there exist hyperbolic
ε−hermitian spaces (V1,h1) and (V ′

1,h
′
1) over (∆, θ) such that

(V,h) ⊥ (V1,h1) ≃ (V ′,h′) ⊥ (V ′
1,h

′
1). (2.1.1)

By assumption, dim∆(V) = dim∆(V ′) and hence, dim∆(V1) = dim∆(V ′
1). By the proof

of Proposition 2.6, (V1,h1) and (V ′
1,h

′
1) are an orthogonal sum of hyperbolic planes,

which are all isometric by Proposition 2.5. By Proposition 2.4, we may then cancel the
hyperbolic parts in (2.1.1) in order to obtain the desired isometry (V,h) ≃ (V ′,h′). This
proves (b). The statement in (c) now follows immediately from (a) and (b) since the
isometry over F implies that dim∆(V) = dim∆(V ′). �
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In the situation of Proposition 2.6, suppose that R is a field. Then ∆ is a division algebra.
The Witt index of (V,h) is defined as the dimension over ∆ of a maximal totally isotropic
subspace of (V,h), and is denoted by iw(h). If (V,h) is even then the Witt index of (V,h)
is equal to half the dimension of the hyperbolic part of (V,h) over ∆ by [66, (7.9.2)].
The latter result is formulated for what W. Scharlau calls “regular quadratic spaces”, but
even ε−hermitian spaces are regular quadratic spaces by [66, (7.3.4)].

2.2 Adjoint involutions

(Skew–)hermitian spaces have a so–called “adjoint algebra with involution”. We show
below that Azumaya algebras with involution with center a semilocal Bézout domain
are up to isomorphism obtained as the adjoint algebra with involution of some (skew–)
hermitian space over an Azumaya algebra with involution without zero divisors.

2.9 Proposition. Assume that R is a semilocal Bézout domain and let (C, θ) an R−algebra
with involution with center a domain. Let ε = ±1 and let (V,h) be an ε−hermitian space
over (C, θ). There exists a unique involution σ on EndC(V) such that σ(a) = θ(a) for
all a ∈ Z(C), and for all x, y ∈ V and all f ∈ EndC(V) we have that

h(x, f (y)) = h(σ( f )(x), y).

We denote this involution by adh. Then (EndC(V), adh) is an R−algebra with involution
with center Z(C), called the adjoint algebra with involution of h, and denoted by Ad(h).
If θ is of the first kind (resp. of the second kind), then adh is of the first kind (resp. of the
second kind).

Proof. We write S = Z(C). Since S is a domain, we have that V is faithful as an
S−module. Furthermore, by Proposition 1.21, S is a semilocal Bézout domain. Let
m be a maximal ideal of S . Then EndC(V)/mEndC(V) ≅ EndC/mC(V/mV) by [43,
(III.5.1.8)]. Since V is a finitely generated, projective C−module and C is of finite di-
mension over S by Corollary 1.19, V is finitely generated and faithful as an S−module,
and hence, V/mV is nonzero. This implies that EndC/mC(V/mV) is a central simple al-
gebra over S /m. The fact that EndC(V) is an Azumaya algebra over Z(C) now follows
from Proposition 1.11 (c). One easily checksσ is an involution of the first or second kind
on EndC(V) and the uniqueness of adh follows from the fact that h is non–singular. �

The converse of Proposition 2.9 also holds.

2.10 Proposition. Assume that R is a semilocal Bézout domain. Let (A, σ) be an
R−algebra with involution with center a domain. The following hold:

(a) Every Azumaya algebra over Z(A) Brauer equivalent to A carries an involution
of the same kind as A.
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(b) There exists an Azumaya algebra ∆ over Z(A) without zero divisors such that for
every involution θ on ∆ of the same kind as σ, there exists an ε−hermitian space
(V,h) over (∆, θ), with ε = ±1, such that (A, σ) ≅Z(∆) Ad(h).

Proof. We denote Z(A) by S and the fraction field of S by K. By Proposition 1.21, S
is a semilocal Bézout domain. Let C be an Azumaya algebra over S Brauer equivalent
to A. If σ is of the first kind, then AF , and hence also CF , is of exponent 2 in Br(K) by
[45, (3.1) (1)]. By Corollary 1.31, this implies that C is of exponent 2 in Br(S ). Suppose
that σ is of the second kind. Then the corestriction of AF is split by [45, (3.1) (2)] and
hence, so is the corestriction of CF . Invoking Corollary 1.31 once more, we obtain that
the corestriction of C is also split. Since S is a semilocal domain, it is connected and [65,
(4.4)] yields that there exists an involution θ on C of the same kind as σ. This proves (a).

Proposition 1.26 yields that there exists an Azumaya algebra ∆ over S without zero
divisors, and a finite–dimensional right ∆−module V such that A ≅ End∆(V) ≅ Mn(∆)

as S−algebras, with n = dim∆(V). In the rest of the proof, we identify A with Mn(∆)

through this isomorphism. By (a), there exists an involution θ on ∆ of the same kind asσ.
Let (e1, . . . , en) be a ∆−basis of V . We define an involution ★ onA by (di j)

★
i j = (θ(di j))

t
i j,

where t denotes the transpose involution. By Proposition 1.23, there exists a ∈ A× with
a★ = ±a if ★ is of the first kind and a★ = a if ★ is of the second kind, and such that
σ = Int(a) ○ ★. We define h★ ∶ V × V → ∆ with respect to the basis (e1, . . . , en) by
h★(x, y) = ∑n

i=1 θ(xi)yi. This is a hermitian form over V with respect to θ, and ★ = adh★ .
Furthermore, since the matrix of h★ is given by the identity matrix, h★ is non–singular.
Now define h ∶ V × V → ∆ by h(x, y) = h★(a−1(x), y). For all x, y ∈ V , we have that

h(y, x) = h★(a−1(y), x) = εθ(h★(x,a−1(y))) = εθ(h★(a−★(x), y))

= ±εθ(h★(u−1(x), y) = ±εθ(h(x, y)),

and it is clear that h(xα, yβ) = θ(α)h(x, y)β for all α, β ∈ C. Hence, h is a hermitian
form over (∆, θ) if a★ = a and a skew–hermitian form if a★ = −a. Furthermore, h is
non–singular since a ∈ A×. So, (V,h) is an ε−hermitian space. We have that

h(σ( f )(x), y) = h★(a−1σ( f )(x), y) = h★( f ★(a−1(x)), y) = h★(a−1(x), f (y))

= h(x, f (y)),

which means that σ = adh. �

In the rest of this section we study the relation between isotropy (resp. metabolicity)
of (skew–)hermitian spaces over central simple algebras with involution, and isotropy
(resp. metabolicity) of their adjoint algebras with involution. These results can be found
in the literature for (skew–)hermitian spaces over division algebras with involution. We
thank J.–P. Tignol and T. Unger for their help with some of the proofs.
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2.11 Lemma. Let K be a field and E a central simple K−algebra.

(a) All simple right (resp. left) E−modules are isomorphic and are projective as an
E−module.

(b) Every finitely generated right (resp. left) E−module is a direct sum of simple
E−modules.

Proof. See [66, (8.1.8)]. �

2.12 Proposition. Let K be a field and E a central simple K−algebra. Let furthermore
V be a finitely generated, projective right E−module. Then EndE(V) is a central simple
K−algebra, and the following hold:

(a) For every right E−subspace W of V , HomE(V,W) is a right ideal of EndE(V).
Conversely, every right ideal of EndE(V) is of the form HomE(V, x(V)), for some
idempotent x ∈ EndE(V).

(b) Let W be any right E−subspace of V . Then

rdim(HomE(V,W)) =
dimK(W)

deg(E)
.

Proof. Let W be any E−subspace of V . Since V is finite–dimensional over K, it follows
that W is finitely generated as an E−module. Let N be a simple right E−module. By
Lemma 2.11, we may identify V with Nr and W with N s, for appropriate r, s ∈ N. We
write D = EndE(N). This is a division algebra with center K by [66, (8.1.3)], which is
Brauer equivalent to E. We have that

EndE(V) ≅ Dr2
and HomE(V,W) ≅ Drs.

This implies that HomE(V,W) ≅ Mr,s(D) and EndE(V) ≅ Mr(D) as K−vector spaces.
In particular, EndE(V) is a central simple K−algebra. By Wedderburn’s theorem, it fol-
lows that there exists t ∈ N such that E ≅ Mt(D) as K−algebras. By [66, (8.1.8)], N ≅ Dt,
and hence, dimK(N) = t dimK(D) =

deg(E)
ind(E) dimK(D) = deg(E) ind(E).

It is clear that HomE(V,W) is a right ideal of EndE(V). Conversely, let I be a right
ideal of EndE(V). By [45, (1.13)], there exists an idempotent x ∈ EndE(V) such that
I = x EndE(V). It is clear that x EndE(V) ⊂ HomE(V, x(V)), and the other inclusion
follows by using that x is idempotent. This proves (a).
We obtain

rdim(HomE(V,W)) =
dimK[HomE(V,W)]

deg(EndE(V))
=

rs dimK(D)

r deg(D)
= s deg(D) = s ind(E),
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and since

s =
dimK(W)

dimK(N)
=

dimK(W)

deg(E) ind(E)
,

this proves (b). �

2.13 Lemma. Let K be a field and E a central simple K−algebra. Let W1 and W2 be
right E−subspaces of V . Suppose that HomE(V,W1) = HomE(V,W2). Then W1 = W2.

Proof. By Lemma 2.11, finitely generated right E−modules are projective. Let v ∈ V be
a nonzero element and consider the exact sequence of right E−modules

0 // vE // V
p // V/vE // 0.

By Lemma 2.11, since V/vE is a finitely generated right E−module, V/vE is projective
as an E−module. This implies that there exists a section s ∶ V/vE → V such that ps =
idV/vE . Then y = idV −sp ∈ EndE(V) is an idempotent such that y(V) = vE. Using this,
it is clear that if HomE(V,W1) = HomE(V,W2), then W1 = W2. �

The next statement can be found in the literature (see [6, (1.3)] and [17, (4.8)]) in the
case of (skew–)hermitian spaces over division algebras with involution.

2.14 Proposition. Let (E, θ) be an F−algebra with involution where E is simple. Let
ε = ±1 and let (V,h) be an ε−hermitian space over (E, θ). The following hold:

(a) Let W be a right E−subspace of V . The right ideal HomE(V,W) of EndE(V) is
isotropic for adh if and only if W is totally isotropic for h.

(b) adh is isotropic (resp. metabolic) if and only if h is isotropic (resp. metabolic).

Proof. By Proposition 2.12, there exists an idempotent x ∈ EndE(V) such that the right
ideal HomE(V,W) = HomE(V, x(V)), and by Lemma 2.13, it follows that x(V) = W.
Furthermore, we have that

HomE(V, x(V))⊥ = HomE(V, x(V)⊥).

An argument is given in [45, (6.2)], where the statement assumes that E is a divi-
sion algebra, whereas the proof does not. Suppose that W is totally isotropic. Then
HomE(V,W) ⊂ HomE(V,W⊥) = HomE(V,W)⊥. Hence, HomE(V,W) is an isotropic
right ideal of EndE(V). Suppose conversely that HomE(V,W) is isotropic. Then we
have that HomE(V,W) ⊂ HomE(V,W)⊥ = HomE(V,W⊥). Since W = x(V), it follows
that x ∈ HomE(V,W⊥), and hence W = x(V) ⊂ W⊥. This proves (a).
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It now follows directly from (a) that adh is isotropic if and only if h is isotropic. So,
suppose that h is metabolic. Then there exists a right E−subspace W of V that is a direct
summand of V , and such that W = W⊥. It follows that Hom(V,W)⊥ = Hom(V,W⊥) =
Hom(V,W), and hence adh is metabolic. Suppose conversely that adh is metabolic. Then
there exists a right ideal I of EndE(V) such that I = I⊥. By Proposition 2.12, there exists
an idempotent x ∈ EndE(V) such that I = HomE(V, x(V)). By the above, it follows that
HomE(V, x(V)) = HomE(V, x(V)⊥), and Lemma 2.12 then yields that x(V) = x(V)⊥.
Since x is idempotent, we have that x(V) is a direct summand of V . This shows that h is
metabolic. �

2.15 Corollary. Let (B, τ) be an F−algebra with involution where B is simple. Let E be
any central simple Z(B)−algebra Brauer equivalent to B, and let θ be an involution on
E of the same kind as τ. Let ε = ±1 and let (V,h) be an ε−hermitian space over (E, θ)
such that (B, τ) ≅F Ad(h). Then

ind(B, τ) = {
dimZ(B)(W)

deg(E)
∣ W is a totally isotropic subspace of (V,h)} .

Proof. Since ind(B, τ) is the set of the reduced dimensions of isotropic right ideals of
(B, τ), the statement follows immediately from Propositions 2.12 and 2.14. �

2.16 Corollary. Let (D, θ) be an F−algebra with involution and assume that D is a
division algebra. Let ε = ±1 and let (V,h) be an ε−hermitian space over (D, θ). Then

ind(Ad(h)) = { j ⋅ ind(D) ∣ 0 ⩽ j ⩽ iw(h)}.

Proof. Let W be a totally isotropic subspace of (V,h). Then

dimK(W) = dimD(W)deg(D)2 = dimD(W) ind(D)2.

Since iw(h) is the D−dimension of a maximal totally isotropic subspace of (V,h), the
statement now follows immediately from Corollary 2.15. It can also be found in [45, p.
73]. �

Let (V,b) be a symmetric bilinear space over F. The Witt index of b is then the largest
integer in ind(Ad(b)). In this respect, we define the Witt index of an F−algebra with
involution (B, τ) as max{i ∈ N ∣ i ∈ ind(B, τ)}, and we denote it by iw(τ).

The following result is now immediate from Corollary 2.16.

2.17 Corollary. Let (D, θ) be an F−algebra with involution and assume that D is a
division algebra. Let ε = ±1 and let (V,h) be an ε−hermitian space over (D, θ). Then
iw(adh) = ind(D)iw(h).
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2.3 Similarity

In this section, we study properties of isomorphic Azumaya algebras with involution
over a semilocal Bézout domain in terms of (skew–)hermitian spaces they are adjoint
to. We also express some of these results in terms of multipliers of involutions. The
latter formulation will be used when we consider the “rational isomorphism implies
isomorphism” problem for Azumaya algebras with involution over a semilocal Bézout
domain in later chapters.

2.18 Proposition. Assume that R is a semilocal Bézout domain. Let (A, σ) be an
R−algebra with involution with center a domain. Let furthermore s ∈ A× be such that
σ(s) = s and let σ′ = Int(s) ○σ. The following are equivalent:

(i) (A, σ) ≅Z(A) (A, σ
′).

(ii) There exist elements u ∈ R× and g ∈ A× such that us = σ(g)g.

Proof. Suppose that (i) holds. Let ϕ ∶ A → A be a Z(A)−automorphism such that
σ′ ○ ϕ = ϕ ○ σ. By Propositions 1.21 and 1.20, there exists an element g ∈ A× such that
ϕ = Int(σ(g)). We get that

Int(σ(g)) ○σ = Int(s) ○σ ○ Int(σ(g)) = Int(sg−1) ○σ.

This implies that Int(σ(g)) = Int(sg−1) and hence there is an element u ∈ Z(A)× such
that σ(g) = usg−1. In other words

us = σ(g)g.

It follows that σ(u)s = σ(s)σ(u) = σ(us) = us. Since s ∈ A×, it follows that u ∈ R.
Since u ∈ Z(A)×, we have that u is in fact an element of R×. This proves (ii). For the
converse, we can just go backwards through the proof of (i)⇒ (ii). �

2.19 Proposition. Assume that R is a semilocal Bézout domain. Let (C, θ) be an R−alge-
bra with involution with center a domain. Let ε = ±1 and let (V,h) be an ε−hermitian
space over (C, θ). Let (A, σ) = Ad(h). Let furthermore s ∈ A× be such thatσ(s) = s and
let σ′ = Int(s)○σ. Define h′ ∶ V ×V → ∆ by h′(x, y) = h(s−1(x), y) for all x, y, ∈ V . Then
(V,h′) is an ε−hermitian space over (C, θ) such that (A, σ′) = Ad(h′). Furthermore, the
following are equivalent:

(i) (A, σ) ≅Z(A) (A, σ
′).

(ii) There exists elements e ∈ R× and g ∈ A× such that es = σ(g)g.

(iii) There exists u ∈ R× such that (V,h′) ≃ (V,uh).
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Moreover, given u ∈ R×, we have that (V,h′) ≃ (V,uh) if and only if there exists g ∈ A×

such that us = σ(g)g.

Proof. The equivalence of (i) and (ii) is given by Proposition 2.18. Suppose that (ii)
holds. Using the equality es = σ(g)g, we get that

h′(x, y) = h(s−1(x), y) = eh(g−1σ(g−1)(x), y) = eh(σ(g−1)(x), σ(g−1)(y)).

This yields that (V,h′) ≃ (V, eh), whence (iii). Suppose conversely that (V,h′) ≃ (V,uh)
for some u ∈ R×. Then there exists a C−linear bijection ϕ ∶ V → V such that h′(x, y) =
uh(ϕ(x), ϕ(y)). Then ϕ ∈ EndC(V)× = A× and it follows that

h(s−1(x), y) = h′(x, y) = h(uσ(ϕ)ϕ(x), y)

for all x, y ∈ V . The non–singularity of h yields that s−1 = uσ(ϕ)ϕ, i.e. us = ϕ−1σ(ϕ−1).�

Proposition 2.19 yields the equivalence between similarity of specific (skew–)hermitian
spaces and isomorphism of their adjoint algebras with involution. This result holds in
fact without constraints on the (skew–)hermitian spaces, as we show below. We start
with a preliminary result.

2.20 Proposition. Assume that R is a semilocal Bézout domain. Let A be an Azumaya
algebra over R or a separable quadratic R−algebra that is a domain. Let σ and σ′ be two
R−linear involutions of the first or second kind onA. Suppose that (A, σ)F ≅F (A, σ′)F .
Then there exists s ∈ A× such that σ(s) = s and σ′ = Int(s) ○σ.

Proof. By Proposition 1.23, there exists an element s ∈ A× such that σ(s) = ±s and
σ′ = Int(s) ○ σ. If char(F) = 2, we have automatically that σ(s) = s. Suppose that
char(F) ≠ 2. Since σF and σ′F are isomorphic, they must be of the same kind and type,
and [45, (2.7) (3)] then yields that σ(s) = σF(s) = s. �

2.21 Proposition. Assume that R is a semilocal Bézout domain. Let (∆, θ) be an R−alge-
bra with involution without zero divisors. Let ε = ±1 and let (V,h) and (V ′,h′) be two
ε−hermitian spaces over (∆, θ). Then there exists u ∈ R× such that (V ′,h′) ≃ (V,uh) if
and only if Ad(h) ≅Z(∆) Ad(h′).

Proof. Suppose first that there exists u ∈ R× and a ∆−linear bijection ϕ ∶ V → V ′ such
that uh(x, y) = h′(ϕ(x), ϕ(y)), for all x, y ∈ V . Then one easily checks that

End∆(V) → End∆(V ′); f ↦ ϕ ○ f ○ ϕ−1

defines a Z(∆)−isomorphism from Ad(h) to Ad(h′).
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Suppose conversely that there exists a Z(∆)−isomorphism β ∶ Ad(h) → Ad(h′). Then
End∆(V) ≅ End∆(V ′) as Z(∆)−algebras, and hence V and V ′ have the same dimension
over ∆. Hence, there is a ∆−linear bijection ψ ∶ V → V ′. Define an ε−hermitian form
h̃ ∶ V ′ × V ′ → ∆ by h̃(ψ(x), ψ(y)) = h(x, y), for all x, y ∈ V . Then (V ′, h̃) ≃ (V,h)
and therefore, Ad(h̃) ≅Z(∆) Ad(h) ≅Z(∆) Ad(h′). Since adh′ and adh̃ are involutions on
End∆(V ′), it follows from Proposition 2.20 that there exists s ∈ End∆(V ′)× such that
adh̃ = Int(s) ○ adh′ and adh′(s) = s. Define an ε−hermitian form h′′ ∶ V ′ × V ′ → ∆ by

h′′(x′, y′) = h′(s−1(x′), y′),

for all x′, y′ ∈ V ′. Then adh′′ = adh̃. Furthermore, we have that v = ĥ′′
−1
○ ̂̃h ∈ End∆(V ′)×

and, by definition of v, h′′(v(x′), y′) = h̃(x′, y′) for all x′, y′ ∈ V ′. It follows that adh′′ =

adh̃ = Int(v−1) ○ adh′′ . Hence, v ∈ Z(∆), and we get h̃ = θ(v)h′′. Since h̃ and h′′ are both
ε−hermitian, it follows that θ(v) = v and hence v ∈ R×. This implies that

(V ′,h′′) ≃ (V ′, v−1h̃) ≃ (V, v−1h).

It follows that Ad(h′′) and Ad(h), and hence Ad(h′′) and Ad(h′) are isomorphic via a
Z(∆)−isomorphism. By Proposition 2.19, this means there exists e ∈ R×,g ∈ End∆(V ′)×

such that
es = adh′(g)g.

For all x′, y′ ∈ V ′, we get that

h′′(x′, y′) = h′(s−1(x′), y′) = eh′(g−1 adh′(g−1)(x′), y′)

= eh′(adh′(g−1)(x′), adh′(g−1)(y′)).

This means that (V ′,h′′) ≃ (V ′, eh′). So, putting everything together, we obtain (V ′,h′) ≃
(V ′, e−1h′′) ≃ (V, e−1v−1h), and e−1v−1 ∈ R×. This yields the statement. �

2.22 Remark. In the case where R is a field, the statement of Proposition 2.21 is shown
in [45, (12.34)].

Let (B, τ) be an F−algebra with involution. An element f ∈ B is called a similitude of
(B, τ) if τ( f ) f ∈ F×. The similitudes of (B, τ) form a group, denoted by Sim(B, τ). If
f ∈ Sim(B, τ) then µ( f ) = σ( f ) f ∈ F× is called a multiplier of (B, τ). The multipliers
of (B, τ) form a subgroup of F×, denoted by G(B, τ).

2.23 Lemma. Let (C, θ) be an F−algebra with involution of any kind with center a
domain. Let ε = ±1 and let (V,h) be an ε−hermitian space over (C, θ). Then

G(Ad(h)) = {a ∈ F× ∣ (V,h) ≃ (V,ah)}.
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Proof. Let a ∈ F×. We have that (V,h) ≃ (V,ah) if and only if there exists a invertible
C−linear map ϕ ∶ V → V such that

h(x, y) = ah(ϕ(x), ϕ(y)) = ah(adh(ϕ)ϕ(x), y), for all x, y ∈ V .

The non–singularity of h implies that this equality holds if and only if adh(ϕ)ϕ = a−1.
Since adh(a)a = a2, this yields the desired equality. �

2.24 Proposition. Let (B, τ) be an F−algebra with involution of any kind.

(a) If (B, τ) is hyperbolic, then G(B, τ) = F×.

(b) Let L/F be a finite field extension. Then

NL/F(G((B, τ)L)) ⊂ G(B, τ).

Proof. If Z(B) is a domain then (a) follows using the characterisation of G(B, τ) in
terms of ε−hermitian spaces from Proposition 2.23 combined with Proposition 2.5. The
statement in (b) then holds by [45, (12.21)]. Suppose that Z(B) is not a domain. By
Proposition 1.18, there exists a central simple F−algebra E such that (B, τ) ≅F (E ×

Eop, swE). Identifying F with {(a,a) ∈ F × F}, it follows that for any a ∈ F×, we have
that swE(a,1)(a,1) = a. In this case, (b) also holds since G(B, τ) = F× by (a). �

Using the language of multipliers, property (ii) in Proposition 2.18 can be replaced by
another (seemingly weaker) property. We will use this version in Chapter 5.

2.25 Corollary. Assume that R is a semilocal Bézout domain and that 2 ∈ R×. Let
(A, σ) be an R−algebra with involution with center a domain. Let furthermore s ∈ A×

be such that σ(s) = s and let σ′ = Int(s) ○σ. The following are equivalent:

(i) (A, σ) ≅Z(A) (A, σ
′).

(ii’) There exist elements e ∈ G((A, σ)F)R× and g ∈ A×F such that es = σF(g)g.

Proof. By Proposition 2.18, it is clear that (i) implies (ii’). Assume that (ii’) holds.
By Proposition 2.10, there exists an R−algebra with involution without zero divisors
(∆, θ), with Z(∆) = Z(A) and θ of the same kind as σ, and an ε−hermitian space
(V,h) over (∆, θ), with ε = ±1, such that (A, σ) ≅Z(A) Ad(h). Identifying (A, σ)

and Ad(h) through this isomorphism, we consider s as element of End∆(V)× and g as
element of End∆F(VF)

×. Then (A, σ′) = Ad(h′), where h′ ∶ V × V → ∆ is defined
by h′(x, y) = h(s−1(x), y) for all x, y ∈ V , by Proposition 2.19. By the same propo-
sition, es = σF(g)g yields that (V,h′)F ≃ (V, eh)F . Write e = ua with u ∈ R× and
a ∈ G((A, σ)F). By Lemma 2.23, we have that (V,h)F ≃ (V,ah)F and hence, it follows
that (V,h′)F ≃ (V,uh)F . Since 2 ∈ R×, (V,uh) is an even ε−hermitian space over (∆, θ).
Proposition 2.8 (c) yields that (V,h′) ≃ (V,uh). This implies (i) by Proposition 2.19. �
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2.4 Anisotropic parts

In this section, we assume that the characteristic of F is different from 2. In [15], the
notions of “Witt equivalence” and “anisotropic part” of simple F−algebras with involu-
tion were defined. The latter can be expressed using the notion of an “orthogonal sum”
of simple F−algebras with involution, defined in [13]. We explain this in this section.

Let (B, τ) be a simple F−algebra with involution. By Proposition 2.10, (B, τ) ≅Z(B)
(End∆(V), adh), with (V,h) an ε−hermitian space over an F−algebra with involution
(D, θ) where D is division, with ε = ±1, and where θ is of the same kind as τ. By
Proposition 2.6, there is a decomposition into ε−hermitian spaces:

(V,h) ≃ (V1,h1) ⊥ (V2,h2)

with (V1,h1) anisotropic and (V2,h2) hyperbolic. Furthermore, this decomposition is
unique up to isometry since char(F) ≠ 2. We call Ad(h1) the anisotropic part of Ad(h).

2.26 Remark. Let K be a field and D a division algebra over K of exponent 2. Then D
carries an involution of the first kind by [45, (3.1) (1)]. Furthermore, D carries orthogonal
and symplectic involutions, if and only if D is non–split (see [45, (2.8)]). Hence, in the
above, if D is non–split, and τ is of the first kind, we can choose θ of the same type as τ,
and hence, we can take ε = 1.

2.27 Lemma. Let (C, θ) be a ring with involution. Let u ∈ C× be such that θ(u) = ε0u,
with ε0 = ±1. Let ε = ±1 and let (V,h) be an ε−hermitian space over (C, θ). Then
(V,uh) is an εε0−hermitian space over (C, Int(u) ○ θ).

Proof. We set θ′ = Int(u) ○ θ. Let x, y ∈ V and a,b ∈ C be arbitrary. We have that

uh(xa, yb) = uθ(a)h(x, y)b = θ′(a)uh(x, y)b and

uh(y, x) = uεθ(h(x, y)) = uεu−1θ′(h(x, y))u = εθ(h(x, y))u

= εθ′(h(x, y))ε0θ
′(u) = εε0θ

′(uh(x, y)).

Since h is non–singular by assumption, and u ∈ C×, it is clear that uh is also non–
singular. �

2.28 Proposition. Let (D, θ) be an F−algebra with involution, and assume that D is di-
vision. Let θ′ be an F−linear involution on D of the same kind as θ. Let ε, ε′ ∈ {+1,−1}.
Let (V,h) be an ε−hermitian space over (D, θ), and (V ′,h′) an ε′−hermitian space
over (D, θ′) such that Ad(h) ≅Z(D) Ad(h′). Then Ad(h) and Ad(h′) have isomorphic
anisotropic parts.
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Proof. Since θ′ and θ are of the same kind, Proposition 1.23 yields that there exists
u ∈ D× such that θ′ = Int(u) ○ θ and θ(u) = ε0u, with ε0 = ±1. By Proposition 2.6, we
can write

(V,h) ≃ (V1,h1) ⊥ (V2,h2) and (V ′,h′) ≃ (V ′
1,h

′
1) ⊥ (V ′

2,h
′
2),

with (V1,h1) and (V ′
1,h

′
1) anisotropic, and (V2,h2) and (V ′

2,h
′
2) hyperbolic. By Lemma

2.27, uh is an εε0−hermitian form over (D, θ′). Furthermore, uh and h define the same
adjoint involution on EndD(V), since u ∈ D×. By [45, (4.2)], we have that ε′ = εε0,
and Ad(uh) ≅Z(D) Ad(h′). Proposition 2.21 yields that there exists λ ∈ F× such
that (V ′,h′) ≃ (V, λuh). Proposition 2.6 yields that (V ′

1,h
′
1) ≃ (V1, λuh1). Hence,

Ad(h′1) ≅Z(D) Ad(h1), which proves the claim. �

Let (B, τ) be a simple F−algebra with involution. Let D be a division algebra over
Z(D) Brauer equivalent to B, and let θ be an F−linear involution on D of the same
kind as τ. Let ε = ±1 and let (V,h) be an ε−hermitian space over (D, θ) such that
(B, τ) ≅Z(D) Ad(h). We define the anisotropic part of (B, τ) to be the anisotropic part
of Ad(h), and we denote it by (B, τ)an. By Proposition 2.28, (B, τ)an is well–defined up
to an isomorphism of simple F−algebras with involution.

Let (B1, τ1) and (B2, τ2) be Brauer equivalent simple F−algebras with involution of the
same kind and type. A simple F−algebra with involution (B, τ) is called an orthogo-
nal sum of (B1, τ1) and (B2, τ2) if there exist idempotents e1, e2 ∈ B with τ(e1) = e1,
τ(e2) = e2, and e1 + e2 = 1, and such that (B1, τ1) ≅ (e1Be1, τ∣e1Be1) and (B2, τ2) ≅

(e2Be2, τ∣e2Be2). In that case, B is Brauer equivalent to B1 and B2, and τ is of the same
kind and type as τ1 and τ2. This notion of orthogonal sum was introduced in [13].

2.29 Proposition. Let (D, θ) an F−algebra with involution and assume that D is a di-
vision algebra. Let ε = ±1 and let (V1,h1) and (V2,h2) be ε−hermitian spaces over
(D, θ). For each λ ∈ F×, the F−algebra with involution (EndD(V1 ⊕ V2), adh1⊥λh2) is an
orthogonal sum of Ad(h1) and Ad(h2).

Proof. See [25, p. 327]. �

In the situation of Proposition 2.29, different values of λmight give rise to non–isomorphic
orthogonal sums. In the case where h2 is hyperbolic, (V2, λh2) ≃ (V2,h2) for all λ ∈ F×

and it follows that Ad(h1 ⊥ λh2) ≅ Ad(h1 ⊥ h2) for all λ ∈ F×. Therefore, if (B1, τ1)

and (B2, τ2) are Brauer equivalent simple F−algebras with involution of the same type,
and one of τ1 and τ2 is hyperbolic, then we can talk about the orthogonal sum of (B1, τ1)

and (B2, τ2), and we denote this by

(B1, τ1) ⊞ (B2, τ2).
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Let (B, τ) be a simple F−algebra with involution. Note that, by Proposition 2.29 and
Proposition 2.14, we get

(B, τ) ≅ (B, τ)an ⊞ (H, µ),

with (H, µ) a hyperbolic simple F−algebra with involution.

Two simple F−algebras with involution (B1, τ1) and (B2, τ2) are said to be Witt equiva-
lent (see [15]) if there exist hyperbolic simple F−algebras with involution (H1, µ1) and
(H2, µ2) such that

(B1, τ1) ⊞ (H1, µ1) ≅ (B2, τ2) ⊞ (H2, µ2).

We denote this by (B1, τ1) ∼ (B2, τ2). In particular, Witt equivalent F−algebras with
involution are Brauer equivalent and the involutions are of the same kind and type.

2.30 Proposition. Let (D, θ) be an F−algebra with involution, and assume that D is
division. Let ε = ±1 and let (V,h) and (V ′,h′) be ε−hermitian spaces over (D, θ). If
(V,h) is Witt equivalent to (V ′,h′) in Wε(D, θ), then Ad(h) is Witt equivalent to Ad(h′).

Proof. By assumption, there exist hyperbolic ε−hermitian spaces (V1,h1) and (V ′
1,h

′
1)

over (D, θ) such that

(V,h) ⊥ (V1,h1) ≃ (V ′,h′) ⊥ (V ′
1,h

′
1).

By Corollary 2.29, it follows that Ad(h) ⊞ Ad(h1) ≅ Ad(h ⊥ h1) ≅ Ad(h′ ⊥ h′1) ≅

Ad(h′) ⊥ Ad(h′1), and furthermore, Ad(h1) and Ad(h′1) are hyperbolic by Proposition
2.14. This proves the statement. �

2.31 Proposition. Witt equivalent simple F−algebras with involution of the same de-
gree are isomorphic.

Proof. Let (B, τ) and (B′, τ′) be Witt equivalent simple F−algebras with involution.
Then B is Brauer equivalent to B′ and τ and τ′ are of the same kind and type. Let D
be an F−algebra with center Z(B) Brauer equivalent to B and B′. By Proposition 2.10,
there exists an involution θ on D of the same kind as τ and ε−hermitian spaces (V,h)
and (V ′,h′) over (D, θ), with ε = ±1, such that (B, τ) ≅Z(D) Ad(h) and (B′, τ′) ≅Z(D)
Ad(h′). Furthermore, by assumption, there exist hyperbolic ε−hermitian spaces (V1,h1)

and (V ′
1,h

′
1) over (D, θ), such that

Ad(h ⊥ h1) ≅Z(D) Ad(h) ⊞Ad(h1) ≅Z(D) Ad(h′) ⊞Ad(h′1) ≅Z(D) Ad(h′ ⊥ h′1).

By Proposition 2.21, it follows that there exists u ∈ F× such that (V ′,h′) ⊥ (V ′
1,h

′
1) ≃

(V,uh) ⊥ (V1,uh1). Since deg(B1) = deg(B2) by assumption, it follows that dimD(V ′
1) =

dimD(V1). Since h1 and h′1 are hyperbolic, it follows from Propositions 2.5 and 2.4 (b)
that (V ′,h′) ≃ (V,uh). This implies that Ad(h′) ≅Z(D) Ad(uh) = Ad(h), which proves
the statement. �
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2.5 Representation theorems

The classical Cassels–Pfister theorem for quadratic forms says the following.

2.32 Theorem (Cassels – Pfister). Assume that char(F) ≠ 2. Let q ∶ V → F be a
quadratic form. Let F[t] be the polynomial ring in one variable and F(t) the rational
function field. If q represents a polynomial over F(t), then it already represents this
polynomial over F[t].

Proof. See [66, (4.3.2)]. �

An analogous representation result for non–singular quadratic forms over valuation rings
was proved independently by M. Kneser (see [10, (4.5)]) and J.-L. Colliot–Thélène (see
[12]).

2.33 Theorem (Kneser, Colliot–Thélène). Let O be a valuation ring of F and assume
that 2 ∈ O×. Let q ∶ V → O be a regular quadratic form. If q represents an element of O
over F, then it already represents this element over O.

In [71], J.–P. Tignol considered an involution analogue of Theorem 2.32. In this chapter
we consider analogues of Theorem 2.33, on the one hand for algebras with involution
and on the other hand for (skew–)hermitian spaces, and the relations between them.

In this section, we assume that R is a semilocal Bézout domain with 2 ∈ R×.

From here on until Proposition 2.38, we fix an R−algebra with involution (∆, θ) without
zero divisors, and an ε−hermitian space (V,h) over (∆, θ), where ε = ±1. Then Z(∆)

is a domain and D = ∆ ⊗R F is a division algebra. A (∆−)lattice in (V,h)F is a finitely
generated, right ∆−submodule of VF containing a D−basis of VF . Lattices in (V,h)F are
torsion–free ∆−modules, and hence free as ∆−modules by Propositions 1.9 and 1.24.

Let L be a lattice in (V,h)F . The dual of L is defined as

L# = {v ∈ VF ∣ hF(v,L) ⊂ ∆}.

L is called integral (with respect to hF) if L ⊂ L# and self–dual or unimodular if L = L#.

2.34 Proposition. Let L be an integral lattice in (V,h)F and denote the restriction of hF

to L by hL. The following are equivalent:

(i) (L,hL) is an ε−hermitian space over (∆, θ).

(ii) L# = L.
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Proof. Let B = ( f1, . . . , fn) be a ∆−basis for L. Then B is a D−basis for VF . Consider
the elements of the dual basis θB# = (θ f #

1 , . . . ,
θ f #

n ) as elements of VF . Suppose that (i)
holds. Then the elements of θB# belong toL. Suppose that hF(v,L) ⊂ ∆ for some v ∈ VF .
We can write v = ∑n

i=1
θ f #

i xi, with x1, . . . , xn ∈ D. Then hF(v, f j) = ∑n
i=1 θF(xi)δi j =

θF(x j) ∈ ∆ and hence v ∈ L. So, L is unimodular.
Suppose that L = L#. Since hF(

θ f #
i , f j) = δi j ∈ ∆ and L is unimodular, we have that θB#

belongs to L. The matrix of ĥL is the matrix of base change from B to θB#, and hence
invertible over ∆. This yields (i). �

2.35 Corollary. V is a unimodular lattice in (V,h)F .

Proof. It is clear that V is an integral lattice in (V,h)F . Since (V,h) is a ε−hermitian
space, the statement follows from Proposition 2.34. �

We refer to [71] for the proofs of the following known facts on lattices.

2.36 Proposition.

(a) Let L be a lattice in (V,h)F . Then L# is a lattice in (V,h)F and L## = L.

(b) Let L1,L2 be lattices in (V,h)F . Then

(L1 + L2)
# = L#

1 ∩ L
#
2 and (L1 ∩ L2)

# = L#
1 + L

#
2.

In particular, the intersection of two lattices in (V,h)F is again a lattice.

(c) Let L1,L2 be lattices in (V,h)F . If L1 ⊂ L2, then L#
2 ⊂ L

#
1.

2.37 Lemma. The self–dual lattices in (V,h)F are exactly the maximal integral lattices
in (V,h)F .

2.38 Proposition. Let L be a unimodular lattice in (V,h)F . Then there is an isometry u
of (V,h)F such that u(V) = L.

Proof. Let hL denote the restriction of hF to L. The ε−hermitian spaces (L,hL) and
(V,h) become isometric over F since they become two representations of the same form.
Proposition 2.8 (c) yields that (L,hL) ≃ (V,h). This means that there is a bijective
∆−linear map u ∶ V → L such that hL(u(x),u(y)) = h(x, y). Extending scalars to F, u
defines an isometry of (V,h)F with itself, with u(V) = L. �

We can now prove a representation theorem for algebras with involution over semilocal
principal ideal domains.



2.5 71

2.39 Theorem. Assume that R is a semilocal principal ideal domain. Let (A, σ) be an
R−algebra with involution with center a domain. Let f ∈ AF be such that σF( f ) f ∈ A.
Then there exists an element u ∈ A×F such that σF(u)u = 1 and u f ∈ A.

Proof. We follow the proof of the main theorem of [71].

A semilocal principal ideal is of course a semilocal Bézout domain, and so we can use
the above results on lattices, in particular Proposition 2.38.
By Proposition 1.26, there exists an R−algebra with involution (∆, θ) without zero divi-
sors and an ε−hermitian space (V,h) over (∆, θ), with ε = ±1 such that (A, σ) ≅R Ad(h).
Let D = ∆ ⊗R F. Then (A, σ)F ≅F (EndD(VF), adhF). Let f ∈ EndD(VF) be such that
σF( f ) f ∈ End∆(V). Then we can write f = d−1 f̃ for some f̃ ∈ End∆(V) and d ∈ R. For
all m,m′ ∈ V , we have that

hF( f (m), f (m′)) = hF(adhF( f ) f (m),m′) ∈ ∆,

since adhF( f ) f (m) ∈ V and V = V#.

Note that f (V) is not necessarily a lattice in (V,h)F . However, f (V)+dV is a lattice and
it is also integral since d f ∈ End∆(V). Since R is a principal ideal domain, every integral
lattice in (V,h)F is contained in a unimodular lattice. This can be seen as follows. Let
L1 ⊂ L2 ⊂ . . . be a chain of integral lattices, we have that Li ⊂ L

#
1, for all i. Since L#

1
is a lattice over ∆, ∆ is finitely generated over R, and R is a Noetherian ring, it follows
that L#

1 is a Noetherian R−module. Since all Li are R−submodules of L#
1 by Proposition

2.36 (c), it follows that the chain L1 ⊂ L2 ⊂ . . . must stop. Hence, any integral lattice in
(V,h)F is contained in a maximal integral lattice.

Let L be a maximal integral lattice in (V,h)F containing f (V) + dV . Then L is uni-
modular by Lemma 2.37. Proposition 2.38 implies that there is an isometry u of (V,h)F

such that u(V) = L. It follows that f (V) ⊂ L = u(V), so u−1 f (V) ⊂ V and hence
u−1 f ∈ End∆(V). Since u is an isometry of (V,h)F , we have that

hF((adhF(u−1)u−1)(x), y) = hF(u−1(x),u−1(y)) = hF(x, y),

for all x, y ∈ VF . Since hF is non–singular, it follows that adhF(u−1)u−1 = 1. This proves
the statement. �

2.40 Corollary. Assume that R is a semilocal principal ideal domain. Let (∆, θ) be
an R−algebra with involution without zero divisors. Let ε = ±1 and let (V,h) be an
ε−hermitian space over (∆, θ). If there exists x ∈ VF such that hF(x, x) ∈ ∆, then there
exists x′ ∈ V such that h(x′, x′) = hF(x, x).
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Proof. Let (e1, . . . , en) be a ∆−basis for V . Let δ = hF(x, x), with x ∈ VF . Consider
the element f ∈ EndD(VF) defined by f (e1) = x and f (ei) = 0, for i = 2, . . . ,n. Since
hF((adh( f ) f )(e j), ei) = hF( f (e j), f (ei)) = 0 for i /= 1 or j /= 1, and

hF((adh( f ) f )(e1), e1) = hF( f (e1), f (e1)) = hF(x, x) ∈ ∆,

it follows that hF((adh( f ) f )(y), y) ∈ ∆ for all y ∈ V . Therefore, (adh( f ) f )(y) ∈ V# = V ,
and hence adh( f ) f ∈ End∆(V).
By Theorem 2.39 there exists an element u ∈ EndD(VF)

× with adhF(u)u = 1 such that
u f ∈ End∆(V). Since adhF(u)u = 1, we have hF(u(y),u(y)) = hF((adh(u)u)(y), y) =
hF(y, y) for all y ∈ VF and therefore in particular

hF(u(x),u(x)) = hF(x, x) = δ.

So, we have found an element z = u(x) = u( f (e1)) ∈ V representing δ. �

When we started looking at these representation questions for algebras with involution,
we were interested in the case where R is a valuation ring. Theorem 2.39 only covers the
case of discrete valuation rings. The fact that those valuation rings, and more generally
semilocal principal ideal domains, are Noetherian, yields directly that an integral lattice
in (V,h)F is contained in a maximal integral, and hence unimodular, lattice. The ques-
tion then naturally arises whether this remains true in the case where R is a nondiscrete
valuation ring. This is the only obstruction in order for the proof of Theorem 2.39 to
go through in the case where R is a general valuation ring. We were not able to give a
positive answer in general, but we did manage to show that any integral lattice in (V,h)F

is contained in a unimodular lattice, in the case where ∆ is not just an Azumaya algebra,
but moreover a valuation ring of a division algebra. Mimicking the proof of Theorem
2.39 then yields the following result.

2.41 Theorem. Let O be a valuation ring with fraction field F. Assume that 2 ∈ O×.
Let (A, σ) be an O−algebra with involution with center a domain. Assume that A is
Brauer equivalent to an Azumaya algebra over Z(A) that is moreover a valuation ring of
a division algebra. Let f ∈ AF be such that σF( f ) f ∈ A. Then there exists u ∈ AF such
that σF(u)u = 1 and u f ∈ A.

From Theorem 2.41, one can then derive a similar statement as in Corollary 2.40, in
the case where R is a valuation ring and ∆ is an Azumaya algebra that is moreover a
valuation ring of a division algebra. We can also prove this statement directly without
passing via adjoint involutions. We do this in section 2.6, where we also apply this result
in order to show that, up to some exceptions, (skew–)hermitian spaces over an Azumaya
algebra with involution that is moreover a valuation ring, have an orthogonal basis.
For the interested reader, we present the (fairly technical) proof of the fact that an integral
lattice in (V,h)F is contained in a unimodular lattice, in the case where ∆ is a valuation
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ring of a division algebra, in section 2.7, as an appendix to this chapter. In the argument,
we use the fact that ∆, being a valuation ring, is an elementary divisor domain by [35],
and some properties of the Dieudonné determinant.
The remaining results in chapter 2 are not used later in the thesis, apart from Proposition
2.42, Lemma 2.44, Proposition 2.46, Proposition 2.47 and Corollary 2.51.

2.6 Noncommutative valuation rings

Let K be a field and let D be a K−division algebra. A valuation ring of D is a subring
Λ of D such that for all x ∈ D, we have that x ∈ Λ or x−1 ∈ Λ, and furthermore, Λ is
invariant under conjugation with elements of D. (In the literature, Λ is sometimes called
an invariant valuation ring of D.) Let Γ be a totally ordered abelian group and let ∞ a
symbol of a set strictly containing Γ, and satisfying γ < ∞ and ∞+∞ =∞+ γ = γ +∞

for all γ ∈ Γ. A map 4 ∶ D → Γ ∪ {∞} is called a valuation on D if 4−1({∞}) = {0},
4(a + b) ⩾ min(4(a),4(b)) and 4(ab) = 4(a) + 4(b), for all a,b ∈ D. We call the pair
(D,4) a valued K−division algebra. The ring OD = {a ∈ D ∣ 4(a) ⩾ 0} is a valuation
ring of D. The valuation ring OD has a unique maximal left (and right) ideal MD, which
is equal to {a ∈ D ∣ 4(a) > 0}. One calls ΓD = 4(D×) the value group of 4 or OD, and
one can show that ΓD ≅ D×/OD

× (see e.g, [75, p. 4]). Given a valuation ring Λ of D,
there exists a valuation on D with valuation ring precisely Λ (see e.g. [75, p. 4]). So,
there is a one-to-one correspondence between valuations on D and valuation rings of D.

For the rest section 2.6, we start from the following set–up. Let O be a valuation ring of
F with 2 ∈ O×. Let 3 be a valuation on F with valuation ringO, and denote the maximal
ideal of O by m.

2.42 Proposition. Let ∆ be an Azumaya algebra without zero divisors with center either
O or a separable quadratic O−algebra. We write S = Z(∆) and denote the fraction field
of S by K. Assume that ∆ is a valuation ring of the division algebra D = ∆⊗O F. Then
S is a valuation ring of K. Let 3S be a valuation on K with valuation ring S . Then the
map

4(x) =
1

deg(D)
3S (NrdD(x)) for all x ∈ D, (2.6.1)

is the unique valuation on D with valuation ring ∆. Furthermore, J(∆) = m∆, and
∆× = ∆ ∖ J(∆).

Proof. Since ∆ is a valuation ring, S is necessarily a valuation ring as well. This means
that 3 extends uniquely to K by Proposition 1.22. The formula for 4 is then stated in [75,
(2.2)]. By Proposition 1.13, it follows that J(∆) = mS ∆, where mS is the maximal ideal
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of S , and the latter is equal to mS by Proposition 1.22 (a). Since ∆ is the valuation ring
of a valuation on D by [75, p. 4], it follows that ∆× = ∆ ∖ J(∆). �

In Lemma 2.43 – Lemma 2.45, we let (∆, θ) be an O−algebra with involution without
zero divisors, and we assume that ∆ is a valuation ring of the division algebra D = ∆⊗OF.
We let S ,K and 4 be as in Proposition 2.42.

2.43 Lemma. The value groups of 4 and 3 are equal.

Proof. Let a ∈ D×. Then there exists a nonzero element r ∈ O such that ra ∈ ∆. Since
∆ is a valuation ring of D, we have that x−1∆x = ∆, for all nonzero x ∈ D. This implies
that (ra)∆ = ∆(ra) and hence, (ra)∆ is a two–sided ideal of ∆. By Proposition 1.12,
we have that (ra)∆ = I∆, with I an ideal of S , and we may assume that I is finitely
generated. Since S is a valuation ring, it follows that I = cS , for some c ∈ S , and
hence (ra)∆ = c∆. It follows that 3(r) + 4(a) = 4(ra) = 3S (c), which implies that
4(a) ∈ 3S (K×) = 3(F×). �

2.44 Lemma. We have that 4 = 4 ○ θF .

Proof. Let x ∈ D. Suppose that θ is of the first kind. We have that NrdD(θF(x)) =

NrdD(x), by [45, (2.2)]. Using the formula (2.6.1) for 4, it is clear that 4(x) = 4(θF(x)).
Suppose that θ is of the second kind. Then [45, (2.16)] says that NrdD(θF(x)) =

ι(NrdD(x)), with ι the nontrivial F−automorphism of K. Then 4 = 4 ○ θF if and only if
3S = 3S ○ ι, which is the case if and only if 3 extends uniquely to K by [21, (3.2.14)], and
the latter is satisfied. �

2.45 Lemma. Let ε = ±1 and let (V,h) be an ε−hermitian space over (∆, θ). Let x ∈ VF

be nonzero.

(a) There exists an element y ∈ V such that hF(x, y) ∈ F and hF(x,V) = hF(x, y)∆.

(b) If θ ≠ id∆ then exists an element y′ ∈ V such that θF(hF(x, y′)) = −hF(x, y′) and
hF(x,V) = hF(x, y′)∆.

Proof. We have that hF(x,V) is a right ∆−module in D. Since V is finitely generated
over ∆, it follows that hF(x,V) is finitely generated over ∆ as well. Since ∆ is a val-
uation ring, it is in particular a right Bézout domain. Hence, there exists z ∈ V such
that hF(x,V) = hF(x, z)∆. By Lemma 2.43, there exists α ∈ F× such that 3(α) =

−4(hF(x, z)). Then αhF(x, z)∆ = ∆, and hence hF(x, z)∆ = α−1∆. It follows that there
exists δ ∈ ∆× such that hF(x, zδ) = hF(x, z)δ = α−1. The element y = zδ then satisfies
hF(x, y) ∈ F and hF(x, y)∆ = hF(x,V).
Suppose that θ ≠ id∆. Then there exists a nonzero element d̃ ∈ D be such that θF(d̃) =
−d̃. Let a ∈ F be such that 3(a) = −4(d̃) and let d = d̃a. Then d ∈ ∆× and θ(d) =

θF(a)θF(d̃) = −ad̃ = −d. Let y′ = yd. Since d ∈ ∆×, it follows that hF(x, y′)∆ =

hF(x, y)d∆ = hF(x, y)∆ = hF(x,V). �
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2.46 Lemma. Let (A, σ) be an O−algebra with involution. For every nonzero x ∈ AF

there exists a ∈ F such that ax ∈ A∖J(A).

Proof. By Proposition 1.13, we have that J(A) = J(S )A. Furthermore, it follows from
Proposition 1.22 that J(S ) = mS . We have that A is free as an O−module by Corollary
1.19. Let (e1, . . . , en) be an O−basis for A. Then it is an F−basis for AF . Let x ∈ AF

be nonzero. There exist x1, . . . , xn ∈ F such that x = ∑n
i=1 eixi. Without loss of generality,

we may assume that 3(x1) = min1⩽i⩽n(3(xi)). It follows that xx−1
1 ∈ A∖mA. �

2.47 Proposition. Let (∆, θ) be anO−algebra with involution and assume that Z(∆) is a
valuation ring. Let ε = ±1 and let (V,h) be an ε−hermitian space over (∆, θ). Excluding
the case θ = id∆ and ε = −1, there exists x ∈ V such that h(x, x) ∈ ∆ ∖ J(∆).

Proof. By Proposition 2.4 (a), V is free as a ∆−module. Let B = (e1, . . . , en) be a
∆−basis for V . If one of h(e1, e1), . . . ,h(en, en) ∈ ∆ ∖ J(∆), then we are done. So,
suppose that h(e1, e1), . . . ,h(en, en) ∈ J(∆). We first show there exists d ∈ ∆ ∖ J(∆)

such that θ(d) = εd. Since the case where θ = id∆ and ε = −1 is excluded, there exists
a nonzero element d̃ ∈ D = ∆ ⊗O F such that θF(d̃) = εd̃. By Lemma 2.46, there
exists a ∈ F such that d = ad̃ ∈ ∆ ∖ J(∆), and we have that θ(d) = aθF(d̃) = εd.
Let C = (h(ei, e j)i j) be the matrix of h with respect to B. Since h is non–singular,
every row and every column of C contains at least one element of ∆×. This means
that each row and column is unimodular. Hence, there exist λ1, . . . , λn ∈ ∆ such that
(dλ1, . . . ,dλn)C is a matrix with the element d in the upper left corner. It follows that
d = ∑n

i=1 dλih(ei, e1) = h(∑n
i=1 eiθ(dλi), e1). Let x = ∑n

i=1 ei(dλi). Then h(x, e1) = d. If
h(x, x) ∈ ∆ ∖ J(∆) then we are done. So, suppose h(x, x) ∈ J(∆). It follows that

h(e1+x, e1+x) = h(e1, e1)+h(x, x)+h(e1, x)+h(x, e1) = h(e1, e1)+h(x, x)+2d ∈ ∆∖J(∆),

since 2 ∈ ∆× and d ∈ ∆ ∖ J(∆). This proves the statement. �

2.48 Corollary. Let O1, . . . ,O` be valuation rings of F and let R = O1 ∩ . . . ∩ O`. As-
sume that 2 ∈ R×. Let (∆, θ) be an R−algebra with involution without zero divisors. For
i = 1, . . . , `, suppose that ∆i = ∆Oi is a valuation ring of (∆i)F . Let ε = ±1 and let (V,h)
be an ε−hermitian space over (∆, θ). Excluding the case θ = id∆ and ε = −1, there exists
an element x ∈ V such that h(x, x) ∈ ∆×.

Proof. For i = 1, . . . , `, we denote the maximal ideal of Oi by Mi. By Proposition 1.11
(a), we have that ∆i is an Azumaya algebra over Oi. We write (Vi,hi) for (V,h)Oi .
Since ∆1, . . . ,∆` are valuation rings, we have that ∆×i = ∆i ∖ J(∆i) for i = 1, . . . , `. By
Proposition 2.47, there exist elements xi ∈ Vi such that hi(xi, xi) ∈ ∆×i . Since the natural
map V → ∏`

i=1 Vi/MiVi is surjective by the Chinese Remainder Theorem, there exists
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x ∈ V such that x − xi ∈ MiVi for i = 1, . . . , `. It follows that for i = 1, . . . , `, h(x, x) =
hi(xi, xi) + h(x− xi, xi) + h(xi, x− xi) + h(x− xi, x− xi). The first term is a unit in ∆i and
each of the other terms is contained in J(∆i) =Mi∆i. Hence, h(x, x) ∈ ∆×1 ∩. . .∩∆×` = ∆×.
This proves the statement. �

2.49 Corollary. Let O1, . . . ,O` be valuation rings of F and let R = O1 ∩ . . . ∩ O`. As-
sume that 2 ∈ R×. Let (∆, θ) be an R−algebra with involution without zero divisors.
For i = 1, . . . , `, suppose that ∆i = ∆Oi is a valuation ring of (∆i)F . For ε = ±1, every
ε−hermitian space over (∆, θ) has an orthogonal basis, excluding the case where θ = id∆

and ε = −1.

Proof. Let (V,h) be an ε−hermitian space over (∆, θ) such that θ ≠ id∆ if ε = −1. By
Corollary 2.48, there exists an element x ∈ V such that h(x, x) ∈ ∆×. Then (x∆,h∣x∆) is
an ε−hermitian space over (∆, θ) and by Proposition 2.3, we have that

(V,h) ≃ (x∆,h∣x∆) ⊥ ((x∆)⊥,h∣(x∆)⊥),

and ((x∆)⊥,h∣(x∆)⊥) is an ε−hermitian space over (∆, θ). The statement now follows by
induction on dim∆(V). �

Using Lemma 2.45, we can prove the following representation theorem for ε−hermitian
spaces over (∆, θ). We mimick M. Kneser’s proof of Theorem 2.33 given in [10, (4.5)].

2.50 Theorem. Let (∆, θ) be an O−algebra with involution without zero divisors, and
assume that ∆ is a valuation ring of the division algebra D = ∆⊗O F. Let ε = ±1 and let
(V,h) be an ε−hermitian space over (∆, θ). If there exists x ∈ VF such that hF(x, x) ∈ ∆,
then there exists x′ ∈ V such that h(x′, x′) = hF(x, x).

Proof. Suppose that θ = id∆ and ε = −1. Then hF(x, x) = 0 for all x ∈ VF and
h(x′, x′) = 0 for all x′ ∈ V . So, in this case the statement trivially holds. From now
on we suppose that ε = 1 if θ = id∆. Let x ∈ VF be such that hF(x, x) ∈ ∆ and suppose
that x ∉ V . We show that there exists an element x′ ∈ V such that h(x′, x′) = hF(x, x).

Let a,b ∈ D with b ≠ 0. We will denote b−1a by a
b .

We define an element ỹ ∈ V as follows. If h is hermitian, then we set ỹ = y ∈ V ,
where y is as in Lemma 2.45 such that hF(x,V) = hF(x, y)∆ and hF(x, y) ∈ F. If h
is skew–hermitian, then we set ỹ = y′ ∈ V , where y′ is as in Lemma 2.45 such that
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hF(x,V) = hF(x, y′)∆ and θF(hF(x, y′)) = −hF(x, y′). We get that

hF(x − ỹ, x − ỹ)
hF(x, ỹ)

=
hF(x, x) − hF(x, ỹ) − hF(ỹ, x) + hF(ỹ, ỹ)

hF(x, ỹ)

=
hF(x, x) − hF(x, ỹ) − εθF(hF(x, ỹ)) + hF(ỹ, ỹ)

hF(x, ỹ)

=
hF(x, x) + hF(ỹ, ỹ)

hF(x, ỹ)
− 2,

by the choice of ỹ. Since x ∉ V = V#, it follows that hF(x, ỹ) ∉ ∆. Since ∆ is a valuation
ring of D, this implies that hF(x, ỹ)−1 ∈ ∆ and hence hF(x, ỹ)−1 ∈ m∆. We have that
hF(x, x) ∈ ∆ by assumption and hF(ỹ, ỹ) ∈ ∆ since ỹ ∈ V . Since 2 ∈ S × ⊂ ∆×, it follows
that

hF(x − ỹ, x − ỹ)
hF(x, ỹ)

∈ ∆×

It follows that hF(x,V) = hF(x, ỹ)∆ = hF(x − ỹ, x − ỹ)∆. Note that hF(x − ỹ, x − ỹ) ∉ ∆.
Hence, hF(x − ỹ, x − ỹ)−1 ∈ ∆, which implies that ∆ ⊂ hF(x − ỹ, x − ỹ)∆.

We consider the hyperplane reflection with respect to x − ỹ.

x′ = x − 2(x − ỹ)
hF(x − ỹ, x)

hF(x − ỹ, x − ỹ)

= x + 2(x − ỹ)
hF(ỹ − x, x)

hF(x − ỹ, x − ỹ)

= x + 2(x − ỹ)
hF(ỹ − x, x) + 1

2 hF(ỹ − x, ỹ − x) − 1
2 hF(ỹ − x, ỹ − x)

hF(x − ỹ, x − ỹ)

= ỹ + (x − ỹ)
hF(ỹ − x, ỹ + x)
hF(x − ỹ, x − ỹ)

= ỹ + (x − ỹ)
hF(ỹ, ỹ) − hF(x, x)

hF(x − ỹ, x − ỹ)
,

by the choice of ỹ. Since reflections are isometries, we have that hF(x′, x′) = hF(x, x).
We show that x′ ∈ V . We have that

hF(x−ỹ,V) = hF(x,V)−hF(ỹ,V) ⊂ hF(x,V)+∆ = hF(x−ỹ, x−ỹ)∆ = θF(hF(x−ỹ, x−ỹ))∆,

since 4 ○ θF = 4 by Lemma 2.44. It follows that

θF(hF(x − ỹ, x − ỹ))−1hF(x − ỹ,V) = hF((x − ỹ)hF(x − ỹ, x − ỹ)−1,V) ⊂ ∆.
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Since hF(ỹ, ỹ),hF(x, x) ∈ ∆ and again invoking Lemma 2.44, it follows that

hF ((x − ỹ)
hF(ỹ, ỹ) − hF(x, x)

hF(x − ỹ, x − ỹ)
,V) ⊂ ∆.

Since hF(ỹ,V) ⊂ ∆, it follows that hF(x′,V) ⊂ ∆. This implies that V + x′∆ is an
integral lattice containing V . Since V is unimodular, it is a maximal integral lattice by
Proposition 2.37, and hence, x′ ∈ V . �

Let (∆, θ) be an O−algebra with involution without zero divisors, and we assume that
∆ is a valuation ring of the division algebra D = ∆ ⊗O F. Using the previous result, we
obtain another proof of Proposition 2.8 (c), using that the cancellation holds for (∆, θ)F ,
the proof of which (see [43, (I.6.3.4)]) is considerably easier than the one of B. Keller’s
cancellation result, which is used to prove Proposition 2.4 (b).

2.51 Corollary. Let (∆, θ) be an O−algebra with involution without zero divisors, and
assume that ∆ is a valuation ring of the division algebra D = ∆ ⊗O F. Let (V,h) and
(V ′,h′) be ε−hermitian spaces over (∆, θ). If θ = id∆, assume that ε = 1. If (V,h)F ≃

(V ′,h′)F then (V,h) ≃ (V ′,h′).

Proof. By Proposition 2.49, we have that h ≃ ⟨α1, . . . , αn⟩θ and h′ ≃ ⟨α′1, . . . , α
′
n⟩θ, for

certain α1, . . . , αn, α
′
1, . . . , α

′
n ∈ ∆×. By assumption, ⟨α1, . . . , αn⟩θF ≃ ⟨α′1, . . . , α

′
n⟩θF .

Hence, there exists x ∈ V ′
F such that h′F(x, x) = α1. By Theorem 2.50, there exists

y ∈ V ′ such that h′(y, y) = h′F(x, x). This implies that there exist β′2, . . . , β
′
n ∈ ∆× such

that h′ ≃ ⟨α1, β
′
2, . . . , β

′
n⟩θ. Since ∆F is a division algebra, the Witt cancellation property

of [43, (I.6.3.4)] yields that

⟨α2, . . . , αn⟩θF ≃ ⟨β′2, . . . , β
′
n⟩θF .

The statement now follows by induction on dim∆(V). �

2.7 Integral lattices and unimodular lattices

In this section, we give the proof of the lattice result announced at the end of section 2.5.
The set–up is the following. LetO be a valuation ring with fraction field F. We denote its
maximal ideal by m. Let (∆, θ) be an O−algebra with involution without zero divisors
and assume that ∆ is a valuation ring of the division algebra D = ∆F . Let 4 be the valua-
tion on D given by (2.6.1) with valuation ring ∆. By Proposition 2.42, J(∆) = m∆. Note
that ∆/J(∆) is a division ring. Let n ∈ N. Then Mn(∆) is an Azumaya algebra over Z(∆),
and Corollary 1.13 yields that J(Mn(∆)) = J(Z(∆))Mn(∆) = mMn(∆) = Mn(m∆), by
Proposition 1.22. In the sequel, we will denote J(Mn(∆)) simply by J.
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Let ε = ±1. We fix an ε−hermitian space (V,h) over (∆, θ).

Proposition. Let L be an integral lattice in (V,h)F . Then L is contained in a unimodular
lattice of (V,h)F .

Before we prove the above proposition, we prove some preliminary results on lattices
and the Dieudonné determinant. We start by recalling the latter concept.

The abelianisation of D× is equal to D×/[D×,D×] and we denote it by D̃×. We adjoin
a zero element 0 with obvious multiplication and call the resulting semi–group D̃. To
every C ∈ Mn(D), one can associate a determinant δ(C) ∈ D̃, called the Dieudonné
determinant. We say that C is non–singular if and only if C ∈ Mn(D)×. The Dieudonné
determinant is defined inductively as follows. If C = (a), then δ(C) = a ∈ D̃. If C is
singular, then δ(C) = 0 ∈ D̃. Suppose that C ∈ Mn(D) is non–singular. Then the row
vectors of C, which we denote by Ri, are left linearly independent. Hence, there exist
λ1, . . . , λn ∈ D such that ∑n

i=1 λiRi = (1,0, . . . ,0). Let i ∈ {1, . . . ,n} such that λi ≠ 0. Let
Ci be the (n − 1) × (n − 1) matrix obtained by sweeping the first column of C and the
i−th row of C. Then δ(C) = (−1)i+1λ−1

i δ(Ci) ∈ D̃. One can show that this definition is
independent of the chosen λi ≠ 0.

2.52 Proposition.

(a) The unit matrix has Dieudonné determinant equal to 1.

(b) If C′ is obtained from C by multiplying a row on the left with an element µ ∈ D,
then δ(C′) = µδ(C). If C′ is obtained from C by multiplying a column on the
right with an element λ ∈ D, then δ(C′) = δ(C)λ.

(c) δ(CC′) = δ(C)δ(C′).

(d) If C′ is obtained from C by multiplying a row (resp. column) on the left (resp.
right) with an element and adding it to another row (resp. column), then δ(C) =

δ(C′).

(e) If C′ is obtained from C by interchanging two rows, then δ(C′) = −δ(C).

Proof. See [2, IV.1]. �

2.53 Proposition. Let C ∈ Mn(D). Then there exist elements d1, . . . ,dn ∈ D with
4(d1) ⩽ . . . ⩽ 4(dn) and P,Q ∈ Mn(∆)× such that PCQ = diag(d1, . . . ,dn). Further-
more, d1, . . . ,dn are uniquely determined up to units in ∆.
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Proof. There exists r ∈ O such that rC ∈ Mn(∆). By [35], ∆ is an elementary divisor
ring. Hence, there exist x1, . . . , xn ∈ ∆ with 4(x1) ⩽ . . . ⩽ 4(xn) and invertible matrices P
and Q over ∆ such that P(rC)Q = diag(x1, . . . , xn). Then PCQ = diag(x1r−1, . . . , xnr−1)

and 4(x1r−1) ⩽ . . . ⩽ 4(xnr−1). It follows from a uniqueness statement for invariant
factors of modules in [35, (9.3)] that the invariant factors x1, . . . , xn are unique up to
units in ∆. Hence, x1r−1, . . . , xnr−1 are also unique up to units in ∆. �

2.54 Remark. In [35], the author mentions how the diagonalisation of rC can be ob-
tained, namely by putting an element of smallest valuation in the upper left corner and
sweeping the other elements of the first row and column, and so on. So, the valuation of
d1 is the minimum of the valuations of the entries of C.

2.55 Proposition. Let C ∈ Mn(∆). Then C ∈ Mn(∆)× if and only if C ∈ Mn(∆)/J is
invertible. Furthermore, we have that δ(C) ∈ ∆/[D×,D×], and δ(C) ∈ ∆×/[D×,D×] if
and only if C ∈ Mn(∆)×.

Proof. Note first of all that indeed [D×,D×] ⊂ ∆ since 4(aba−1b−1) = 4(a) + 4(b) −
4(a) − 4(b) = 0. So, in fact [D×,D×] ⊂ ∆×.

We show that C is invertible in Mn(∆) if and only if C is invertible in Mn(∆)/J. Suppose
that C is invertible over ∆. Then there exists A ∈ Mn(∆) such that CA = AC = In. Then
CA = AC = In and hence C is invertible in Mn(∆)/J. Suppose that C is not invertible
in Mn(∆). Then C Mn(∆) ≠ Mn(∆) and hence C is contained in a proper maximal right
ideal M of Mn(∆). Then M/J ≠ Mn(∆)/J, since if they would be equal, then for any
x ∈ Mn(∆), there would exist a y ∈ M such that x−y ∈ J, but since J is the intersection of
all right maximal ideals of Mn(∆), we have that J ⊂ M and hence x−y ∈ M and therefore
also x ∈ M. Hence, M = Mn(∆), a contradiction. We conclude that C is not invertible in
Mn(∆)/J.

We now show inductively that δ(C) ∈ ∆/[D×,D×]. If C = (a), then δ(C) = a ∈

D/[D×,D×], and since a ∈ ∆, clearly δ(C) ∈ ∆/[D×,D×]. Suppose that the statement
is true for n − 1. We show the statement for n. Since interchanging two rows or two
columns multiplies the Dieudonné determinant by −1 ∈ D̃, and −1 ∈ ∆, we may assume
that the entry of C of smallest valuation is in the top left corner. Using row operations
over ∆, we can make all entries of the first column except the first one equal to 0. Row
operations and interchanging rows or columns are obtained by multiplying C on the left
or right with invertible matrices, so of Dieudonné determinant 1. So, it suffices to show
that the Dieudonné determinant of the modified C is an element of ∆/[D×,D×]. We have
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that

⎛
⎜
⎝

c11 ⋯ c1n

⋮ ⋱ ⋮

0 ⋯ cnn

⎞
⎟
⎠
= diag(c11,1, . . . ,1)

⎛
⎜
⎝

1 ⋯ c−1
11 c1n

⋮ ⋱ ⋮

0 ⋯ cnn

⎞
⎟
⎠
= diag(c11,1, . . . ,1)C′.

Using the formulas above, we get that δ(C) = δ(diag(c11,1, . . . ,1))δ(C′) = c11δ(C′).
Note that C′ is a matrix over ∆, since c11 is an entry of minimal valuation of C. Denote
the (n − 1) × (n − 1) matrix in the lower right corner of C′ by C′′. This is a matrix over
∆ and by induction we have that δ(C′′) ∈ ∆/[D×,D×]. Furthermore, δ(C′) = δ(C′′) and
hence δ(C) = c11δ(C′) ∈ ∆/[D×,D×].

We now show the last equivalence in the statement. Suppose that C ∈ Mn(∆)×. Then
δ(C) ∈ ∆×/[D×,D×]. Conversely, suppose that δ(C) ∈ ∆×/[D×,D×]. Then the calcula-
tions above show that the Dieudonné determinant of C ∈ Mn(∆)/J ≅ Mn(∆/m∆) is the
reduction of δ(C), and hence nonzero. Since ∆/m∆ is a division ring, it follows that C
is invertible, and hence, by the above, we get that C ∈ Mn(∆)×, as desired. �

2.56 Lemma. Let L1 and L2 be two ∆−lattices in (V,h)F . Then there exists a ∆−basis
(e1, . . . , en) for L1 and elements d1, . . . ,dn ∈ D with 4(d1) ⩽ . . . ⩽ 4(dn) such that
(e1d1, . . . , endn) is a ∆−basis for L2.

Proof. Recall that L1 and L2 are free over ∆. Let ( f1, . . . , fn) be a ∆−basis for L1 and
(g1, . . . ,gn) a ∆−basis for L2. Since ( f1, . . . , fn) and (g1, . . . ,gn) are D−bases for VF ,
we can write fi = ∑g ja ji. Let A = (ai j)1⩽i, j⩽n ∈ Mn(D). By Proposition 2.53, there are
invertible matrices P,Q over ∆ such that PAQ is a diagonal matrix diag(d1, . . . ,dn) with
d1, . . . ,dn ∈ D and 4(d1) ⩽ . . . ⩽ 4(dn). We have that ( f1, . . . , fn)Q = ( f ′1, . . . , f ′n) is a
∆−basis for L1 and (g1, . . . ,gn)P−1 = (g′1, . . . ,g

′
n) is a ∆−basis for L2. It follows that

(g′1d1, . . . ,g′ndn) = (g′1, . . . ,g
′
n)PAQ = ( f ′1, . . . , f ′n).

�

2.57 Proposition. Let ε = ±1 and let (V,h) be an ε−hermitian space over (∆, θ). Every
integral lattice of (V,h)F is contained in a unimodular lattice.

Proof. Let L be an integral lattice in (V,h)F . By Lemma 2.56, there exists a ∆−basis
(e1, . . . , en) for V such that (e1d1, . . . , endn) is a ∆−basis for L for certain d1, . . . ,dn ∈ D
such that

4(d1) ⩽ . . . ⩽ 4(dn).

Let C be the matrix of h with respect to (e1, . . . , en) and CL the matrix of hF with respect
to the basis (e1d1, . . . , endn). Since V is unimodular, Propositions 2.34 and 2.55 yield
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that δ(C) ∈ ∆×/[D×,D×], and, furthermore, due to the choice of basis and since L is
integral, we have that

δ(CL) = θF(d1)⋯θF(dn)δ(C)d1⋯dn ∈ ∆/[D×,D×].

It follows that θF(d1)⋯θF(dn)d1⋯dn ∈ ∆. Expressing this using 4 and using Lemma
2.44 yields

4(d1) + . . . + 4(dn) ⩾ 0.

If we have equality, then δ(CL) ∈ ∆×/[D×,D×] and L is unimodular by Propositions
2.34 and 2.55.
So, suppose that 4(d1) + . . . + 4(dn) > 0. It is clear that the di cannot all have negative
valuation. If they all have positive valuation, then L ⊂ V and we are done. So, suppose
that at least one of the di has negative valuation. Then there is an r ∈ {1, . . . ,n − 1} such
that 4(d1), . . . ,4(dr) < 0 and 4(dr+1), . . . ,4(dn) ⩾ 0. By Propositions 2.55 and 2.34,
it suffices to show that L is contained in a lattice whose Dieudonné determinant is in
∆×/[D×,D×].

Step 1
Since δ(C) ∈ ∆×/[D×,D×], Proposition 2.55 yields that every row of C contains at least
one entry that is a unit in ∆. Since θF(di)hi jd j ∈ ∆ for all i, j, by the definition of r, it
follows that 4(h11), . . . ,4(h1r) > 0 and hence that at least one of h1,r+1, . . . ,h1n ∈ ∆×.
Suppose that h1i ∈ ∆× with i < n. Consider the following base change for V: en ↦ e′n =
en + eix with x ∈ ∆ such that 4(h1n + h1ix) = 0, and the following base change for L:
endn ↦ e′n = (en + eix)dn. This is possible since h1i ∈ ∆× and defines a proper base
change for L since dnd−1

i ∈ ∆ by assumption. Then h(e1, e′n) ∈ ∆×. Hence, without loss
of generality we may assume that h1n ∈ ∆×. We then define the following base change
for V: ei ↦ e′i = ei + enxi for i = r + 1, . . . ,n − 1, where the xi ∈ ∆ are chosen such that
4(h(e1, e′i)) = 4(h1i+h1nxi) is large (we can make it as large as we want since h1n ∈ ∆×),
and the base change eidi ↦ e′i = (ei + enxi)di for i = r + 1, . . . ,n − 1 for L. We can make
sure the xi are such that d−1

n xidi ∈ ∆ to make this a proper base change for L. To simplify
notation, we denote e′i again by ei.

Since h1n ∈ ∆×, it follows that d1dn ∈ ∆ and hence

L ⊂ L1 = e1d1∆⊕ . . .⊕ erdr∆⊕ er+1dr+1∆⊕ . . .⊕ end−1
1 ∆.

Since 4(did−1
1 ) ⩾ 0 for i = 1, . . . ,n, L1 is an integral lattice in (V,h)F . If r = 1, then

L1 ⊂ e1d1∆⊕ e2∆⊕ . . .⊕ en−1∆⊕ end−1
1 ∆,

which is an integral lattice, since h12, . . . ,h1,n−1 have large valuation (more specifically,
they can be chosen of valuation larger than −4(d1)). Note that h21, . . .hn−1,1 then also
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have large valuation. Furthermore, e1d1∆⊕ e2∆⊕ . . .⊕ en−1∆⊕ end−1
1 ∆ has determinant

a unit. Hence, it is a unimodular lattice and we are done in this case.

Step 2
Suppose that r > 1. Let C′ be the matrix

C′ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h1n h11 ⋯ h1,n−1
hnn hn1 ⋯ hn,n−1
h2n h21 ⋯ h2,n−1
⋮ ⋮ ⋱ ⋮

hn−1,n hn−1,1 ⋯ hn−1,n−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and let

A =
⎛
⎜
⎝

h22 ⋯ h2,n−1
⋮ ⋱ ⋮

hn−1,2 ⋯ hn−1,n−1

⎞
⎟
⎠
.

We want to show that A ∈ Mn(∆)×. By Proposition 2.55, it suffices to show that A is
invertible in Mn(∆)/J. Note that C′ is obtained from C by permuting rows and columns,
which is achieved by multiplying C on the left and right with invertible matrices. Since
these have determinant a unit, we have that δ(C′) ∈ ∆×/[D×,D×]. Proposition 2.55
yields that C′ is invertible in Mn(∆)/J. Since 4(h11), . . . ,4(h1,n−1),4(h21), . . . ,4(hn−1,1) >

0, we have that

C′ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h1n 0 ⋯ 0
hnn hn1 ⋯ hn,n−1

h2n 0 ⋯ h2,n−1
⋮ ⋮ ⋱ ⋮

hn−1,n 0 ⋯ hn−1,n−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Since h1n,hn1 ∈ ∆×, we have that h1n,hn1 ≠ 0 in ∆/m∆ and hence invertible since ∆/m∆

is a division ring. It follows that

δ(C′) = h1nhn1δ(A) ∈ ∆̃/m∆.

It follows that δ(A) is non–zero in ∆̃/m∆, which means that A is non–singular and hence
invertible in Mn(∆)/J. Proposition 2.55 yields that A ∈ Mn(∆)×.

Let V = e2∆ ⊕ . . . ⊕ en−1∆. Then A is the matrix of the h∣V . Since r > 1, we have
that 4(h22), . . . ,4(h2r) > 0. Hence, we have that one of h2,r+1, . . . ,h2,n−1 ∈ ∆×. By the
same reasoning as before, we may assume that h2,n−1 ∈ ∆× and that the valuation of
h2,r+1, . . . ,h2,n−2 is large. It follows that d2dn−1 ∈ ∆ and hence

L1 ⊂ L2 = e1d1∆⊕ e2d2∆⊕ . . .⊕ erdr∆⊕ er+1dr+1∆⊕ . . .⊕ en−1d−1
2 ∆⊕ end−1

1 ∆.
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Since 4(h1,n−1) is large (larger than −4(d−1
2 d1) is sufficient), this is an integral lattice.

If r = 2, it follows that

L2 ⊂ e1d1∆⊕ e2d2∆⊕ e3∆ . . .⊕ en−2 ⊕ en−1d−1
2 ∆⊕ end−1

1 ∆,

which is an integral lattice since h13, . . . ,h1,n−1,h23, . . . ,h2,n−2 have large enough val-
uation (if they were not large enough before, we can enlarge them again using that
h1n,h2,n−1 ∈ ∆×).

Next steps
We can repeat this procedure, in each step “taking care of” one positive and one negative
coefficient (symmetric with respect to the left and right end of the lattice L). In Step i,
we find that the determinant of ei+1∆⊕ . . .⊕en−i∆ is a unit. Suppose that n−r < r, then in
Step n − r we have that the determinant of en−r+1∆⊕ . . .⊕ er∆ is a unit. By assumption,
en−r+1dn−r+1∆ ⊕ . . . ⊕ erdr∆ is integral. This implies that 4(dn−r+1) + . . . + 4(dr) ⩾ 0,
which contradicts the fact that dn−r+1, . . . ,dr all have negative valuation. Therefore, we
have that r ⩽ n − r. Then we eventually obtain an integral lattice

Lr = e1d1∆⊕. . .⊕erdr∆⊕er+1dr+1∆⊕. . .⊕en−rdn−r∆⊕en−r+1d−1
r ∆ . . .⊕en−1d−1

2 ∆⊕end−1
1 ∆,

which is contained in the unimodular lattice

e1d1∆⊕ . . .⊕ erdr∆⊕ er+1∆⊕ . . .⊕ en−r∆⊕ en−r+1d−1
r ∆ . . .⊕ en−1d−1

2 ∆⊕ end−1
1 ∆.

(Again, the integrality of the lattice follows from the fact that we can make the valuation
of h1,r+1, . . . ,h1,n−1, h2,r+1, . . . ,h2,n−2, . . . ,hr,r+1, . . . ,hr,n−r large enough.) �



3
Varieties associated to algebras with

involution over fields

Let no one ignorant of geometry enter
here.

Plato

In this chapter we collect properties of certain varieties associated to algebras (with invo-
lution) over fields. These varieties have been studied in [52, 53] in relation with algebraic
groups that arise from algebras with involution. We give an overview of Schur index re-
duction formulas for the function fields of these varieties, which were proved in the
aforementioned papers. We use these varieties in order to show the following result. Let
k be a field of characteristic different from 2 and let (B, τ) be a k−algebra with involution
of degree at least 3. Let F/k and L/k be field extensions and λ ∶ F → L∞ a k−place. If
τF is isotropic (resp. hyperbolic), then τL is isotropic (resp. hyperbolic). In fact, we
prove something stronger, namely that ind((B, τ)F) ⊂ ind((B, τ)L). We will come back
to this result in the next chapter, where we give a variety–free argument, which works in
a more general setting.

We first recall the concept of a place from one field to another, and the relation with
valuation rings of fields. Let L be a field and let L∞ = L∪{∞}, with the field operations
of L extended to L∞ by ∞ + x = x + ∞ = ∞ for any x ∈ L, x ⋅ ∞ = ∞ ⋅ x = ∞ for
any 0 ≠ x ∈ L∞, whereas ∞ + ∞,0 ⋅ ∞ and ∞ ⋅ 0 are not defined. Let F be a field.

85
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A place from F to L is a map λ ∶ F → L∞ such that λ(1) = 1, λ(xy) = λ(x)λ(y) and
λ(x + y) = λ(x) + λ(y) for all x, y ∈ F whenever the right hand sides are defined. If
there are places in both directions between F and L, then we say that F and L are place
equivalent. If F and L are both field extensions of a field k, and λ ∶ F → L∞ is a place
such that λ∣k = idk, then we say that λ is a k−place.
Given a place λ ∶ F → L∞, the set Oλ = {x ∈ F ∣ λ(x) ≠ ∞} is a valuation ring of F
with maximal ideal mλ = {x ∈ F ∣ λ(x) = 0}. The place λ identifies the residue field
Oλ /mλ with a subfield of L. Conversely, letO be a valuation ring of F with residue field
κ. Setting λ(a) = a ∈ κ for all a ∈ O and λ(a) = ∞ for all a ∈ F ∖ O, defines a place
λ ∶ F → κ∞. The concepts of places, valuation rings and valuations are equivalent in the
sense that any one of those objects gives rise to the two others.

Let k be a field. By a variety over k, we mean a k−scheme that is separated and of finite
type over k. Projective, geometrically irreducible varieties have several nice properties,
especially with respect to k−places from one field extension of k to another.

3.1 Proposition. Let X be a projective, geometrically irreducible variety over k, and let
k(X) be its function field.

(a) k(X)/k is a regular extension, i.e. k is algebraically closed in k(X) and k(X) is
separably generated over k.

(b) Let M1 and M2 be two field extensions of k such that there exists a k−place λ ∶
M1 → M∞

2 . If X has a rational point over M1, then it also has a rational point over
M2.

(c) Let M/k be a field extension. Then there exists a k−place k(X) → M∞ if and only
if X has an M−rational point.

Proof. See [39, (1.1), (3.1)] for (a) and (b) respectively. Since X has a rational point
over k(X), the necessary condition in (c) follows directly from (b). The converse follows
from the fact that X is projective, and hence complete (i.e. proper over Spec(k)), see [19,
(103.)]. �

We recall from [52, 53] certain twisted flag varieties associated to algebras (with involu-
tion). We introduce these varieties as functors. That is, given an algebra (with involution)
over k, we consider certain functors F from the category of field extensions of k to the
category of sets. In some cases F will be represented by a projective, geometrically
irreducible variety over k, by which we mean that for any field extension M/k, there is a
one-to-one correspondence between the set of M−rational points of that variety and the
set F(M).
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Let M/k be an arbitrary field extension and let i ∈ N. Let B be a central simple k−algebra.
We define a functor SBi(B) as follows. We let

SBi(B)(M) = {I right ideal of BM ∣ rdim(I) = i}.

If i = 1 one usually writes SB(B) instead of SB1(B). It is clear that SBi(B)(M) = ∅ if
i > deg(B).

Let (B, τ) be a k−algebra with involution of degree at least 3. We define functors
IVi(B, τ) associated to (B, τ). For the definition of the functors we distinguish between
three cases: τ is of the first kind, τ is of the second kind and B is simple, τ is of the
second kind and B is not simple.

Assume that τ is of the first kind. We set

IVi(B, τ)(M) = {I right ideal of BM ∣ τM(I)I = 0 and rdim(I) = i}.

Suppose that deg(B) is odd and τ is orthogonal. Then B is split by [45, (2.8)], and hence,
τ is adjoint to a non–singular symmetric non–alternating bilinear form over F by Propo-
sition 2.10. By Proposition 2.14, if char(F) ≠ 2, the functors defined here for (B, τ)
correspond to the ones defined for b in [52].

Suppose that τ is of the second kind and that Z(B) is a field. We let IVi(B, τ)(M) be the
set

{(I, J) ∣ I ⊂ J balanced right ideals of BM, τM(J)I = 0, rdim(I) = i = deg(B)−rdim(J)}.

For (I, J) to belong to IVi(B, τ)(M), we need that J = τM(I)0, since clearly J ⊂ τM(I)0

and rdim(I) + rdim(J) = rdim(I) + rdim(τM(I)0) = rdim(τM(I)) + rdim(τM(I)0) =

deg(B), by Proposition 1.39. It is then clear that a balanced right ideal I of BM of re-
duced dimension i is isotropic if and only if (I, τM(I)0) ∈ IVi(B, τ)(M). If deg(B) is
even and i = deg(B)/2, then J = I by dimension reasons.
Note furthermore that even though B is simple, BM need not be simple!

Suppose that τ is of the second kind and that B ≅ E × Eop, with E a central simple
k−algebra. We set

IVi(B, τ)(M) = SBi(E)(M).

3.2 Remark. Suppose that τ is of the second kind and B is simple. Suppose furthermore
that BM is not simple. Then BM ≅ (B⊗Z(B)M)×(B⊗Z(B)M)op. Let 0 ⩽ i ⩽ deg(B)/2 and
let us compare the functors IVi(B, τ) and IVi(BM, τM). We have that IVi(BM, τM)(M)

and IVi(B, τ)(M) are either both empty, or both non–empty. Namely, let I1 (resp. I2) be



88 Chapter 3

a right (resp. left) ideal of B⊗Z(B) M of reduced dimension i. If (I1 × Iop
2 , I0

2 × (I0
1)

op) ∈

IVi(B, τ)(M) then I1 ∈ IVi(BM, τM)(M). Conversely, if I1 ∈ IVi(BM, τM)(M), then by
the characterisation of left ideals in [45, (1.12)], since i ⩽ deg(B)/2, there exists a left
ideal I′2 ⊂ I0

1 such that rdim(I′2) = i. It follows that (I1×I′ op
2 , I′02 ×(I0

1)
op) ∈ IVi(B, τ)(M).

However, in general this I′2 is not unique, so there is no one-to-one correspondence
between IVi(BM, τM)(M) and IVi(B, τ)(M).

Note that by the reasoning in the previous remark, it follows that in the case where B
is degenerate, that for 1 ⩽ i ⩽ deg(B)/2, BM has an isotropic balanced right ideal of
reduced dimension i if and only if IVi(B, τ)(M) ≠ ∅.

We can summarise the above observations on the relation between the functors IVi(B, τ)
and isotropy of τM as follows:

ind((B, τ)M) = {0} ∪ {i ∈ {1, . . . ,deg(B)/2} ∣ IVi(B, τ)(M) ≠ ∅}.

Note that, by Proposition 1.41, in the nondegenerate case, the sets IVi(B, τ)(M) will be
empty if i > deg(B)/2.

3.3 Proposition.

(a) Let B be a central simple k−algebra. For 1 ⩽ i ⩽ n, SBi(B) is represented by
a smooth, projective, geometrically irreducible k−variety. These are called the
generalised Severi–Brauer varieties associated to B.

(b) Let (B, τ) be a k−algebra with involution of degree at least 3. If

1. τ is symplectic and 1 ⩽ i ⩽ deg(B)/2, or

2. τ is of the second kind, char(k) ≠ 2 and 1 ⩽ i ⩽ deg(B)/2, or

3. τ is orthogonal, char(k) ≠ 2 and i < deg(B)/2,

then the functor IVi(B, τ) is represented by a smooth, projective, geometrically
irreducible k−variety. If deg(B) is even and greater than 2, and τ is orthogonal of
trivial discriminant, then the functor IVdeg B/2(B, τ) is represented by a projective
k−variety having two smooth, projective, geometrically irreducible components.

Proof. See [52, Section 5] and [53, Section 9]. �

3.4 Remarks.
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(a) Let B be a k−quaternion algebra. Then the Severi–Brauer variety SB(B) is a
smooth, projective conic, namely the one associated to the pure part of the reduced
norm of B. Furthermore, let τ be an orthogonal involution on B. The fact that the
functor IV1(B, τ) does not yield a variety of the right type reflects the fact that
the projective quadric associated to a binary quadratic form over k consists of
two points over an algebraic closure of k. So, this quadric is not geometrically
irreducible.

(b) Suppose that char(k) ≠ 2 and let (V,b) be a symmetric bilinear space over k of
dimension at least 3. Then the variety IV1(Ad(b)) corresponds to the projective
quadric defined by b (see [69]).

(c) Let (B, τ) be an F−algebra with orthogonal involution of trivial discriminant. The
fact that IVdeg(B)/2(B, τ) is not irreducible is related to the fact that C(B, τ) is not
simple. Once a labeling of the two simple components of C(B, τ) has been chosen,
one can also label the two irreducible components of IVdeg(B)/2(B, τ) accordingly
(see [52] for the relation between the components of C(B, τ) and IVdeg(B)/2(B, τ)).
So, if we denote the components of C(B, τ) by C+ and C−, we denote the irre-
ducible component of IVdeg(B)/2(B, τ) corresponding to C+ by IV+(B, τ), and the
one corresponding to C− by IV−(B, τ). In the sequel, we will often use a subindex
ε ∈ {+,−} and write IVε(B, τ), with the convention that if ε = + (resp. ε = −) then
−ε = − (resp. −ε = +).

(d) In the situation of Proposition 3.3, there are certain algebraic groups acting on the
varieties SBi and IVi (with i in the right range), and with respect to these groups,
the varieties SBi and IVi are so–called twisted flag varieties over k.

One can also define functors by considering flags of isotropic ideals of specified re-
duced dimensions. When the reduced dimensions are in the right range, one also obtains
twisted flag varieties. These are studied in [52, 53].

3.5 Proposition. Let X be a twisted flag variety over k and let k(X) be its function field.
If X has a k−rational point then k(X)/k is a purely transcendental extension.

Proof. See [39, (3.10)]. �

3.6 Notation. Let (B, τ) be a k−algebra with involution. If i ∈ N is such that IVi(B, τ)
is an integral variety then we denote its function field by ki(τ). If deg(B) is even and
greater than 2, and i = deg(B)/2, then we denote the function field of IV+(B, τ) by k+(τ)
and the function field of IV−(B, τ) by k−(τ). If B is simple then we denote the function
field of SB(B) by k(B).



90 Chapter 3

The generalised Severi–Brauer varieties and the involution varieties have useful proper-
ties.

3.7 Proposition. Let B be a central simple k−algebra.

(a) Let M/k be a field extension and let 1 ⩽ i ⩽ deg(B). The variety SBi(B) has
an M−rational point if and only if ind(BM) ∣ i. In particular, SB(B) has an
M−rational point if and only if BM is split.

(b) Let M1/k and M2/k be field extensions. Let λ ∶ M1 → M∞
2 be a k−place. Then

ind(BM2) ∣ ind(BM1).

Proof. see [45, (1.17)] for (a). For (b), let j = ind(BM1). Then SB j(B) has an M1−rational
point by (a). By Proposition 3.1 (b), SB j(B) then also has an M2−rational point. By (a),
it follows that ind(BM2) ∣ j, proving the statement. �

3.8 Proposition. Let (B, τ) be a k−algebra with involution. Let M/k be a field extension
and let i ∈ N be such that IVi(B, τ)(M) ≠ ∅. Then ind(BM) ∣ i, and for all d ∈ N such
that d ind(BM) ⩽ i, we have that IVd ind(BM)(B, τ)(M) ≠ ∅ as well.

Proof. This follows immediately from Proposition 2.14. �

Given a k−algebra with involution (B, τ), we can use the varieties IVi(B, τ) to study the
isotropy behaviour of (B, τ) under k−places.

3.9 Proposition. Let F/k and L/k be field extensions and λ ∶ F → L∞ a k−place. Let
(B, τ) be a k−algebra with involution of degree at least 3. If τ is orthogonal or of the
second kind, assume that char(k) ≠ 2. Then

ind((B, τ)F) ⊂ ind((B, τ)L).

Proof. If τF is anisotropic then the inclusion of the indices is trivial. So, suppose that τF

is isotropic. Recall that for every field extension M/F, we have that

ind((B, τ)M) = {0} ∪ {i ∈ {1, . . . ,deg(B)/2} ∣ IVi(B, τ)(M) ≠ ∅}.

Suppose first that if deg(B)/2 ∈ ind((B, τ)F), that we are not in the case where τ is
orthogonal and disc(τ) is nontrivial. Then it follows from Proposition 3.1 (b) applied to
IVi(B, τ) or one of its irreducible components, that ind((B, τ)F) ⊂ ind((B, τ)L).

Consider now the case where deg(B)/2 ∈ ind((B, τ)F) and τ is orthogonal of nontrivial
discriminant, say disc(τ) = d ∈ k×/k×2. Then τF is hyperbolic. We have that τk(

√
d)

has trivial discriminant and hence, we can consider the variety IVdeg(B)/2((B, τ)k(
√

d)).
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This variety has two irreducible components, which we denote by Y+ and Y−. Since τF

is hyperbolic, disc(τF) is trivial. Let δ be a square root of d in F. Since δ is algebraic
over k, it follows that δ ∈ Oλ, the valuation ring of F corresponding to λ, and hence
d has a square root in L as well. We fix k−embeddings of k(

√
d) in F (resp. L), that

map
√

d to δ (resp. λ(δ)). With respect to these embeddings, we may consider λ as a
k(

√
d)−place. By Proposition 3.1 (b), it follows that one of Y+ and Y− has a L−rational

point. This means that deg(B)/2 ∈ ind((B, τ)L). This proves the statement. �

3.10 Remark. When we consider surjective k−places whose corresponding valuation
ring is Henselian, the converse of Proposition 3.9 also holds. Let F/k and L/k be field
extensions and let λ ∶ F → L∞ be a k−place. Assume that the valuation ring Oλ of F
corresponding to λ is Henselian, and that λ(Oλ) = L. Let (B, τ) be a k−algebra with
involution. If τ is orthogonal or of the second kind, assume that char(k) ≠ 2. SinceOλ is
Henselian, [9, (2.3.5)] yields that an L−rational point of a smooth k−variety can be lifted
to an F−rational point. Using this, the inclusion ind((B, τ)L) ⊂ ind((B, τ)F) can then
be shown in the same way as the reverse inclusion was shown in the proof of Proposition
3.9.

We will come back to the statement in Proposition 3.9 in chapter 4, where we will show
more generally that, given fields F and L (without restrictions on the characteristic), a
place λ ∶ F → L∞ with associated valuation ring O, and an O−algebra with involution
(A, σ), that ind((A, σ)F) ⊂ ind((A, σ)L). In fact, we will show more precisely how
one passes from an isotropic balanced right ideal of (A, σ)F of a certain reduced dimen-
sion, to an isotropic balanced right ideal of (A, σ)L of the same reduced dimension (see
Theorem 4.9).
In later chapters we will study the behaviour of algebras with involution of the first kind
after passing to the function field of the varieties IVi, if i ∈ N is such that this function
field exists. It will then be important to know how the Schur index of the algebra changes.
In the literature, there are Schur index reduction formulas for the varieties IVi and SB1.
We collect them below.

3.11 Theorem. Suppose that char(k) ≠ 2. Let B be a central simple k−algebra of degree
2n. Let D be a central simple k−algebra. Then

ind(D⊗k k(B)) = min
1⩽ j⩽2n

ind(D⊗k B⊗ j).

Assume that n ⩾ 2. For 1 ⩽ i < n we set di = 32(gcd(i,2n)). Let τ be an involution on B
of the first or second kind. If τ is orthogonal of trivial discriminant, let C(B, τ) = C+×C−.
We define

ri = {
di if n is even or i < n − 1
0 if n is odd and i = n − 1.
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(a) Assume that τ is orthogonal of trivial discriminant. Then

ind(D⊗k ki(τ)) = min(ind(D),2ri ind(D⊗k B),2n−i−1 ind(D⊗k C+),

2n−i−1 ind(D⊗k C−))

ind(D⊗k kε(τ)) = min(ind(D),2d ind(D⊗k B), ind(D⊗k Cε),

2d ind(D⊗k C−ε)),

with ε = {+,−} and d = 32(n).

(b) Assume that τ is orthogonal of nontrivial discriminant, say disc(τ) = e ∈ k×/k×2.
Let L = k(

√
e). If i < n − 1, then

ind(D⊗k ki(τ)) = gcd(ind(D),2di ind(D⊗k B),2n−i ind(D⊗k C(B, τ))).

If i = n − 1, then

ind(D⊗k ki(τ)) = gcd(ind(D),2 ind(D⊗k BL),2di ind(D⊗k B),

2n−i ind(D⊗k C(B, τ))).

(c) Assume that τ is symplectic. Let 1 ⩽ i ⩽ n. Then

ind(D⊗k ki(τ)) = min(ind(D),2di ind(D⊗k B)).

Proof. For the proof of the first three formulas, and the symplectic case, we refer to the
summary at the end of [52]. The proof of the remaining two formulas can be found in
[53, p. 190]. �

3.12 Lemma. Suppose that char(k) ≠ 2. Let (B, τ) be a k−algebra with orthogonal
involution of even degree. Suppose that disc(τ) is trivial. We write C(B, τ) = C+ ×C−.
Let ε ∈ {+,−}. Then Cε splits over kε(τ). If deg(B) ≡ 0 mod 4 and Cε splits over
k−ε(τ), then B or Cε already splits over k. If deg(B) ≡ 2 mod 4 then Cε always splits
over k−ε(τ).

Proof. The formulas of Theorem 3.11 yield

ind(Cε ⊗k kε(τ)) = min(ind(Cε),2d ind(Cε ⊗k B), ind(Cε ⊗k Cε),

2d ind(Cε ⊗k C−ε)),

ind(C−ε ⊗k kε(τ)) = min(ind(C−ε),2d ind(C−ε ⊗k B), ind(C−ε ⊗k Cε),

2d ind(C−ε ⊗k C−ε)).

with d = 32(n). The statement now follows using the properties of C+ and C− in Propo-
sition 1.36. �
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3.13 Corollary. Suppose that char(k) ≠ 2 and let (B, τ) be a k−algebra with orthogonal
involution of even degree. Suppose that τ is hyperbolic. Then disc(τ) is trivial and one
of the simple components of C(B, τ) is split over k.

Proof. That disc(τ) is trivial is stated in [45, (7.3) (6)]. We write C(B, τ) = C+×C−, and
we denote the corresponding irreducible components of IVdeg(B)/2(B, τ) by IV+(B, τ)
and IV−(B, τ). Since τ is hyperbolic, one of IV+(B, τ) and IV−(B, τ) has a k−rational
point, and its function field is then a purely transcendental extension of k by Proposition
3.8. Since C+ (resp. C−) splits over k+(τ) (resp. k−(τ)) by Lemma 3.12, and the
Schur index of an algebra does not change after passing to a finitely generated purely
transcendental extension, it follows that one of C+ and C− already splits over k. In the
case deg(B) ≡ 0 mod 4, another proof of the statement can be found in [45, (8.31)]. �

3.14 Proposition. Assume that char(k) ≠ 2. Let (B, τ) be a k−algebra with orthog-
onal involution of even degree. Assume that τ is hyperbolic. Then disc(τ) is triv-
ial. Let C(B, τ) = C+ × C−, and denote the corresponding irreducible components of
IVdeg(B)/2(B, τ) by IV+(B, τ) and IV−(B, τ). Then the following are equivalent:

(i) B is split over k.

(ii) Both IV+(B, τ) and IV−(B, τ) have a k−rational point.

(iii) C+ and C− are both split over k.

Proof. That disc(τ) is trivial is stated in [45, (7.3) (6)]. Let n be an integer such that
deg(B) = 2n. Assume that B is split. Then (B, τ) ≅ (M2n(k), adϕ), with ϕ a hyper-
bolic symmetric bilinear form of dimension 2n. Let Vn be the variety over k such that
for any field extension L/k, Vn(L) is the set of n−dimensional totally ϕL−isotropic sub-
spaces of L2n. Through the correspondence between subspaces of k2n and right ideals
of M2n(k) (see Proposition 2.12), one obtains that IVn(B, τ) ≅ Vn as varieties. The two
irreducible components of IVn(B, τ) then correspond to the two irreducible components
of Vn, which we denote by V+ and V−. Since ϕ is hyperbolic, at least one of V+ and V−
has a k−rational point. Furthermore, by [52, (5.5)], the action of PSO2n(k) on Vn(k) has
two orbits, and these are exactly V+(k) and V−(k) (see [52, p. 577]). Hence V+(k) and
V−(k) must both be nonempty. This implies that IV+(B, τ) and IV−(B, τ) both have a
k−rational point. Hence, (i) implies (ii).

Assume that (ii) holds. Then we have k−places from k+(τ) to k and from k−(τ) to k.
Lemma 3.12 together with Proposition 3.1 then implies that C+ and C− are both split
over k, so (ii) implies (iii). By Proposition 1.36, we also have that (iii) implies (i), both
in the case deg(B) ≡ 0 mod 4, as in the case deg(B) ≡ 2 mod 4. �





4
Specialisation and good reduction for

involutions

Tout mathématicien digne de ce nom
a ressenti, même si ce n’est que
quelques fois, l’état d’exaltation
lucide dans lequel une pensée succède
à une autre comme par miracle...

André Weil

In this chapter, we study algebras with involution over fields that are obtained by scalar
extension from Azumaya algebras with involution over valuation rings, and we show
how they behave under specialisation, i.e. with respect to a place from one field to
another. In section 4.2, we prove the first main specialisation result on isotropy (see
Theorem 4.9), which generalises Proposition 3.9. In section 4.3, we focus on Henselian
valuation rings. Algebras with involution over such rings are closely related to their
induced structures over the fraction field and residue field of the valuation ring. We il-
lustrate this in Theorem 4.20 by proving a lifting result for isotropy and hyperbolicity of
involutions, strengthening Theorem 4.9. In the second part of section 4.3, we show that
isomorphism of Azumaya algebras with involution over a Henselian valuation ring in
which 2 is a unit, can be detected rationally (Theorem 4.34). This implies that Azumaya
algebras with involution over a general valuation ring that become isomorphic over its
fraction field, are also isomorphic over its residue field, provided that 2 is invertible in
the valuation ring. This allows us to define a notion of good reduction with respect to

95
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places for algebras with involution (section 4.4).
The results for Azumaya algebras with involution over a Henselian valuation ring in sec-
tion 4.3 will be crucial for the isomorphism results in the next chapter.

Throughout this chapter F denotes a field.

4.1 Value functions

In this section, we recall some concepts from the theory of value functions on vector
spaces over valued F−division algebras and algebras over a valued field, developed in
[62, 73]. We also present some new results, which will be used later in this chapter.

Let D be an F−division algebra. Let Γ be a totally ordered abelian group and 4 ∶ D →
Γ ∪ {∞} a valuation on D. For every γ ∈ Γ, let D⩾γ

4 = {a ∈ D ∣ 4(a) ⩾ γ} and
D>γ
4 = {a ∈ D ∣ 4(a) > γ}. We then set

gr4(D) = ⊕γ∈ΓD⩾γ
4 /D>γ

4 .

Then gr4(D) is a graded division ring, i.e. every nonzero homogeneous element of
gr4(D) is invertible.

Let (D,4) be a valued F−division algebra. Let V be a finite–dimensional D−vector
space. A map α ∶ V → Γ ∪ {∞} is called a 4−value function on V if α−1({∞}) = {0},
α(xa) = α(x) + 4(a) and α(x + y) ⩾ min(α(x), α(y)) for all x, y ∈ V and all a ∈ D. For
every γ ∈ Γ we let V⩾γ

α = {x ∈ V ∣ α(x) ⩾ γ} and V>γ
α = {x ∈ V ∣ α(x) > γ}. We then set

grα(V) = ⊕γ∈ΓV⩾γ
α /V>γ

α .

This is a graded gr4(D)−module.

Let 3 be a valuation on F and let B be a finite–dimensional F−algebra. A 3−value func-
tion α on B is called surmultiplicative if α(1) = 0 and α(ab) ⩾ α(a) + α(b) for all
a,b ∈ B. In this case, grα(B) has the structure of a graded gr3(F)−algebra.

For the rest of this section, we fix a valued F−division algebra (D,4), and denote its
valuation ring (resp. its maximal ideal), by OD (resp. MD).

4.1 Example. Let V be a finite–dimensional D−vector space and letB = (b1, . . . ,bn) be
a D−basis for V . Let γ = (γ1, . . . , γn) ∈ Γn. It is an easy verification that the map

4γ,B ∶
n

∑
i=1

bixi ↦ min
1⩽i⩽n

(4(xi) + γi), for x1, . . . , xn ∈ D,
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is a 4−value function on V . If γ = (0, . . . ,0) ∈ Γn then we write 4B for 4γ,B.

A 4−value function α on a finite–dimensional D−vector space V is called a 4−norm if
there exists a D−basis B for V and an element γ ∈ Γn such that α = 4γ,B; the basis B is
then called a splitting basis for α.

4.2 Remark. Note that, if Γ = 4(D×), then any D−basis of V can be scaled by elements
of D such that the basis elements have value zero with respect to a given 4−value func-
tion. In that case, given a 4−norm α on V , there always exists a splitting basis for α
whose elements have value zero.

4.3 Proposition. Let V be a finite–dimensional rightOD−module and let V = V ⊗OD D.
Let B and B′ be different OD −bases for V . Then 4B = 4B′ .

Proof. Since V = V ⊗OD D, any OD−basis of V is a right D−basis of V . It follows that
V⩾0
4B

= V⩾0
4B′ = V . Using the matrix of base change from B to B′ (whose entries lie in

OD), one easily obtains that 4B(x) ⩾ 4B′(x) for all x ∈ V . Interchanging the roles of B
and B′ yields the other inequality. �

4.4 Proposition. Let V be a finite–dimensional D−vector space.

(a) Let W be a nonzero D−subspace of V . Any 4−norm on V restricts to a 4−norm
on W.

(b) LetB = (b1, . . . ,bn) be a D−basis for V . Let b = ∑n
i=1 bixi be a nonzero element of

V . Let j ∈ {1, . . . ,n} be such that 4B(b) = 4(x j) and letB′ be the family obtained
from B by replacing b j by b if 4B(b) = 0, and by bx−1

j if 4B(b) ≠ 0. Then B′ is
also a splitting basis for 4B.

Proof. See [62, (2.5)] for (a) and [62, (2.3) (iii)] for (b). �

4.5 Corollary. Let V be a finite–dimensional D−vector space. Let B = (b1, . . . ,bn) be
a D−basis for V . Let x ∈ V be such that there exists an index i ∈ {1, . . . ,n} such that
x − bi ∈ V⩾0

4B
MD. Let B′ be the family obtained from B by replacing bi by x. Then B′ is

also a splitting basis for 4B.

Proof. We have that 4B(x − bi) > 0. Since B is a splitting basis for 4B, we can write
x − bi = ∑

n
j=1 b jx j, with x1, . . . , xn ∈ MD. It follows that 4B(x) = 0 = 4B(bi(1 + xi)).

Hence, by Proposition 4.4 (b), B′ is a splitting basis for 4B. �

Using value functions we obtain a different proof of Proposition 1.10 in the semilocal
case.



98 Chapter 4

4.6 Proposition. Let T be a semilocal Bézout domain with fraction field F. Let V be a
finite–dimensional T−module and let V = V ⊗T F. Let W be a nonzero F−subspace of
V . Then W ∩ V is free as a T−module and

dimF(W) = dimT(W ∩ V).

Proof. By Proposition 1.3, there exist valuation rings O1, . . . ,O` of F such that T =

O1 ∩ . . .∩O`, and we may assume that they are pairwise incomparable. Let 31, . . . , 3` be
corresponding valuations on F. For i = 1, . . . , `, let Mi be the unique maximal ideal of
Oi andMi = Mi ∩ T . By Proposition 1.4, we have that Oi = TMi for i = 1, . . . , ` and
M1, . . . ,M` are the different maximal ideals of T . Note that, for i = 1, . . . , `, T/Mi is
naturally isomorphic to TMi/MiTMi = Oi /Mi via a modMi ↦

a
1 modMiTMi .

For i = 1, . . . , `, we have that Vi = V Oi ⊂ V . Let B = (e1, . . . , en) be a T−basis for V .
Then B is an Oi −basis for Vi for i = 1, . . . , `. For i = 1, . . . , `, we consider the 3i−norm
αi = (3i)B on V = ViF. We have that V⩾0

αi
= Vi. Let W be a nonzero F−subspace of

V and let W = W ∩ V . By Proposition 4.4 (a), αi∣W is a 3i−norm for i = 1, . . . , `. Let
(di

1, . . . ,d
i
r) be a splitting basis for αi∣W . We prove that there is a common splitting basis

for α1∣W , . . . , α`∣W .

Since M1, . . . ,M` are pairwise different maximal ideals of T , they are pairwise co-
prime. By the Chinese Remainder Theorem, the natural isomorphisms T/Mi → Oi /Mi

for i = 1, . . . , `, and [49, (XVI.2.7)], the T−homomorphism

ϕ ∶ W →WO1 /WM1 × . . . ×WO` /WM`

is surjective. We show that WOi = W⩾0
αi

for i = 1, . . . , `. It is clear that WOi ⊂ W⩾0
αi

.
Conversely, let x ∈ W⩾0

αi
. Then there exists t ∈ T∖Mi such that xt ∈ W . Since 1/t ∈ TMi =

Oi, it follows that x ∈ W Oi. Similarly, one obtainsWMi = W>0
αi

. By the surjectivity of
ϕ, there exist f1, . . . , fr ∈ W such that

ϕ( f j) = (d1
j , . . . ,d

`
j) ∈

`

∏
i=1

W⩾0
αi

/W>0
αi
.

By Corollary 4.5, ( f1, . . . , fr) is a splitting basis for α1∣W , . . . , α`∣W . It follows that

W ⊂ W⩾0
α1
∩ . . . ∩W⩾0

α`
=

⎧⎪⎪
⎨
⎪⎪⎩

r

∑
j=1

f jx j ∣ x1, . . . , x` ∈ O1 ∩ . . . ∩O`

⎫⎪⎪
⎬
⎪⎪⎭

⊂ W ,

since T = O1 ∩ . . . ∩ O`. Hence, W is free over T with ( f1, . . . , fr) as a basis, which
yields the statement. �
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In the previous results we only used value functions on vector spaces. In the last result
of this section we prove the existence of a certain gauge on an algebra with involution
over the fraction field of a valuation ring. We will use this result in section 4.3 when
we consider Azumaya algebras with involution under specialisation with respect to a
Henselian valuation ring.

Suppose that D = F. Then we write 3 = 4,O = OD and m = MD. Let B be a finite–
dimensional F−algebra and α a surmultiplicative 3−norm on B. Then α is said to be
a 3−gauge if grα(B) is graded semisimple, i.e. grα(B) does not contain any nonzero
nilpotent homogeneous two–sided ideals.
Let (B, τ) be an F−algebra with involution. A 3−gauge α on B is called τ−invariant if
α(τ(x)) = α(x) for all x ∈ B.

4.7 Proposition. Let (A, σ) be an O−algebra with involution. Then there exists a
unique σF−invariant 3−gauge α on AF such that (AF)

⩾0
α = A and (AF)

>0
α = mA.

Proof. We denote the residue field of O by κ. We have that Aκ ≅ A/mA and we will
work with the residue algebra in the latter form. By Corollary 1.19, A is free over O.
Let B = (e1, . . . , en) be an O−basis for A. Then B is an F−basis for AF . It is clear
that (AF)

⩾0
3B

= A and (AF)
>0
3B

= mA. Furthermore, any other 3−norm β on AF such
that (AF)

⩾0
β = A and (AF)

>0
β = mA must be equal to 3B. This can be seen as follows.

Let x ∈ AF be a non–zero element. By Proposition 2.46, there exists r ∈ F such that
xr ∈ A∖mA. It follows that β(xr) = 0, and hence, β(x) = −3(r) ∈ 3(F×). So, β has the
same value group as 3, and it follows from Remark 4.2 and Proposition 4.3 that β = 3B.

We show that 3B is a 3−gauge and that it is σF−invariant. Since 1 ∈ A, we have that
3B(1) ⩾ 0 and hence 3B(1) = 0 since A ≠ mA. In order to show that 3B is surmulti-
plicative, by [73, (1.2)], it suffices to show that 3B(eie j) ⩾ 3B(ei) + 3B(e j) = 0 for all
i, j ∈ {1, . . . ,n}. Since A = (AF)

⩾0
3B

is multiplicatively closed, this is clearly satisfied.

We next verify that 3B is σF−invariant. Let i ∈ {1, . . . ,n}. There exist di1, . . . ,din ∈ O

such that σ(ei) = ∑
n
k=1 ekdik. Let (x1, . . . , xn) ∈ Fn be arbitrary. Then for k = 1, . . . ,n we

have that 3(∑n
i=1 xidik) ⩾ min1⩽i⩽n(3(xi)). We have that σF(∑

n
i=1 eixi) = ∑

n
i=1σ(ei)xi =

∑n
k=1 ek(∑

n
i=1 xidik), and hence

3B (σF (
n

∑
i=1

eixi)) = min
1⩽k⩽n

(3(
n

∑
i=1

xidik)) ⩾ min
1⩽i⩽n

(3(xi)) = 3B (
n

∑
i=1

eixi) .

This yields that 3B(x) = 3B(σ2
F(x)) ⩾ 3B(σF(x)) ⩾ 3B(x), for all x ∈ AF . This proves

the σF−invariance of 3B.
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In order to have that 3B is a 3−gauge, all that remains to be shown is that the graded
algebra gr3B(AF) is semisimple. Suppose for the sake of contradiction that gr3B(AF)

contains a nonzero homogeneous two–sided nilpotent ideal I. Let I0 = I ∩ gr3B(AF)0 =

I∩A/mA. For a nonzero x ∈ B, we write x̃ = x+(AF)
>3B(x)
3B . Let a be a nonzero element

of AF such that ã ∈ I. Since 3B has the same value group as 3, there exists u ∈ F such
that 3B(a) = −3(u). Then 3B(au) = 3B(a)+ 3(u) = 0 and since I is an ideal of gr3B(AF),
we have that ãũ ∈ I. Furthermore, since 3B(au) = 3B(a) + 3B(u), we have that ãũ = ãu.
Since ãu ≠ 0, this implies that I0 ≠ 0. We have that I0 is a proper nilpotent two–sided
ideal of the semisimple algebra A/mA, we get a contradiction. �

4.2 Specialisation and the index

In this section we fix a field L and a place λ ∶ F → L∞. Let O be the valuation ring
corresponding to λ. Let (V,b) be a non–singular symmetric bilinear space over O. If
2 ∈ O× (i.e. char(L) ≠ 2) then the result in [66, (4.6.2)] says that if (V,b)F is isotropic,
then (V,b) is isotropic, and hence, (V,b)L is also isotropic. We present an involution
analogue of the result that isotropy is preserved under λ, without restrictions on char(L).

Let (A, σ) be anO−algebra with involution. By Proposition 1.16 we have that (A, σ)F

is an F−algebra with involution and (A, σ)L is an L−algebra with involution. We show
below that balanced ideals of (A, σ)F specialise in an appropriate way under λ. In
the proof we apply the general results for modules from section 4.1 to right ideals in
(A, σ)F .

4.8 Theorem. LetA be an Azumaya algebra with center eitherO or a separable quadratic
O−algebra. Then deg(AF) = deg(AL). Let I be a balanced right ideal of AF . Then
I ∩A is free as a Z(A)−module and (I ∩A) ⊗O L is a balanced right ideal of AL of the
same reduced dimension as I.

Proof. Since A is free as an O−module by Corollary 1.19, we have that dimF(AF) =

dimO(A) = dimL(AL). This clearly implies that deg(AF) = deg(AL).

Let I be a balanced right ideal of AF . If I = 0, then there is nothing to prove. So,
in the rest of the proof, we may assume I ≠ 0. We write S = Z(A). It is clear that
(I ∩A) ⊗O L is a right ideal of AL. Suppose first that Z(AF) = S ⊗O F is a field. Then
S is a domain and it is the integral closure of O in Z(AF), by Proposition 1.14 (b), and
by Proposition 1.22, S is either a valuation ring or the intersection of two valuation rings
of Z(AF). Furthermore, A is free as an S−module by Corollary 1.19. We have that
A⊗S Z(AF) ≅ A⊗OF as Z(AF)−modules. Since I is a Z(AF)−subspace of AF , we
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can apply Proposition 4.6 to obtain that I ∩A is free as an S−module and

dimS (I ∩A) = dimZ(AF)(I).

Assume that Z(AF) is not a field. By Proposition 1.18, there exists an Azumaya algebra
B over O such that A ≅ B × Bop. Then B is free as an O−module by Corollary 1.19.
We have that AF ≅ (B ⊗O F) × (B ⊗O F)op. Under this isomorphism, I corresponds
to a right ideal I1 × Iop

2 of (B ⊗O F) × (B ⊗O F)op, where I1 is a right ideal of B ⊗O F
and I2 a left ideal of B ⊗O F, and we identify I with I1 × Iop

2 under this isomorphism.
Then I ∩ A = (I1 ∩ B) × (I2 ∩ B)

op. Since I is balanced, Lemma 1.38 yields that
dimF I1 = dimF I2. By Proposition 4.6, we have that I1 ∩ B and I2 ∩ B are free as
O−modules and

dimO(I1 ∩ B) = dimF I1 = dimF I2 = dimO(I2 ∩ B).

Applying Lemma 1.38 to T = O yields that I∩A is a free S−module and dimS (I∩A) =

dimZ(AF)(I).

We have the following isomorphisms of Z(AL)−modules:

(I ∩A) ⊗S Z(AL) ≅ ((I ∩A) ⊗S S ) ⊗O L ≅ (I ∩A) ⊗O L.

Since I∩A is free as an S−module, it follows that (I∩A)⊗OL is free as a Z(AL)−module.
In other words, (I ∩A) ⊗O L is a balanced right ideal of AL.
It remains to verify the claim about the reduced dimensions. It follows from the above
that

dimZ(AF) I = dimS (I ∩A) = dimZ(AL)[(I ∩A) ⊗O L]

Dividing each term by deg(AF) = deg(AL) yields the statement. �

Adding isotropy data to Theorem 4.8, we obtain the following result.

4.9 Theorem. Let (A, σ) be an O−algebra with involution. Let I be an isotropic bal-
anced right ideal of (A, σ)F . Then I ∩A is free as a Z(A)−module and (I ∩A)⊗O L is
an isotropic balanced right ideal of (A, σ)L of the same reduced dimension as I.

Proof. It is clear that if I is an isotropic right ideal of (A, σ)F , then (I ∩A) ⊗O L is an
isotropic right ideal of (A, σ)L. The rest of the statement follows from Theorem 4.8. �

The following corollary is now immediate.

4.10 Corollary. Let (A, σ) be an O−algebra with involution. If σF is isotropic (resp.
metabolic) then σL is isotropic (resp. metabolic) as well.
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We recast the result of Theorem 4.9 in terms of the index, obtaining a generalisation of
Proposition 3.9.

4.11 Corollary. Let (A, σ) be an O−algebra with involution. Then

ind((A, σ)F) ⊂ ind((A, σ)L).

Proof. Let 0 ≠ i ∈ ind((A, σ)F) and let I be an isotropic balanced right ideal of (A, σ)F

of reduced dimension i. By Theorem 4.9, (I ∩ A) ⊗O L is an isotropic balanded right
ideal of (A, σ)L and rdim[(I ∩A) ⊗O L] = i. It follows that i ∈ ind((A, σ)L). �

4.3 Henselian valuation rings

Throughout section 4.3, we fix a valuation ring O of F. We denote its maximal ideal by
m, its residue field by κ, and its value group by Γ. We further fix a valuation 3 on F with
valuation ring O.
The valuation ringO is called Henselian if it extends uniquely to a valuation ring of any
separable closure of F. We say that 3 is Henselian if O is Henselian.

Although this section is centered around Henselian valuation rings, we do not assume a
priori that O is Henselian, since we also want formulate some results for general valua-
tion rings. Wherever O is assumed to be Henselian, we will say this explicitly.

In Corollary 4.10, we obtained a “going down” result for O−algebras with involution,
namely isotropy (resp. metabolicity) of the involution over F yields isotropy (resp.
metabolicity) over κ, which is an analogue of a result for symmetric bilinear spaces.
When working with objects defined over a Henselian valuation ring, it is known that
some properties of the object can be lifted from κ to F. For example, if O is Henselian
and 2 ∈ O×, there is a “going up” result for isotropy (resp. hyperbolicity) for symmetric
bilinear spaces over O. This can be found in [66, (6.2.4)], where the statement assumes
that O is a discrete valuation ring, but the proof does not. As a consequence of the
latter result, isometry can also be lifted from κ to F. In section 4.3.1, we consider ana-
logues of these two results for O−algebras with involution. More precisely, we show in
Theorem 4.20 that, given an O−algebra with involution (A, σ) where O is Henselian
and 2 ∈ O×, we have that ind((A, σ)F) = ind((A, σ)κ). As a consequence, we obtain
for O−algebras with involution a lifting result for isomorphism from κ to F. So, for
Henselian valuation rings, the structures induced over F and κ by an O−algebra with
involution behave similarly.

In section 4.3.2, using the equality of the indices of algebras with involution men-
tioned above, we will show that, if O is Henselian and 2 ∈ O×, then isomorphism of
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O−algebras with involution can be detected over F (Theorem 4.34). This will then
imply a “going down” result for isomorphism of algebras with involution over general
valuation rings in which 2 is a unit. This is an analogue of a result on isometry for sym-
metric billinear spaces.

We thank J.–P. Tignol for his suggestion to consider the result on the index of an algebra
with involution in the Henselian case.

4.3.1 Lifting isotropy and hyperbolicity

4.12 Proposition. Let (A, σ) be an O−algebra with involution with center a domain,
which we denote by S . Denote the fraction field of S by K. Suppose that O extends
uniquely to K. Then the following hold:

(a) S is equal to the unique valuation ring of K extending O, and its residue field is a
separable quadratic extension of κ.

(b) Suppose that A does not have zero divisors. Then AF is a division algebra over
K. Suppose that O extends to a valuation ring of AF . Then this valuation ring is
equal to A. Furthermore, the value groups of O and A are equal.

Proof. Since O extends uniquely to K, Proposition 1.22 yields that S is equal to this
valuation ring, and its residue field is a separable quadratic extension of κ. This proves
(a).
Suppose thatA does not have zero divisors. ThenAF does not have zero divisors either.
SinceAF is a central simple K−algebra by Proposition 1.11 (a) and (b),AF is a division
algebra. By (a), S is a valuation ring and by assumption, O (and hence also S ) extends
to a valuation ring VA of AF . We denote the residue field of S by κS . Note that the
value group of S is equal to Γ by Proposition 1.22. It follows from [34, (2.5)] that
VA = A (and in this case, the proof of [34, (2.5)] in fact simplifies). We denote the value
group of A by ΓA. The fact that Γ = ΓA now follows from the fundamental inequality
dimK(AF) ⩾ dimκS (Aκ)[ΓA ∶ Γ] (see e.g. [75, p.9]). �

4.13 Corollary. Suppose that O is Henselian. Let (A, σ) be an O−algebra with invo-
lution with center a domain, which we denote by S . Denote the fraction field of S by K.
Then there exists an Azumaya algebra ∆ over S without zero divisors, that is moreover
a valuation ring of D = ∆ ⊗O F, an O−linear involution θ on ∆ of the same kind as
σ, and an ε−hermitian space (V,h) over (∆, θ), with ε = ±1, such (A, σ) ≅S Ad(h).
Furthermore, the value groups of ∆ and O are equal.

Proof. By Proposition 2.10, there exists an Azumaya algebra ∆ over S without zero divi-
sors, an involution θ of the same kind as σ, and an ε−hermitian space (V,h) over (∆, θ),
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with ε = ±1, such that (A, σ) ≅O (End∆(V), adh) = Ad(h). Since O is Henselian, it
extends to a valuation ring of D by [75, (2.1)]. By Proposition 4.12, this valuation ring
is necessarily equal to ∆, and ∆ and O have equal value groups. �

In order to prove the main result of this section (Theorem 4.20), we use the characterisa-
tion, given by Corollary 2.17, of the index of a non–degenerate algebra with involution
over a field in terms of a (skew–)hermitian space to which it is adjoint. To this end, we
need to prove equality of the Schur indices of the algebra over F and κ, and equality
of the Witt indices of the (skew–)hermitian space over F and κ. So, we will jump back
and forth a bit between results on involutions and results on (skew–)hermitian spaces.
In this way, we also obtain a lifting result for isotropy (resp. hyperbolicity) for (skew–)
hermitian spaces (see Corollary 4.18).

We first show the equality of the Schur indices, and this will already imply the desired
lifting result for isotropy and hyperbolicity for degenerate O−algebras with involution.

4.14 Proposition. Suppose that O is Henselian. Let A be an Azumaya algebra with
center O or a separable quadratic O−algebra. Then AF is simple if and only if Aκ is
simple.

Proof. We denote the center of A by S . We have that AF (resp. Aκ) is simple if and
only if Z(AF) (resp. Z(Aκ)) is a field. If S = O then AF and Aκ are both simple. So,
suppose that S ≠ O. If S is not a domain then S ≅ O×O by Proposition 1.14, and none
ofAF ,Aκ is simple. Suppose that S is a domain different fromO. Then Z(AF) is a field
by Proposition 1.14 (b). Furthermore, S is a valuation ring of K by Proposition 4.12.
Since Z(Aκ) = S ⊗O κ ≅ S /mS , it follows from Proposition 1.22 that Z(Aκ) is a field.
Hence, AF and Aκ are both simple. �

4.15 Proposition. Suppose that O is Henselian. Let A be an Azumaya algebra with
centerO or a separable quadraticO−algebra that is a domain. Then ind(AF) = ind(Aκ).

Proof. Since Z(A) is a domain, it follows from Proposition 4.14 that AF and Aκ are
both simple. The result can then be shown using that A is Brauer equivalent to a valu-
ation ring ∆ of a division algebra Brauer equivalent to AF , by Corollary 4.13, and that
∆κ ≅ ∆/J(∆) is a division algebra. We also present a different argument, which does not
use noncommutative valuation rings, but the results on right ideals we obtained earlier
in this chapter.

The Schur index of a central simple algebra can be characterised as the reduced dimen-
sion of a minimal right ideal. Let I be a minimal right ideal of AF . Theorem 4.8 yields
that (I ∩A) ⊗O κ is a right ideal of Aκ and rdim[(I ∩A) ⊗O κ] = rdimF(I) = ind(AF).
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Since the reduced dimension of any right ideal of a central simple algebra is divisible
by the Schur index of that algebra, we get that ind(Aκ) ∣ ind(AF). Conversely, let I be
a minimal right ideal of Aκ. By [45, (1.13)]), there is an idempotent x̄ ∈ Aκ such that
I = xAκ. By [50, (A.18)], we can lift the idempotent x to an idempotent x ∈ A. Then
xAF is a right ideal of AF and since x is idempotent, we have that xAF ∩ A = xA and
xA⊗O κ ≅ xAκ. Again invoking Theorem 4.8, we get that rdim(xAF) = rdim(xAκ) =
ind(Aκ), and hence ind(AF) ∣ ind(Aκ). �

4.16 Corollary. Suppose that O is Henselian. Let (A, σ) be an O−algebra with invo-
lution whose center is not a domain. Then ind((A, σ)F) = ind((A, σ)κ).

Proof. If Z(A) is not a domain, then Z(A) ≅ O×O by Proposition 1.14 (b). By
Proposition 1.18, there exists an Azumaya algebra B over O such that (A, σ) ≅O (B ×

Bop, swB). By Proposition 4.15, we have that ind(AF) = ind(BF) = ind(Bκ) = ind(Aκ).
Since deg(AF) = deg(Aκ) by Theorem 4.8, the equality of the indices now follows from
Proposition 1.42. �

4.17 Proposition. Suppose that O is Henselian. Let (A, σ) be an O−algebra with in-
volution with center a domain. Furthermore, if char(κ) = 2, suppose that σF is not
orthogonal. Then σF is isotropic if and only σκ is isotropic.

Proof. The statement follows from [74, (2.3)], provided that AF is tame over F in the
sense of [74, p. 121], and that there exists a σF−invariant 3−gauge α on AF such that
(AF)

⩾0
α = A and (AF)

>0
α = mA. The tameness condition for AF means that K/F is

tame and AF splits over the maximal tamely ramified extension of (K, 3S ).

The existence of the gauge follows from Proposition 4.7. Let us prove the tameness
condition. Let S and ∆ be as in Corollary 4.13. Then ∆ is a valuation ring of the division
algebra D = ∆F . Let 4 be a valuation on D with valuation ring ∆ and let 3S be the
restriction of 4 to K. Then S is the valuation ring of 3S . By Proposition 4.12 (b), 3, 3S
and 4 have the same value group.
The fact that K/F is tame follows from the equality of the value groups of 3 and 3S ,
which even implies that (K, 3S ) is an unramified extension of (F, 3). Let L/K be maximal
subfield of D. Then D splits over L. Furthermore, since the value groups of 3 and 4 are
equal, the unique extension 3̃ of 3 to L has the same value group as 3. Hence, (L, 3̃) is
an unramified, and therefore also tamely ramified, extension of (K, 3S ) splitting AF . It
follows that AF is tame over F. �

4.18 Corollary. Suppose that O is Henselian. Let (∆, θ) be an O−algebra with involu-
tion without zero divisors. Let ε = ±1 and let (V,h) be an even ε−hermitian space over
(∆, θ). Then iw(hF) = iw(hκ). In particular, hF is isotropic (resp. hyperbolic) if and only
if hκ is isotropic (resp. hyperbolic).
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Proof. Let (A, σ) = Ad(h). Since (V,h) is an even ε−hermitian space, we have that σF

is not orthogonal if char(κ) = 2, by [45, (4.2)]. By Proposition 4.17, σF is isotropic if
and only if σκ is isotropic. Proposition 2.14 yields that hF is isotropic if and only if hκ is
isotropic. Suppose that hF is not hyperbolic. Then, by Propositions 2.6 and 2.2, we may
write

(V,h) ≃ (V1,h1) ⊥ (V2,h2),

with (V1,h1) (resp. (V2,h2)) an anisotropic (resp. hyperbolic) even ε−hermitian space
over (∆, θ). Since h1 is anisotropic, Proposition 2.8 (a) yields that (h1)F is also anisotropic.
By the first part of the proof, we obtain that (h1)κ is anisotropic. Therefore, iw(hF) =

iw(hκ) and the statement follows. �

4.19 Corollary. Suppose that O is Henselian. Let (A, σ) be an O−algebra with invo-
lution with center a domain, and let σ′ be an O−linear involution on A of the same
kind as σ. Assume that char(κ) ≠ 2. Then (A, σ)κ ≅Z(Aκ) (A, σ′)κ if and only if
(A, σ) ≅Z(A) (A, σ

′).

Proof. It is clear that (A, σ) ≅Z(A) (A, σ′) implies (A, σ)κ ≅Z(Aκ) (A, σ′)κ. Let us
prove the converse. Suppose first that Z(A) is a domain. Let (∆, θ) and (V,h) be as in
Corollary 4.13 such that (A, σ) ≅ Ad(h). We identify (A, σ) and Ad(h) through this
isomorphism. Note that (V,h) is even, since char(κ) ≠ 2 by assumption. By Proposition
1.23, there exists s ∈ A× such that σ′ = Int(s) ○ σ and σ(s) = ±s. Since σκ and σ′κ
are isomorphic by assumption, and char(κ) ≠ 2, the result in [45, (2.7) (3)] says that in
fact σ(s) = s. Then (A, σ′) = Ad(h′), where h′ ∶ V × V → ∆ is defined by h′(x, y) =
h(s−1(x), y) for all x, y ∈ V . By Proposition 2.19, since Ad(hκ) ≅Z(Aκ) Ad(h′κ), there is
an element a ∈ O× such that (V,h′)κ ≃ (V,ah)κ. Then h′ ⊥ −ah is an ε−hermitian space
over (∆, θ) that becomes hyperbolic over κ, and hence becomes hyperbolic over F by
Corollary 4.18. Then h′ ⊥ −ah is already hyperbolic by Proposition 2.8 (a), and hence,
(V,h′) ≃ (V,ah), by Proposition 2.8 (b). Proposition 2.19 now yields that (A, σ) ≅Z(A)
(A, σ′) by �

4.20 Theorem. Suppose that O is Henselian. Let (A, σ) be an O−algebra with involu-
tion. Assume that σF is not orthogonal if char(κ) = 2. Then

ind((A, σ)F) = ind((A, σ)κ).

In particular, σF is isotropic (resp. hyperbolic) if and only if σκ is isotropic (resp. hy-
perbolic).

Proof. If Z(A) is not a domain, this is the statement of Corollary 4.16. So, for the rest of
the proof we may assume that Z(A) is a domain. Let (∆, θ) and (V,h) be as in Corollary
4.13. Since ind(D) = ind(∆F) = ind(∆κ) by Proposition 4.15, we have that ∆κ is a
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division algebra. In order to prove the statement, by Corollary 2.17, it suffices to show
that ind(AF) = ind(Aκ) and iw(hF) = iw(hκ). The equality of the Schur indices follows
from Proposition 4.15 and the equality of the Witt indices from Corollary 4.18. �

4.21 Remark. In order to prove Theorem 4.20, we lift the numbers in the index over the
residue field to the fraction field. One could also ask whether isotropic balanced right
ideals can be lifted explicitly. As noted in the proof of Proposition 4.15, idempotents can
be lifted from Aκ to A. However, we don’t see how one can lift an isotropic idempotent
of Aκ to an isotropic idempotent of A.

The lifting result for isotropy and hyperbolicity for symmetric bilinear spaces over Hen-
selian valuation rings, mentioned in the beginning of section 4.3, holds in fact more
generally for 2−Henselian valuation rings. The valuation ring O is called 2−Henselian
if it extends uniquely to a valuation ring of F(2), the maximal Galois 2−extension of
F, by which we mean the compositum of all finite Galois extensions of F of 2−power
degree inside a fixed (but arbitrary) separable closure of F. In view of the results for
symmetric bilinear spaces in the 2−Henselian case, it is natural to ask the following
question.

4.22 Question. Does the equality of the indices given in Theorem 4.20 still hold if O is
2−Henselian?

4.23 Remark. It is not clear whether the method used in the Henselian case could
also work in the 2−Henselian case. The problem is that we don’t know whether a
2−Henselian valuation ring of F extends to a division algebra of 2−power degree with
center F. The 2−Henselian property only guarantees that the valuation ring extends
uniquely to Galois extensions of the center. An arbitrary subfield of the division algebra
containing F has degree a power of 2 over F, but need not be contained in F(2). If
char(F) ≠ 2 and the division algebra has degree 2, then the maximal subfields of the
division algebra are Galois extensions of degree 2 and hence, the 2−Henselian valuation
ring extends uniquely to each maximal subfield, and therefore also to the division alge-
bra by [75, (2.1)]. Using this, we do obtain a positive answer for the above question on
2−Henselian valuation rings in a particular case. We sketch this below.

Suppose that O is 2−Henselian and that char(F) ≠ 2. Let (A, σ) be an O−algebra with
involution such that ind(AF) = 2, and such that σF is not orthogonal if char(κ) = 2.
Let ∆ be an Azumaya algebra over Z(A) without zero divisors, Brauer equivalent to A.
Then ∆F is a division algebra of degree 2 Brauer equivalent to AF . As explained above,
O extends to a valuation ring of D, and this valuation ring is then necessarily equal to
∆ by Proposition 4.12. We looked at the proofs of the results of [62, 74] for Henselian
valuation rings that are used in order to obtain the result of Proposition 4.17. In the
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case of algebras of Schur index 2, the Henselian assumption is used there in order to lift
zeroes of polynomials of degree 2 from the residue field to the valuation ring, and to have
that the extension of a Henselian valuation on F to a separable quadratic field extension
is again Henselian. Both of these facts still hold in the case where O is 2−Henselian.
Therefore, the proofs of [62, (4.6)] and [74, (2.2)] go through in this case, and hence, the
statement of Proposition 4.17 still holds. Moreover, since ∆ is a valuation ring, it follows
that ∆κ is a division algebra, and hence ind(AF) = ind(∆F) = ind(∆κ) = ind(Aκ). The
proof of Theorem 4.20 then also goes through.

We can use Theorem 4.20 to prove a result on hyperbolicity of ε−hermitian spaces over
Azumaya algebras with involution, under the extra assumption that the Azumaya algebra
is a valuation ring. This result will be important the next section and in chapter 5, in
order to obtain isomorphism results for Azumaya algebras with involution. We present
two proofs of this hyperbolicity result.

4.24 Proposition. Let (∆, θ) be an O−algebra with involution without zero divisors.
Let ε = ±1 and let (V,h) be an ε−hermitian space over (∆, θ). Suppose that there exists
x ∈ VF such that hF(x, x) ∉ F×2(∆ ∖m∆). Then hκ is isotropic.

Proof. By Propositions 1.22 and 2.42, we have that J(∆) = m∆. By Proposition 2.4
(a), V is a free ∆−module. Let B = (e1, . . . , en) be a ∆−basis for V . Then B is a
∆F−basis for VF . We write x = ∑n

i=1 eixi, with x1, . . . , xn ∈ D. By Lemma 2.46, there
exist a1, . . . ,an ∈ F such that aixi ∈ ∆ ∖ J(∆) = ∆ ∖ m∆. Without loss of generality,
we may assume that 3(a1) = max1⩽i⩽n(3(ai)). Then y = xa1 ∈ V . Since (ē1, . . . , ēn)

is a ∆κ−basis for Vκ ≅ V/mV , and a1x1 ∉ m∆, we have that ȳ ∈ V/mV is nonzero.
Furthermore, since hF(x, x) ∉ F×2(∆ ∖m∆), it follows that h(y, y) ∉ F×2(∆ ∖m∆), and
since h(y, y) ∈ ∆, we get that h(y, y) ∈ m∆. This implies that hκ(ȳ, ȳ) = 0, and since
ȳ ≠ 0, this proves the statement. �

4.25 Corollary. Suppose that O is Henselian. Let (∆, θ) be an O−algebra with involu-
tion without zero divisors. Let ε = ±1 and let (V,h) and (V ′,h′) be two even ε−hermitian
spaces over (∆, θ). Suppose that there exists a scalar e ∈ O such that (V, eh)F ≃ (V ′,h′)F .
If e ∉ F×2O× then h and h′ are hyperbolic.

Proof. If θ = id∆ and ε = −1, then h and h′ are hyperbolic by Proposition 2.6, since
a skew–hermitian space over (∆, id∆) is necessarily isotropic. So, for the rest of the
proof, we assume that ε = 1 if θ = id∆. Since O is Henselian, it extends uniquely to a
valuation ring of the division algebra ∆F by [75, (2.1)]. It follows from Proposition 4.12
(b) that ∆ is a valuation ring of ∆F . By Proposition 2.4 (a), V ′ is a free ∆−module. Let
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B′ = (e′1, . . . , e
′
n) be a ∆−basis for V ′. Then B′ is a ∆F−basis for V ′

F . By assumption,
there exists a bijective ∆F−linear map ϕ ∶ VF → V ′

F such that for all x ∈ VF , we have that

ehF(x, x) = h′F(ϕ(x), ϕ(x)).

By Proposition 2.47, there exists x ∈ V such that h(x, x) ∈ ∆ ∖ J(∆) = ∆ ∖ m∆. Since
e ∉ F×2O×, it follows that eh(x, x) ∉ F×2(∆ ∖m∆). Proposition 4.24 then implies that
h′κ is isotropic.
SinceO is Henselian, and we work with even ε−hermitian spaces, it follows from Corol-
lary 4.18 that h′F is isotropic as well. Suppose that h′F is non–hyperbolic. Then hF is
non–hyperbolic as well, and by Proposition 2.6, we can decompose (V,h) ≃ (V1,h1) ⊥

(V2,h2) and (V ′,h′) ≃ (V ′
1,h

′
1) ⊥ (V ′

2,h
′
2), where (V1,h1) and (V ′

1,h
′
1) are anisotropic

even ε−hermitian spaces over (∆, θ), and (V2,h2) and (V ′
2,h

′
2) hyperbolic ε−hermitian

spaces over (∆, θ). It follows that

(V ′
1,h

′
1)F ⊥ (V ′

2,h
′
2)F ≃ (V1, eh1)F ⊥ (V2, eh2)F .

We have that (h′1)F and e(h1)F anisotropic by Proposition 2.8 (a), and (h′2)F and e(h2)F

hyperbolic. The Witt cancellation property for even ε−hermitian spaces over division
rings (see [43, (I.6.4.5)]) together with Proposition 2.5 yields that

(V ′
1,h

′
1)F ≃ (V1, eh1)F .

However, the reasoning above now yields that (h′1)F is isotropic, a contradiction. There-
fore, h′F is hyperbolic, and then hF is clearly hyperbolic as well. Proposition 2.8 (a)
yields that h′ and h are already hyperbolic. �

J.–P. Tignol has suggested a different proof of Corollary 4.25. We thank him for his per-
mission to include his proof in this dissertation. Corollary 4.18 is not used in the proof
we give below, but is replaced by hyperbolicity results involving value functions in [62].
Therefore, we start with some more preliminaries on value functions, following [62].

For the rest of this section, we fix an O−algebra with involution (∆, θ) without zero
divisors such that ∆ is a valuation ring of the division algebra D = ∆F . We denote the
center of D by K. Let 4 be a valuation on D with valuation ring ∆. We denote the value
group of 4 by ΓD. We consider ΓD as subgroup of a divisible totally ordered abelian
group Γ (e.g. one can take for Γ the divisible hull of ΓD). By Lemma 2.44, we have that
4 ○ θF = 4. Then θF induces a well–defined graded involution τ̃ on gr4(D). Let ε = ±1
and let (V,h) be an ε−hermitian space over (∆, θ). Recall that V is a free ∆−module by
Proposition 2.4 (a). Let α ∶ VF → Γ ∪ {∞} be a 4−norm on VF . The dual norm α# is
defined by α#(x) = min{4(h(x, y)) − α(y) ∣ y ∈ VF}. We say that α is compatible with
hF if for all x, y ∈ VF , we have that α(x)+α(y) ⩽ 4(h(x, y)) and if for each x ∈ VF , there
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is an element y ∈ VF such that α(x) + α(y) = 4(h(x, y)). In that case, α = α# by [62,
(3.5) (ii)]. For z ∈ VF , we write z̃ = z + (VF)

>α(z)
α . Suppose that α is compatible with hF .

Then hF induces a graded ε−hermitian form (h̃F)α ∶ grα(VF) × grα(VF) → gr4(D) with
respect to τ̃, defined by

(h̃F)α(x̃, ỹ) = {
̃hF(x, y) if 4(hF(x, y)) = α(x) + α(y)

0 if 4(hF(x, y)) > α(x) + α(y),

for all x, y ∈ VF .

4.26 Proposition. Let ε = ±1 and let (V,h) be an ε−hermitian space over (∆, θ). As-
sume that V is a free ∆−module. Then there exists a 4−norm α on VF compatible with
hF .

Proof. Let B = (e1, . . . , en) be a ∆−basis for V . Then B is a D−basis for VF . Let B#

be the dual basis of ∆ with respect to h. Consider the 4−norm 4B on VF as defined
in Example 4.1. Since B is a splitting basis for 4B, [62, (3.4) (i)] yields that B# is a
splitting basis for the dual norm 4#

B, and each basis element of B# has value zero under
4#
B. It follows from Proposition 4.3 that 4B = 4B# = 4#

B. It follows from [62, (3.5) (ii)]
that 4B is compatible with hF . �

4.27 Lemma. Let ε = ±1 and let (V,h) be an ε−hermitian space over (∆, θ). Let α be
as in Proposition 4.26. Let e ∈ K× and let 4(e) = γ ∈ ΓD. The map β ∶ VF → Γ ∪ {∞}

defined by β(x) = α(x) + γ
2 is a 4−norm on VF compatible with ehF .

Proof. We leave the easy verification that β is a 4−norm on VF to the reader. The
compatibility with ehF follows directly from the fact that α is compatible with hF . �

For the actual hyperbolicity theorem, we restrict to the case where 2 ∈ O×.

4.28 Theorem. Suppose that 2 ∈ O×. Let ε = ±1. Let (V,h) and (V ′,h′) be ε−hermitian
spaces over (∆, θ). Assume that (V ′,h′)F ≃ (V, eh)F , with e ∈ K× such that γ = 4(e) ∉
2ΓD. Let α be as in Proposition 4.26 and β as in Proposition 4.27. Then (h̃′F)α and
(ẽhF)β are hyperbolic. If moreover Z(∆) is a Henselian valuation ring of K, then h′ and
h are hyperbolic.

Proof. The assumptions imply that dim∆(V) = dim∆(V ′). Hence, there exists a ∆−linear
bijection ϕ ∶ V ′ → V . We identify (V ′,h′) with its image induced by ϕ, and in this way
we consider h′ as an ε−hermitian form over V .
The norm α as in Proposition 4.26 is compatible with both hF and h′F . By Lemma 4.27, β
is compatible with ehF . By [62, (3.11)], (h̃′F)α and (ẽhF)β are Witt equivalent. By [62,
(1.4)], if they are not hyperbolic, then their anisotropic parts are isometric. Furthermore,
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the degrees of the nonzero components of (h̃′F)α are in ΓD, whereas the degrees of the
nonzero components of (ẽhF)β are in ΓD + γ

2 , and ΓD ∩ (ΓD + γ
2) = ∅, since γ ∉ 2ΓD.

Hence, (h̃′F)α and (ẽhF)β must both be hyperbolic. If Z(∆) is Henselian then [62,
(4.6)] yields that h′F and ehF are already hyperbolic. By Proposition 2.8 (a), h′ and h are
already hyperbolic. �

4.3.2 Detecting isomorphism rationally

Let (A, σ) be an O−algebra with involution. In this section, we further investigate the
relation between the objects (A, σ), (A, σ)F and (A, σ)κ, mainly in the case whereO is
Henselian. Whereas the focus was on isotropy results in the previous section, we focus
on isomorphism results here. In view of Corollary 4.19, which relates isomorphism of
algebras with involution over κ to isomorphism overO, in the case whereO is Henselian,
it is natural to ask what the relation is between isomorphism over F and isomorphism
over O.

4.29 Question. Suppose thatO is a Henselian valuation ring and let (A, σ) and (A′, σ′)

be O−algebras with involution. Assume that (A, σ)F ≅F (A′, σ′)F . Does this imply
that (A, σ) ≅O (A′, σ′)?

As announced at the beginning of section 4.3, we give an affirmative answer to this
question in the case where 2 is invertible in O (Theorem 4.34). The lifting result for
hyperbolicity given in Theorem 4.20 will play an important role in the proof. Since
the residue structure of an O−algebra with involution does not change by passing to a
Henselisation, we obtain as a corollary a “going down” result for isomorphism of alge-
bras with involution over a general valuation ring in which 2 is invertible.
We will extend the result of Theorem 4.34 in the next chapter, where we show that it
also holds without the Henselian assumption on O. More generally, Theorem 5.16 con-
tains an affirmative answer to Question 4.29 when O is replaced by a semilocal Bézout
domain in which 2 is a unit. The results for Henselian valuation rings will play an im-
portant role in the proof. In order to emphasise this fact and also to collect the different
results for Henselian valuation rings in the same chapter, we choose to separate them
from the results for general valuation rings in the next chapter.

The initial motivation to consider Question 4.29, also without the Henselian assumption
on O, was given by results for symmetric bilinear spaces over general valuation rings.
Namely, it is shown in [66, (4.6.3)] that if 2 ∈ O×, then symmetric bilinear spaces overO
that become isometric over F, are already isometric over O. We will refer to this result
as rational isometry implies isometry. The latter result implies that symmetric bilinear
spaces over O that become isometric over F, are also isometric over κ. The condition
that 2 ∈ O× is necessary, as the following example shows.
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4.30 Example. Consider the field of rational numbers Q and the 2−adic valuation 32 on
Q. This valuation has residue field F2. It is a standard fact that

(
1 0
0 −1

) ≃Q (
0 1
1 0

) .

However,

(
1 0
0 −1

) /≃F2 (
0 1
1 0

) ,

since the second bilinear form only represents 0, whereas the first one doesn’t.

The aforementioned results for symmetric bilinear spaces are connected to the notion
of “good reduction with respect to a place” for such spaces. The isomorphism results
for algebras with involution obtained in this section allow us to introduce a well–defined
notion of good reduction with respect to a place for algebras with involution. This is
done in section 4.4.

4.31 Remark. Suppose that 2 ∈ O×. From the fact that rational isometry implies iso-
metry for symmetric bilinear spaces overO, one cannot immediately conclude, given an
Azumaya algebra A with center O and two O−linear involutions σ and σ′ on A such
that σF and σ′F are orthogonal, that (A, σ)F ≅F (A, σ′)F implies (A, σ) ≅O (A, σ′).
The reason is that isomorphism of algebras with involution corresponds to similarity of
bilinear spaces, and in general not to isometry (see Proposition 2.19). As far as we can
tell, it was not known whether symmetric bilinear spaces over O that become similar
over F are already similar over O, but we will prove that this holds in the next chapter.

Some of the results needed in order to give a positive answer to Question 4.29, also hold
for semilocal Bézout domains, and will be used as such in the next chapter. Therefore,
we formulate those results already in that generality here.

The following proposition shows that, in order to answer Question 4.29, we may reduce
to the case of two involutions on one algebra. The arguments in the proof are standard,
but we formulate the result as a proposition in order to be able to refer to it later on.

4.32 Proposition. Let R be a semilocal Bézout domain with fraction field F. Suppose
that for all R−algebras with involution (A, σ) the following holds: if σ′ is an R−linear
involution on A such that there is a Z(AF)−linear isomorphism (A, σ)F → (A, σ′)F ,
then (A, σ) ≅R (A, σ′). Then for all pairs ((A, σ), (A′, σ′)) of R−algebras with invo-
lution, we have that (A, σ)F ≅F (A′, σ′)F implies that (A, σ) ≅R (A′, σ′).

Proof. Let ϕ ∶ (A, σ)F → (A′, σ′)F be an isomorphism of F−algebras with involution.
Then ϕ restricts to an F−isomorphism Z(AF) → Z(A′F). Since Z(A) is the integral
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closure of R in Z(AF), and Z(A′) is the integral closure of R in Z(A′F), by Proposition
1.14 (b), and since ϕ is an R−homomorphism, it follows that Z(ϕ(A)) = ϕ(Z(A)) =

Z(A′). If we consider A′ as an Azumaya algebra over Z(A) via ϕ, then ϕ ∶ AF → A
′
F

is a Z(AF)−isomorphism. By Proposition 1.29, Corollary 1.31 and Corollary 1.33, it
follows that there exists an isomorphism of Z(A)−algebras ψ ∶ A → A′. Let σ̃ =

ψ−1 ○ σ′ ○ ψ. Then ψ is an isomorphism of R−algebras with involution from (A, σ̃) to
(A′, σ′). We have that ϕ−1 ○ ψF ∶ (A, σ̃)F → (A, σ)F is an isomorphism of F−algebras
with involution that is Z(AF)−linear. The hypothesis now yields that (A, σ̃) ≅R (A, σ),
and hence, (A, σ) ≅R (A′, σ′). �

Using the reduction in Proposition 4.32, it is easily seen that degenerate rationally iso-
morphic algebras with involution over a semilocal Bézout domain are isomorphic.

4.33 Proposition. Let R be a semilocal Bézout domain with fraction field F. Let (A, σ)
and (A′, σ′) be R−algebras with involution, and assume that (A, σ)F ≅F (A′, σ′)F .
Assume moreover that Z(A) ≅ R × R. Then (A, σ) ≅R (A′, σ′).

Proof. By Proposition 4.32, in order to show the claim we may assume that A′ = A.
Since all involutions of the second kind onA are isomorphic over R by Proposition 1.18,
the statement follows. �

In the rest of this section, we turn back to the specific setting of valuation rings. We start
with the main result for Henselian valuation rings, an affirmative answer to Question
4.29 in the case where 2 ∈ O×.

4.34 Theorem. Suppose that O is Henselian and that 2 ∈ O×. Let (A, σ) and (A′, σ′)

be O−algebras with involution. If (A, σ)F ≅F (A′, σ′)F then (A, σ) ≅O (A′, σ′).

Proof. By Proposition 4.32, in order to show that (A, σ) ≅O (A′, σ′), we may assume
that A′ = A and that (A, σ)F ≅Z(AF) (A, σ′)F . If Z(A) is not a domain, then we are
done by Proposition 4.33. So, suppose that Z(A) is a domain. By Proposition 2.20, there
exists s ∈ A× such that σ′ = Int(s) ○σ. By Proposition 2.18, there exist elements e ∈ F×

and g ∈ A×F such that es = σF(g)g. Let (∆, θ) and (V,h) be as in Corollary 4.13 such
that (A, σ) ≅Z(A) Ad(h). Identifying (A, σ) and Ad(h) through this isomorphism, we
consider s as element of End∆(V)× and g as element of End∆F(VF)

×. Then (A, σ′) =

Ad(h′), where h′ ∶ V × V → ∆ is defined by h′(x, y) = h(s−1(x), y) for all x, y ∈ V .
By Proposition 2.19, we have that (V,h′)F ≃ (V, eh)F . Suppose that e ∉ F×2O×. Since
2 ∈ O×, Corollary 4.25 yields that hF and h′F are hyperbolic. Since (V,h)F and (V,h′)F

have the same dimension, Proposition 2.5 yields that (V,h)F ≃ (V,h′)F .
Suppose that e ∈ F×2O×. Since (V,h′)F ≃ (V, eh)F and elements of F×2 are similarity
factors of hF , it follows that (V,h′)F ≃ (V,uh)F for some u ∈ O×. So, in both cases, there
exists an element v ∈ O× such that (V,h′)F ≃ (V, vh)F . Proposition 2.8 (c) then yields
that (V,h′) ≃ (V, vh), and therefore, (A, σ) ≅O (A, σ′), by Proposition 2.18. �
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Theorem 4.34 implies in particular an affirmative answer to Question 4.29 in the case
where O is a complete discrete valuation ring with 2 ∈ O×. This result is not new. It
is an (unpublished) result of J. Tits, see [55]. There, it is used to show that in the case
where O is a discrete valuation ring with 2 ∈ O×, isomorphism of O−algebras with in-
volution can be detected rationally. The result is formulated in the language of algebraic
groups.

The method of proof of Theorem 4.34 yields an involution version of the hyperbolicity
result of Corollary 4.25. It will be used in this form in chapter 5, and therefore, we
already formulate it as such here.

4.35 Proposition. Suppose that O is Henselian and that 2 ∈ O×. Let (A, σ) be an
O−algebra with involution. Suppose that there exist elements e ∈ F×, s ∈ A× and g ∈ A×F
such that es = σF(g)g. Suppose furthermore that e ∉ F×2O×. Then (A, σ)F and (A, σ)κ
are hyperbolic.

Proof. If Z(A) is not a domain, then (A, σ)F is degenerate and hence automatically
hyperbolic by Proposition 1.42 (that O is Henselian is not needed). So, suppose that
Z(A) is a domain. By going through the proof of Theorem 4.34, and combining this
with Proposition 2.14, since char(F) ≠ 2, it follows that (A, σ)F is hyperbolic. Then
(A, σ)κ is also hyperbolic by Corollary 4.10. �

From the above results for Henselian valuation rings, we can now derive results for
the residue structure of algebras with involution over general valuation rings, since this
structure does not change after passing to a Henselisation. These results will be used in
section 5.1.

Let F s be a separable closure of F and let Os be an extension of O to F s. Let G = {ρ ∈

Gal(F s/F) ∣ ρ(Os) = Os}. Then ((F s)G,Os ∩(F s)G) is Henselian by [21, (3.2.15)].
It is called a Henselisation of (F,O), and we denote it by (Fh,Oh). By [21, (5.2.5)],
(F,O) ⊂ (Fh,Oh) is an immediate extension, i.e. (F,O) and (Fh,Oh) have the same
value groups and residue fields.

4.36 Corollary. Assume that 2 ∈ O×. Let (A, σ) be an O−algebra with involution.
Suppose that there exist elements e ∈ F×, s ∈ A× and g ∈ A×F such that es = σF(g)g.
Suppose furthermore that e ∉ F×2O×. Then (A, σ)κ is hyperbolic.

Proof. Let (Fh,Oh) be a Henselisation of (F,O). Since O and Oh have the same value
groups, we have that e ∉ (Fh)×2(Oh)×. Applying Proposition 4.35 to Oh, and using that
Oh still has residue field κ, now yields the result. �

4.37 Theorem. Assume that 2 ∈ O×. Let (A, σ) and (A′, σ′) be O−algebras with
involution such that (A, σ)F ≅F (A′, σ′)F . Then (A, σ)κ ≅κ (A

′, σ′)κ.
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Proof. Let (Fh,Oh) be a Henselisation of (F,O). Since (A, σ)F ≅F (A′, σ′)F by as-
sumption, it follows that (A, σ)Fh ≅Fh (A′, σ′)Fh as well. Theorem 4.34 then yields
that (A, σ)

Oh ≅Oh (A′, σ′)
Oh . Since (F,O) ⊂ (Fh,Oh) is an immediate extension, the

residue field of Oh is still κ and hence, by scalar extension to κ, we get that (A, σ)κ ≅κ
(A′, σ′)κ. �

4.38 Remark. In the proof of Theorem 4.34, since ∆ is a valuation ring, we don’t need
to invoke the general Witt cancellation result of B. Keller (used in the proof of Proposi-
tion 2.8 (c)) in order to have that (V,h′)F ≃ (V, vh)F implies (V,h′) ≃ (V, vh). If we are
not in the case where ε = −1 and θ = id∆, then (V,h′) ≃ (V, vh) by Corollary 2.51. In
the excluded case, (V,h′) and (V, vh) are hyperbolic and hence automatically isometric
by Proposition 2.5. Note furthermore that, if one is only interested in Theorem 4.37,
then at the end of of the proof of Theorem 4.34, one can pass directly from the isometry
(V,h′)F ≃ (V, vh)F to (V,h′)κ ≃ (V, vh)κ. In this way, the Witt cancellation result that
is used can be further simplified, for we can then invoke the one for ε−hermitian spaces
over division rings with involution from [43, (I.6.3.4)].

4.4 Good reduction

In this section, we recall the notion of good reduction for symmetric bilinear spaces over
a valuation ring, and introduce an analogue for algebras with involution. We fix a field
L and a place λ ∶ F → L∞. We denote the valuation ring of F associated to λ by O, and
its residue field by κ.

Let (V,b) be a symmetric bilinear space over F. Then (V,b) is said to have good reduc-
tion with respect to λ if (V,b) is obtained by scalar extension from a symmetric bilinear
space over O. This means that there exists an F−basis for V such that the matrix repre-
sentation of b with respect to this basis consists of elements in O, and the determinant
is a unit in O. Such a representation over O is called a λ−unimodular representation.
As mentioned in the previous section, if 2 ∈ O× (i.e. char(L) ≠ 2), then symmetric bili-
near spaces overO that become isometric over F, are already isometric overO (see [66,
(4.6.3)]). So, in that case, one can associate in a sensible way to a symmetric bilinear
space (V,b) over F with good reduction with respect to λ, a residue symmetric bilinear
space over L, denoted by λ∗(V,b).

If a symmetric bilinear space over F has good reduction with respect to λ then its ad-
joint algebra with involution is obtained by scalar extension from an O−algebra with
involution. Therefore, it is natural to make the following definition. Let (B, τ) be an
F−algebra with involution. Then we say that (B, τ) has good reduction with respect to
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λ if there exists an O−algebra with involution (A, σ) such that (B, τ) ≅F (A, σ)F . We
call (A, σ) a λ−unimodular representation of (B, τ).
This good reduction definition for algebras with involution does not completely gener-
alise the good reduction definition for symmetric bilinear spaces, but it does so up to
similarity, as we show below.

4.39 Proposition. Let (V,b) be a symmetric bilinear space over F. Then Ad(b) has
good reduction with respect to λ if and only if (V,b) has up to similarity good reduction
with respect to λ.

Proof. Suppose first that there exists u ∈ F× such that (V,ub) has good reduction with
respect to λ. Then V contains a free O−module V such that V = VF, ub(V ,V) ⊂ O and
ub∣V×V ∶ V × V → O defines a non–singular bilinear form over O. We denote ub∣V×V
by ϕ. Then (EndO(V), adϕ) is an O−algebra with involution by Proposition 2.9. Fur-
thermore, we have that Ad(b) = Ad(ub) ≅F (EndO(V), adϕ)F . Hence, Ad(b) has good
reduction with respect to λ.

Suppose conversely that there exists an O−algebra with involution (A, σ) such that
(A, σ)F ≅F Ad(b). Since AF is split, Proposition 2.10 yields that A ≅ Mn(O), with
n = dimF(V). Since σF is orthogonal, there exists a symmetric bilinear space (V , ϕ)

overO such that (A, σ) ≅O Ad(ϕ). We get that Ad(ϕF) ≅F Ad(b). It follows from [45,
(12.34)] that there exists u ∈ F× such that (V,b) ≃ (V ,uϕ)F . �

Let (B, τ) be an F−algebra with involution with good reduction with respect to λ, and
let (A, σ) be a λ−unimodular representation of (B, τ). We set λ∗(B, τ) = (A, σ)L. We
show below that the results in the previous section imply directly that if 2 ∈ O×, then
λ∗(B, τ) is well–defined up to L−isomorphism. We then call it the residue algebra with
involution of (B, τ).

4.40 Proposition. Assume that 2 ∈ O×. Let (A, σ) and (A′, σ′) be O−algebras with
involution. If (A, σ)F ≅F (A′, σ′)F , then (A, σ)L ≅L (A′, σ′)L.

Proof. We have that L contains up to isomorphism the residue field ofO. The statement
now follows immediately from Corollary 4.37. �

We can now formulate Corollary 4.11 as follows.

4.41 Corollary. Let (B, τ) be an F−algebra with involution with good reduction with
respect to λ. If 2 ∉ O×, assume that τ is not orthogonal. Then

ind(B, τ) ⊂ ind(λ∗(B, τ)),

and the set on the right hand side is independent of the choice of a λ−unimodular repre-
sentation for (B, τ).
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Proof. The fact that ind(λ∗(B, τ)) is independent of the choice of a λ−unimodular rep-
resentation for (B, τ) can be seen by passing to a Henselisation of (F,O) and using
Theorem 4.20. �

Let us take a look at the case where B is split and 2 ∈ O×. Then τ is adjoint to a sym-
metric or alternating bilinear space over F. We then retrieve the following specialisation
statement for symmetric bilinear spaces, which follows from the result in [42, (1.20)],
stating that λ∗ behaves well with respect to orthogonal sums of bilinear spaces.

4.42 Corollary. Suppose that 2 ∈ O×. Let (V,b) be a symmetric bilinear space over F
with good reduction with respect to λ. Then the Witt index of λ∗(V,b) is at least the Witt
index of b. In particular, if b is isotropic, then λ∗(V,b) is isotropic.

Proof. By Proposition 4.39, since (V,b) has good reduction with respect to λ, it fol-
lows that Ad(b) has good reduction with respect to λ. Furthermore, we have that
λ∗(Ad(b)) ≅L Ad(λ∗(b)). Since the Witt index of a symmetric bilinear space is the
maximal element in the index of its adjoint algebra with involution, the statement fol-
lows from Corollary 4.41. �





5
Rational isomorphism versus isomorphism

C’est dire que s’il y a une chose en
mathématiques qui (depuis toujours
sans doute) me fascine plus que toute
autre, ce n’est ni “le nombre”, ni “la
grandeur”, mais toujours la forme. Et
parmi les mille-et-un visages que
choisit la forme pour se révéler à
nous, celui qui me fascine plus que
toute autre et continue à me fasciner,
c’est la structure cachée dans les
choses mathématiques.

Alexander Grothendieck

In this chapter, we now study the isomorphism question stated in Question 4.29 for gen-
eral valuation rings, and the connection with multipliers of algebras with involution. We
do this first in a local context and later in a (specific) global context. The results in this
chapter were obtained in collaboration with J. Van Geel.

Throughout this chapter F denotes a field.

5.1 Question. Let R be a domain with fraction field F. Let (A, σ) and (A′, σ′) be
R−algebras with involution. Suppose that (A, σ)F ≅F (A′, σ′)F . Does this imply that
(A, σ) ≅R (A′, σ′)?

119



120 Chapter 5

If R is such that this question has a positive answer, then we say that rational isomor-
phism implies isomorphism for R, but we cannot expect a positive answer for a general
domain R. On the level of the algebras alone, it does not always hold (see Remark
1.32). Furthermore, even though we showed in Theorem 4.34 that rationally isomorphic
R−algebras are isomorphic, in the case where R is a Henselian valuation ring in which 2
is invertible, this is no longer true if one considers Henselian local domains. We give a
counterexample below, inspired by our discussions on this topic with M. Ojanguren.

5.2 Example. Let R = R[[x, y]]/(x2 + y2). Since R[[x, y]] is a complete local domain,
it is Henselian. It follows that R is also a local Henselian domain. The residue field of
R is R. We denote the fraction field of R by L. Consider the bilinear forms b = ⟨1,1⟩
and b′ = ⟨1,−1⟩ over R. Then Ad(bR) and Ad(b′R) are R−algebras with involution of the
first kind. Since −1 ∈ F2, it follows that Ad(bF) ≅F Ad(b′F). However, since −1 ∉ R2, b
is not hyperbolic, and hence, Ad(b) /≅R Ad(b′). This implies that Ad(bR) and Ad(b′R)
are not isomorphic as R−algebras with involution.

In the rest of the chapter, we focus mainly on positive answers to Question 5.1. In the
first section, which is a natural continuation of section 4.3.2, we show in Theorem 5.16
that rational isomorphism implies isomorphism in the case where R is a semilocal Bé-
zout domain with 2 ∈ R×, so in particular if R is a valuation ring with 2 ∈ R×. We do this
by studying multipliers of F−algebras with involution obtained by scalar extension from
R−algebras with involution.
In the next sections, the focus shifts a bit from Question 5.1 to multiplier results for
algebras with involution. In section 5.2, we consider the case where R is a discrete val-
uation ring. In that case, different (simpler and more direct) arguments can be given for
some of the statements in section 5.1. We present some of the arguments not only for
discrete valuation rings, but we make the jump to Dedekind domains in the next section
(see Proposition 5.24). Since Dedekind domains are locally discrete valuation rings, this
result forms a bridge between the local setting and the global setting. The conditions in
Proposition 5.24 may look a bit artificial, but formulating the result in this way, we ob-
tain a multiplier result simultaneously for two special kinds of principal ideal domains,
namely semilocal principal ideal domains and polynomial rings in one variable over a
field.
In section 5.4, we focus on the global setting in a very specific case for which the as-
sumptions in Proposition 5.24 hold, namely coordinate rings of affine conics. We will see
that we can apply Proposition 5.24 in order to decide, under certain conditions, whether
an element of the function field of the conic, is a multiplier up to a unit in the Dedekind
domain (Theorem 5.42). As an application, we obtain in a special case an answer to an
isomorphism problem for algebras of Schur index 2 with orthogonal involution (Corol-
lary 5.44).
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5.1 Semilocal Bézout domains

In this section, we let R be a semilocal Bézout domain with fraction field F. In Theorem
5.16, we show that Question 5.1 has a positive answer if 2 ∈ R×. We do this by giving,
for an R−algebra with involution (A, σ), a local characterisation of the multipliers of
(A, σ)F up to units in R. We thereby use a norm argument based on an approximation
theorem for valuations by P. Ribenboim ([63, Théorème 5’]). This is done in Theorem
5.13. In order to complete the proof of Theorem 5.16, we use the characterisation of
isomorphism of R−algebras with involution in terms of multipliers, given in Corollary
2.25. Together with the hyperbolicity result of Corollary 4.36 and Proposition 4.32, we
obtain the desired result.

In view of the relation between (skew–)hermitian spaces over R−algebras with involu-
tion and their adjoint algebras with involution, in particular the correspondence between
similarity of (skew–)hermitian spaces and isomorphism of their adjoint algebras with
involution, it is natural to consider the following question in connection to Question 5.1.

5.3 Question. Let (C, θ) be an R−algebra with involution with center a domain. Let
(V,h) and (V ′,h′) be hermitian or skew–hermitian spaces over (C, θ). Suppose that
(V,h)F and (V ′,h′)F are similar. Does this imply that (V,h) and (V ′,h′) are already
similar?

We will give a positive answer to this question in the case where 2 ∈ R× and C does not
have zero divisors.

In order to give the proof of the multiplier result, we start with some preliminary results
purely on valuation rings, not involving any algebras with involution.

5.4 Theorem (Ribenboim). Let L be a field and 31, . . . , 3m valuations on L whose re-
spective valuation ringsO1, . . . ,Om are pairwise incomparable. For i = 1, . . . ,m, let Γi be
the value group ofOi. For i, j = 1, . . . ,m, let Vi j be the smallest overring ofOi andO j in
L, and let ∆i j be the convex subgroup of Γi such that Γi/∆i j is the value group of Vi j. Then
Γi/∆i j ≅ Γ j/∆ ji. Let θi j be the quotient map Γi → Γi/∆i j. Let (γ1, . . . , γm) ∈ Γ1 × . . .× Γm

be such that θi j(γi) = θ ji(γ j) under the identification Γi/∆i j = Γ j/∆ ji. Then there exists
an element x ∈ L such that 3i(x) = γi for i = 1, . . . ,m.

Proof. See [63, Théorème 5’]. �

In the situation of Theorem 5.4, if O1, . . . ,Om are pairwise independent valuation rings,
then ∆i j = Γi and one gets the well–known classical approximation theorem. We will use
the following consequence of Theorem 5.4.
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5.5 Corollary. Let L be a field and O1, . . . ,Om pairwise incomparable valuation rings
of L. For j = 2, . . . ,m, let V1 j be the smallest overring of O1 and O j in L. Let u ∈ L be
such that u ∈ V×

12 ∩ . . . ∩ V×
1m. Then there exists an element x ∈ L such that xu ∈ O×1 and

x ∈ O×2 ∩ . . . ∩O
×
m.

Proof. Let 31, . . . , 3m be valuations on L with respective valuation ringsO1, . . . ,Om. For
i = 1, . . . ,m, let Γi be the value group of Oi, and for j = 1, . . . ,m, j ≠ i, let ∆i j be the
convex subgroup of Γi such that Γi/∆i j is the value group of Vi j, and let furthermore 3i j

be a valuation on L with valuation ring Vi j. Then the fact that u ∈ V×
12 ∩ . . . ∩ V×

1m is
equivalent to 3 j(u) ∈ ∆1 j for j = 2, . . . ,m. Furthermore, in the notation of Theorem 5.4,
we have that θ1 j(31(u−1)) = 31 j(u−1) = 0 for j = 2, . . . ,m. Applying Theorem 5.4 with
γ1 = 31(u−1) and γ2 = . . . = γm = 0 yields the statement. �

5.6 Lemma. Let L/F be a finite field extension. Let O′ be a valuation ring of L lying
over O. Let β be a prime ideal of O′ that is not maximal. Then β ∩O is a prime ideal of
O that is not maximal.

Proof. Since β is a prime ideal of O′, it is clear that β ∩ O is a prime ideal of O. Let T
be the integral closure of O in L. By [21, (3.2.3), (3.2.9)], T is the intersection of the
finitely many valuation rings of L lying over O. Let M′ be the maximal ideal of O′.
Then m′ = M′ ∩ T is a maximal ideal of T and O′ = Tm′ by Proposition 1.4. By [49,
(IX.1.11)], β∩T is a maximal ideal if and only if β∩O is a maximal ideal. Suppose that
β ∩ T is a maximal ideal. Since β ∩ T ⊂ M′ ∩ T , it follows that β ∩ T = M′ ∩ T = m′.
This implies that β contains m′O′ = m′Tm′ , which is equal toM′, and hence, β =M′, a
contradiction. So, it follows that β ∩O is not maximal. �

5.7 Lemma. Let O be a valuation ring of F and let (Fh,Oh) be a Henselisation of
(F,O). Let F ⊊ L ⊂ Fh be a finite subextension. Then there exists a finite subextension
L ⊂ M ⊂ Fh with the following properties:

(a) O has more than one extension to M;

(b) let 3 be a valuation on F with valuation ring O and let 31 = 3h∣M, 32, . . . , 3m be the
different valuations on M extending 3 (i.e. such that 3i(y) = 3(y) for all y ∈ F).
Then there exist n1, . . . ,nm ∈ N such that for all x ∈ M, we have that

3(NM/F(x)) = 31(x) +
m

∑
i=2

ni3i(x).

Proof. Let F s be a separable closure of F and Os an extension of O to F s with respect
to which (Fh,Oh) is defined. Let N/F be the Galois closure of L in F s. Let 3s be a
valuation on F s with valuation ring Os, extending 3. Let 3h = 3s∣Fh and 4 = 3s∣N . Since
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N/F is a Galois extension, all valuation rings of N lying over O are conjugate to O4 by
[21, (3.2.15)]. Let H = {τ ∈ Gal(N/F) ∣ τ(O4) = O4} and let M be the fixed field of H.
Then M = N ∩ Fh (for an explicit argument see the proof of [21, (5.2.5)]). In particular,
since L ⊂ N ∩ Fh, this implies that M ≠ F, and hence H ≠ Gal(N/F).

Let {ρ1 = idN , ρ2, . . . , ρt} be a set of representatives for the right cosets of Gal(N/F)/H.
By Galois theory, the restrictions of the ρi to M are exactly the different F−embeddings
of M in F s. We have that 4○(ρi)∣M is a valuation on M with valuation ring ρ−1

i (O4)∩M.
It is possible that ρ−1

i (O4)∩M = ρ−1
j (O4)∩M for i ≠ j, but by the proof of [21, (3.3.1)],

it follows that O4 ∩M ≠ ρ−1
i (O4) ∩ M if i ≠ 1. This means that 4∣M ≠ 4 ○ (ρi)∣M if i ≠ 1,

and hence, O has more than one extension to M, since H ≠ Gal(N/F).

Let x ∈ M be arbitrary. Then NM/F(x) = xρ2(x)⋯ρt(x) by definition. It follows that

3(NM/F(x)) = 4(NM/F(x)) = 4(xρ2(x)⋯ρt(x)) = 4(x) + 4(ρ2(x)) + . . . + 4(ρt(x)).

Let 31 = 3h∣M, 32, . . . , 3m be the different valuations on M extending 3. We have that
{32, . . . , 3m} = {4 ○ (ρ2)∣M, . . . ,4 ○ (ρt)∣M}. By the reasoning above, it follows that there
exist n1, . . . ,nm ∈ N such that

3(NM/F(x)) = 31(x) +
m

∑
i=2

ni3i(x).

�

5.8 Lemma. Let O1, . . . ,Or be pairwise incomparable valuation rings of F and let R =

O1 ∩ . . . ∩ Or. Suppose that x ∈ F is such that x ∈ F×2O×i for i = 1, . . . , r. Then
x ∈ F×2R×.

Proof. Let 41, . . . ,4r be valuations on F with respective valuation rings O1, . . . ,Or.
Denote their respective value groups by Γ1, . . . ,Γr. The hypothesis implies that there
exists a tuple (γ1, . . . , γr) ∈ Γ1 × . . . × Γr such that 41(x) = 2γ1, . . . ,4r(x) = 2γr. In
the notations of Corollary 5.5, we have that θi j(2γi) = 3i j(x) = 3 ji(x) = θ ji(2γ j). Since
the θi j ∶ Γi → Γi/∆i j are group homomorphisms and since Γi/∆i j is an ordered abelian
group and therefore torsion–free, it follows that θi j(γi) = θ ji(γ j). Therefore, we can
apply Corollary 5.5 to find an element a ∈ F such that 41(a) = γ1, . . . ,4r(a) = γr. Then
4i(a2x−1) = 0 for i = 1, . . . , r, which means that a2x−1 ∈ R×. This proves the claim. �

From the next result on, we bring in the algebras with involution. Let (A, σ) be an
R−algebra with involution and let e ∈ F×. The aim is to show that if 2 ∈ R×, then
e ∈ G((A, σ)F)R× if and only if for every valuation ring O of F containing R, and such
that e ∉ F×2O×, we have that σ is hyperbolic over the residue field of O. The hardest
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part is to prove that the hyperbolicity conditions imply that e ∈ G((A, σ)F)R×. We do
this by looking at the overrings R ⊊ T ⊂ F, and checking that e ∈ G((A, σ)F)T× for
every such T .

We start with a lemma we will use in combination with Lemma 5.7.

5.9 Lemma. Let (B, τ) an F−algebra with involution. Let F′/F be an algebraic field
extension such that τF′ is hyperbolic. Then there is a finite separable subextension L/F
over which τ becomes hyperbolic.

Proof. Let (e1, . . . , en) be an F−basis for B. Then it is an F′−basis for BF′ . Since
τF′ is hyperbolic, there is an idempotent x ∈ BF′ such that τF′(x) = 1 − x. Write x =

∑n
i=1 eixi, with x1, . . . , xn ∈ F′. Then τ already becomes hyperbolic over F(x1, . . . , xn).

Since x1, . . . , xn are algebraic over F, F(x1, . . . , xn) is a finite extension of F. Since
char(F) ≠ 2, we get that τ already becomes hyperbolic over the separable closure of F
in F(x1, . . . , xn), by [45, (9.16)]. �

5.10 Proposition. Assume that 2 ∈ R×. Let (A, σ) be an R−algebra with involution
and let e ∈ F×. Assume that for each maximal ideal m of R such that e ∉ F×2R×m, we
have that σ becomes hyperbolic over R/m. Suppose furthermore that for every overring
R ⊊ T ⊂ F, we have that e ∈ G((A, σ)F)T×. Then e ∈ G((A, σ)F)R×.

Proof. Since F×2R× ⊂ G((A, σ)F)R×, we may assume that e ∉ F×2R×. By Proposition
2.24 (a), this implies that σ is not hyperbolic over F. Let m1, . . . ,m` be the different
maximal ideals of R. For i = 1, . . . , `, let Oi = Rmi , κi = R/mi, and let (Fh

i ,O
h
i ) be a

Henselisation of (F,Oi). Then O1, . . . ,O` are pairwise incomparable by Proposition
1.2. Since e ∉ F×2R×, it follows from Lemma 5.8 that e ∉ F×2O×i for at least one
i ∈ {1, . . . , `}. Without loss of generality, we may assume that e ∉ F×2O×1 . By as-
sumption σ is hyperbolic over κ1. By Theorem 4.20, since 2 ∈ R×, it follows that σ
is hyperbolic over Fh

1 . By Lemma 5.9, σ is already hyperbolic over a finite subexten-
sion F ⊊ L ⊂ Fh

1 . Let L ⊂ M ⊂ Fh
1 be a finite subextension as in Lemma 5.7 and let

Õ1 = O
h
1 ∩M. Let T be the set of the rings Õ1W, where W runs over the valuation rings

of M lying over O1 and different from Õ1. Note that T is non–empty by Lemma 5.7
(a). Furthermore, T has finitely many elements by [21, (3.2.9)]. Since all overrings of
Õ1 in M are linearly ordered, it follows that T has a smallest element, say Ṽ . Since the
valuation rings of M lying over O1 are pairwise incomparable by [21, (3.2.8)], we have
that Õ1 ⊊ Ṽ .

We set V = Ṽ ∩ F. Then V is a valuation ring of F containing O1. Let β be the maximal
ideal of Ṽ . Then Ṽ = (Õ1)β ≠ Õ1 by [21, p. 43], and hence β is a prime ideal of Õ1 that
is not maximal. We have that β∩V is the maximal ideal of V . Furthermore, it is clear that
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β∩V = β∩O1. Hence, V = (O1)β∩O1 and since β∩O1 is a prime ideal of O1 that is not
maximal by Lemma 5.6, we have thatO1 ⊊ V . Let T = V ∩O2 ∩ . . .∩O`. Then R ⊊ T by
Lemma 1.6. By assumption, we have that e = au, with a ∈ G((A, σ)F) and u ∈ T×. Since
u ∈ T× ⊂ V× ⊂ Ṽ×, it follows from the minimality of Ṽ that u is a unit in every element
of T . Hence, Corollary 5.5 yields that there exists x ∈ M such that xu ∈ Õ

×

1 and x ∈ W×,
for every valuation ring W of M lying over O1 and different from Õ1. By Lemma 5.7,
it follows that NM/F(x)u = NM/F(x)x−1xu ∈ O×1 , and NM/F(x)u ∈ O×2 ∩ . . . ∩ O

×
` , since

u ∈ (O2 ∩ . . . ∩ O`)
×. Hence, NM/F(x)u ∈ R×. Furthermore, by Lemma 2.23 (a) and

(b), we have that NM/F(x) ∈ G((A, σ)F). Since G((A, σ)F) is a group, it follows that
eNM/F(x) ∈ G((A, σ)F)R×, and hence e ∈ G((A, σ)F)R×, as desired. �

As a consequence of the previous proposition, we already obtain the desired multiplier
result in the case where R has Krull dimension 1.

5.11 Corollary. Assume that 2 ∈ R× and that R has Krull dimension 1. Let (A, σ)

be an R−algebra with involution and let e ∈ F×. Assume that for each maximal ideal
m of R such that e ∉ F×2R×m, we have that σ becomes hyperbolic over R/m. Then
e ∈ G((A, σ)F)R×.

Proof. Let m1, . . . ,m` be the different maximal ideals of R and let O1 = Rm1 , . . . ,O` =

Rm` . The map p ↦ pRmi defines a one-to-one correspondence between prime ideals of
R contained in mi and prime ideals of Oi (cf. [36, Theorem 34]). So, it follows that
O1, . . . ,O` have Krull dimension 1. We now prove the statement by induction on `. If
` = 1 then F is the only overring of R inside F and clearly e ∈ G((A, σ)F)F× = F×.
Hence, by Proposition 5.10, it follows that e ∈ G((A, σ)F)R×. Suppose that ` > 1. Let
R ⊊ T ⊂ F be an overring. By Lemma 1.6 (b), there exist valuation rings V1, . . . ,V` such
that T = V1∩ . . .∩V` and for each i ∈ {1, . . . , `}, there exists j ∈ {1, . . . , `} such thatO j ⊂

Vi, where at least one of these inclusions is strict. SinceO1, . . . ,O` have Krull dimension
1, they do not have overrings inside F that are different from F. Hence, without loss of
generality, we may assume that there exists r ∈ {1, . . . , `} such that V1 = . . . = Vr = F
and Vi = Oi for i = r + 1, . . . , `. It follows that mr+1, . . . ,m` are the maximal ideals of T .
Hence, by the induction hypothesis, it follows that e ∈ G((A, σ)F)T×. Since this holds
for all R ⊊ T ⊂ F, Proposition 5.10 yields that e ∈ G((A, σ)F)R×. �

5.12 Theorem. Assume that 2 ∈ R×. Let (A, σ) be an R−algebra with involution and
e ∈ F×. Suppose that for every overring R ⊂ T ⊂ F, we have that for every maximal ideal
M of T such that e ∉ F×2T×

M, σ is hyperbolic over T/M. Then e ∈ G((A, σ)F)R×.

Proof. Since F×2R× ⊂ G((A, σ)F)R×, we may assume that e ∉ F×2R×. Let T be the
set of overrings R ⊂ T ⊂ F such that e ∉ G((A, σ)F)T×. We need to show that T = ∅.
So, suppose for the sake of contradiction that T ≠ ∅. Then T is partially ordered by
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inclusion. We show that T contains a maximal element. By Zorn’s Lemma, it suffices
to show that every chain in T has an upper bound. So, let (Ti)i∈I be a chain in T . Let
T = ⋃i∈I Ti. We show that T ∈ T . Let f be any element in G((A, σ)F)T×, say f = au,
with a ∈ G((A, σ)F) and u ∈ T×. Then there exist an index j ∈ I such that u,u−1 ∈ T j.
This implies that f ∈ G((A, σ)F)T×

j . Since e /∈ G((A, σ)F)T×
j for all j, it follows that

e /∈ G((A, σ)F)T×. Hence, T ∈ T . It follows that T contains a maximal element, which
we denote by T̃ . Then for T̃ ⊊ T ′ ⊂ F, we have that e ∈ G((A, σ)F)T ′×. Applying
Proposition 5.10 now yields that e ∈ G((A, σ)F)T̃×, a contradiction. Hence, T = ∅ and
therefore e ∈ G((A, σ)F)R×. �

5.13 Theorem. Assume that 2 ∈ R×. Let (A, σ) be an R−algebra with involution and
let e ∈ F×. Then the following are equivalent:

(i) e ∈ G((A, σ)F)R×.

(ii) For each valuation ring O of F containing R, such that e ∉ F×2O×, we have that
(A, σ) is hyperbolic over the residue field of O.

(iii) For every valuation ring O of F containing R that is maximal with the property
that e ∉ F×2O×, we have that (A, σ) is hyperbolic over the residue field of O.

Proof. That (i) implies (ii) follows from Corollary 4.36. The converse follows immedi-
ately from Theorem 5.12. It is clear that (ii) implies (iii). Suppose that (iii) holds. LetO
be a valuation ring of F containing R such that e ∉ F×2O×. Denote the residue field of
O by κ. It is clear that the set T consisting of valuation rings V of F containing O such
that e ∉ F×2V× has a maximal element (namely the union of all such V), say Ṽ . Let m̃
be the maximal ideal of Ṽ . Then O/m̃ defines a valuation ring of κ̃ = Ṽ/m̃ with residue
field κ. By assumption, σ becomes hyperbolic over κ̃. Corollary 4.10 then implies that
σ also becomes hyperbolic over κ. �

5.14 Remark. If the center of A is not a domain then the properties (i) and (ii) in The-
orem 5.13 both hold for trivial reasons. For if (A, σ) is degenerate then (A, σ)F is also
degenerate and hence hyperbolic. Proposition 2.24 (a) yields that G((A, σ)F) = F×.
Furthermore, (A, σ) remains degenerate over the valuation rings of F containing R and
hence, (A, σ) is automatically hyperbolic over the residue fields of these valuation rings.

5.15 Proposition. Assume that 2 ∈ R×. Let S be a separable quadratic R−algebra
that is a domain. Let ((A, σ), (A′, σ′)) be a pair of R−algebras with involution. As-
sume that we are given R−isomorphisms f ∶ S → Z(A) and f ′ ∶ S → Z(A′) and
an S F−isomorphism (A, σ)F → (A′, σ′)F with respect to f and f ′. Then (A, σ) ≅S

(A′, σ′).
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Proof. By assumption, there is an S F−isomorphism A′F → AF with respect to f ′ and
f . By Propositions 1.29 and 1.31, this implies that there already is an S−isomorphism
ϕ ∶ A′ → A with respect to f ′ and f . Then ϕ ∶ (A′, σ′) → (A, ϕ○σ′ ○ϕ−1) is an S−linear
isomorphism of R−algebras with involution. In order to prove the claim, it then suffices
to show that (A, σ) ≅S (A, ϕ○σ′ ○ϕ−1) with respect to f . So, without loss of generality
we may assume that A′ = A. By Proposition 2.20, there exists an element s ∈ A× such
that σ(s) = s and σ′ = Int(s) ○ σ. By Proposition 2.18, there exist elements e ∈ F× and
g ∈ A×F such that es = σF(g)g. Combining Corollary 4.36, Theorem 5.13 and Corollary
2.25 yields that (A, σ) ≅S (A, σ′). �

Using Proposition 5.15, we can now give a positive answer to Question 5.1 in the case
where 2 ∈ R×. We thereby don’t need the formulation of Proposition 5.15 with two
different algebras, but we will use the more general formulation in order to obtain a
result concerning Question 5.3 in Corollary 5.17.

5.16 Theorem. Assume that 2 ∈ R×. Let (A, σ) and (A′, σ′) be R−algebras with invo-
lution. If (A, σ)F ≅F (A′, σ′)F then (A, σ) ≅R (A′, σ′).

Proof. By Proposition 4.32 we may assume that A′ = A and that (A, σ)F ≅Z(AF)

(A, σ′)F . Furthermore, we may assume that Z(A) is a domain by Proposition 4.33.
The result now follows from Proposition 5.15. �

5.17 Corollary. Assume that 2 ∈ R×. Let (∆, θ) be an R−algebra with involution without
zero divisors. Let ε = ±1. Let (V,h) and (V ′,h′) be ε−hermitian spaces over (∆, θ). If
(V,h)F and (V ′,h′)F are similar then (V,h) and (V ′,h′) are already similar.

Proof. It follows from Proposition 2.21, applied in the case R = F, that Ad(hF) ≅Z(∆F)

Ad(h′F). Proposition 5.15 then yields that Ad(h) ≅Z(∆) Ad(h′). Applying the other
implication given by Proposition 2.21, we obtain that there exists u ∈ R× such that
(V ′,h′) ≃R (V,uh). �

5.18 Remark. Originally, we only had a proof of Theorem 5.13 in the case where R has
finite Krull dimension. K.J. Becher then pointed out a way to obtain the statement of
Theorem 5.16 also in the case of infinite Krull dimension, namely by showing that the
“data” defining an R−algebra with involution can already be defined over a semilocal
Bézout domain of finite Krull dimension. We then showed that the multiplier statement
in Theorem 5.13 also holds for infinite Krull dimension, using the same technique. In-
spired by the methods there, we eventually found a uniform proof of Theorem 5.13.

We finish this section with some history concerning Question 5.1. Let T be a domain
and L its fraction field. The rational isomorphism implies isomorphism problem can be
reformulated in terms of algebraic groups, and has also been studied from this point of
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view. Let (A, σ) and (A′, σ′) be T−algebras with involution such that (A, σ)L ≅L

(A′, σ′)L. Consider the linear algebraic group G̃ = AutZ(A)(A, σ). The question
whether (A, σ) ≅T (A′, σ′) translates to the question whether principal G̃−homogeneous
spaces that become isomorphic over L are already isomorphic over T . In the case where
T is a regular local ring, this is related to a conjecture of A. Grothendieck, stating that
for a reductive algebraic group G over T , principal G−homogeneous spaces that become
trivial over L are already trivial (see [27, Remarque 3, pp. 26–27] and [29, Remarque 1.1
a]). If R is of geometric type over a field k and G is defined over k, then this conjecture
is known as Serre’s conjecture (see [67, Remarque p. 31]).

In [55], Y. Nisnevich proved Grothendieck’s conjecture in the case where T is a regular
local ring of dimension 1, or a Henselian regular local ring of arbitrary dimension. His
work includes, in the case where T is a discrete valuation ring with 2 ∈ T×, an affirmative
answer to Question 5.1. Nisnevich’s proof uses the fact that the principal homogeneous
spaces considered are up to isomorphism classified by a pointed étale cohomology set.
His proof is therefore of a very different nature than the one presented here in the case
of discrete valuation rings.
Suppose that T is a regular local ring containing a field of characteristic different from
2. In [56], I. Panin proved a purity theorem on multipliers for AutZ(A)(A, σ), (A, σ)
a T−algebra with involution. Using Nisnevich’s results for discrete valuation rings in
[55], I. Panin obtained a positive answer to Question 5.1 for T , and hence, also con-
firmed Grothendieck’s conjecture for AutZ(A)(A, σ).

In view of the important role of the Henselian case in the proof of Theorem 5.16, it would
be interesting to know whether Grothendieck’s conjecture holds in the case where T is a
(general) Henselian valuation ring. Furthermore, in the spirit of this chapter, and keeping
the results of Nisnevich in mind, one could ask the (more difficult) question whether for
any reductive algebraic group G over T , principal G−homogeneous spaces that become
isomorphic over L, are already isomorphic over T .

5.2 Discrete valuation rings

In this section, we present a different proof of Corollary 4.36 in the case of a discrete
valuation ring, based on the arguments in the proof of [71, (2.4), (2.6)]. We still pass to a
Henselisation in a preliminary lemma, but we don’t need to invoke the results of section
4.3.2 for Henselian valuation rings. We complement the results obtained here in the next
section with a different proof of the implication (ii)⇒ (i) in Theorem 5.13, in the case of
semilocal principal ideal domains and for polynomial rings in one variable over a field.
The norm argument based on P. Ribenboim’s approximation theorem is then replaced by
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a norm argument on ideals in a Dedekind domain, and is much more direct.

5.19 Lemma. Assume that char(F) ≠ 2. Let (B, τ) be an F−algebra with involution.
Then the following are equivalent:

(i) (B, τ) is hyperbolic.

(ii) There is an element b ∈ B, such that τ(b)b = 0 and dimF(bB) ⩾ 1
2 dimF(B).

Proof. See [71, (2.1)]. �

5.20 Lemma. LetO be a valuation ring of F. LetA be an Azumaya algebra with center
O or a separable quadratic O−algebra that is a domain. If Z(A) ≠ O, assume that A
carries an O−linear involution of the second kind. Then there exists a field extension
L/F splitting AF , such that O has an extension in L with the same value group as O.

Proof. We denote the center ofA by S . Let (Fh,Oh) be a Henselisation of (F,O). Sup-
pose first that S h = S ⊗O O

h is a domain. By Proposition 1.26, there exists an Azumaya
algebra ∆h over S h without zero divisors, and an integer r ∈ N such that A

Oh ≅ Mr(∆
h).

Let Dh = ∆h
Fh . Then AFh ≅ Mr(Dh). Since Oh is Henselian, S h is valuation ring by

Proposition 1.22. By Proposition 4.12 and [75, (2.2)], S h extends (uniquely) to a val-
uation ring of Dh, which is equal to ∆h. Furthermore, ∆h and S h have the same value
groups, and hence ∆h and Oh have the same value groups. Let L be a maximal subfield
of Dh and let OL = ∆h ∩ L. Then L is a splitting field of AF and the value groups of OL

and O are the same.

Suppose that S h is not a domain. Since A carries an O−linear involution of the second
kind, by Proposition 1.18, there exists a central simple Fh−algebra B such that AFh ≅

B×Bop. By Proposition 1.26, there exists an Fh−division algebra D′ and n ∈ N such that
B ≅ Mn(D′). SinceOh is Henselian, it extends uniquely to a valuation ring ∆′ of D′, and
the value groups of Oh and ∆′ are equal. Taking, as in the reasoning above, a maximal
subfield of D′, we find a splitting field L of B containing a valuation ring extending O
that has the same value group as O. Then L is also a splitting field of AF . �

For the next result, we mimick the proof of [71, (2.4), (2.6)], where the author considered
the case where F is the rational function field in one variable over a field.

5.21 Proposition. Let O be a discrete valuation ring of F and assume that 2 ∈ O×. De-
note the residue field of O by κ. Let (A, σ) be an O−algebra with involution. Suppose
that there exist elements e ∈ F×, s ∈ A× and g ∈ A×F such that es = σF(g)g. If e ∉ F×2O×,
then (A, σ)κ is hyperbolic.
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Proof. Note that, if Z(A) ≅ O×O then (A, σ)κ is degenerate and hence automatically
hyperbolic by Proposition 1.42. So, in the rest of the proof, we assume that Z(A) is a
domain.

Let 3 be a discrete valuation on F with valuation ring O. Without loss of generality, we
may assume that 3(e) = 1. For let π be a uniformiser for 3, then multiplying both sides
of σF(g)g = es with an appropriate even power of π, we obtain πus = σF(g′)g′, with
u ∈ O×,g′ ∈ A×F . By Theorem 2.39, there exists g̃ ∈ A such that πus = σ(g̃)g̃. By abuse
of notation, we denote g̃ again by g in the rest of the proof.
Let n ∈ N be such that dimOA = dimFAF = n2 if σ is of the first kind, and such that
dimOA = dimFAF = 2n2 if σ is of the second kind. Let L/F be as in Lemma 5.20 a
splitting field ofAF such that there exists an extension Õ ofO with the same value group
as O. Let 4 be a discrete valuation with valuation ring Õ and let Π be a uniformiser for
4. Denote the residue field of Õ by κ̃. We denote the map O → κ and the induced map
A → Aκ both by . We have that σ(g) = σκ(g), and since 3(e) = 1, it follows that
0 = σκ(g)g. Since 2 ∈ O× by assumption, i.e. char(κ) ≠ 2, in order to show that (A, σ)κ
is hyperbolic, by Lemma 5.19, it suffices to show that

dimκ(gAκ) ⩾
1
2

dimκ(Aκ) =
n2

2
.

We have a commutative diagram

A

��

ϕ // A⊗O Õ

��
Aκ

ψ // Aκ ⊗κ κ̃.

We have that AL ≅ Mn(L) if σ is of the first kind. Suppose that σ is of the second
kind. Looking at the proof of Lemma 5.20, we may assume that AF already becomes
degenerate over a Henselisation of (F,O), or that Z(AF) ⊂ L. In any case, it follows
that AL ≅ Mn(L) × Mn(L) ≅ Mn(L) × Mn(L)op. It follows from Proposition 1.31 and
Corollary 1.29 thatA⊗OÕ ≅ Mn(Õ), and hence alsoA⊗Õ κ̃ ≅ Mn(κ̃), if σ is of the first
kind, and from Corollary 1.33 that A⊗OÕ ≅ Mn(Õ) × Mn(Õ) ≅ Mn(Õ) × Mn(Õ)op,
and hence also A⊗Õ κ̃ ≅ Mn(κ̃) ×Mn(κ̃) ≅ Mn(κ̃) ×Mn(κ̃)

op, if σ is of the second kind.
Note that the involution σÕ on A⊗OÕ then corresponds to the switch involution on
Mn(Õ) ×Mn(Õ)op. Since

dimκ̃ ψ(g)(A⊗κ κ̃) = dimκ̃(g⊗ 1)(Aκ ⊗κ κ̃) = dimκ̃(gAκ ⊗κ κ̃) = dimκ(gAκ)

it suffices to show that

dimκ̃ ψ(g)(A⊗κ κ̃) = dimκ̃ ϕ(g)(A⊗κ κ̃) ⩾
n2

2
.
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Suppose that σ is of the first kind. It is well known that dimκ̃(ϕ(g)Aκ̃) = rank(ϕ(g)) ⋅n.
Since Õ is a valuation ring, it is an elementary divisor domain by Proposition 1.3. Hence,
there are matrices P,Q ∈ Mn(Õ)× such that ϕ(g) = P diag(d1, . . . ,dn)Q, with d1, . . . ,dn ∈

Õ. Let C = diag(d1, . . . ,dn). It follows that ϕ(g) = PCQ. Since P,Q ∈ Mn(κ̃)
×, we

have that rank(ϕ(g)) = rank(C). The latter is obtained by subtracting the number of
di = 0 from n. Let us denote this number by `. Then ` is equal to the number of di

that are divisible by Π. This number is at most 4(d1) + . . . + 4(dn) = 4(det(ϕ(g))),
since det(P),det(Q) ∈ Õ

×. Taking determinants of the relation eϕ(s) = ϕ(σ(g))ϕ(g) =
σÕ(ϕ(g))ϕ(g) yields

en det(ϕ(s)) = det(ϕ(g))2,

by [45, (2.2)]. Since s ∈ A×, it follows that det(ϕ(s)) ∈ Õ× and hence 4(det(ϕ(g))) = n
2 .

So, we get that

dimκ̃(ϕ(g)(A⊗κ κ̃)) = n ⋅ rank(ϕ(g)) = n(n − `) ⩾ n[n − 4(det(ϕ(g)))] = n2/2.

Suppose that σ is of the second kind. Let g′ ∈ Mn(Õ) and g′′ ∈ Mn(Õ)op be such that
ϕ(g) = (g′,g′′) ∈ A⊗OÕ ≅ Mn(Õ) ×Mn(Õ)op. It follows that

dimκ̃(ϕ(g)(A⊗κκ̃)) = dimκ̃(g′ Mn(κ̃)) + dimκ̃(g′′ Mn(κ̃)
op).

Invoking the elementary divisor property of Õ, we find matrices P′,Q′,P′′,Q′′ ∈ Mn(Õ)×

and elements d′1, . . . ,d
′
n,d

′′
1 , . . . ,d

′′
n ∈ Õ such that

g′ = P′ diag(d′1, . . . ,d
′
n)Q′ and g′′ = P′′ diag(d′′1 , . . . ,d

′′
n )Q′′.

We have that dimκ̃(g′ Mn(κ̃)) = rank(g′)⋅n = n(n−`′), where `′ is the number of indices
in i ∈ {1, . . . ,n} such that d′i = 0, and dimκ̃(g′′ Mn(κ̃)) = rank(g′′) ⋅ n = n(n − `′′), where
`′′ is the number of indices in i ∈ {1, . . . ,n} such that d′′i = 0. We have that `′ is equal to
the number of d′i divisible by Π and `′′ is equal to the number of d′′i divisible by Π. As
in the reasoning in the first kind case, we get that

dimκ̃(g′ Mn(κ̃)) ⩾ n(n − 4(det(g′))) and dimκ̃(g′′ Mn(κ̃)
op) ⩾ n(n − 4(det(g′′))).

So, it follows that

dimκ̃(ϕ(g)(A⊗κκ̃)) ⩾ n(n − 4(det(g′))) + n(n − 4(det(g′′)))

= 2n2 − n(4(det(g′g′′))). (5.2.1)

Let s′, s′′ ∈ Mn(Õ) be such that ϕ(s) = (s′, s′′). Since s ∈ A×, it follows that s′, s′′ ∈
Mn(Õ)×. Using the fact that σÕ acts as the switch involution on Mn(Õ)×Mn(Õ)op, we
get (es′, es′′) = (g′′,g′)(g′,g′′) = (g′′g′,g′ ∗ g′′) = (g′′g′,g′′g′) in Mn(Õ) × Mn(Õ)op.
It follows that es′ = g′′g′ in Mn(Õ), and hence, taking determinants, en det(s′) =
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det(g′′g′). Applying 4 and using that det(s′) ∈ Õ
×, it follows that 4(det(g′′g′)) = n

(since 4(e) = 3(e) = 1). Plugging this in into (5.2.1) yields

dimκ̃(ϕ(g)(A⊗κκ̃)) ⩾ 2n2 − n(4(det(g′g′′))) = n2 ⩾ n2/2.

�

5.22 Corollary. Let O be a discrete valuation ring of F and assume that 2 ∈ O×. De-
note its residue field by κ. Let (A, σ) be an O−algebra with involution. Let e ∈

G((A, σ)F)O×. If e ∉ F×2O×, then (A, σ)κ is hyperbolic.

Proof. By assumption, there exist u ∈ O× and g ∈ A×F such that eu = σF(g)g. Proposi-
tion 5.21 yields the statement. �

The converse of Corollary 5.22, if (A, σ)κ is hyperbolic then every element of F× is a
multiplier times a unit in O, also holds. This will be shown in Corollary 5.27, in the
more general setting of Dedekind domains.

5.3 Dedekind domains

In this section, we complete the alternative proof of the multipler result for discrete
valuation rings in which 2 is invertible, and in fact we give the proof more generally
for semilocal principal ideal domains and polynomials in one variable over a field. For
semilocal principal ideal domains, we can then also use a different argument to obtain
the statement of Theorem 5.16, by using the representation results from section 2.5.
The polynomial rings we consider here are the first “global” domains that pop up in
this thesis in the context of Question 5.1 and the related multiplier results. One could
ask whether the multiplier results might hold for arbitrary principal ideal domains, or
more generally Dedekind domains, in which 2 is invertible. Since they hold for each
localisation of the Dedekind domain at a prime ideal (being a discrete valuation ring),
this comes down to the following question.

5.23 Question. Let R be a Dedekind domain and (A, σ) an R−algebra with involution.
Is G((A, σ)F)R× = ∩pG((A, σ)F)R×p , where p runs over all prime ideals of R?

One cannot expect a positive answer to this question for general Dedekind domains, not
even for principal ideal domains. We give a counterexample in Example 5.47. However,
under certain conditions on R or (A, σ), we can give a positive answer. The first result
of this kind is given in Proposition 5.24. We can then apply this result to simultaneously
obtain the desired multiplier result for semilocal principal ideal domains and polynomial
rings in one variable over a field. Moreover, we can also apply Proposition 5.24 in the
next section, where we consider coordinate rings of affine conics, which are Dedekind
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domains but need not be principal ideal domains. This is the strongest motivation to
formulate Proposition 5.24 as it is.

It is not clear whether a positive answer to Question 5.23 would also yield a positive an-
swer to Question 5.1. In order to make the jump from the multiplier results to the actual
isomorphism results in the previous section, we used results involving (skew–)hermitian
spaces, based on the fact that there is a cancellation law for such spaces, and Proposition
2.10. We don’t know in which generality these statements hold.

A Dedekind domain is a Noetherian, integrally closed domain of Krull dimension one.
For the rest of this section, we fix a Dedekind domain R with fraction field F. Then the
localisation of R at a nonzero prime ideal is a discrete valuation ring.

5.24 Proposition. Let (A, σ) be an R−algebra with involution. Let e ∈ F× be such that
for every prime ideal p of R, we have that e ∈ R×p or e ∉ F×2R×p . Assume furthermore that
for all prime ideals p of R such that e ∉ F×2R×p , there exists a Henselisation (Fh

p ,R
h
p) of

(F,Rp) and a finite subextension F ⊂ Lp ⊂ Fh
p such that the integral closure of R in Lp is

a principal ideal domain and σLp is hyperbolic. Then e ∈ G((A, σ)F)R×.

Proof. Since R is a Dedekind domain, we can factor the fractional ideal eR into prime
ideals. Let p1, . . . ,pr be prime ideals of R and α1, . . . , αr ∈ Z be such that eR = upα1

1 ⋯pαr
r .

Then α1, . . . , αr are odd by assumption. We will show that for all i ∈ {1, . . . , r}, the
prime ideal pi is principal, and furthermore, that there exists a generator πi for pi such
that πi ∈ G((A, σ)F).

Let p ∈ {p1, . . . ,pr} be arbitrary. Denote the residue field of Rp by κ. By assumption,
there exists a Henselisation (Fh

p ,R
h
p) of (F,Rp), and a finite subextension F ⊂ Lp ⊂ Fh

p

such that σLp is hyperbolic, and such that the integral closure of R in Lp is a principal
ideal domain. We denote this integral closure by R′. The norm map NLp/F ∶ Lp → F
induces a norm map from the set of ideals in R′ to the set of ideals in R. Let V = Rh

p ∩ Lp.
Since (F,R) ⊂ (Fh

p ,R
h
p) is an immediate extension, the residue field of V is equal to κ.

There is a principal prime ideal (Π) of R′ such that V = R′
(Π)

. Then (Π) ∩ R = p, and
taking norms of ideals, we have that (NLp/F(Π)) = NLp/F((Π)) = p (cf. [48, (I.22)]),
since the residue field of V is κ. Hence, π = NLp/F(Π) is a generator for the prime ideal
p. Since (A, σ)Lp is hyperbolic, G((A, σ)Lp) = L×p by Proposition 2.24 (a). Invoking
part (b) of the same proposition then implies that π ∈ G((A, σ)F).
It follows that eR = (πα1

1 ⋯παr
r )R, and hence, there exists u ∈ R× such that e = πα1

1 ⋯παr
r u ∈

G((A, σ)F)R×. �

5.25 Remark. In Proposition 5.24, the assumptions can be weakened in the following
way. Looking at the proof, one sees that it in fact suffices to assume that for each prime
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ideal p such that e ∉ F×2R×p , there is a finite subextension F ⊂ Lp ⊂ Fh
p such that σLp

is hyperbolic, and the prime ideals of the integral closure of R in Lp lying over p are
principal.

We will only apply the following lemma in the case of function fields of conics, which
are possibly split, but we formulate it for more general function fields since the proof
works in that generality.

5.26 Lemma. Let k be a field and let k(X) be the function field of a projective, geo-
metrically irreducible k−variety. Let 4 be a k−valuation on k(X) and denote its residue
field by k4. Let furthermore L/k be a finite separable field extension such that there is
a k−embedding ψ ∶ L ↪ k4. Then there exists a Henselisation of k(X) at 4 containing
L(XL).

Proof. Since L/k is separable, we have that L = k(β) ≅ k[t]/( fβ), for some β ∈ L and
fβ ∈ k[t] the minimal polynomial of β over k. Let fβ = h1⋯hs ∈ k4[t] be the factorisa-
tion of fβ in irreducible polynomials. Then the residue fields of the valuations on L(XL)

lying over 4, are given by k4[t]/(h1), . . . , k4[t]/(hs). Since there is an k−embedding
ψ ∶ L ↪ k4, fβ has a root ψ(β) in k4. Hence, one of h1, . . . ,hs is of degree 1, which
means that one of k4[t]/(h1), . . . , k4[t]/(hs) is isomorphic to k4.

We denote the valuation ring of 4 byO. By the first part of the proof, there is a valuation
ring Õ of L(XL) lying over O with residue field k4. Let k(X)s be a separable closure
of k(X) containing L. Let Os be an extension of Õ to k(X)s and letMs be its maximal
ideal. Let (k(X)h,Oh) be the Henselisation of (k(X),O) with respect to Os. We show
that L(XL) ⊂ k(X)h. To this end, it suffices to show L ⊂ k(X)h. Let x ∈ L be artibrary.
Then for all ρ ∈ Gal(k(X)s/k(X)), we have that x and ρ(x) are algebraic over k, and
hence, ρ(x) − x is also algebraic over k. By [21, (3.2.11)], the residue field of Os is an
algebraic closure of k4; we denote it by ka

4. Let ρ be the k4−automorphism of ka
4 induced

by ρ. For all y ∈ k(X)s, we write ȳ for y +Ms. Then ρ(ȳ) = ρ(y). Since the residue
field of Os ∩L(XL) = Õ is equal to k4, we have that ρ(x̄) = x̄, and hence ρ(x) − x ∈ Ms.
Since ρ(x) − x is algebraic over k, it follows that ρ(x) = x. Hence, we conclude that
L(XL) ⊂ k(X)h. �

The generality in which Proposition 5.24 was stated now allows us to obtain the mul-
tiplier result from Theorem 5.13 (in a slightly different formulation) both for semilocal
principal ideal domains and for polynomial rings in one variable over a field in which 2
is invertible. In the latter case, we recover a result obtained by J.–P. Tignol in [71, (2.6)].
As a consequence, we obtain for such rings R a positive answer to Question 5.23, i.e. for
any R−algebra with involution (A, σ), we have that G((A, σ)F)R× = ∩pG((A, σ)F)R×p ,
where p runs over all prime ideals of R.
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5.27 Corollary. Suppose that R is semilocal or that R is a polynomial ring in one vari-
able over a field, and assume that 2 ∈ R×. Let (A, σ) be an R−algebra with involution.
Let e ∈ F× be such that for every prime ideal p of R, we have that e ∈ R×p or e ∉ F×2R×p .
Then the following are equivalent:

(i) For all a ∈ F×2, ae ∈ G((A, σ)F)R×.

(ii) For each discrete valuation ring O of F containing R such that e ∉ F×2O×, we
have that (A, σ) becomes hyperbolic over the residue field of O.

Proof. That (i) implies (ii) follows from Corollary 5.22. Assume that (ii) holds. Let L/F
be a finite separable field extension. Since R is a Dedekind domain it follows from [23,
(II.5)] that the integral closure of R in L is also a Dedekind domain.
Suppose that R is semilocal. By Proposition 1.3, there exist valuation rings O1, . . . ,Or

of F such that R = O1 ∩ . . .∩Or. Then the integral closure R′ of R in L is the intersection
of the valuation rings of L lying over O1, . . . ,Or by Proposition 1.21. There are only
finitely many such valuation rings and therefore R′ is a semilocal Dedekind domain, and
hence a principal ideal domain by [48, (I.15)]. Let p be a prime ideal of R such that
e ∉ F×2Rp. Then σ is hyperbolic over the residue field of Rp, since we assume that (ii)
holds. Let (Fh

p ,R
h
p) be a Henselisation of (F,Rp). By Theorem 4.20, σFh

p
is hyperbolic.

By Lemma 5.9, there exists a finite separable subextension F ⊂ Lp ⊂ Fh
p such that σLp is

hyperbolic. By the above, the integral closure of R in Lp is a principal ideal domain, and
Proposition 5.24 yields that ae ∈ G((A, σ)F)R× for all a ∈ F×2.

Suppose that R = k[t] for a field k. Then F = k(t). Let f (t) ∈ k[t] be an irreducible
polynomial. We denote the associated valuation ring R( f (t)) of F by O. Suppose that
e ∉ F×2O×. By assumption, σ is then hyperbolic over the residue field of O, which
we denote by κ f . Let κs

f be the separable closure of k in κ f . Since char(F) ≠ 2, κ f /κ
s
f

is of odd degree and hence, by [45, (6.16)], σ is already hyperbolic over κs
f . Then σ

is also hyperbolic over κs
f (t), and the integral closure of k[t] in κs

f (t) is κs
f [t], which is

clearly a principal ideal domain. By Lemma 5.26, there exists a Henselisation of (F,O)

containing κs
f (t) as a subfield. Proposition 5.24 now yields that ae ∈ G((A, σ)F)R×, for

all a ∈ F×2. �

5.28 Remark. If the center ofA is not a domain then the properties (i) and (ii) in Propo-
sition 5.27 both hold for trivial reasons. For if (A, σ) is degenerate then (A, σ)F is also
degenerate and hence hyperbolic. Proposition 2.24 (a) yields that G((A, σ)F) = F×.
Furthermore, (A, σ) remains degenerate over the valuation rings lying over R and hence,
(A, σ) is automatically hyperbolic over the residue fields of these valuation rings.

5.29 Theorem. Suppose that R is semilocal and that 2 ∈ R×. Let A be an Azumaya
algebra with center R or a separable quadratic R−algebra. Let σ and σ′ be two R−linear
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involutions of the same kind on A. If (A, σ)F ≅Z(AF) (A, σ′)F then (A, σ) ≅Z(A)
(A, σ′).

Proof. If Z(A) is not a domain, then the involutions are of the second kind, and hence
automatically isomorphic by Proposition 1.18. So, for the rest of the proof we may
assume that Z(A) is a domain. By Proposition 2.18, there exist elements e ∈ F×, s ∈ A×

and g ∈ A×F such that es = σF(g)g. Since R is semilocal, it is a principal ideal domain
by [48, (I.15)]. In particular, R is a unique factorisation domain. This implies that we
can write e = a2e′ where e′ ∈ F× is such that for all prime ideals p of R, either e′ ∈ R×p
or e′ ∉ F×2R×p . Proposition 5.21 and Corollary 5.27 yield that e ∈ G((A, σ)F)R×. Let
u ∈ R× and f ∈ AF be such that e = σF( f ) f u. Then us = σF( f g) f g. By Theorem 2.39,
there exists g̃ ∈ A such that us = σ(g̃)g̃. It follows that g̃ ∈ A×. Proposition 2.18 now
yields that (A, σ) ≅Z(A) (A, σ

′). �

5.30 Corollary. Suppose that R is semilocal and that 2 ∈ R×. Let (A, σ) and (A′, σ′)

be R−algebras with involution. If (A, σ)F ≅F (A′, σ′)F then (A, σ) ≅R (A′, σ′).

Proof. Since R is a semilocal Dedekind domain, it is a principal ideal domain by [48,
(I.15)], and hence, in particular, a Bézout domain. The statement then follows from
Proposition 4.32 together with Theorem 5.29. �

5.31 Remark. In the case where R = k[t], with k a field of characteristic different from
2, Theorem 5.29 also holds for R if we assume that (A, σ) and (A, σ′) are defined
over k. In that case, we can use the representation theorem of [71] to obtain the desired
isomorphism statement. Note that this isomorphism result is not new. It appears for
instance in [60, (4.1)].

In view of the above results for two specific types of principal ideal domains, one could
ask whether Question 5.1 has an affirmative answer for general principal ideal domains in
which 2 is invertible. This cannot be expected in general. We present a counterexample
in the next section in the context of conics (see Example 5.47), which yields at the same
time an example where Question 5.23 has a negative answer.

5.4 Coordinate rings of affine conics

Throughout this section k denotes a field of characteristic different from 2 and Q is a
k−quaternion algebra. By Remarks 3.4 (a), SB(Q) is a projective conic over k, which
we denote by C. It is well known that there is a one-to-one correspondence between the
closed points of C and the (discrete) k−valuations on k(Q). We will therefore sometimes
also refer to the elements of V as points.
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We fix some notation for the rest of section 5.4. For any field extension L/k, we denote
the function field of SB(QL), i.e. of CL, by L(Q). We further denote by V the set of all
(discrete) k−valuations on k(Q). Let 3 ∈ V. We denote the valuation ring of 3 by O3 and
the ring ∩4∈V,4≠3O4 by R3. Then R3 is a Dedekind domain with fraction field k(Q). We
denote the residue field of 3 by k3 and the degree [k3 ∶ k] of the field extension k3/k by f3.
We will refer to the latter as the residue degree of 3. Let L/k be a finite field extension
and let 3̃ be an extension of the valuation 3 to L(Q). Then 3̃ is an L−valuation on L(Q).
We call the degree [L3̃ ∶ k3] the relative residue degree of 3̃ over 3.

We started studying function fields of conics in the following context. In [60, (3.1),
(5.3)], A. Quéguiner–Mathieu and J.–P. Tignol used cohomological invariants for alge-
bras with involution in order to show the following. Let B be a central simple k−algebra
of degree 8 Brauer equivalent to Q. Let τ and τ′ be two orthogonal involutions on B
such that (B, τ) and (B, τ′) are isomorphic to a tensor product of k−quaternion algebras
with involution. If (B, τ)k(Q) ≅k(Q) (B, τ′)k(Q) then (B, τ) ≅k (B, τ′). K.J. Becher and
A. Quéguiner–Mathieu then raised the question whether this statement could hold more
generally without restrictions on the degree of B.

5.32 Question. Let B be a central simple k−algebra Brauer equivalent to Q, and let τ
and τ′ be two orthogonal involutions on B. Suppose that (B, τ)k(Q) ≅k(Q) (B, τ′)k(Q).
Does this imply that (B, τ) ≅k (B, τ′)?

In the split case, it is easily seen that the above question has an affirmative answer.

5.33 Proposition. Suppose that Q is split and let B be a split central simple k−algebra.
Let τ and τ′ be two orthogonal involutions on B. If (B, τ)k(Q) ≅k(Q) (B, τ′)k(Q) then
(B, τ) ≅k (B, τ′).

Proof. Since Q is split, k(Q) is isomorphic to the rational function field in one vari-
able over k, say k(t). By Proposition 2.19, the statement comes down to showing that
symmetric bilinear spaces over k that become similar over k(t), are already similar over
k. This can be seen by passing to the Laurent series field k((t)), and using the weak
direction of Springer’s theorem (see e.g. [47, (VI.1.6)]). �

As communicated to us by J.–P. Tignol, apart from the degree 8 case mentioned above,
and the case where Q is split, Question 5.32 is only known to have a positive answer in
the case where deg(B) = 2, deg(B) = 4 or deg(B) = 6 and disc(τ) is trivial. The results
in degree 2 and 4 follow from [72, (3.6) (c), (3.10)] and in degree 6 from [45, (15.7)].
The proofs for these cases use (low) cohomological invariants for algebras with involu-
tion, namely the discriminant and the Clifford invariant. In order to obtain statements
for higher degree, one might need higher cohomological invariants, but, for the moment,
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there are not many cases yet where such invariants are available.

Chronologically, we considered the question on isomorphism over k(Q) versus isomor-
phism over k before the local isomorphism questions, treated in sections 4.3.2 and 5.1.
However, after we obtained the results in the local case, we turned our attention back to
k(Q). Applying the results for algebras with involution over semilocal Bézout domains
from section 5.1, we obtain the following result.

5.34 Proposition. Let B be a central simple k−algebra and let τ and τ′ be two orthog-
onal involutions on B. Suppose that (B, τ)k(Q) ≅k(Q) (B, τ′)k(Q). Let R be an arbitrary
intersection of finitely many valuation rings of k(Q). Then (B, τ)R ≅R (B, τ′)R.

Proof. This follows immediately from Theorem 5.16. �

In order to have an isomorphism over k in Proposition 5.34, we would need to consider an
intersection of infinitely many valuation rings. We do not know how to pass from finitely
many to infinitely many valuation rings in general. However, under certain conditions,
there is a way to get around this.

5.35 Proposition. Let B be a central simple k−algebra Brauer equivalent to Q. Let τ be
an orthogonal involution on B and let s ∈ B× be such that τ(s) = s. Let τ′ = Int(s) ○ τ.
Then (B, τ)k(Q) ≅k(Q) (B, τ′)k(Q) if and only if there exist elements e ∈ k(Q)× and g ∈

B×k(Q) such that es = τk(Q)(g)g, and in that case e ∈ ⋂3∈VG((B, τ)k(Q))O
×
3 . Moreover,

with such e and g, (B, τ) ≅k (B, τ′) if and only if e ∈ G((B, τ)k(Q))k×.

Proof. By Proposition 2.18, we have that (B, τ)k(Q) ≅k(Q) (B, τ′)k(Q), if and only if
there exist elements e ∈ k(Q)× and g ∈ B×k(Q) such that es = τk(Q)(g)g. If this is the
case, then e ∈ ⋂3∈VG((B, τ)k(Q))O

×
3 , by Proposition 5.21 and Corollary 5.24. Suppose

that (B, τ) ≅k (B, τ′). Invoking Proposition 2.18 once more, it follows that there exist
u ∈ k× and f ∈ B× such that us = τ( f ) f . So, we obtain that τk(Q)(g)ge−1 = τ( f ) f u−1,
which yields τk(Q)(g f −1)g f −1 = eu−1 ∈ k(Q)×. This means that τk(Q)(g f −1)g f −1 ∈

G((B, τ)k(Q)), and hence, e ∈ G((B, τ)k(Q))k×.

Let us prove the converse. Let u ∈ k× be such that e ∈ G((B, τ)k(Q))u. By [45, (4.2)],
there exists a skew–hermitian space (V,h) over (Q, γ) such that (B, τ) ≅k Ad(h). Then
(B, τ′) ≅k Ad(h′), where h′ ∶ V ×V → Q is the skew–hermitian form over (Q, γ) defined
by h′(x, y) = h(s−1(x), y), for all x, y ∈ V . By Proposition 2.19, since (B, τ)k(Q) ≅k(Q)
(B, τ′)k(Q), it follows that (V,h′)k(Q) ≃ (V, eh)k(Q). By Lemma 2.23, we get that
(V,h′)k(Q) ≃ (V,uh)k(Q). By [14] or [57, (3.3)], since (V,h′)k(Q) ⊥ (V,−uh)k(Q) is
hyperbolic, it follows that (V,h′) ≃ (V,uh). Invoking Proposition 2.18 once more, we
get (B, τ) ≅k (B, τ′). �
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In view of Proposition 5.35, we can now reformulate Question 5.32 as follows.

5.36 Question. Let B be a central simple k−algebra Brauer equivalent to Q and let τ be
an orthogonal involution on B. Is G((B, τ)k(Q))k× = ∩3∈VG((B, τ)k(Q))O

×
3 ?

We were not able to give a complete answer to Question 5.36, but in the sequel we prove
that under certain conditions, one can show that an element of ∩3∈VG((B, τ)k(Q))O

×
3 is

contained in G((B, τ)k(Q))k×. In order to do this, we apply the general result of Propo-
sition 5.24 to Dedekind domains R that are obtained as coordinate rings of an affine part
of C (i.e. by putting one point of C at infinity), and make the result more explicit. This
is done in Theorem 5.42. In the proof, we use the geometry of the conic, in particular
the structure of its Picard group, or equivalently the structure of the class group of its
associated coordinate ring.
Question 5.36 is of a similar nature as Question 5.23. However, if we consider Question
5.23 in the case where R is the coordinate ring of an affine part of C as above, then we
only consider the “finite” k−valuations on k(Q), whereas we consider all k−valuations
on k(Q) in Question 5.36. In Example 5.47, we give an example, under a certain as-
sumption on k and the assumption that C is non–split, of a split quaternion algebra with
orthogonal involution (B, τ), for which G((B, τ)k(Q))k× = ∩3∈VG((B, τ)k(Q))O

×
3 , but

G((B, τ)k(Q))k× ≠ ∩3∈V,3≠3∞G((B, τ)k(Q))O
×
3 , where 3∞ is a degree two point on C.

Note however that this is not the context we consider in this section, since B is split,
but Q is not, but it gives some indication that Questions 5.23 and 5.36 concern different
problems, when we consider the latter question without the assumption that B ∼ Q.

Let us also compare Question 5.36 with the results in [56]. There, I. Panin proved a
purity result and using this result, he then obtained a positive answer to Question 5.1 for
regular local rings containing a field of characteristic different from 2.

5.37 Theorem (Panin). Let T be a regular local ring containing a field of characteristic
different from 2, with fraction field L, and let (A, σ) be a T−algebra with involution.
Let U be the set of height one prime ideals of T . Then

G((A, σ)L)T× = ⋂
p∈U

G((A, σ)L)T×
p .

As mentioned in the introduction of this section, we will use the geometry of the conic
C in order to give a partial answer to Question 5.36. Therefore, we start with some
preliminaries on the Picard group of an affine conic and the correspondence with the
class group of its associated coordinate ring R. We further describe how one can detect
whether a prime ideal of R is principal. The arguments are mainly an exercise on the
Riemann–Roch theorem. The reader who is familiar with the Picard group and the class
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group can skip the results from here on until Remark 5.40.

The group of divisors Div(C) of C is the free abelian group generated by the closed
points of C, i.e.

Div(C) ∶= {∑
3∈V

n33 ∣ almost all n3 = 0} .

The group of divisors can be defined more generally than for conics, but we since we
only use it in the case of conics, we define it only in this specific case. The homomor-
phism

deg ∶ Div(C) → Z; ∑
3∈V

n33↦ ∑
3∈V

f3n3,

is called the degree homomorphism. The subgroup of Div(C) of divisors of degree zero,
the kernel of deg, is denoted by Div0(C).

For every function z ∈ k(Q)× one has that 3(z) = 0 for almost all 3 ∈ V. So, with every
z ∈ k(Q) one can associate an element of Div(C), namely div(z) = ∑3∈V 3(z)3. This is
called the divisor of z. The set

Pr(C) = {div(z) ∣ z ∈ k(Q)×},

is a subgroup of Div(C), called the group of principal divisors. It is well known that
Pr(C) is a subgroup of Div0(C), and it follows from the Riemann–Roch theorem (see
[30, (IV.1.3)]) that Pr(C) = Div0(C). (This is no longer true for more general curves.)

We are interested in analogues of Corollary 5.27 for coordinate rings of affine parts of
C. These coordinate rings are Dedekind domains. In particular, we are interested in the
coordinate rings of smooth affine conics, obtained by considering one point 30 of C as
the point at infinity. For the rest of this section, we fix 30 and we let Caff = C ∖ {30} and
Vaff = V ∖ {30}. Then the coordinate ring of Caff is R30 . One also defines the divisor
group for Caff , by considering only divisors with support in Caff ,

Div(Caff) ∶= {d ∈ Div(C) ∣ n30 = 0}.

For z ∈ k(Q)× we set divaff(z) = ∑3∈Vaff 3(z)3. Note that the group homomorphism

Pr(C) = Div0(C) → Div(Caff); ∑
3∈V

n33↦ ∑
3∈V,3/=30

n33,

is injective. Its image is Pr(Caff) ∶= {divaff(z) ∣ z ∈ k(Q)×}. These are the principal
divisors on Caff , and the quotient

Pic(Caff) ∶= Div(Caff)/Pr(Caff)



5.4 141

is called the Picard group of the affine curve Caff .

Since Div(Caff) is a subgroup of Div(C), the restriction of the degree map to Div(Caff)

defines a group homomorphism degaff ∶ Div(Caff) → Z. The following proposition says
that the Picard group of Caff is a cyclic group.

5.38 Proposition. Let d ∈ Z be such that im(degaff) = dZ. Then the Picard group
Pic(Caff) of Caff is cyclic of order f30/d. Furthermore, if C has a k−rational point then
d = 1, otherwise d = 2.

Proof. We have that d is the greatest common divisor of the f3 with 3 ∈ Vaff . If C has
a k−rational point, then Caff also has a k−rational point, and this point has degree 1. If
C does not have a k−rational point, then it has points of degree 2, since Q splits over a
quadratic extension of k. Then Caff also has points of degree 2. Furthermore, C does not
have points of odd residue degree by Springer’s theorem (see e.g. [19, (71.3)]). Hence,
d = 2 in that case. Let z ∈ k(Q)×. Then degaff(z) = ∑3/=30 f33(z) = − f3030(z), since
∑3∈V 3(z) = 0. It follows that the image of Pr(Caff) under degaff is a subgroup of f30Z.
The homomorphism degaff therefore induces a surjective homomorphism

degaff ∶ Pic(Caff) → dZ/ f30Z.

Let ω ∈ Div(Caff) and suppose that degaff(ω) ∈ f0Z, say degaff(ω) = f30 s, for some s ∈ Z.
It follows that ω − s30 is a divisor of degree zero on C, so a principal divisor. It follows
that ω = divaff(y) ∈ Pr(Caff), for some y ∈ k(Q)×. This shows that degaff ∶ Pic(Caff) →

dZ/ f30Z is injective, and hence an isomorphism. �

There is a one-to-one correspondence between the elements of Vaff and prime ideals of
R30 . The valuation ring of a valuation inVaff is the localisation of R30 at a prime ideal. For
each 3 ∈ Vaff , we denote the associated prime ideal of R30 by p3. This correspondence
yields that Pic(Caff) is isomorphic to the class group of R30 . We briefly explain this
below. A fractional ideal of R30 is a R30−submodule I of k(Q) such that there exists a
nonzero element t ∈ R30 such that tI ⊂ R30 . Two fractional ideals I and J of R30 are called
equivalent if there exist a,b ∈ R30 such that aI = bJ. The set of equivalence classes
of fractional ideals of R30 forms a group for multiplication, called the class group of
R30 . Furthermore, since R30 is a Dedekind domain, any fractional ideal of R30 can be
factored into prime ideals of R30 . The correspondence 3↔ p3 between valuations in Vaff

and prime ideals of R30 then induces a one-to-one correspondence between divisors in
Div(Caff) and fractional ideals of R30 . Namely, the divisor ∑3∈Vaff n33 corresponds to the
fractional ideal ∏3∈Vaff p

n3
3 of R30 . Principal divisors correspond to principal ideals. So

the correspondence induces an isomorphism between the Picard group of Caff and the
class group of R30 . Furthermore, the class group of R30 is trivial if and only if R30 is a
principal ideal domain, if and only if R30 is a unique factorisation domain. Proposition
5.38 yields the following result.
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5.39 Corollary. Let 3 ∈ V. Then its corresponding prime ideal p3 in R30 is principal if
and only if f30 ∣ f3. Let 3′ /= 30 be a valuation on k(Q) of minimal residue degree a (a = 1
if C has a rational point, and 2 otherwise). Then the class group of R30 is cyclic of order
f30/a. Furthermore, (R30)× = k×.

Proof. The prime ideal p3 is principal if and only if the divisor 3 ∈ Div(Caff) is principal.
By the proof of Proposition 5.38, this is the case if and only if f30 ∣ f3. The claim on the
class group follows immediately from Proposition 5.38. We prove the claim on the units
in R30 . Let x ∈ (R30)×. Then x ∈ O×4, for all 4 ≠ 30. Hence, 4(x) = 0, for all 4 ≠ 30.
Since 30(x) ⩽ 0, it follows that necessarily 30(x) = 0, since 0 = ∑4∈V f44(x) = f3030(x).
So, x ∈ ∩4∈VO4 = k. �

5.40 Remark. The fact that R30 is a principal ideal domain if Q is split or if 30 is a degree
two point is well known. In the split case, R30 is isomorphic to the polynomial ring in
one variable over k, and if Q is a division algebra and 30 a degree two point, it was shown
in [58] that R30 is a principal ideal domain, without using the Riemann–Roch theorem.

5.41 Lemma. Let 4 ∈ V. Let L/k be a finite field extension and let 4 ∈ V. Suppose that
k4/k is a separable field extension and that there is a k−embedding ϕ ∶ k4 ↪ L. Then
there is a valuation on L(Q) lying over 4 that is of residue degree 1 (over L).

Proof. Since k4/k is separable by assumption, we can write k4 = k(α) ≅ k[t]/( fα),
for some α ∈ k4, with fα ∈ k[t] the minimal polynomial of α over k. The residue
fields of the extensions of 4 to L(Q) ≅ k(Q) ⊗k L, are then obtained by considering the
factorisation of fα(t) over L. More precisely, let fα = g1⋯gr ∈ L[t] be the factorisation
of fα in irreducible polynomials. Then L[t]/(g1), . . . , L[t]/(gr) are the residue fields of
the valuations of L(Q) lying over 4. Since there is an k−embedding ϕ ∶ k4 ↪ L, fα
has a root ϕ(α) in L. Hence, one of g1, . . . ,gr is of degree 1, which means that one of
L[t]/(g1), . . . , L[t]/(gr) is isomorphic to L. �

5.42 Theorem. Let (B, τ) be an k−algebra with involution. Let e ∈ k(Q)×. Assume that
for all 3 ∈ V such that 3(e) is odd, we have that τk3 is hyperbolic. Assume furthermore
that there exists a finite field extension k0/k splitting Q such that k0 ↪ k3 for all 3 ∈ V
such that 3(e) is odd, and such that [k0 ∶ k] ∣ [k3 ∶ k] for all 3 ∈ V such that 3(e) is even
and nonzero. Then e ∈ G((B, τ)k(Q))k×.

Proof. We write W = {3 ∈ V ∣ 3(e) /= 0} = Wodd ∪Weven, with Wodd = {3 ∈ W ∣

3(e) is odd} andWeven = {3 ∈W ∣ 3(e) is even}.

Suppose first that k is a finite field. Then Q is split, and hence k(Q) is isomorphic to
the rational function field in one variable over k, say k(t). Since τk3 is assumed to be
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hyperbolic for all 3 ∈ Wodd, it follows from Corollary 5.27 that e ∈ G((B, τ)k(Q))k[t]×.
Since k[t]× = k×, this proves the statement.

So, for the rest of the proof, we assume that k is an infinite field. Let ks
0 be the separable

closure of k in k0. Then k0/ks
0 is a purely inseparable extension. Since char(k) ≠ 2,

this means that k0/ks
0 is an odd degree extension. It follows from Springer’s theorem

(see e.g. [47, (VII.2.7)]), it follows that Q already splits over ks
0. Therefore, we may

assume that k0/k is a separable extension. Since Q splits over k0, there is an k−place
λ ∶ k(Q) → k∞0 . This means that k0 contains, up to k−isomorphism, a residue field of an
k−valuation of k(Q). Without loss of generality, we may assume that k0 is the residue
field of an k−valuation 30 on k(Q). Suppose that [k30 ∶ k] = d.

Since k is infinite, and Qk0 is split, the conic Ck0 has infinitely many rational points. This
means that there are infinitely many k−valuations of k(Q) with residue field isomorphic
to k0. Since W is a finite set of valuations, we may therefore assume that 30 ∉ W. This
means that 30(e) = 0. Consider the coordinate ring R30 of the affine conic Caff = C∖{30}.
Recall that R30 = ∩3≠30 O3. By Lemma 5.39, R30 is a Dedekind domain with a cyclic class
group of order d/2.

For any 3 ∈ W, we let ks
3 be the separable closure of k in k3 and p3 the prime ideal of

R30 corresponding to 3. Then ks
3(Q)/k(Q) is a separable extension of degree equal to

[ks
3 ∶ k]. Note that Q already splits over ks

3 . Note furthermore that even though R30 may
not be a principal ideal domain, the assumption on k0 yields that d ∣ [k3 ∶ k] for all 3 ∈W,
and hence p3 is a principal ideal for every 3 ∈ W by Lemma 5.39. We write p3 = (π3).
We can factor the principal fractional ideal eR30 in prime ideals:

eR30 = ∏
3∈W

p
3(e)
3 =

⎛

⎝
∏
3∈Wodd

π
3(e)
3 ∏

3′∈Weven

π
3′(e)
3′

⎞

⎠
.

Let a = ∏3′∈Weven π
3′(e)
3′ and e′ = ∏3∈Wodd

π
3(e)
3 . Then a ∈ k(Q)×2. By Lemma 5.39, there

exists an element u ∈ (R30)× = k× such that that e = ue′a. Clearly, we have for all 3 ∈ Vaff

that 3(ue′) = 0 or 3(ue′) is odd.

Let 3 ∈ Wodd and let S 3 be the integral closure of R in ks
3(Q). This is a Dedekind do-

main. There are finitely many valuations 41, . . . ,4r of ks
3(Q) lying over 30. We have that

S 3 = ∩4≠41,...,4n O4. Since k0/k is separable, the k−embedding k0 ↪ k3 already yields
an k−embedding k0 ↪ ks

3 . By Lemma 5.41 (i), one of the 4i has residue field ks
3 , say

41. S 3 contains the set S ′
3 = ∩4≠41 O4, which is the coordinate ring of the affine conic

C ×k ks
3 ∖ {41}. Since 41 is a rational point of C ×k ks

3 , S ′
3 is a principal ideal domain

by Lemma 5.39. Since S 3 is obtained from S ′
3 by localisation, it is also a principal ideal
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domain.

By Lemma 5.26, ks
3(Q) is a subfield of a suitable Henselisation k3(Q)h of k(Q) at

3. Furthermore, since τk3 is hyperbolic by assumption, and k3/ks
3 is of odd degree

since char(k) ≠ 2, [45, (6.16)] yields that τ is hyperbolic over ks
3 . It follows that τ

is also hyperbolic over ks
3(Q). Hence, we can apply Proposition 5.24 to obtain that

e ∈ G((B, τ)k(Q))(R30)× = G((B, τ)k(Q))k×. �

5.43 Corollary. Let B be a central simple k−algebra Brauer equivalent to Q. Let τ be
an orthogonal involution on B. Let s ∈ B× and let τ′ = Int(s) ○ τ. Suppose that there
exists elements e ∈ k(Q)× and g ∈ B×k(Q) such that es = τk(Q)(g)g. Suppose furthermore
that there exists a finite field extension k0/k splitting Q such that for all 3 ∈ V such that
3(e) is odd, we have that k0 ↪ k3, and for all 3 ∈ V such that 3(e) is even, we have that
[k0 ∶ k] ∣ [k3 ∶ k]. Then (B, τ) ≅k (B, τ′).

Proof. Suppose first that k is a finite field. Then Q and B are necessarily split. In that
case, the statement follows from Propositions 5.33 and 5.35. Suppose that k is an infinite
field. Let 3 ∈ V be such that 3(e) is odd. Applying Proposition 5.21 to (A, σ) = (B, τ)O3 ,
it follows that τk3 is hyperbolic. Hence, the assumptions of Theorem 5.42 are satisfied,
and we obtain that e ∈ G((B, τ)k(Q))k×. �

Using Corollary 5.43, we obtain in a special case, a positive answer to Question 5.32.

5.44 Corollary. Let B be a central simple k−algebra Brauer equivalent to Q. Let τ be
an orthogonal involution on B. Suppose that disc(τ) = δ ∈ k×/k×2 is nontrivial, and
that Q splits over k(

√
δ). Let τ′ be any orthogonal involution on B. If (B, τ)k(Q) ≅k(Q)

(B, τ′)k(Q) then (B, τ) ≅k (B, τ′).

Proof. If Q is split, then we are done by Proposition 5.33. By Proposition 2.20, there ex-
ists an element s ∈ B× such that τ′ = Int(s)○τ. Suppose that (B, τ)k(Q) ≅k(Q) (B, τ′)k(Q).
By Proposition 2.18, there exists an element e ∈ k(Q)× such that es ∈ G((B, τ)k(Q)). Let
3 ∈ V be such that 3(e) is odd. Since O3 is discrete, τk3 is hyperbolic by Proposition
5.21. Hence, disc(τk3) is trivial. Therefore, there is a k−embedding k(

√
δ) ↪ k3. Fur-

thermore, since Q is non–split, for any k−valuation 3 on k(Q), we have that [k3 ∶ k] is
even. Hence, [k(

√
δ) ∶ k] ∣ [k3 ∶ k] for all 3 ∈ V. Since Q splits over k(

√
δ), there exists

30 ∈ V such that k30 ≅ k(
√
δ). The statement now follows from Proposition 5.12. �

We thank J.–P. Tignol for pointing out the following observation.

5.45 Corollary. Let B be a central simple k−algebra Brauer equivalent to Q. Let τ and
τ′ be two orthogonal involutions on B. Suppose that disc(τ) = δ ∈ k×/k×2 is nontrivial,
and that (B, τ) has an improper similitude. If (B, τ)k(Q) ≅k(Q) (B, τ′)k(Q) then (B, τ) ≅k

(B, τ′).
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Proof. Let f be an improper similitude of (B, τ) and µ = τ( f ) f . By [45, (13.38)], B is
Brauer equivalent to (δ, µ)F . Hence, B splits over F(

√
δ) and Corollary 5.44 applies. �

5.46 Remark. The method in the proof of Theorem 5.42 does not yield in general that
local hyperbolicity conditions imply that the given element e is a multiplier of (B, τ)k(Q)
times a unit in k. However, the method does give some information on how far away e is
from being a multiplier of (B, τ)k(Q). Namely, adapting the proof of Theorem 5.42, one
can show that the (finite) set of k−valuations on k(Q) not vanishing in e, can be replaced
by a set of k−valuations whose residue fields are minimal splitting fields for Q, and
moreover such that these residue fields are all different. We think this is the maximum
one can get out of these techniques using the Picard group and the class group.

We finish this section with the counterexample to Questions 5.1 and 5.23, announced
at the end of section 5.3 and in the discussion after Question 5.36. We consider two
non–singular 2−dimensional bilinear forms over the coordinate ring R of an affine part
of C that is a principal ideal domain, that become similar over the fraction field of R, but
are not similar over R. By taking the adjoint algebras with involution of these bilinear
forms, we obtain an example of two involutions on the split Azumaya algebra M2(R)

that become isomorphic over the fraction field of R, but are not isomorphic over R. The
fact that similarity of these bilinear forms over R is equivalent to R−isomorphism of their
adjoint algebras with involution follows from the proof of Proposition 2.19. Although
the statement there is formulated for semilocal Bézout domains, the only property that is
used is that the R−automorphisms of Azumaya algebras over R are inner. By [4, (3.6)],
this holds in the case where R is a principal ideal domain, since finitely generated, pro-
jective modules over a principal ideal domain are free.

In the example below, we will use results that are formulated for quadratic forms instead
of bilinear forms, but since we work with rings in which 2 is invertible, we can switch
between both concepts.

5.47 Example. Assume that k is such that C is non–split, and such that there exist de-
gree two points 30 and 3∞ of C with k30 /≅ k3∞ . Let a ∈ k× be such that k30 = k(

√
a). By

Corollary 5.39, the ring R3∞ is a principal ideal domain. Let S be the integral closure
of R3∞ in k30(C). By Corollary 5.39, S is not a principal ideal domain, since 3∞ does
not split in k30(C). Hence, there exists a prime ideal p of S which is not principal. Let
π ∈ R3∞ be a prime element such that p ∩ R3∞ = πR3∞ . Then πS = pp, where p is the
conjugate of p. Since p is not a principal ideal, it follows that for all u ∈ (R3∞)× = k×, uπ
is not represented by ⟨1,−a⟩ over R3∞ .

We next show that the bilinear form ⟨π,−aπ⟩ is non–singular over R3∞ . To this end, by
[54, (IV.3.1)], it suffices to show ⟨1,−a⟩ is hyperbolic over the residue field of π. This is
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satisfied since π splits in S , since this implies that the residue field of π is equal to the
one of p, and the latter contains k30 = k(

√
a). The reasoning in the first paragraph shows

that for all u ∈ (R3∞)× = k×, we have that that u⟨π,−aπ⟩ /≃R3∞ ⟨1,−a⟩. So, ⟨1,−a⟩ and
⟨π,−aπ⟩ are not similar over R3∞ . However, since π ∈ k(Q)×, ⟨1,−a⟩ and ⟨π,−aπ⟩ are
clearly similar over k(Q).

This example also provides a negative answer to Question 5.23. In order to show this,
we make a particular choice of the prime element π. Namely, since R3∞ is a principal
ideal domain, we can choose π such that 30(π) = 1 and 3(π) = 0 for all 3 ≠ 30, 3∞. Since
30 and 3∞ are both points of degree 2, it follows that 3∞(π) = −1. Since the residue
field of π is k30 , πS factors into two different prime ideals. These prime ideals both have
residue field k30 and hence, they are not principal by Corollary 5.39.
We have that π ∈ O×3 for all 3 ≠ 30, 3∞, and since ⟨1,−a⟩ is hyperbolic over k30 , Corollary
5.27 yields that π ∈ O×30 G(⟨1,−a⟩k(Q)). Hence, π ∈ ∩3∈V,3≠3∞ O

×
3 G(⟨1,−a⟩k(Q)). How-

ever, π ∉ O×3∞ G(⟨1,−a⟩k(Q)). This can be seen using Corollary 5.22 and the fact that
⟨1,−a⟩ is anisotropic over k3∞ . It follows that π ∉ k×G(⟨1,−a⟩k(Q)).

Even though we showed above that ∩3∈V,3≠3∞ O
×
3 G(⟨1,−a⟩k(Q)) ≠ k×G(⟨1,−a⟩k(Q)), we

now show that
⋂
3∈V

O×3 G(⟨1,−a⟩k(Q)) = k×G(⟨1,−a⟩k(Q)).

The inclusion ⊇ is clear. So, let f ∈ ∩3∈VO
×
3 G(⟨1,−a⟩k(Q)). If f ∈ G(⟨1,−a⟩k(Q))

then there is nothing to prove. So, we may assume that ⟨1,−a,− f ,a f ⟩ is anisotropic.
We show that ⟨1,−a,− f ,a f ⟩ is obtained by scalar extension from a non–singular bi-
linear form ⟨1,−c,−d, cd⟩ over k. Since k(Q)/k is excellent, by [20, (2.10)], it suf-
fices to show that the Witt class of ⟨1,−a,− f ,a f ⟩ is contained in the image of the
map W(k) → W(k(Q)). By [58, Theorem 6b], this is the case if and only if for
each 3 ∈ V, the second residue form with respect to 3 of ⟨1,−a,− f ,a f ⟩ is trivial in
W(k3). For each 3 ∈ V, there exist by assumption u3 ∈ O×3 and g3 ∈ G(⟨1,−a⟩k(Q))

such that f = u3g3. It follows that ⟨1,−a,− f ,a f ⟩ ≃k(Q) ⟨1,−a,−u3,au3⟩, and hence the
second residue form with respect to each 3 is trivial. Therefore, by the above, there
exist c,d ∈ k× such that ⟨1,−a,− f ,a f ⟩ ≃k(Q) ⟨1,−c,−d, cd⟩. Since ⟨1,−a,− f ,a f ⟩ be-
comes hyperbolic over k(

√
a)(C), and k(

√
a)(C) is a purely transcendental exten-

sion of k(
√

a), it follows that ⟨1,−c,−d, cd⟩ becomes hyperbolic over k(
√

a), and
hence, we may assume that c = a by [47, (VII.3.2)]. Consider the quaternion alge-
bras H = (a, f )k(Q) and H′ = (a,d)k(Q). Since ⟨1,−a,− f ,a f ⟩ ≃k(Q) ⟨1,−a,−d,ad⟩, we
have that H ≅k(Q) H′ and using [47, (III.2.11)], it follows that H ⊗k(Q) H′ ∼ (a, f d)
is split. This implies that ⟨1,−a,− f d,a f d⟩ is hyperbolic over k(Q). Since d ∈ k×, this
means that f ∈ k×G(⟨1,−a⟩k(Q)).
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Generic isotropy and hyperbolicity

Description begins in the writer’s
imagination, but should finish in the
reader’s.

Stephen King

In [40], M. Knebusch viewed the function field of a non–singular quadratic form over a
field of characteristic not 2, and different from the hyperbolic plane, as a field extension
of F making the quadratic form generically isotropic. This function field is a purely
transcendental extension of the function field of the projective quadric associated to the
quadratic form. In this chapter we investigate whether algebras with involution of the
first kind over fields also have such a generic isotropy field.
Throughout this chapter F denotes a field of characteristic different from 2.

6.1 Question. Let (B, τ) be an F−algebra with involution. When does there exist a field
extension N/F such that τN is isotropic (resp. hyperbolic), and for every field extension
L/F such that τL is isotropic (resp. hyperbolic), there is an F−place λ ∶ N → L∞? We
call a field with these properties a generic isotropy (resp. hyperbolicity) field for τ.

In the study of the above question, the varieties associated to F−algebras with involution,
studied in chapter 3, play in important role. By investigating the isotropy behaviour
of the involution over the function fields of these varieties, we are able to give partial
answers to Question 6.1.

147



148 Chapter 6

We begin the chapter with some basics on quadratic forms, many of which are of course
very similar to concepts we introduced in section 2.1. In the development of the alge-
braic theory of quadratic forms, forms that are either anisotropic or hyperbolic over any
field extension of the ground field, so–called Pfister forms, play an important role. We
consider involution analogues of Pfister forms, which have already been studied in the
literature, and we give an overview of known, but sometimes unpublished, results relat-
ing both analogues. In section 6.2, we then use one of these analogues in order to obtain
a weak analogue of a factorisation statement for Pfister forms.
The rest of the chapter is then concerned with the study of Question 6.1. We first in-
vestigate the existence of a generic hyperbolicity field in section 6.3. In the following
sections, we turn to the generic isotropy question, and we mainly study the case of
orthogonal involutions. We present some results relating the Anisotropic Splitting Con-
jecture for orthogonal involutions to Question 6.1, in particular in section 6.7, where we
touch the question which involutions have a generic isotropy field that can be realised
as the function field of a quadratic form. In the last section, we consider algebras with
involution of low degree (4,6 and 8), and we give complete characterisations for the ex-
istence of a generic isotropy field, except in the case where the algebra has degree 8 and
the involution is orthogonal of nontrivial discriminant. The advantage of these charac-
terisations is that they contain conditions that are usually easier to check in practice than
some of conditions we obtain in earlier sections, where we don’t restrict the degree of
the algebra.

6.2 Notation. We recall the notation we introduced in chapter 3 for the varieties associ-
ated to algebras with involution over fields, and their function fields (if applicable). Let
(B, τ) be an F−algebra with involution of the first kind and let i ∈ N. Let IVi(B, τ) be
the F−variety described in chapter 3. If IVi(B, τ) is a projective, geometrically integral
F−variety, then as in chapter 3, we denote its function field by Fi(τ). If τ is orthogonal
of trivial discriminant, then we write C(B, τ) = C+×C− and we denote the corresponding
irreducible components of IVdeg(B)/2(B, τ) by IV+(B, τ) and IV−(B, τ). As in chapter
3, we denote the function field of IV+(B, τ) (resp. IV−(B, τ)) by F+(τ) (resp. F−(τ)).

6.1 Involution analogues of Pfister forms

Let V be a finite–dimensional F−vector space. A quadratic form on V is a map q ∶ V → F
such that for all a ∈ F and all v ∈ V , q(av) = a2q(v), and furthermore, the map
bq ∶ V ×V → F defined by bq(v,w) = q(v+w)−q(v)−q(w) is a symmetric bilinear form
over F. Since we assume that F does not have characteristic 2, there is a one-to-one
correspondence between symmetric bilinear forms on V × V and quadratic forms on V .
Given a symmetric bilinear form b ∶ V × V → F, its associated quadratic form q ∶ V → F
is defined by q(v) = 1

2 b(v, v).
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Let q ∶ V → F be a quadratic form. We write dim(q) = dimF(V) and call this the dimen-
sion of q. We call q non–singular if its associated bilinear form is non–singular. In that
case, we call (V,q) a quadratic space over F. A quadratic space (V,q) is called isotropic
(resp. hyperbolic) if its corresponding symmetric bilinear space is isotropic (resp. hy-
perbolic). Two quadratic spaces are called isometric, similar or Witt equivalent if their
associated symmetric bilinear spaces are isometric, similar or Witt equivalent. We de-
note isometry by ≃ and Witt equivalence by ∼. The adjoint algebra with involution of a
quadratic space (V,q) over F is the adjoint algebra with involution of its corresponding
symmetric bilinear space, and we denote it by Ad(q).

We recall some concepts such as the discriminant, Clifford algebra and Witt ring from
the theory of quadratic forms, which we will use repeatedly. We refer to [47] for more
details.
Quadratic spaces over F always have an orthogonal basis by [47, (I.2.4)]. Let a1, . . . ,am ∈

F×. Then we denote by ⟨a1, . . . ,am⟩ the quadratic space (Fm,q), where q ∶ Fm →

F; (x1, . . . , xm) ↦ ∑m
i=1 aix2

i . We also use the standard notation H for the hyperbolic
plane, i.e. the isometry class of ⟨1,−1⟩. Let (V,q) = ⟨a1, . . . ,am⟩. The discriminant
of (V,q) (or q) is (−1)m(m−1)/2a1⋯am ∈ F×/F×2, denoted by disc(q). For the defini-
tions and structure theorems concerning the Clifford algebra C(q) and the even Clifford
algebra C0(q) of (V,q) (or q), we refer to [47, Chapter V]. In [45, (8.8)], it is shown
that C0(q) ≅ C(Ad(q)). Furthermore, by [47, (V.2.5)], if disc(q) = 1 ∈ F×/F×2, then
the simple components of C0(q) are isomorphic, and Brauer equivalent to C(q). The
Clifford invariant of q is defined as the Brauer class of C(q) in Br(F) if dim(q) is even,
and as the Brauer class of C0(q) in Br(F) if dim(q) is odd, and denoted by c(q).

For the formal definition of the orthogonal sum (resp. the tensor product) of quadratic
spaces, denoted by ⊥ (resp. ⊗F), we refer to [47, p. 8, pp. 17–18]. Let b1, . . . ,bn ∈ F×.
Then

⟨a1, . . . ,am⟩ ⊥ ⟨b1, . . . ,bn⟩ ≃ ⟨a1, . . . ,am,b1, . . . ,bn⟩ and

⟨a1, . . . ,am⟩ ⊗F ⟨b1, . . . ,bn⟩ ≃ ⟨a1b1, . . . ,a1bn,a2b1, . . . ,a2bn, . . . ,amb1, . . . ,ambn⟩.

In this chapter, we study involution analogues of the concept of “Pfister forms” in the
theory of quadratic spaces over F. Let n ∈ N. Let (V,q) be a quadratic space over F.
Then q is called an n−fold Pfister form if (V,q) has an orthogonal basis such that with
respect to this basis,

(V,q) ≃ ⟨1,−a1⟩ ⊗F . . .⊗F ⟨1,−an⟩

for certain a1, . . . ,an ∈ F×. We denote ⟨1,−a1⟩ ⊗F . . .⊗F ⟨1,−an⟩ also by ⟨⟨a1, . . . ,an⟩⟩.
Pfister forms over F have the property that they are either anisotropic or hyperbolic over
any field extension of F (see [47, (X.1.7)]). Sometimes we will not specify the foldness
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of q, and just use the term Pfister form.

Let (V,q) be a quadratic space over F. Then there is the Witt decomposition (V,q) ≃

(V,q)an ⊥ (V,q)hyp, where (V,q)an is anisotropic and (V,q)hyp hyperbolic. The quadratic
space (V,q)an is called the anisotropic part of (V,q).
Together with the operations ⊥ and ⊗F , the set of Witt equivalence classes of quadratic
spaces over F forms a ring, called the Witt ring of F, and denoted by W(F). Let (V,q)
be a quadratic space over F, then we denote its class in W(F) by [V,q] or sometimes just
[q]. The classes of even–dimensional quadratic spaces over F form an ideal in W(F),
called the fundamental ideal, and denoted by I(F). For n ∈ N, the n−th power of I(F)

is denoted by In(F). It is easy to show that In(F) is additively generated by the classes
of n−fold Pfister forms over F (see e.g. [47, (X.1.2)]). We will sometimes use the short-
hand notation q ∈ W(F) (resp. q ∈ In(F)) for [V,q] ∈ W(F) (resp. [V,q] ∈ In(F)).

By abuse of notation, in the sequel, we will sometimes also use the notation for diagonal
quadratic spaces, isometry, Witt equivalence, the orthogonal sum and the tensor product
signs, for quadratic forms without mentioning the vector space they are defined on.

In the literature, two possible involution analogues of Pfister forms have been studied,
on the one hand taking the decomposability property into binary forms as starting point,
and on the other hand the fact that Pfister forms are either anisotropic or hyperbolic over
every field extension of F.

Let (B, τ) be an F−algebra with involution of the first kind. Then (B, τ) is called an
n−fold totally decomposable algebra with involution if there exists n ∈ N and quaternion
algebras with involution of the first kind (Q1, τ1), . . . , (Qn, τn) over F such that

(B, τ) ≅F (Q1, τ1) ⊗F . . .⊗F (Qn, τn).

Sometimes we will not specify the foldness and just speak about totally decomposable
algebras with involution. We say (B, τ) is a Pfister algebra with involution if for every
field extension L/F, τL is either anisotropic or hyperbolic.

Pfister algebras with orthogonal involution and totally decomposable algebras with or-
thogonal involution behave similarly if we look at their discriminant and Clifford alge-
bra. We show this below.

6.3 Proposition. Let (B, τ) be a Pfister algebra with orthogonal involution such that
deg(B) > 4. Then disc(τ) is trivial and one of the components of C(B, τ) is split.
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Proof. Since (B, τ) is a Pfister algebra with involution, by [66, (4.5.4)], there exists a
Pfister form q over F(B) such that (B, τ)F(B) ≅ Ad(q). So, in particular, deg(B) is
even, say deg(B) = 2n. Since disc(τF(B)) = disc(q) = 1 ∈ F(B)×/F(B)×2 by [45,
(7.3) (3)], and F is algebraically closed in F(B) by Proposition 3.1 (a), it follows that
disc(τ) = 1 ∈ F×/F×2.
By hypothesis, τ is hyperbolic over F1(τ). By Corollary 3.13, this implies that at least
one of C+ and C− splits over F1(τ). Suppose that C+ splits over F1(τ). Using the Schur
index reduction formulas from Theorem 3.11, we obtain

ind(C+ ⊗F F1(τ)) = min(ind(C+), ind(C−),2n−2 ind(C+ ⊗F C+),2n−2 ind(C+ ⊗F C−))

= 1.

Since n > 2 by assumption, we get that C+ or C− already splits over F. �

Totally decomposable F−algebras with orthogonal involution of degree at least 8 also
have trivial discriminant and their Clifford algebra has a split component. In fact, this al-
ready holds for more general decomposable algebras with involution, as we show below.

6.4 Proposition. Let (B1, τ1), (B2, τ2) and (B3, τ3) be F−algebras with involution of
even degree. Let (B, τ) = (B1, τ1)⊗F (B2, τ2)⊗F (B3, τ3) and assume that τ is orthogo-
nal. Then disc(τ) is trivial and one of the components of C(B, τ) is split.

Proof. Let us write (B, τ) = (B1, τ1) ⊗F (B̃, τ̃). Since τ is orthogonal, τ1 and τ̃ must
have the same type, by [45, (2.23)]. Suppose that τ1 and τ̃ are both symplectic. Then
disc(τ) is trivial, by [45, (7.3) (5)], and Theorem 1.37 immediately yields that one of the
components of C(B, τ) is split. Suppose that τ1 and τ̃ are both orthogonal. Since deg(B̃)

is even, [45, (7.3) (4)] yields that disc(τ) is trivial. Similarly, disc(τ̃) is trivial. Since
deg(B̃) ≡ 0 mod 4, Theorem 1.37 yields that one of the components of C(B, τ) is Brauer
equivalent to the quaternion algebra (disc(τ1),disc(τ̃))F , which is split since disc(τ̃) is
trivial. �

The link between Pfister forms and totally decomposable F−algebras with orthogonal
involution has been made more explicit by K.J. Becher, thereby confirming the Pfister
Factor Conjecture.

6.5 Theorem (Becher). Let (B, τ) be a split totally decomposable F−algebra with or-
thogonal involution. Then (B, τ) is adjoint to a Pfister form over F.

Proof. See [8, Theorem 1]. �

This has inspired K.J. Becher to state the following conjecture, which he confirmed in
the case of algebras of Schur index 2 (see [8, Corollary, Theorem 2]).
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6.6 Conjecture. Let (B, τ) be an F−algebra with involution of the first kind of degree a
power of 2. Then (B, τ) is totally decomposable if and only if (B, τ) is a Pfister algebra
with involution.

One implication of this conjecture follows from the results in [8], together with recent
work of N.A. Karpenko and J.–P. Tignol.

6.7 Theorem (Karpenko, Tignol).

(a) Let (B, τ) be an F−algebra with orthogonal involution. If τ becomes hyperbolic
over F(B) then τ is already hyperbolic over F (Karpenko).

(b) Let (B, τ) be an F−algebra with symplectic involution. If τ becomes hyperbolic
over the function field of SB2(B), then τ is already hyperbolic (Tignol).

Proof. See [37, Theorem 1.1, Theorem A.1]. Some special cases of (a) were already
known before Karpenko proved it in the general case, for example the case ind(B) = 2
follows from a result on skew–hermitian spaces shown independently in [14] and [57,
(3.3)]. �

6.8 Theorem. Totally decomposable F−algebras with involution are Pfister algebras
with involution.

Proof. This follows by combining [8, Corollary] and Theorem 6.5 with Theorem 6.7. �

As far as we know, the full conjecture has only been confirmed in low degree. We collect
the known cases below.

6.9 Theorem. Conjecture 6.6 is true for deg(B) ⩽ 8 in the orthogonal case, and for
deg(B) ⩽ 4 in the symplectic case.

Proof. See [5, (2.10)] for the orthogonal case and [64, Theorem B] for the symplectic
case. �

There are nice characterisations of total decomposability in low degree. We collect them
in the following proposition for convenience. By Theorem 6.9, in the cases treated in
the next proposition, total decomposability is equivalent to being a Pfister algebra with
involution.

6.10 Proposition. Let (B, τ) be an F−algebra with involution of the first kind.

(a) Suppose that deg(B) = 4 and τ is symplectic. Then (B, τ) is totally decomposable.

(b) Suppose that deg(B) = 4 and τ is orthogonal. Then the following are equivalent:
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(i) (B, τ) is totally decomposable.

(ii) For i = 1,2, there exist F−quaternion algebras Qi with canonical involution
γi such that

(B, τ) ≅ (Q1, γ1) ⊗F (Q2, γ2).

(iii) disc(τ) is trivial.

(c) Suppose that deg(B) = 8 and τ is orthogonal. Then the following are equivalent:

(i) (B, τ) is totally decomposable.

(ii) disc(τ) is trivial and one of the components of C(B, τ) is split.

Proof. See [64, Theorem B], resp. [6, (3.4)], for (a) in the case where B is a division
algebra, resp. ind(B) = 2. In the case where B is split, τ is adjoint to a non–singular
alternating bilinear form over F. Since such forms are classified up to isometry by their
dimension by [49, (XIV.9.2)], all split degree 4 algebras with symplectic involution are
isomorphic, and hence, in particular isomorphic to a split degree 4 totally decomposable
F−algebra with symplectic involution. The equivalences in (b) are proved in [44] and
(c) is shown in [45, (42.11)]. �

In the symplectic degree 8 case, Conjecture 6.6 also holds. This follows from results in
[26] on the discriminant of a symplectic involution, as was communicated to us by J.–P.
Tignol. We thank him for his permission to include this result here. Let (B, τ) be an
F−algebra with symplectic involution such that 8 ∣ deg(B). The discriminant of (B, τ),
denoted ∆(B, τ) is an element of the cohomology group H3(F, µ2). For details on and
properties of ∆(B, τ) we refer to [26].

6.11 Proposition. Let (B, τ) be an F−algebra with symplectic involution and assume
that 8 ∣ deg(B). If (B, τ) is a Pfister algebra with involution then ∆(B, τ) = 0.

Proof. If B is split, then τ is hyperbolic, and it follows from [26, Theorem B] that
∆(B, τ) = 0. If ind(B) = 2, then it follows from [8, Corollary] that (B, τ) is totally
decomposable and [26, (3.2)] implies that ∆(B, τ) = 0. So, assume that ind(B) > 2.
Since B carries an involution of the first kind, B has exponent 2 by [45, (3.1) (1)], and is
therefore Brauer equivalent to a tensor product of F−quaternion algebras (e.g. see [47,
p. 138]), say B ∼ Q1 ⊗F Q2 ⊗F . . . ⊗F Q`. Let q12 be the Albert form corresponding to
Q1 ⊗F Q2. Over F(q12), we get

B⊗F F(q12) ∼ Q⊗F Q3 . . .⊗F Q`,

for some F−quaternion algebra Q. Moreover, the restriction map

H3(F, µ2) → H3(F(q12), µ2)
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is injective by [1, (5.6)] and [41, (8.2)]. If ind(B ⊗F F(q12)) > 2, we repeat the same
process with the Albert form associated to two quaternion algebras out of Q,Q3, . . . ,Q`.
We continue this process of taking function fields of Albert forms until we obtain, after
a finite number of steps, a field extension F′/F such that ind(BF′) = 2, and such that

H3(F, µ2) → H3(F′, µ2)

is injective. By [8, Corollary], it follows that (B, τ)F′ is totally decomposable. Hence,
∆((B, τ)F′) = 0. The injectivity of the map H3(F, µ2) → H3(F′, µ2) then yields ∆(B, τ) =
0 ∈ H3(F, µ2). �

6.12 Theorem. Let (B, τ) be an F−algebra of degree 8 with symplectic involution.
Then the following are equivalent:

(i) (B, τ) is totally decomposable.

(ii) (B, τ) is a Pfister algebra with involution.

(iii) ∆(B, τ) = 0.

Proof. In [26, Theorem B], the authors prove the equivalence of (i) and (iii). The im-
plication (i) ⇒ (ii) follows from Theorem 6.8, and that (ii) implies (iii) follows from
Proposition 6.11. �

6.2 A factorisation statement

In this section, we consider the following question.

6.13 Question. Let (B, τ) and (C, ρ) be Pfister algebras with orthogonal involution over
F. Suppose that there exists an F−algebra with orthogonal involution (B′, τ′) such that
(C, ρ) ≅ (B, τ) ⊗F (B′, τ′). Does there exist a Pfister algebra with orthogonal involution
(B̃, τ̃) over F such that (C, ρ) ≅ (B, τ) ⊗F (B̃, τ̃)?

This question was inspired by the following result for quadratic forms.

6.14 Theorem. Let π and q be a Pfister forms over F. Then the following are equivalent:

(i) q ≃ π⊗ q′, for some quadratic form q′ over F.

(ii) q ≃ π⊗ π′, for some Pfister form π′ over F.

Proof. See [47, (X.4.11), (X.4.13)]. �
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6.15 Remarks.

(a) A positive answer to Question 6.13 cannot be expected in general. In [51, (1.1)],
the authors showed that, given a degree 8 Pfister algebra with orthogonal invo-
lution (C, ρ) over F, if ind(C) ⩽ 4, then there exists a biquaternion algebra with
involution (D, θ) and λ ∈ F× such that (C, ρ) ≅ (D, θ)⊗F Ad(⟨1,−λ⟩). In [68], the
author showed that, if ind(C) = 4, then there are examples where (D, θ) cannot be
chosen to be a Pfister algebra with involution.

(b) As shown in [47, (X.4.11), (X.4.13)], conditions (i) and (ii) in Theorem 6.14 are
also equivalent to the condition that π is a subform of q. One could ask whether
there is an analogue of Theorem 6.14 for involutions starting from this seemingly
weaker assumption. The notion “subform” could then be replaced by the notion
“orthogonal summand”. We do not consider this question in this thesis.

In this section, we consider Question 6.13 in a special case. We show that, given Pfister
algebras with involution (B, τ) and (C, ρ) over F such that (C, ρ) = (B, τ)⊗F Ad(ϕ) for
some quadratic form ϕ over F satisfying certain conditions, then ϕ can be replaced by a
Pfister form.

Let (B, τ) be an F−algebra with involution of the first kind and let (V, ϕ) be a quadratic
space over F. We denote by ϕτ the hermitian form over (B, τ) determined by a matrix
representation of ϕ, and we call ϕτ the hermitian form associated to ϕ.

6.16 Proposition. Let (B, τ) an F−algebra with involution of the first kind. Let (V, ϕ)
be a quadratic space over F and ϕτ its associated hermitian form over (B, τ). Then
Ad(ϕτ) ≅ (B, τ) ⊗F Ad(ϕ).

Proof. Let n = dim(V) and let (C, ρ) = (B, τ) ⊗ Ad(ϕ). Let B = (e1, . . . , en) be an
orthogonal basis for (V, ϕ) and let a1, . . . ,an ∈ F× be such that ϕ ≃ ⟨a1, . . . ,an⟩ with
respect to B. We have that (e1⊗1, . . . , en⊗1) is a B−basis for V ⊗F B. We define a map

ϑ ∶ A = EndF(V) ⊗F BÐ→ EndB(V ⊗F B)

by mapping a generator f ⊗ α ∈ EndF(V) ⊗F B to the endomorphism defined on gener-
ators by v ⊗ d ↦ f (v) ⊗ αd. Then ϑ is in fact an F−algebra homomorphism. Since A
is a central simple algebra, we get that ϑ is injective, and hence surjective by dimension
reasons. So, ϑ is an F−algebra isomorphism. In order to prove the statement, we need
to show that for all x, y ∈ V ⊗F B and all g ∈ EndB(V ⊗F B)

h(x,g(y)) = h(adh(g)(x), y).
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We have that x = ∑n
i=1(ei ⊗ 1)xi and y = ∑n

j=1(e j ⊗ 1)y j, with x1, . . . , xn, y1, . . . , yn ∈ B. It
follows that

h(x,g(y)) = h
⎛

⎝

n

∑
i=1

(ei ⊗ 1)xi,g
⎛

⎝

n

∑
j=1

(e j ⊗ 1)y j
⎞

⎠

⎞

⎠
=

n

∑
i, j=1

τ(xi)h (ei ⊗ 1,g(e j ⊗ 1)) y j

and

h(adh(g)(x), y) = h
⎛

⎝
adh(g)(

n

∑
i=1

(ei ⊗ 1)xi) ,
n

∑
j=1

(e j ⊗ 1)y j
⎞

⎠

=
n

∑
i, j=1

τ(xi)h (adh(g)(ei ⊗ 1), e j ⊗ 1) y j.

So, it is sufficient to prove for i, j = 1, . . . ,n that

h (ei ⊗ 1,g(e j ⊗ 1)) = h (adh(g)(ei ⊗ 1), e j ⊗ 1) .

Let i, j ∈ {1, . . . ,n} be arbitrary. Since adh is F−linear, we may assume that g is of the
form f ⊗α ∈ EndF V ⊗F B. For k = 1, . . . ,n, let αk j, α

′
ki ∈ F such that f (e j) = ∑

n
k=1 ekαk j

and adϕ( f )(ei) = ∑
n
k=1 ekα

′
ki. We have that

h (ei ⊗ 1, ( f ⊗ α)(e j ⊗ 1)) = ai( f (e j) ⊗ α)i = aiαi jα and

h (adh( f ⊗ α)(ei ⊗ 1), e j ⊗ 1) = h (adϕ( f )(ei) ⊗ τ(α), e j ⊗ 1)

= a jτ ((adϕ( f )(ei) ⊗ τ(α)) j)

= a jτ(α
′
jiτ(α)) = a jτ(τ(α)α

′
ji) = a jα

′
jiα,

where we used that B commutes with F and τ is trivial on F. If α ∈ B×, then it re-
mains to show that aiαi j = a jα

′
ji. This can be rewritten as the condition bϕ(ei, f (e j)) =

bϕ(adϕ( f )(ei), e j), which is satisfied by the properties of adϕ. �

6.17 Lemma. Let ϕ a 2n−dimensional non–singular quadratic form over F. Let (B, τ)
be a Pfister algebra with orthogonal involution. Let furthermore (C, ρ) = (B, τ)⊗Ad(ϕ)
and assume that (C, ρ) is a Pfister algebra with involution. Let t ⩽ n − 1 and ψ a non–
singular quadratic form with dim(ψ) < 2t+1, such that ψ ⊥ ϕ ∈ It+1(F). Then (B, τ) ⊗
Ad(ψ) is hyperbolic.

Proof. By Theorem 6.7 (a), it suffices to show that (B, τ) ⊗ Ad(ψ) is hyperbolic over
F(B). Let q be a quadratic form over F(B) such that (B, τ) ≅ Ad(q). Since (B, τ) is
a Pfister algebra with involution, q is anisotropic or hyperbolic over any field extension
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of F(B). By [66, (4.5.4)], q is similar to a Pfister form, and since q is only determined
up to similarity we may assume that q is a Pfister form. So, we have that (C, ρ)F(B) ≅

Ad(q⊗ϕF(B)). Let L = F(B)(q⊗ϕF(B)). It is clear that ρ is isotropic over L, and hence
hyperbolic since it is Pfister. In W(L), we have that q⊗ψ ∼ q⊗(ψ ⊥ ϕ). By assumption,
the latter is in Ir+t+1(L), and hence, q⊗ψ ∈ Ir+t+1(L) as well. Since dim(q⊗ψ) < 2r+t+1,
the Arason–Pfister theorem (see [66, (4.5.6)]) implies that q ⊗ ψ is hyperbolic over L.
Now, by assumption, q⊗ϕ is similar to a Pfister form. So (q⊗ψ)F(B) becomes hyperbolic
over the function field of a Pfister form over F(B). Since dim(q⊗ψ) < 2r+t+1 ⩽ dim(q⊗
ϕ), this means that q ⊗ ψ is already hyperbolic over F(B). Hence, (B, τ) ⊗ Ad(ψ) is
hyperbolic over F. �

6.18 Corollary. Let n ⩾ 2 and ϕ a 2n−dimensional non–singular quadratic form over
F. Let (B, τ) be a Pfister algebra with orthogonal involution. Let (C, ρ) = (B, τ) ⊗
Ad(ϕ) and assume that (C, ρ) is a Pfister algebra with involution. Then there exists a
2n−dimensional form ϕ̃ over F of trivial discriminant such that (C, ρ) ≅F (B, τ)⊗Ad(ϕ̃).

Proof. Let disc(ϕ) = d ∈ F×/F×2. If d is a square, there is nothing to prove, so let us
assume that disc(ϕ) is nontrivial. Since ϕ is only determined up to a scalar, we may
assume that ϕ ≃ ⟨d⟩ ⊥ ϕ′, for some quadratic form ϕ′ over F. Then ϕ̃ = ⟨1⟩ ⊥ ϕ′ ∼

ϕ ⊥ ⟨1,−d⟩ ∈ I2(F). By Lemma 6.17, (B, τ) ⊗ Ad(⟨1,−d⟩) is hyperbolic. By Lemma
6.16, (C, ρ) ≅ Ad(ϕτ) and (B, τ) ⊗ Ad(⟨1,−d⟩) ≅ Ad(⟨1,−d⟩τ). In W(B, τ), we now
have that, ϕτ ∼ ϕτ ⊥ ⟨1,−d⟩τ ∼ ϕ̃τ. This implies that (B, τ) ⊗ Ad(ϕ) is Witt equivalent
to (B, τ) ⊗ Ad(ϕ̃) by Proposition 2.30, and since the algebras have the same degree,
Proposition 2.31 yields that (B, τ) ⊗Ad(ϕ) ≅F (B, τ) ⊗Ad(ϕ̃). �

6.19 Proposition (Elman–Lam). Let π1 and π2 be two Pfister forms over F. Suppose
that iw(π1 ⊥ −π2) ⩾ 2r. Then there exists an r−fold Pfister form π over F, and Pfister
forms q1 and q2 over F such that π1 ≃ π⊗F q1 and π2 ≃ π⊗F q2.

Proof. This result is stated in [47, (X.5.13)] under the additional hypothesis that π1 and
π2 have the same dimension, but this assumption is not used in the proof. �

6.20 Proposition. Let n ⩾ 2 and let ϕ be a 2n−dimensional non–singular quadratic
form over F in In−1(F). Assume that ϕ is Witt equivalent to an (n − 1)−fold Pfister
form in In−1(F)/In(F). Then there exists an (n − 2)−fold Pfister form θ over F and a
4−dimensional quadratic form θ′ over F such that ϕ ≃ θ ⊗F θ

′.

Proof. By assumption, there exists an (n−1)−fold Pfister form π over F such that ϕ ≡ π
mod In(F). It follows that ϕ ⊥ π ∈ In(F). Furthermore, we may scale ϕ such that it
represents -1. Then dim((ϕ ⊥ π)an) < 2n + 2n−1. By Vishik’s Gap Theorem (see [47,
(X.5.20)]), the dimension of (ϕ ⊥ π)an is equal to 2n+1 − 2i+1, for some i ∈ [0,n]. Note
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that 2n + 2n−1 − 2 < 2n+1 − 2n−1. Hence, (ϕ ⊥ π)an is of dimension at most 2n. Since
this is a form in In(F), by the Arason–Pfister theorem ([66, (4.5.6)]), this implies that
either ϕ ⊥ π is hyperbolic, or its anisotropic part has dimension 2n. In the latter case,
again invoking the Arason–Pfister theorem, we get that (ϕ ⊥ π)an is either anisotropic
or hyperbolic over every field extension of F, and hence similar to an n−fold Pfister
form by [66, (4.5.4)]. In any case, there is an n−fold Pfister form ϕ̃ over F, possibly
hyperbolic, such that [ϕ ⊥ π] = [ϕ̃] ∈ W(F). It follows that dim((ϕ̃ ⊥ −π)an) ⩽ 2n.
This implies that iw(ϕ̃ ⊥ −π) ⩾ 2n−2. It follows from Proposition 6.19 that there exists an
(n−2)−fold Pfister form θ over F, and elements a,b, c ∈ F× such that π ≃ θ⊗F ⟨⟨a⟩⟩, and
ϕ̃ ≃ θ ⊗F ⟨⟨b, c⟩⟩. Because of dimension reasons, it follows that ϕ ≃ θ ⊗F ⟨−a,b, c,bc⟩,
proving the statement. �

6.21 Proposition. Let n ⩾ 2. Let ϕ be a 2n−dimensional non–singular quadratic form
over F in In−1(F) Witt equivalent to an (n− 1)−fold Pfister form in In−1(F)/In(F). Let
(B, τ) be a Pfister algebra with orthogonal involution. Let (C, ρ) = (B, τ) ⊗ Ad(ϕ) and
assume that (C, ρ) is a Pfister algebra with involution. Then there is an n−fold Pfister
form ϕ̃ over F such that (C, ρ) ≅F (B, τ) ⊗Ad(ϕ̃).

Proof. By Proposition 6.20, there exists an (n − 2)−fold Pfister form θ over F and
a quadratic form θ′ over F of dimension 4 such that ϕ ≃ θ ⊗F θ′. It follows that
(C, ρ) ≅ (B, τ)⊗F Ad(θ)⊗F Ad(θ′). Applying Proposition 6.18, we get that there exists
a 4−dimensional quadratic form θ′′ over F of trivial discriminant, which is necessarily
a scalar multiple of a Pfister form, such that (C, ρ) ≅ (B, τ) ⊗F Ad(θ) ⊗F Ad(θ′′) ≅F

(B, τ) ⊗F Ad(θ ⊗F θ
′′). Since θ ⊗F θ

′′ is similar to an n−fold Pfister form, this proves
the statement. �

Given a non–singular quadratic form ϕ ∈ In(F), it is known that ϕ is Witt equivalent to
an orthogonal sum of n−fold Pfister forms. We tried to use induction on the number of
Pfister forms to prove Proposition 6.21 in greater generality, but did not succeed. We did
obtain the following result if ϕ is an orthogonal sum of two scaled (n − 1)−fold Pfister
forms. This is the main result of this section, and using Proposition 6.20, it can be seen
that Proposition 6.21 is a special case of this result.

6.22 Theorem. Let n ⩾ 3 and let π1, π2 be two (n − 1)−fold Pfister forms over F. Let
a,b ∈ F× and let ϕ = aπ1 ⊥ bπ2. Let (B, τ) be a Pfister algebra with orthogonal involu-
tion. Let (C, ρ) = (B, τ)⊗Ad(ϕ) and assume that (C, ρ) is a Pfister algebra with involu-
tion. Then there is an n−fold Pfister form ϕ̃ over F such that (C, ρ) ≅F (B, τ) ⊗Ad(ϕ̃).

Proof. Up to scaling, we may assume that ϕ represents 1. Let ψ = (bπ1 ⊥ −bπ2)an. It
is clear that dim(ψ) ⩽ 2n − 2. Furthermore, since ψ ⊥ ϕ is Witt equivalent to a scalar



6.2 159

multiple of an n−fold Pfister form and In(F) is an ideal, we have that ψ ⊥ ϕ ∈ In(F). By
Proposition 6.17, (B, τ) ⊗F Ad(ψ) is hyperbolic. It follows that

ϕτ ∼ ϕτ ⊥ ψτ ∼ (⟨a,b⟩ ⊗ π1)τ.

By Propositions 2.30 and 2.31, it follows that (B, τ) ⊗ Ad(ϕ) ≅F (B, τ) ⊗ Ad(⟨a,b⟩ ⊗
π1) ≅F (B, τ) ⊗Ad(⟨1,ab⟩ ⊗ π1), proving the statement. �

We tried to use the technique of adding a “suitable” quadratic form ψ to ϕ also in
the case where ϕ is a form in In−1(F) Witt equivalent to an orthogonal sum of two
(n − 1)−fold Pfister forms modulo In(F), but not isometric to an orthogonal sum of
two scaled (n − 1)−fold Pfister forms. By suitable, we mean that (ϕ ⊥ ψ)an should
have the right dimension. We tried this in the first place in the case where n = 3, but
did not succeed. In the following proposition, we collect different characterisations of
8−dimensional forms in I2(F) isometric to an orthogonal sum of two 2−fold Pfister
forms. The second characterisation suggests that one might need a different technique
than finding this suitable form ψ, in order to find out whether Theorem 6.22 could hold
for general forms in I2(F) in the case where n = 3.

6.23 Proposition. Let ϕ be an 8−dimensional form in I2(F). Let ρ be the canonical
involution on C0(ϕ). Then (C0(ϕ), ρ) = (A, σ) × (A, σ), for some degree 8 F−algebra
with orthogonal involution (A, σ). Assume that ind(A) = 4. Let qA be the Albert form
associated to A. Then the following are equivalent:

(i) ϕ is isometric to an orthogonal sum of two scaled 2−fold Pfister forms.

(ii) There is a scalar b ∈ F× such that the anisotropic part of bϕ ⊥ qA has dimension at
most 8.

(iii) (A, σ) decomposes as a tensor product of three F−quaternion algebras with invo-
lution, with one factor being a split F−quaternion algebra with orthogonal involu-
tion.

Proof. Note that c(ϕ) = [A] ∈ Br(F). Suppose that ϕ ≃ β1π1 ⊥ β2π2, with π1, π2 2−fold
Pfister forms over F and β1, β2 ∈ F×. By [33, (3.3)], this means that there is a quadratic
extension L = F(

√
δ) of F such that ϕL and (qA)L are isotropic. This means that there

exist α1, α2 ∈ F× such that α1⟨1,−δ⟩ ⊂ ϕ and α2⟨1,−δ⟩ ⊂ qA. Then the dimension of
the anisotropic part of −α1α2ϕ ⊥ qA is at most 10 and since this is a form in I3(F),
that means that the dimension is at most 8, since forms of dimension 10 in I3(F) are
isotropic (see e.g. [47, (XII.2.8)]). This shows that (i) implies (ii).
Suppose that there exists b ∈ F× such that the anisotropic part of bϕ ⊥ qA is of dimension
at most 8. Then qA and −bϕ contain a common 3−dimensional subform by [32, (3.11)].
That means that there is a quadratic extension of F making qA and −bϕ, and hence ϕ,
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isotropic. By [33, (3.3)], this means that ϕ contains a subform similar to a 2−fold Pfister
form. This implies that ϕ ≃ β1ϕ1 ⊥ β2ϕ2, with ϕ1 and ϕ2 Pfister forms, whence (i).
The equivalence of (i) and (iii) follows from [51, (4.1)]. �

6.24 Remark. Let ϕ be as in Proposition 6.23. If F = F0((t1)) . . . ((ti)), with i ⩾ 1
and F0 a local or global field, then the conditions (i)–(iii) are satisfied by [33, (5.1)].
In general, (i)–(iii) need not be satisfied, for example if F = C(x, y)((t1))((t2)) then
ϕ can be chosen such that (i)–(iii) do not hold, whereas they are always satisfied if
F = C(x, y)((t1)) (see [33, (5.6)]).

6.3 Generic hyperbolicity

Let (V,q) be a quadratic space over F of dimension at least 3. Let Xq be the corre-
sponding projective quadric in P(V). Let L/F be an arbitrary field extension. Then qL

is isotropic if and only if Xq has an L−rational point. By Proposition 3.1, this is the case
if and only if there is an F−place λ ∶ F(Xq) → L∞. We denote F(Xq) also by F(q) and
call it a generic isotropy field for q (in the literature, one also uses the term generic zero
field). The field F(q) is given by a purely transcendental extension of F of transcendence
degree dim(q) − 2, followed by a quadratic extension (see [47, (X.3.7)]). Furthermore,
F(q)/F is purely transcendental if and only if q is isotropic (see [47, (X.4.1)]).

6.25 Remark. Let (V,q) be a quadratic space. Then there are two kinds of function
fields associated to (V,q). There is the so–called “small function field”; this is the func-
tion field of the projective quadric we considered above, denoted by F(q). There we
excluded the case where q is nonhyperbolic and dim(q) = 2, since the corresponding
projective quadric is not geometrically irreducible in that case, and hence, behaves dif-
ferently than in the case dim(q) ⩾ 3. The other function field is the so–called “big
function field”. This is the field M. Knebusch works with in the generic splitting theory
of quadratic forms. It is the function field of the affine quadric hypersurface q(X) = 0
in Fdim(q). We denote this hypersurface by Xa

q and its function field by F(Xa
q). The big

function field of q has transcendence degree dim(q)−1 over F, and is a purely transcen-
dental extension in one variable over the small function field (see [47, p. 330]). Hence,
F(q) and F(Xa

q) are place equivalent. This implies that for statements on isotropy of the
quadratic form, F(q) and F(Xa

q) behave in the same way.

In the case of quadratic forms, generic isotropy fields can be realised as function fields
of the quadrics associated to the forms. In the case of algebras with involution, we will
also take the point of view of varieties. Let (B, τ) be an F−algebra with involution of
the first kind. Suppose that there exists a projective, geometrically integral F−variety
X such that for every field extension L/F, τL is isotropic (resp. hyperbolic) if and only
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if X has an L−rational point. Then the function field of X is a generic isotropy (resp.
hyperbolicity) field for τ.

6.26 Remark. It is clear that if τ is isotropic then F is a generic isotropy field for τ.

We first treat the question on generic hyperbolicity, since there is then only one of the
IVi(B, τ) that needs to be taken into account. From section 6.4 on, we treat the question
on generic isotropy.

For the rest of this section, we fix an F−algebra with involution (B, τ) of the first kind.
Since odd degree algebras cannot carry hyperbolic involutions, we assume that B has
even degree, say deg(B) = 2n. We exclude the case of F−quaternion algebras with
involution, since IV1(B, τ) is not a projective, geometrically irreducible variety in that
case. So, we assume that n ⩾ 2.

6.27 Proposition. Suppose that τ is symplectic. Then there exists a generic hyperbolic-
ity field for τ.

Proof. Suppose that τ is symplectic. Then IVn(B, τ) is a projective, geometrically inte-
gral F−variety by Proposition 3.3. Hence, Fn(τ) is a generic hyperbolicity field for τ by
Proposition 3.1. �

6.28 Proposition. Suppose that τ is orthogonal of trivial discriminant. Then there exists
a generic hyperbolicity field for τ if and only if F+(τ) or F−(τ) is a generic hyperbolicity
field for τ.

Proof. Suppose that there exists a generic hyperbolicity field for τ, say N. Then at least
one of the varieties IV+(B, τ) and IV−(B, τ) has an N−rational point. Suppose that
IV+(B, τ) has an N−rational point. By Proposition 3.1, there is an F−place λ ∶ F+(τ) →
N∞. This implies that F+(τ) is a generic hyperbolicity field for τ. �

In the situation of Proposition 6.28, we now study further under which conditions F+(τ)
or F−(τ) is a generic hyperbolicity field for τ.

6.29 Proposition. Suppose that B is split and that τ is orthogonal of trivial discriminant.
Then F+(τ) and F−(τ) are both generic hyperbolicity fields for τ.

Proof. Let L/F be a field extension such that τL is hyperbolic. Then by Proposition 3.14,
IV+(B, τ) and IV−(B, τ) both have an L−rational point. By Proposition 3.1, it follows
that there are places from F+(τ) to L and from F−(τ) to L. This proves the statement.�

6.30 Proposition. Suppose that τ is orthogonal of trivial discriminant. Let ε ∈ {+,−}.
If Cε is split over F then Fε(τ) is a generic hyperbolicity field for τ.
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Proof. Assume that C+ is split over F and let L/F be an arbitrary field extension such
that τL is hyperbolic. Then one of IV+(B, τ) and IV−(B, τ) has an L−rational point. If
IV−(B, τ) has an L−rational point, then there is an F−place from F−(τ) to L, and hence,
C− splits over L by Lemma 3.12 and Propositions 3.7 and 3.1 (b). Hence, BL is split by
Proposition 1.36. By Proposition 3.14, this implies that both components IV+(B, τ) and
IV−(B, τ) have an L−rational point and hence, in particular, we have an F−place from
F+(τ) to L. It follows from the above that IV+(B, τ) has an L−rational point if BL is not
split. So, in any case, there is an F−place F+(τ) → L∞. The reasoning in the case where
C− is split is completely analogous. �

6.31 Corollary. Suppose that there exist F−algebras of even degree with involution of
the first kind (B1, τ1), (B2, τ2) and (B3, τ3) such that (B, τ) ≅ (B1, τ1) ⊗F (B2, τ2) ⊗F

(B3, τ3). Then there exists a generic hyperbolicity field for τ.

Proof. By Proposition 6.4, the case where τ is orthogonal follows from Proposition 6.30.
The symplectic case follows from Proposition 6.27. �

6.32 Corollary. Suppose that (B, τ) is a Pfister algebra with involution such that deg(B) >

4. Then there exists a generic hyperbolicity field for τ.

Proof. The orthogonal case follows from Propositions 6.3 and 6.30. The symplectic
case follows from Proposition 6.27. �

As a special case of both Corollary 6.31 and Corollary 6.32, we obtain the following
result.

6.33 Corollary. Totally decomposable F−algebras with involution of degree at least 8
have a generic isotropy field and a generic hyperbolicity field.

Proof. This follows from Corollary 6.31 and Theorem 6.8. �

If n is even and B is non–split, then the converse of Proposition 6.30 also holds.

6.34 Proposition. Suppose that n is even, B is non–split and that τ is orthogonal of
trivial discriminant. Let ε ∈ {+,−}. If Fε(τ) is a generic hyperbolicity field for τ then
Cε is split over F.

Proof. Suppose that F+(τ) is a generic hyperbolicity field for τ. Since τ also becomes
hyperbolic over F−(τ), there is an F−place F+(τ) → F−(τ)∞. It follows from Lemma
3.12 that C+ splits over F+(τ) and hence also over F−(τ). Invoking the same proposition
once more, we get that C+ splits over F, since n is even and B is non–split. The reasoning
in the case where F−(τ) is a generic hyperbolicity field is completely analogous. �
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6.35 Theorem. Suppose that n is even, B is non–split and that τ is orthogonal of trivial
discriminant. Then there exists a generic hyperbolicity field for τ if and only if one of
C+ and C− is split over F.

Proof. This follows from Proposition 6.28 together with Proposition 6.34. �

6.36 Proposition. Suppose that n is even, B is non–split and that disc(τ) = d ∈ F×/F×2

is nontrivial. Then there exists a generic hyperbolicity field for τ if and only if B splits
over F(

√
d).

Proof. Suppose that there exists a generic hyperbolicity field for τ, say N. Then disc(τN)

is trivial. Let δ be a square root of d in N. We denote the nontrivial F−automorphism of
F(δ) by ι and we denote C(B, τ) by C. Consider the F(δ)−variety X = IVn((B, τ)F(δ)).
This variety has two irreducible components, which we denote by X+ and X−.
Since τN is hyperbolic, one of the components X+ and X− has an N−rational point, and
hence, by Proposition 3.1, there is an F(δ)−place λ ∶ F(δ)(Xε) → N∞, for ε = + or
ε = −. Let L/F(δ) be a field extension such that τL is hyperbolic. Since N is a generic
hyperbolicity field for τ, there is an F−place µ ∶ N → L∞. Since δ is algebraic over
F, it follows that δ ∈ Oµ, the valuation ring of N corresponding to µ, and hence d has
a square root in L as well. We fix an F−embedding of F(δ) in L mapping δ to µ(δ).
With respect to this embedding, we may consider µ as an F(δ)−place. Hence, one of
F(δ)(X+) and F(δ)(X−) is a generic hyperbolicity for τF(δ). Suppose that BF(δ) is non–
split. Proposition 6.34 then yields that one of the components of C((B, τ)F(δ)) is split
over F(δ). Note that C((B, τ)F(δ)) ≅ C ⊗F F(δ) ≅ C × ιC. It follows from [18, §8]
that ind(C) = ind(ιC). So, by the above, we have that C must be split over F(δ). By
[45, (9.14)], it follows that NF(δ)/F([C]) = [B] ∈ Br(F). Hence, B is split over F, a
contradiction. Hence, B is split over F(δ), and then also over F(

√
d).

Conversely, suppose that B splits over F(
√

d). By Proposition 6.29, F(
√

d)(X+) and
F(

√
d)(X−) are both generic hyperbolicity fields for τF(

√
d). Since the discriminant

of τ becomes trivial over any field extension of F making τ hyperbolic, it follows that
F(

√
d)(X+) and F(

√
d)(X−) are also generic hyperbolicity fields for τ. �

6.37 Example. Assume that C is a biquaternion division algebra over F and let ρ be an
orthogonal involution on C of nontrivial discriminant. Let ϕ be a non–singular quadratic
form over F of odd dimension. Let (B, τ) = (C, ρ) ⊗F Ad(ϕ). By [45, (7.3) (4)],
disc(τ) = disc(ρ). Since ind(B) = 4, Proposition 6.36 yields that there is no generic
hyperbolicity field for τ.
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6.4 Generic isotropy

We first consider F−algebras with involution of the first kind for which it can be shown
in an elementary way that they have a generic isotropy field.

6.38 Lemma. Let (Q, τ) be an F−quaternion algebra with orthogonal involution.

(a) If disc(τ) is trivial, then Q is split over F.

(b) Assume that disc(τ) = d mod F∗2. If Q is split then (Q, τ) ≅F Ad(⟨1,−d⟩).

Proof. The proof of (a) can be found in [45, (7.4)]. Let us prove (b). Since Q is split, by
Proposition 2.10, there exists a quadratic form q over F such that (Q, τ) ≅ Ad(q). Since
q is determined up to similarity by Proposition 2.21, we may assume that q = ⟨1, c⟩,
for some c ∈ F. Furthermore, by [45, (7.3)], −c mod F∗2 = disc(q) = disc(τ), whence
⟨1, c⟩ ≃ ⟨1,−d⟩. �

6.39 Proposition. Let (B, τ) be an F−algebra with involution of the first kind. Assume
one of the following:

(a) deg(B) = 2, or

(b) B is split and τ is orthogonal, or

(c) ind(B) = 2 and τ is symplectic, or

(d) deg(B) = 4 and τ is symplectic.

Then there exists a quadratic form ϕ over F such that for any field extension L/F, we
have that ϕL is isotropic if and only if τL is isotropic.

Proof. Suppose that (B, τ) is a quaternion algebra with involution. Denote the norm
form of B by N. Note that if τ is isotropic over a field extension L/F, then BL is split,
since division algebras do not carry isotropic involutions. Let us first treat the symplec-
tic case. A split algebra with symplectic involution is hyperbolic since it is adjoint to an
alternating bilinear form, which is hyperbolic. Let now L/F be any field extension. We
have that τL is isotropic if and only if BL is split, which is the case if and only if NL is
hyperbolic.
Assume that τ is orthogonal and that B is non–split. Then disc(τ) = d ∈ F×/F×2 is
nontrivial by Lemma 6.38. Let ϕ be the quadratic form ⟨1,−d⟩ over F. Let L/F be a
field extension. It follows from Lemma 6.38 that τL is isotropic if and only if disc(τL)

is trivial, which is the case if and only if ϕL is isotropic.
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Suppose that (B, τ) is split orthogonal. Then there is a quadratic form q over F such that
(B, τ) ≅ Ad(q) and for any field extension qL is isotropic if and only if τL is isotropic.

Suppose that ind(B) = 2 and τ is symplectic. Let Q be a quaternion division algebra
over F Brauer equivalent to B, and let γ be the canonical involution on Q. Let V be
a finitely generated right Q−module and h ∶ V × V → Q a hermitian form over (Q, γ)
such that (B, τ) ≅ Ad(h). One easily checks that h(v, v) ∈ F for all v ∈ V . Then
qh ∶ V → F ∶ v ↦ h(v, v) defines a quadratic form over F (this is called the trace form
of h – see [66, p. 352]). Clearly h is isotropic if and only if qh is isotropic. Since h is a
hermitian form over (Q, γ), it can be diagonalised by [43, (I.6.2.4)]. Let a1, . . . ,am ∈ F
be such that h ≃ ⟨a1, . . . ,am⟩γ. One checks that this implies that qh ≃ ⟨a1,⋯,am⟩ ⊗ NQ,
with NQ the norm form of Q. Let L/F be an arbitrary field extension. Assume first that
QL is non–split. Then (qh)L is the trace form of hL. Therefore, by Proposition 2.14 and
[66, (10.1.7)], we get

τL is isotropic (resp. hyperbolic) ⇐⇒ hL is isotropic (resp. hyperbolic)

⇐⇒ (qh)L is isotropic (resp. hyperbolic).

Consider the case in which QL is split. Then BL is split as well and τL is a symplectic
involution on BL and therefore hyperbolic. Moreover, since QL is split, we have that NQ

is hyperbolic over L, and hence qh is also hyperbolic over L. So, in this case we also
have

τL is hyperbolic ⇐⇒ (qh)L is hyperbolic.

Suppose that deg(B) = 4 and τ is symplectic. Let Vτ = {a ∈ Sym(B, τ) ∣ Trd(a) = 0} and
ϕτ ∶ Vτ → F defined by ϕτ(a) = a2, for all a ∈ Vτ. Then Vτ is a 5−dimensional F−vector
space and ϕτ is a non–singular quadratic form on Vτ (see [45, p. 216]). Furthermore, ϕτ
is isotropic if and only if τ is hyperbolic, if and only if τ is isotropic, by [45, (15.20)].
Let L/F be an arbitrary field extension. Note that Sym((B, τ)L) ≅ Sym(B, τ) ⊗F L and
VτL ≅ Vτ ⊗F L. Therefore ϕτL ≃ (ϕτ)L. By the first part, we get that (ϕτ)L is isotropic if
and only if τL is isotropic. Hence, F(ϕτ) is a generic isotropy field for τ. �

6.40 Corollary. Let (B, τ) be an F−algebra with involution of the first kind and with
deg(B) odd. Then there exists a generic isotropy field for τ.

Proof. By [45, (2.8)], B is split and τ is orthogonal. The statement now follows from
Proposition 6.39. �

Before studying the generic isotropy problem further, we first show that a generic isotropy
field need not always exist.
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6.41 Proposition. Let (Q1, γ1) and (Q2, γ2) be two F−quaternion algebras endowed
with their canonical involutions. Let (B, τ) = (Q1, γ1) ⊗F (Q2, γ2). Let L/F be a field
extension. Then τL is hyperbolic if and only if at least one of Q1 and Q2 splits over L.

Proof. This follows from the result in [6, (2.5)]. �

6.42 Corollary. Let (B, τ) be a totally decomposable F−algebra with involution of de-
gree 4. Suppose that B is non–split and that τ is anisotropic. Then there does not exist a
generic isotropy field for τ.

Proof. It follows from Proposition 6.10 that there exist F−quaternion algebras Q1 and
Q2, with respective canonical involutions γ1 and γ2, such that

(B, τ) ≅F (Q1, γ1) ⊗F (Q2, γ2).

Suppose for the sake of contradiction that there exists a generic isotropy field N for τ.
By Theorem 6.8, τN is hyperbolic. It follows from Proposition 6.41 that at least one of
Q1 and Q2 splits over N. By Propositions 3.7 and 3.1, we get that there is an F−place
from F(Q1) to N, or an F−place from F(Q2) to N. Since N is a generic isotropy field
for τ, and τ is hyperbolic over F(Q1) and F(Q2), there are F−places from N to F(Q1)

and to F(Q2). Composing F−places, we get an F−place between F(Q1) and F(Q2), or
the other way around. This implies that Q1 splits over F(Q2) or Q2 splits over F(Q1).
It is well known that the kernel of the restriction map Br(F) → Br(F(Qi)) is equal to
{0, [Qi]}. (This was first shown by E. Witt in [76], and can also be seen using the Schur
index reduction formulas from Theorem 3.11.) It follows that one of Q1 and Q2 is split
over F, or Q1 ≅F Q2. In the first case, τ would be hyperbolic, a contradiction, and in the
second case, B would be split, which also contradicts the hypothesis. �

6.43 Example. Let x1, . . . , x4 be independent variables over F. Let Q1 = (x1, x2)F and
Q2 = (x3, x4)F . Let (B, τ) = (Q1, γ1)⊗F(Q2, γ2). Then B is a division algebra and hence
τ is anisotropic, and τ is either anisotropic or hyperbolic over every field extension of
F by Proposition 6.10. Proposition 6.42 then yields that (B, τ) does not have a generic
isotropy field.

Let (B, τ) be an F−algebra with involution of the first kind. In order to study Question
6.1, we use the varieties IVi(B, τ) introduced in chapter 3. We will see that, if a generic
isotropy field exists for τ, then this means that there are relations between the IVi(B, τ).
We first recast the properties of the varieties IVi in terms of their function fields.

6.44 Proposition. Let (B, τ) be an F−algebra with involution of the first kind, of de-
gree at least 3. Let i ∈ N be such that IVi(B, τ) is a projective, geometrically integral
F−variety. Then the following are equivalent:
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(i) Fi(τ) is a generic isotropy field for τ.

(ii) For any field extension L/F such that τL is isotropic, we have that i ∈ ind((B, τ)L).

Proof. This easily follows from Proposition 3.1 (c). �

6.45 Proposition. Let (B, τ) be an F−algebra with involution of the first kind. Assume
that there exists a field extension L/F such that τL is isotropic and deg(B) = 2 ind(BL).
Assume moreover that there exists a generic isotropy field for τ. Then (B, τ) is a Pfister
algebra with involution.

Proof. If deg(B) = 2, then clearly, (B, τ) is a Pfister algebra with involution. For the
rest of the proof, we assume that deg(B) > 2. Let N/F be a field extension such that N
is a generic isotropy field for τ. Then there is an F−place λ ∶ N → L∞. By Proposition
3.7 (b) and since division algebras cannot carry isotropic involutions, it follows that
ind(BN) = deg(B)/2, and hence τN is hyperbolic. This implies, by Proposition 3.9, that
for every field extension M/F such that τM is isotropic, τM is hyperbolic. Hence, (B, τ)
is a Pfister algebra with involution. �

We complement Proposition 6.45 with the following result.

6.46 Proposition. Let (B, τ) be an F−algebra with involution of the first kind, of degree
at least 3. Let m be the maximal integer such that there exists a field extension L/F such
that τL is isotropic and ind(BL) = m. Assume that m < deg(B)/2. Then there exists a
generic isotropy field for τ if and only if Fm(τ) is a generic isotropy field for τ.

Proof. Let L/F be a field extension such that τL is isotropic and ind(BL) = m. Suppose
that there exists a generic isotropy field N for τ. Then there is an F−place λ ∶ N → L∞.
By Proposition 3.7 (b) and the maximality of m, it follows that ind(BN) = ind(BL) = m.
Since 1 ⩽ m < deg(B)/2, the variety IVm(B, τ) is projective and geometrically integral,
and since τN is isotropic, IVm(B, τ) has an N−rational point. By Proposition 3.1 (a), it
follows that there is an F−place from Fm(τ) to N, and hence Fm(τ) is a generic isotropy
field for τ. �

6.47 Corollary. Let (B, τ) be an F−algebra with involution of the first kind, of degree at
least 3. If there exists a generic isotropy field for τ, then there exists i ∈ {1, . . . , ind(B)}

such that the function field of IVi(B, τ) or one of its irreducible components is a generic
isotropy field for τ.

Proof. Assume that there exists a field extension N/F such that N is a generic isotropy
field for τ. Let m = ind(BN). Suppose first that τ is symplectic. Since m ⩽ deg(B)/2, the
F−variety IVm(B, τ) is projective and geometrically irreducible, and there is an F−place
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from Fm(τ) to N. It follows that Fm(τ) is a generic isotropy field for τ.
Suppose that τ is orthogonal. If m = deg(B)/2 then (B, τ) is a Pfister algebra with
involution by Proposition 6.45. Furthermore, N is a generic hyperbolicity field for τ,
and since disc(τ) is trivial by Proposition 6.3, Proposition 6.28 yields that the function
field of one of the irreducible components of IVm(B, τ) is a generic hyperbolicity field,
and hence, a generic isotropy field, for τ. Suppose that m < deg(B)/2. Then it follows
from Proposition 6.46 that Fm(τ) is a generic isotropy field for τ. �

6.48 Remark. Proposition 6.46 shows that, if ind(BFi(τ)) = ind(BF j(τ)) = m, for certain
i, j ∈ N, and there exists a generic isotropy field for τ, then Fi(τ) and F j(τ) are both
generic isotropy fields for τ. Conversely, if there are field extensions N/F and N′/F
that are both generic isotropy fields for τ, then by Proposition 3.7 (b), it follows that
ind(BN) = ind(BN′) and by Proposition 3.9, ind((B, τ)N) = ind((B, τ)N′).

6.49 Example. We give an example to illustrate Remark 6.48. Let (B, τ) be a Pfister
algebra with involution over F with deg(B) ⩾ 8 and ind(B) < deg(B)/2. By Corol-
lary 6.32, there exists a generic hyperbolicity field for τ, and this is then also a generic
isotropy field for τ, since (B, τ) is a Pfister algebra with involution. Proposition 6.28
shows that F−(τ) or F+(τ) is a generic hyperbolicity, and hence isotropy, field for τ.
We show that Find(B)(τ) is also a generic isotropy field for τ. Let L/F be a field ex-
tension making τ isotropic. Then τL is hyperbolic and hence deg(B)/2 ∈ ind((B, τ)L).
Since ind(BL) ∣ ind(B) and ind(B) < deg(B)/2, we have that ind(B) ∈ ind((B, τ)L).
Furthermore, since ind(B) < deg(B)/2, we have that IVind(B)(B, τ) is a projective, ge-
ometrically integral F−variety, so its function field is defined. Proposition 6.44 now
yields that Find(B)(τ) is a generic isotropy field for τ.

The following lemma is easy but useful.

6.50 Lemma. Let (B, τ) be an F−algebra with involution of the first kind for which
deg(B) = 2 ind(B). Then τ is either anisotropic or hyperbolic.

Proof. Assume that τ is isotropic. Then B contains a non–zero isotropic right ideal I.
Furthermore, we have that deg(B)/2 = ind(B) ∣ rdim(I) ⩽ deg(B)/2, by Proposition
1.41. It follows that rdim(I) = deg(B)/2 and hence τ is hyperbolic. �

Let (B, τ) be an F−algebra with involution of the first kind. We now investigate the
different varieties IVi(B, τ) and look for conditions on (B, τ) which allow to decide
whether a function field Fi(τ), for a certain i ∈ N, is a generic isotropy field for τ.
We first consider the variety IV1(B, τ), since it takes up a special position. If (B, τ) ≅
Ad(q), then by [69], IV1(B, τ) is in fact the projective quadric defined by q. Proposition
6.39 then yields that for split algebras with orthogonal involution of degree at least 3,
F1(τ) is a generic isotropy field for τ. The next result is in fact already in [69] but we
provide it here for convenience. It is a reformulation of Proposition 6.44.
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6.51 Proposition. Let (B, τ) be an F−algebra with involution of the first kind, of degree
at least 3. Then the following are equivalent:

(i) F1(τ) is a generic isotropy field for τ.

(ii) For any field extension L/F such that τL is isotropic, we have that BL is split.

Proof. It suffices to prove that for any field extension L/F, IV1(B, τ) has an L−rational
point if and only if τL is isotropic and BL is split.
If IV1(B, τ) has an L−rational point, then BL contains an isotropic right ideal I with
rdim(I) = 1, and hence, τL is isotropic. Furthermore, since ind(BL) ∣ rdim(I) = 1, we
get that BL is split. For the converse, assume that L/F is a field extension such that τL

is isotropic and BL is split. It follows from Corollary 2.14 that 1 ∈ ind((B, τ)L). Hence,
IV1(B, τ) has an L−rational point. �

6.52 Remark. If we replace the variety IV1(B, τ) in Proposition 6.51 by IVi(B, τ), with
i an odd number in {1, . . . ,deg(B)/2 − 1}, then we still have that (i) implies (ii). The
reason is that right ideals of an odd reduced dimension cannot exist if the algebra is non–
split, since the reduced dimension is divisible by the Schur index of the algebra, which
is a 2–power, by [45, (2.8) (2)].

The function field of IVi(B, τ), for i odd, can only be a generic isotropy field for (B, τ)
in low degree, as the following proposition shows.

6.53 Proposition. Let (B, τ) be an F−algebra with involution of the first kind. Suppose
that B is non–split and deg(B) = 2n, with n ⩾ 2. Let i be an odd number in {1, . . . ,n}. If
Fi(τ) is a generic isotropy field, then τ is orthogonal and n ⩽ 3.

Proof. Let us first look at the case in which τ is symplectic. Consider the variety
IV2(B, τ). Using the Schur index reduction formulas of Theorem 3.11, we obtain, since
B has exponent 2 by [45, (3.1) (1)], that

ind(B⊗F F2(τ)) = min(ind(B),2 ind(B⊗F B)) = 2.

Since τ becomes isotropic over F2(τ), but B does not split over F2(τ), by Remark 6.52,
the field Fi(τ) cannot be a generic isotropy field for τ in this case.
Now consider the case in which τ is orthogonal and n > 3. If disc(τ) is trivial, we obtain

ind(B⊗F F2(τ)) = min(ind(B),2,2n−3 ind(C+),2n−3 ind(C−)) > 1.

If disc(τ) is nontrivial, then

ind(B⊗F F2(τ)) = gcd(ind(B),2,2n−2 ind(B⊗F C(B, τ))) > 1.

So, in both cases Fi(τ) cannot be a generic isotropy field for τ by Remark 6.52. �
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In the sequel we study symplectic and orthogonal involutions separately. The Schur
index reduction formulas for the function fields of the varieties IVi(B, τ) are simpler in
the symplectic case than in the orthogonal case. Therefore, we treat the symplectic case
first.

6.54 Proposition. Let (B, τ) be an F−algebra with symplectic involution of degree at
least 4. Let i = min(ind(B), 1

2 deg(B)). If there exists a generic isotropy field for τ, then
Fi(τ) is a generic isotropy field for τ.

Proof. By [45, (2.8) (2)], ind(B) is a power of 2, and hence i is also a power of 2. Since
i ⩽ deg(B)/2, we have that IVi(B) is a projective, geometrically integral F−variety by
Proposition 3.3. Using the formulas from Theorem 3.11, we get that

ind(B⊗F Fi(τ)) = min(ind(B), i ⋅ ind(B⊗F B)) = i,

since B has exponent 2 in Br(F) by [45, (3.1) (1)]. By Proposition 3.1, this implies that,
if there exists a generic isotropy field N for τ, then ind(BN) = i, and hence, Fi(τ) is then
a generic isotropy field for τ. �

6.55 Proposition. Let (B, τ) be an F−division algebra with symplectic involution of
degree at least 4. Let F′ denote the function field of SB2(B). Then the following are
equivalent:

(i) There exists a generic isotropy field for (B, τ).

(ii) (B, τ) is a Pfister algebra with involution.

(iii) (B, τ)F′ is totally decomposable.

Proof. That (i) implies (ii) follows from Proposition 6.54. The converse follows from
Proposition 6.27. By [8, Corollary], (iii) holds if and only if (B, τ)F′ is a Pfister algebra
with involution. In turn, this is equivalent to (ii), by [37, Theorem A.1]. �

6.5 The orthogonal case

In this section we fix an F−algebra with orthogonal involution (B, τ). In dealing with
isotropy of orthogonal involutions, it is interesting to investigate how the isotropy of
an orthogonal involution is affected by generically splitting the algebra, i.e. by passing
to the function field of the Severi–Brauer variety of the algebra. From that point on the
isotropy behaviour is completely determined by a quadratic form. This problem has been
studied by N.A. Karpenko in [37, 38]. We already mentioned the main result of [37] (see
Theorem 6.7 (a)). It is conjectured that Theorem 6.7 (a) also holds with “hyperbolic”
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replaced by “isotropic”.

Anisotropic Splitting Conjecture: If τ is isotropic over F(B) then τ is already isotropic
over F.

In [38], N.A. Karpenko has shown that, if τ is anisotropic over F, but isotropic over
F(B), then there exists an odd degree field extension L/F such that τL is isotropic.
Furthermore, the Anisotropic Splitting Conjecture has been confirmed in some special
cases.

6.56 Theorem. Suppose that τ is anisotropic over F. If B is split, ind(B) = 2, deg(B)
ind(B) = 2,

or B is a division algebra, then τ remains anisotropic over F(B).

Proof. The case deg(B)
ind(B) = 2 is proved in [37], and for the other cases, N.A. Karpenko

gives explicit references in [37]. �

6.57 Proposition. Suppose that the anisotropic part of (B, τ) remains anisotropic over
F(B). Then ind(B, τ) and ind((B, τ)F(B)) contain the same multiples of ind(B).

Proof. In order to prove the statement, by Corollary 2.16, it suffices to show that the
largest multiple of ind(B) contained in ind((B, τ)F(B)), is also contained in ind(B, τ).

By Proposition 2.10, there exists an F−division algebra with involution (D, θ), θ of the
same kind as σ, and an ε−hermitian space (V,h) over (D, θ), with ε ∈ {±1}, such that
(B, τ) ≅F Ad(h). Then (B, τ)F(B) ≅F(B) Ad(hF(B)). By Proposition 2.6, we can de-
compose (V,h) ≃ (V1,h1) ⊥ (V2,h2), with (V1,h1) (resp. (V2,h2)) an anisotropic (resp.
hyperbolic) ε−hermitian space over (D, θ). Then Ad(h1) is the anisotropic part of (B, τ).
By assumption, (adh1)F(B) is anisotropic. This implies that (h1)F(B) is anisotropic by
Proposition 2.14. Let W be a maximal totally isotropic subspace of (V2,h2). Then W
is a maximal totally isotropic subspace of (V,h), and the above shows that WF(B) is a
maximal totally isotropic subspace of (V,h)F(B). Since dimF(W) = dimF(B)(WF(B)),
Corollary 2.15 shows that

iw(τ) =
dimF(W)

deg(D)
=

dimF(B)(WF(B))

deg(DF(B))
= iw(τF(B)),

as desired. �

6.58 Remark. In Proposition 6.57, let (C, ρ) be the anisotropic part of (B, τ). Since C is
Brauer equivalent to B, it follows from Propositions 3.7 and 3.1 that there are F−places
between F(C) and F(B) in both directions, i.e. F(C) and F(B) are place equivalent.
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Hence, saying that (C, ρ) remains anisotropic over F(B) is the same as saying that (C, ρ)
remains anisotropic over F(C) (i.e. that the Anisotropic Splitting Conjecture holds for
(C, ρ)).

We say (B, τ) has strong anisotropic splitting if for any field extension L/F for which
τL is isotropic and ind(BL) < ind(B), the anisotropic part of (B, τ)L remains anisotropic
over L(BL). If B is split, then trivially (B, τ) has strong anisotropic splitting.

Proposition 6.44 says that, in order to have that a certain Fi(τ) is a generic isotropy
field for τ, we need to check that i is contained in the index of (B, τ) over any field
extension L/F making τ isotropic. The following proposition shows that, if (B, τ) has
strong anisotropic splitting and deg(B) ⩾ 3 ind(B), then we only need to consider the
index of (B, τ) over one field extension of F in order to conclude that a particular Fi(τ)

is a generic isotropy field for τ.

6.59 Theorem. Suppose that (B, τ) has strong anisotropic splitting. If deg(B) ⩾ 3 ind(B)

then the following are equivalent:

(i) ind(B) ∈ ind((B, τ)F1(τ)).

(ii) Find(B)(τ) is a generic isotropy field for τ.

Proof. Note that, since deg(B) ⩾ 3 ind(B), the variety IVind(B)(B, τ) is a projective,
geometrically integral F−variety by Proposition 3.3. Since τ becomes isotropic over
F1(τ), it follows immediately from Proposition 6.44 that (ii) implies (i). Let us prove
the converse. Let L/F be a field extension such that τL is isotropic. Then ind(BL) ∈

ind((B, τ)L). So, if ind(BL) = ind(B) we are done. Suppose that ind(BL) < ind(B). We
first consider the case where BL is split. Then there is an F−place λ ∶ F1(τ) → L∞, and
we have that ind(B) ∈ ind((B, τ)F1(τ)) ⊂ ind((B, τ)L), by Proposition 3.9.
Assume that BL is non–split. Then the above shows that ind(B) ∈ ind((B, τ)L(BL)).
If τL(BL) is hyperbolic, then τL is already hyperbolic by Theorem 6.7 and it follows
that ind(B) ∈ ind((B, τ)L). So suppose that τL is non–hyperbolic. Since (B, τ) has
strong anisotropic splitting and ind(BL) ∣ ind(B), Proposition 6.57 implies that ind(B) ∈

ind((B, τ)L). Proposition 6.44 now yields the statement. �

6.60 Proposition. Suppose that deg(B)
2 − ind(B) − 1 ⩾ 32(ind(B)) if disc(τ) is trivial,

and deg(B)
2 − ind(B) ⩾ 32(ind(B)) if disc(τ) is nontrivial. Then there exists a generic

isotropy field for τ if and only if Find(B)(τ) is a generic isotropy field for τ.

Proof. Note that the assumptions imply that ind(B) < deg(B)/2. Suppose that deg(B)

is odd. Then B is split by [45, (2.8)], and F1(τ) is a generic isotropy field for τ by
Proposition 6.51. So, for the rest of the proof, we assume that deg(B) is even, say
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deg(B) = 2n. By [45, (2.8) (2)], there exists i ∈ N such that ind(B) = 2i. If disc(τ) is
trivial, we write C(B, τ) = C+ ×C−.
Suppose that there exists a generic isotropy field for τ. Let m be the maximal integer such
that there exists a field extension L/F such that τL is isotropic and ind(BL) = m. Since
ind(B) < deg(B)/2, it follows that m < deg(B)/2. Then Fm(τ) is a generic isotropy field
by Proposition 6.46. In order to prove the claim, it suffices to show that m = ind(B).
We use the Schur index reduction formulas from Theorem 3.11. In the case of trivial
discriminant, we obtain

ind(B⊗F F2i(τ)) = min(2i,2i,2n−2i−1 ind(C−),2n−2i−1 ind(C+)).

In the case of nontrivial discriminant, we find

ind(B⊗F F2i(τ)) = gcd(2i,2i,2n−2i
ind(B⊗F C(B, τ))).

Since, by assumption, n − 2i − 1 ⩾ i if disc(τ) is trivial, and n − 2i ⩾ i if disc(τ) is
nontrivial, it follows that ind(BF2i(τ)) = ind(B) in all cases. Since Fm(τ) is a generic
isotropy field for τ, it follows that m = ind(BL) ∈ ind((B, τ)F2i(τ)). This implies that
ind(BL) ⩾ ind(B), and hence m = ind(B). �

6.61 Remark. In the situation of Proposition 6.60, the conditions on deg(B) and ind(B)

were chosen such that one does not need information on C(B, τ) in order to conclude
that m = ind(B) in the proof. If one does have information on C(B, τ) or its components
in the case of trivial discriminant, then the conditions on deg(B) and ind(B) can be
weakened.

6.62 Corollary. Suppose that ind(B) ⩽ 4 and deg(B) ⩾ 3 ind(B), where the last in-
equality is assumed to be strict if disc(τ) is trivial. Then the following are equivalent:

(i) There is a generic isotropy field for τ.

(ii) Find(B)(τ) is a generic isotropy field for τ.

(iii) ind(B) ∈ ind((B, τ)F1(τ)).

Proof. By Theorem 6.56 and Remark 6.58, the assumptions imply that (B, τ) has strong
anisotropic splitting. Hence, the equivalence of (ii) and (iii) follows immediately from
Theorem 6.59. The assumptions on deg(B) and ind(B) yield that deg(B)

2 − ind(B) − 1 ⩾

32(ind(B)) if disc(τ) is trivial, and deg(B)
2 − ind(B) ⩾ 32(ind(B)) if disc(τ) is nontrivial.

Hence, Proposition 6.60 yields the equivalence of (i) and (ii). �

In the case where ind(B) = 2, we look for more concrete conditions for the existence of
a generic isotropy field.



174 Chapter 6

6.63 Proposition. Assume that ind(B) = 2 and deg(B) ⩾ 6, with a strict inequality if
disc(τ) is trivial. Assume moreover that τ becomes hyperbolic over a quadratic exten-
sion of F. Then F2(τ) is a generic isotropy field for τ.

Proof. We denote the degree of B by 2n. By hypothesis, we have that τ is hyperbolic
over a quadratic field extension of F, say over F(

√
δ). By [6, (3.3)], there exists x ∈ B

such that x2 = δ and τ(x) = −x, so F(
√
δ) is embedded in B as a subfield. By [66,

(8.5.12)], it follows that NrdB(x) = NF(
√
δ)/F(x)n, and hence, disc(τ) = δ ∈ F×/F×2 if n

is odd, and disc(τ) is trivial if n is even.

Let q be a quadratic form over F1(τ) such that (B, τ)F1(τ) ≅ Ad(q). In order to prove the
statement, by Corollary 6.62, it suffices to show that iw(q) ⩾ 2. So, assume for the sake
of contradiction that iw(q) = 1. Then q ≃ ⟨1,−1⟩ ⊥ q′, with q′ an anisotropic quadratic
form over F1(τ). We have that disc(q′) = disc(q). Since F is algebraically closed in
F1(τ) by Proposition 3.1 (a), if disc(τ) is nontrivial, then disc(q) = disc(τF1(τ)) is also
nontrivial.
Since τ is hyperbolic over F1(τ)(

√
δ), we have that q is hyperbolic over F1(τ)(

√
δ).

This implies that q′ becomes hyperbolic over F1(τ)(
√
δ) and hence, by [66, (2.5.2)],

q′ ≃ ⟨1,−δ⟩ ⊗F1(τ) ρ, for some quadratic form ρ over F1(τ). Since q is of dimension
2n, it follows that q′ is of dimension 2n − 2 and ρ of dimension n − 1. Suppose that
n is odd. Then disc(τ) is nontrivial. Hence, disc(q′) is nontrivial. However, we get
⟨1,−δ⟩ ⊗F1(τ) ρ ∈ I2(F1(τ)) and hence, disc(q′) is trivial, a contradiction. Suppose that
n is even. Then disc(τ) is trivial, and hence disc(q′) is trivial as well. However, we
get disc(q′) = (−1)(n−1)(2n−3) det(ρ)det(−δρ) = (−1)(−δ) ∈ F1(τ)

×/F1(τ)
×2, which is

nontrivial, since δ is not a square in F and therefore not in F1(τ) either. So, here we also
get a contradiction. In both cases, we therefore get that iw(q) ⩾ 2, and hence, F2(τ) is a
generic isotropy field for τ. �

6.64 Corollary. Suppose that there exists an F−quaternion division algebra with or-
thogonal involution (Q, ρ) and a quadratic form ψ over F such that (B, τ) ≅F (Q, ρ) ⊗F

Ad(ψ). Then F2(τ) is a generic isotropy field for τ.

Proof. We write disc(ρ) = e ∈ F×/F×2. Since Q is non–split, Lemma 6.38 yields that
e ∉ F×2. Furthermore, ρ becomes hyperbolic over F(

√
e) by Lemma 6.38 (b) and hence,

τ also becomes hyperbolic over F(
√

e). The statement now follows from Proposition
6.63. �

6.65 Remark. In the situation of Proposition 6.63, if B splits over a quadratic extension
making τ hyperbolic, then by [6, (3.4)], there exists an F−quaternion division algebra
with orthogonal involution (Q, ρ), and a quadratic form ψ over F such that (B, τ) ≅F

(Q, ρ) ⊗F Ad(ψ).
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6.66 Proposition. Assume that B is a division algebra and suppose that there exist
F−algebras with involution (B1, τ1) and (B2, τ2) such that (B, τ) ≅F (B1, τ1)⊗F(B2, τ2).
Suppose that (B, τ) is not a Pfister algebra with involution. Then there does not exist a
generic isotropy field for τ.

Proof. Since B is a division algebra, its degree is a power of 2 by [45, (2.8) (2)]. It
follows that B1 and B2 both have degree a power of 2. Then [45, (7.3) (4)] yields that
disc(τ) is trivial. Let C(B, τ) = C+×C−. Using the Schur index reduction formulas from
Theorem 3.11, we get for ε ∈ {+,−}

ind(B⊗F Fε(τ)) = min(ind(B),deg(B)/2, ind(C−ε), ind(Cε) ⋅ deg(B)/2)

= min(deg(B)/2, ind(C−ε)).

If τ1, τ2 are both symplectic, it follows from Theorem 1.37 (ii) that at least one of C+

and C− is split. Suppose that τ1, τ2 are both orthogonal. Let Q be the quaternion algebra
(disc(τ1),disc(τ2))F . Then one of C+ and C− is Brauer equivalent to Q, by Theorem
1.37 (i) and hence of Schur index 2. In any case, one of the components of C(B, τ) has
Schur index at most 2. Since C+ ⊗F C− is Brauer equivalent to B by Proposition 1.36
(a), this implies that one of C+ and C− has Schur index at least deg(B)/2. Plugging this
in into the formulas above yields that ind(B⊗F F+(τ)) or ind(B⊗F F−(τ)) is equal to
deg(B)/2. Without loss of generality, we may assume that ind(B⊗F F+(τ)) = deg(B)/2.
If there would exist a generic isotropy field N for τ, then Proposition 3.1 would imply
that ind(BN) = deg(B)/2, and hence, (B, τ) would be a Pfister algebra with involution,
a contradiction. �

6.6 Examples where no generic isotropy field exists

In this section we provide some examples of algebras with involution for which there is
no generic isotropy field.

6.67 Lemma. Let Q be an F−quaternion division algebra, endowed with its canonical
involution γ. Let V be a 1−dimensional Q−vector space, α ∈ Q× a pure quaternion and
u ∈ F×. Consider the skew–hermitian form h = ⟨uα⟩γ ∶ V × V → Q over (Q, γ). Let
a = −Nrd(α). Then adh and h are hyperbolic over F(

√
a).

Proof. We have that αh is a hermitian form over (Q, Int(α) ○ γ): αh = ⟨ua⟩Int(α)○γ.
Since α ∈ Q×, we have that adh = adαh. It follows from [52, (5.7)] that disc(adh) =

−Nrd(ua)Nrd(α) = a ∈ F×/F×2. Let L = F(
√

a). We get that disc((adh)L) = 1 ∈

L×/L×2. Lemma 6.38 now implies that (adh)L is hyperbolic. Then hL is hyperbolic by
Proposition 2.14. �
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6.68 Proposition. Let Q = (d, e)F a quaternion division algebra, and let {1, i, j, i j} be
an F−basis for Q with i2 = d and j2 = e. Let γ be the canonical involution on Q. Let q1
and q2 be two non–singular quadratic forms over F. Let (B, τ) be the F−algebra with
involution adjoint to the skew–hermitian form ⟨i⟩γ ⊥ q1⟨ j⟩γ ⊥ q2⟨i j⟩γ over (Q, γ). If
⟨−1, e⟩ ⊗ q1 ⊥

√
d⟨1, e⟩ ⊗ q2 is anisotropic over F(

√
d), and excluding the case where

deg(B) = 6 and disc(τ) is trivial, then there is no generic isotropy field for τ.

Proof. Let q1 = ⟨α1, . . . , αr⟩ and q2 = ⟨β1, . . . , βs⟩. Let V1 be a 1−dimensional right
Q−module and consider the skew–hermitian form h1 = ⟨i⟩γ ∶ V1 × V1 → Q over (Q, γ).
Let V2 be an (r+s)−dimensional right Q−module and consider the skew–hermitian form
h2 = q1⟨ j⟩γ ⊥ q2⟨i j⟩γ ∶ V2 × V2 → Q over (Q, γ). Then (B, τ) = Ad(h1 ⊥ h2). We have
that deg(B) = 2(r + s + 1) and τ is an orthogonal involution on B.
It is clear that Q splits over L = F(

√
d). Let (C, ρ) = Ad(h2). We have that (C, ρ)L ≅

Ad(q), for some quadratic form q over L. One can check that the quadratic form

q′ = ⟨1,−e−1, α2α
−1
1 ,−e−1α2α

−1
1 , . . . , αrα

−1
1 ,−e−1αrα

−1
1 ⟩ ⊥

√
d ⟨β1α

−1
1 , β1α

−1
1 e−1, β2α

−1
1 , β2α

−1
1 e−1, . . . , βsα

−1
1 , βsα

−1
1 e−1⟩

over L gives rise to the same adjoint involution on CL as (h2)L, and hence we may take
q = α1eq′ = −q1 ⊥ eq1 ⊥

√
dq2 ⊥

√
deq2, which is anisotropic over L by assumption.

Using Lemma 6.67 and Corollary 2.29, we get

(B, τ)L ≅L Ad((h1)L) ⊞Ad((h2)L)

≅L Ad(⟨1,−1⟩L) ⊞Ad(q)

≅L Ad(⟨1,−1⟩L ⊥ q).

Since q is anisotropic, iw(⟨1,−1⟩L ⊥ q) = 1 and therefore, iw(τL) = 1 as well. Hence,
ind((B, τ)L) = {0,1}. This also implies that iw(τ) ⩽ 1. Furthermore, 2 = ind(B) ∣ iw(τ)
and hence τ is anisotropic over F. By Corollary 6.62, there is no generic isotropy field
for τ. �

6.69 Lemma. Let r be a positive integer. Let furthermore α1, . . . , αr ∈ F× and t1, . . . , tr
different variables over F. Then the quadratic form ⟨α1t1, . . . , αrtr⟩ is anisotropic over
F(t1, . . . , tr).

Proof. We prove that statement by induction. It is clear that it holds for r = 1. As-
sume r > 1 and consider ψ = ⟨α1t1, . . . , αr−1tr−1⟩ over M = F(t1, . . . , tr−1). Then
⟨α1t1, . . . , αrtr⟩ = ψ ⊥ tr⟨αr⟩. By induction, ψ is anisotropic over M and so is ⟨αr⟩.
Then ψ ⊥ tr⟨αr⟩ is anisotropic over M((tr)) by [47, (VI.1.9)], and hence, ψ ⊥ tr⟨αr⟩ is
also anisotropic over M(tr). �
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6.70 Example. We give an explicit example to show that the conditions in Proposition
6.68 can be satisfied, and that one can obtain examples of trivial and of nontrivial dis-
criminant.
Let x, x1, . . . , xn−1 be different variables over F and d ∈ F× ∖ F×2. Let furthermore
F′ = F(x, x1, . . . , xn−1) and consider the quaternion algebra Q = (d, x)F′ , endowed
with its canonical involution γ over F′. Then Q is a division algebra. Consider the
quadratic forms q1 = ⟨x1, . . . , xr⟩ and q2 = ⟨xr+1, . . . , xn−1⟩ over F(x1, . . . , xn−1). By
Lemma 6.69, −q1 ⊥

√
dq2 and q1 ⊥

√
dq2 are anisotropic over F(

√
d)(x1, . . . , xn−1).

By [47, (VI.1.9)], the quadratic form −q1 ⊥
√

dq2 ⊥ x(q1 ⊥
√

dq2) is anisotropic over
F′(

√
d). Let (B, τ) = Ad(h), where h is the skew–hermitian form ⟨i⟩γ ⊥ q1⟨ j⟩γ ⊥ q2⟨k⟩γ

over (Q, γ). Then there does not exist a generic isotropy field for τ by Proposition 6.68.
Scaling h by i yields a hermitian form ih = ⟨d⟩γ ⊥ q1⟨k⟩γ ⊥ q2⟨d j⟩γ over (Q, Int(i) ○ γ).
Note that ih and h give rise to the same adjoint involution, since i is invertible in Q.
Using [52, (5.7)] and [45, (7.3)], we get

disc(τ) = Nrd(d)Nrd(kx1)⋯Nrd(kxr)Nrd( jdxr+1)⋯Nrd( jdxn−1)disc(Int(i) ○ γ)n

= Nrd(k)r Nrd( j)n−1−r(−Nrd(i))n

= (−1)n Nrd( j)n−1 Nrd(i)n+r ∈ F′×/F′×2.

Depending on the parity of n and r, we get the following:

• r,n both odd: disc(τ) = −1 ∈ F′×/F′×2;

• r odd and n even: disc(τ) = dx ∈ F′×/F′×2;

• r even and n odd: disc(τ) = d ∈ F′×/F′×2;

• r,n both even: disc(τ) = −x ∈ F′×/F′×2.

In the last three cases the discriminant is always nontrivial. In the first case, it can be
both, depending on whether −1 is a square in F′ or not.

6.71 Proposition. Let Q = (a,b)F be a quaternion division algebra over F and let γ be
its canonical involution. Let (C, ρ) be an F−division algebra with orthogonal involution
of degree at least 4. Let (B, τ) = (Q, γ) ⊗F (C, ρ). Suppose that B is either a division
algebra or that ind(B) = deg(B)/2. Let disc(ρ) = d ∈ F×/F×2. If the Pfister form
⟨⟨a,b,d⟩⟩ is anisotropic over F then there does not exist a generic isotropy field for τ.

Proof. Suppose for the sake of contradiction that there exists a generic isotropy field
for τ. Then Proposition 6.54 yields that Fdeg(B)/2(τ) is a generic isotropy field for τ.
Hence, (B, τ) is a Pfister algebra with involution. By Proposition 6.11, it follows that
∆(B, τ) = 0 ∈ H3(F, µ2). By [26, (3.1)], we have that ∆(B, τ) = [Q] ⋅ (d) ∈ H3(F, µ2),
which corresponds to the 3−fold Pfister form ϕ = ⟨⟨a,b,d⟩⟩ in I3(F)/I4(F). So, we
would have that ϕ is hyperbolic over F, but this contradicts the hypothesis. �
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6.7 Function fields of quadratic forms as generic isotropy fields

Given a quadratic form ϕ over F, one can ask the question which F−algebras with invo-
lution become isotropic over F(ϕ). In general, this is a hard question to answer, but we
can give some constraints on ϕ and the algebras with involution. We already came across
F−algebras with involution for which a generic isotropy field can be realised as the func-
tion field of a quadratic form (see Proposition 6.39). We now consider this problem in
more detail. We will see that there is a relation with the Anisotropic Splitting Conjecture.

A first result uses the separation theorem for quadratic forms proved by D.W. Hoffmann
(see [47, (X.4.34)]).

6.72 Theorem (Separation theorem). Let (B, τ) be a F−algebra with anisotropic or-
thogonal involution. Let n ∈ N such that deg(B) ⩽ 2n. Let furthermore ϕ be a quadratic
form over F with dim(ϕ) > 2n. Then τ is non–hyperbolic over F(ϕ). If the Anisotropic
Splitting Conjecture holds for (B, τ) then τ is anisotropic over F(ϕ).

Proof. Let q be a quadratic form over F(B) such that (B, τ)F(B) ≅ Ad(q). Since τ is
anisotropic, it is in particular non–hyperbolic and hence τ remains non–hyperbolic over
F(B), by Theorem 6.7. Therefore, q is non–hyperbolic over F(B). Let q′ = (qF(B))an.
Since

dim(q′) ⩽ dim(q) = deg(B) ⩽ 2n < dim(ϕ),

it follows from [47, (X.4.34)] that q′ remains anisotropic over F(B)(ϕ). This implies
that q remains non–hyperbolic over F(B)(ϕ). Hence, τ is non–hyperbolic over F(B)(ϕ)

and then clearly also non–hyperbolic over F(ϕ).
It is clear that if the Anisotropic Splitting Conjecture holds for (B, τ), then one may
replace “non–hyperbolic” by “anisotropic” in the above. �

6.73 Proposition. Let (B, τ) be a F−algebra with anisotropic orthogonal involution. If
there exists a quadratic form ϕ over F such that F(ϕ) is a generic isotropy field for τ
then τ remains anisotropic over F(B).

Proof. Assume for the sake of contradiction that τ becomes isotropic over F(B). By
the main theorem of [38], there exists an odd degree field extension L/F such that τL is
isotropic. Let ϕ be a quadratic form over F such that F(ϕ) is a generic isotropy field for
τ. Then ϕ is anisotropic over F, since τ is anisotropic over F. Since τL is isotropic, we
have an F−place λ ∶ F(ϕ) → L∞. However, this yields that ϕL is isotropic, which is not
possible by Springer’s theorem (see e.g. [47, (VII.2.7)]). �

6.74 Proposition. Let (B, τ) be an F−algebra with involution of the first kind. Assume
that there exists a generic isotropy field N for τ such that ind(BN) < ind(B)/2. Then
there is no quadratic form ϕ over F such that τ is isotropic over F(ϕ).
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Proof. Let ϕ be a quadratic form over F. If ϕ is isotropic then F(ϕ)/F is purely tran-
scendental and hence, ind(BF(ϕ)) = ind(B). Suppose that ϕ is anisotropic. Then F(ϕ)

is given by a purely transcendental extension of F followed by a quadratic extension.
It follows that ind(BF(ϕ)) ⩾ ind(B)/2. If τ would be isotropic over F(ϕ) then there
would exist an F−place λ ∶ N → F(ϕ)∞. By Proposition 3.7 (b), this would imply that
ind(BN) ⩾ ind(BF(ϕ)) ⩾ ind(B)/2, a contradiction. �

Let (B, τ) be a totally decomposable F−algebra with orthogonal involution. By The-
orem 6.8, (B, τ) is a Pfister algebra with involution. If deg(B) ⩾ 8 then we know by
Corollary 6.32 that there exists a generic isotropy field for τ. We show below that, if B
has Schur index 2, then such a generic isotropy field can also be realised as the function
field of a quadratic form of dimension deg(B).

Suppose that deg(B) = 2n and ind(B) = 2. By [8, Theorem 2], (B, τ) ≅ (Q, σ) ⊗Ad(q),
for some orthogonal involution τ on Q and some (n− 1)−fold Pfister form q over F. We
write q = ⟨1⟩ ⊥ q′. Suppose that disc(σ) = d ∈ F×/F×2. Then there exists c ∈ F× such
that Q ≅ (c,d)F by [47, (III.4.1)]. Let N = ⟨1,−c,−d, cd⟩ be the norm form of Q and let
π = ⟨1,−d⟩ ⊗ q. Since (B, τ)F(Q) ≅F(Q) Ad(πF(Q)), one might be tempted to think that
F(π) is a generic isotropy field for τ. We show below that this is not the case. However,
by twisting π a little bit, we obtain a quadratic form over F whose function field is a
generic isotropy field for τ.

6.75 Theorem. Let ϕ = ⟨1,−d⟩ ⊗ (⟨c⟩ ⊥ q′). If n ⩾ 3 then F(ϕ) is a generic isotropy
field for τ. Furthermore, there is no Pfister form over F whose function field is a generic
isotropy field for τ.

Proof. We first prove that F(ϕ) is a generic isotropy field for τ. Note that π ⊥ −ϕ is Witt
equivalent to N. Hence, for any splitting field M of Q, we have that πM ≃ ϕM, and fur-
thermore, by Lemma 6.38, (B, τ)M ≅ Ad(⟨1,−d⟩M) ⊗F Ad(qM) ≅ Ad(⟨1,−d⟩M ⊗ qM).
Let L/F be an arbitrary field extension. We show that ϕL is isotropic if and only if τL is
hyperbolic.
Suppose first that ϕL is isotropic. Then πL(QL) ≃ ϕL(QL) is isotropic and hence hyper-
bolic since π is a Pfister form. Since (B, τ)L(QL) ≅ Ad(πL(QL)), it follows that τL(QL) is
hyperbolic by Proposition 2.14. By [14] or [57, (3.3)], (B, τ)L is already hyperbolic.

Suppose conversely that τL is hyperbolic. Then τL(QL) is hyperbolic and hence πL(QL) is
hyperbolic. Suppose that πL is already hyperbolic. Since dim(π) = deg(B) > 4, the sub-
form ⟨1,−d⟩L ⊗ q′L of πL has dimension bigger than dim(π)/2, and hence, ⟨1,−d⟩L ⊗ q′L
is isotropic. It follows that ϕL is isotropic as well. Suppose that πL is anisotropic. Then
QL is necessarily non–split, since otherwise L(QL)/L would be a purely transcendental
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extension and hence, πL(QL) would be anisotropic, a contradiction. Since πL becomes
hyperbolic over L(QL), by [66, (4.5.4) (iv)], there exists a quadratic form ϕ̃ over L such
that

πL ≃ NL ⊗ ϕ̃ ≃ ϕ̃ ⊥ . . .

Since πL is a Pfister form, any element of L× represented by πL is a similarity factor
of πL (see [66, (4.1.5)]). Therefore, scaling πL with an element in L× represented by
ϕ̃ if necessary, we may assume that ϕ̃ represents 1. By [47, (I.2.3)], this implies that
ϕ̃ ≃ ⟨1, . . .⟩, i.e.

πL ≃ ⟨1,−c,−d, cd⟩L ⊥ . . . .

It follows that
⟨1,−d⟩L ⊥ ⟨1,−d⟩L ⊗ q′L ≃ ⟨1,−c,−d, cd⟩L ⊥ . . .

Witt cancellation (see [66, (I.5.8)]) yields

⟨1,−d⟩L ⊗ q′L ≃ −c⟨1,−d⟩L ⊥ . . .

and hence

ϕL = c⟨1,−d⟩L ⊥ ⟨1,−d⟩L ⊗ q′L ≃ c⟨1,−d⟩L ⊥ −c⟨1,−d⟩L ⊥ . . .

is isotropic, as desired. So. F(ϕ) is a generic isotropy field for τ.

Before we prove the second statement, we first show that ϕ is not similar to a Pfister
form. Suppose for the sake of contradiction that there exists a scalar a ∈ F× and a
Pfister form ψ over F such that ϕ ≃ aψ. Since (B, τ)F(π)(Q) ≅ Ad(πF(π)(Q)), and π is
hyperbolic over F(π)(Q), it follows that τ is hyperbolic over F(π)(Q) by Proposition
2.14. Theorem 6.7 then yields that τ is already hyperbolic over F(π). Since F(ϕ) is a
generic isotropy field for τ, it follows that ϕF(π) is isotropic, and hence hyperbolic, since
ϕ is similar to a Pfister form. By [47, (X.4.9)], π is up to a scalar a subform of ϕ. Because
of dimension reasons, and since π and ψ are both Pfister forms of the same dimension,
it follows that ϕ ≃ aπ. Since π is a Pfister form of dimension at least 8, we have that
π ∈ I3(F), and hence, since I3(F) is an ideal in W(F), we also have that ϕ ∈ I3(F).
Hence, N ∼ π ⊥ −ϕ ∈ I3(F). The Arason–Pfister theorem (see [66, (4.5.6)]) then implies
that N is hyperbolic, but this would imply that Q is split, a contradiction. So, ϕ is not
similar to a Pfister form.
Suppose now for the sake of contradiction that there exists a Pfister form q′ over F such
that F(q′) is a generic isotropy field for τ. Then q′ becomes hyperbolic over F(ϕ), and
by [47, (X.4.9)] and dimension reasons, it follows that ϕ and q′ are similar, but this is
not possible by the above. �
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6.76 Corollary. Let (B, τ) be a totally decomposable F−algebra with orthogonal invo-
lution. Assume that τ is anisotropic, B is non–split, and deg(B) ⩾ 4. Then there is no
Pfister form q over F such that F(q) is a generic isotropy field.

Proof. Suppose that deg(B) = 2n. Assume for the sake of contradiction that there exists
a Pfister form q over F such that F(q) is a generic isotropy field for τ. Note that q is
anisotropic, since otherwise τ would be isotropic over F, which is not the case. Assume
that dim(q) = 2r, for some r ∈ N. Using Theorem 6.5, we get that (B, τ)F(B) ≅ Ad(ψ),
for some n−fold Pfister form ψ over F(B). Since τ is hyperbolic over F(q), Theorem
6.72 implies that 2n = deg(B) ⩾ dim(q) = 2r. On the other hand, we have that τ becomes
hyperbolic over F(B)(ψ), and hence q is hyperbolic over F(B)(ψ) as well. Note that
qF(B) is non–hyperbolic since τF(B) is non–hyperbolic by Theorem 6.7. Since q is a
Pfister form, it follows that qF(B) is anisotropic. The result in [47, (X.4.9)] yields that ψ
is up to similarity a subform of qF(B), and hence 2n = dim(ψ) ⩽ dim(q) = 2r. It follows
that qF(B) and ψ are similar over F(B), and hence, (B, τ)F(B) ≅ Ad(qF(B)).

Let F′ be the function field of the variety SB2(B). Then ind(BF′) = 2. Since τ is
anisotropic over F, Theorems 6.7 and 6.8 yield that τ is still anisotropic over F(B). Since
there is an F−place from F′ to F(B), Proposition 3.9 implies that τ is also anisotropic
over F′. We have that (B, τ)F′(BF′) ≅ Ad(qF′(BF′)). Let L′/F′ be a field extension such
that τL′ is isotropic. Then qF′ becomes isotropic over L′. This implies that there exists
an F′−place λ ∶ F′(qF′) → L′. Since τ clearly becomes isotropic over F′(qF′) (which
is a field extension of F(q)), we get that F′(qF′) is a generic isotropy field for τF′ . If
deg(B) ⩾ 8 this contradicts Theorem 6.73. If deg(B) = 4 then there does not exist a
generic isotropy field for τ by Corollary 6.42, and hence, F′(qF′) cannot be a generic
isotropy field for τ. This implies that there does not exist a Pfister form over F whose
function field is a generic isotropy field for τ. �

6.77 Proposition. Let (B, τ) be an F−algebra with orthogonal involution. Assume that
ind(B) = 2 and that F1(τ) is a generic isotropy field for τ. If τ is anisotropic, then there
is no quadratic form ϕ over F such that F(ϕ) is a generic isotropy field for τ.

Proof. Note that by Proposition 6.53, deg(B) ⩽ 6. Assume for the sake of contradiction
that there exists a quadratic form ϕ over F such that F(ϕ) is a generic isotropy field
for τ. Let Q be a quaternion division F−algebra Brauer equivalent to B. Since F1(τ)

is a generic isotropy field for τ, we get that B splits over F(ϕ). Hence, πQ, the norm
form of Q, becomes hyperbolic over F(ϕ). Since Q is assumed to be non–split, πQ is
anisotropic and we get that a scalar multiple of ϕ is a subform of πQ, by [47, (X.4.9)].
Since dim(πQ) = 4, this implies that dim(ϕ) ⩽ 4.
If dim(ϕ) ∈ {3,4}, then ϕ is a Pfister neighbour of πQ and we get that ϕ is either similar to
πQ or to the pure part of πQ, denoted by π′Q. Since F(πQ) is place equivalent to F(π′Q),
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we get in both cases that F(ϕ) is place equivalent to F(πQ). In turn, F(πQ) is place
equivalent to F(Q). So, we get that F(Q) is a generic isotropy field for τ. However,
since τ is anisotropic over F, it stays anisotropic over F(Q), by [57, (3.4)]. Hence, ϕ
must be of dimension 2 and we may assume that ϕ = ⟨1,−a⟩, for some a ∈ F×. Moreover,
a is not a square in F, as this would mean that ϕ is hyperbolic and hence F(ϕ) would be
place equivalent to F. This would yield that τ is isotropic over F, which is not the case.
Note that F(

√
a) is a generic isotropy field for ϕ and therefore place equivalent to F(ϕ).

Let q be a quadratic form over F(Q) such that (B, τ)F(Q) ≅ Ad(q). Then τ becomes
isotropic over F(Q)(q) and hence there exists an F−place λ ∶ F(

√
a) → F(Q)(q)∞.

This implies that ϕ becomes hyperbolic over F(Q)(q). However, this is not possible,
since F is relatively algebraically closed in F(Q) and F(Q) is relatively algebraically
closed in F(Q)(q). We conclude that there does not exist a quadratic form ϕ over F
such that F(ϕ) is a generic isotropy field for τ. �

6.8 Characterisations in low degree

In this section, the closing section of this dissertation, we give complete characterisa-
tions for the existence of a generic isotropy field for some low degree algebras with
involution. In those cases where a generic isotropy field exists, we also explore whether
one can construct an analogue of the concept of a generic splitting tower for quadratic
forms (see [40, §5]).

Let (V,q) be a quadratic space over F of dimension at least 2, and different form the
hyperbolic plane. Suppose that q is anisotropic. Let F1 = F(Xa

q) be the big function
field associated to q, as in Remark 6.25. Suppose furthermore that qF1 is isotropic but
not hyperbolic. Then we decompose (V,q)F1 ≃ (V1,q1) ⊥ (V2,q2), where (V1,q1) is an
anisotropic quadratic space over F1, and (V2,q2) a hyperbolic quadratic space over F1.
Then F2 = F1(Xa

q1
) is a generic isotropy field for q1. If (q1)F2 is not hyperbolic, let F3

be the function field of its anisotropic part. Continuing in this way, taking anisotropic
parts in each step, one obtains a tower of field extensions F0 = F ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fh

such that qFh is split. This is called a generic splitting tower for q. It has the following
property.

6.78 Proposition. Let L/F be a field extension. Then there exists i ∈ {0, . . . ,h} such
that there exists an F−place λi ∶ Fi → L∞ that cannot be extended to an F−place from
Fi+1 to L. Furthermore, iw(qL) = iw(qFi).

Proof. See [66, (4.6.1)]. �

It follows from the previous proposition that if L/F is a field extension such that qL is
hyperbolic, then there exists an F−place λh ∶ Fh → L∞. Therefore, we call Fh a generic
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hyperbolicity field for q. Note that Fh is the function field of a variety over Fh−1.

Let (B, τ) be an F−algebra with involution. We call a tower of field extensions F = F0 ⊂

F1 ⊂ . . . ⊂ Fh a generic isotropy tower for (B, τ) if for every field extension L/F, there
exists i ∈ {0, . . . ,h} such that there is an F−place λi ∶ Fi → L∞ that cannot be extended
to an F−place from Fi+1 to L, and moreover, iw(τL) = iw(τFi).

6.79 Question. Let (B, τ) be an F−algebra with involution of the first kind. When does
there exist a generic isotropy tower for (B, τ)?

Degree 4 and 6

6.80 Theorem. Let (B, τ) be an F−algebra with orthogonal involution of degree 4. Sup-
pose that τ is anisotropic. Let disc(τ) = δ ∈ F×/F×2. Then the following are equivalent:

(i) There exists a generic isotropy field for τ.

(ii) F1(τ) is a generic isotropy field for τ.

(iii) For any field extension L/F such that τL is isotropic, BL is split.

(iv) B splits over F(
√
δ).

Proof. Obviously, (ii) implies (i). The equivalence between (ii) and (iii) follows from
Proposition 6.51. We prove that (iv) implies (ii). Since B splits over F(

√
δ), we have

that either B already splits over F or ind(B) = 2. If B is split over F, then F1(τ) is a
generic isotropy field for τ, by Proposition 6.51. Let us now consider the case in which
ind(B) = 2. Let N/F be an arbitrary field extension for which τN is isotropic. If τN is
hyperbolic, then disc(τN) = 1 ∈ N×/N×2 and therefore d ∈ N×2. Hence, N contains up
to isomorphism the field F(

√
δ), which implies that BN is split. Assume now that τN

is non–hyperbolic. Using Lemma 6.50, we get that BN must be split. Proposition 6.51
now implies that F1(τ) is a generic isotropy field for τ.

We prove that (i) implies (iii). Assume that N/F is a generic isotropy field for τ. It
suffices to show that B splits over N. If B already splits over F, then it also splits over N.
If B is non–split, then Proposition 6.42 implies that there is a field extension M/F over
which τ becomes isotropic, but not hyperbolic. It follows that τN is non–hyperbolic.
Using Lemma 6.50, we get that BN is split.

We now prove that (iii) implies (iv). If τF(
√
δ) is isotropic, then BF(

√
δ) is split since we

assume that (iii) holds. So, suppose that τF(
√
δ) is anisotropic. By Proposition 6.10, there
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exist F(
√
δ)−quaternion algebras Q1 and Q2, with respective canonical involutions γ1

and γ2, such that
(B, τ)F(

√
δ) ≅ (Q1, γ1) ⊗F(

√
δ) (Q2, γ2).

Let M = F(
√
δ)(Q1), then τM is hyperbolic and hence, BM is split, by (iii). This means

that Q2 splits over the function field of Q1. Since we assume that τF(
√
δ) is anisotropic,

it follows that Q1 ≅ Q2 over F(
√
δ). This implies that B splits over F(

√
δ). �

6.81 Corollary. Let (B, τ) be an F−algebra with orthogonal involution of degree 4.
Suppose that τ is anisotropic and that there exists a generic isotropy field for τ. Then
ind(B) ⩽ 2.

Proof. This follows immediately from Proposition 6.80. �

6.82 Examples.

(a) Consider the field of rational number Q and the division algebra Q = (−1,−1)Q.
Let {1, i, j, i j} be a Q−basis for Q such that i2 = j2 = −1. Let τ be an orthogonal
involution on Q. Let furthermore α = j, β = 2 j + i j ∈ Q and consider the hermitian
form h = ⟨α, β⟩τ over (Q, τ). Then adh is an orthogonal involution on M2(Q).
According to [52, (5.7)], we have that disc(adh) = Nrd(α)Nrd(β)disc(τ)2 =

Nrd(α)Nrd(β) = 5 ∈ Q/Q×2. Let L = Q(
√

5). By [47, (III.2.7)], QL is still
a division algebra, since −1 is not a sum of squares in L. Therefore, Theorem
6.80 implies that there is no generic isotropy field for adh. In fact, this is the
case for the adjoint involution of any hermitian form ⟨α, β⟩τ over (Q, τ) such that
Nrd(α)Nrd(β) is not a square in Q.

(b) Consider the quaternion algebra Q = (5,−3)Q. By [47, (III.2.7)], Q splits over
F = Q(

√
5) since ⟨5,−3⟩ represents 1 over Q(

√
5), but Q is a division algebra.

Let τ be an orthogonal involution on Q. Let furthermore α = j and β = 5 j + 2i j.
Consider the hermitian form h = ⟨α, β⟩τ over (Q, τ). Then adh is an orthogonal
involution on M2(Q). By [52, (5.7)], disc(adh) = Nrd(α)Nrd(β)disc(τ)2 = 5 ∈

Q×/Q×2. According to Theorem 6.80, F1(τ) is a generic isotropy field for τ.

6.83 Theorem. Let (B, τ) be an F−algebra with orthogonal involution. Suppose that B
is of degree 6 and non–split. Let disc(τ) = δ ∈ F×/F×2.

(a) If δ ∈ F×2 then F1(τ) is a generic isotropy field for τ.

(b) If δ ∉ F×2 then there exists a generic isotropy field for τ if and only if τ becomes
hyperbolic over F(

√
δ). If this is the case, then F2(τ) is a generic isotropy field.
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Proof. Assume first that δ ∈ F×2. Let L/F be a field extension such that τL is isotropic.
It follows from [45, (15.38)] that ind((B, τ)L) = {0,1} or {0,1,2,3}. So, in any case BL

contains a right isotropic ideal of reduced dimension 1, which means that BL is split. By
Proposition 6.51, F1(τ) is a generic isotropy field for τ.

Assume now that δ ∉ F×2. Since B is non–split, we have that ind(B) = 2. The equiva-
lence between the existence of a generic isotropy field and F2(τ) being a generic isotropy
field follows from Corollary 6.62.
Assume that τ becomes hyperbolic over F(

√
δ). By Proposition 6.63, F2(τ) is a generic

isotropy field for τ.
Conversely, suppose that F2(τ) is a generic isotropy field for τ. Then by Corollary
6.62, it follows that 2 ∈ ind((B, τ)F1(τ)). Let Q be an F−quaternion algebra Brauer
equivalent to B and q a quadratic form over F1(τ) such that (B, τ)F1(τ) ≅ Ad(q). We
have that i1(q) ⩾ 2. Since q is of dimension 6, it is not similar to a Pfister form and
hence i1(q) = 2. By [41, p. 10], this is equivalent to the existence of a quadratic
form θ over F1(τ) such that q ≃ ⟨1,−δ⟩ ⊗F1(τ) θ. In particular, q becomes hyper-
bolic over F1(τ)(

√
δ). Hence, τ is also hyperbolic over F1(τ)(

√
δ). By part (a),

we have that F1(τF(
√
δ)) = F1(τ)(

√
δ) is a generic isotropy field for τF(

√
δ). Let Q

be an F−quaternion algebra Brauer equivalent to B and let ϕ be a quadratic form over
F(

√
δ)(QF(

√
δ)) such that (B, τ)F(

√
δ)(QF(√δ))

≅ Ad(ϕ). Then ϕ is anisotropic or hy-

perbolic over any field extension of F(
√
δ)(QF(

√
δ)). Since ϕ cannot be a scalar mul-

tiple of a Pfister form, it follows from [66, (4.5.3)] that ϕ is hyperbolic, and hence τ is
hyperbolic over F(

√
δ)(QF(

√
δ)). By [14] or [57, (3.3)], it follows that τ is hyperbolic

over F(
√
δ). �

Since an F−algebra with involution of degree 6 that doesn’t have Schur index 2, is
necessarily split by [45, (2.8) (2)], the study of the existence of a generic isotropy field for
F−algebras with involution of degree 4 or 6 is now complete by combining Proposition
6.39 with the results above.

6.84 Corollary. Let (B, τ) be a F−algebra of degree 6 with orthogonal involution for
which there exists a generic isotropy field. Then there is a generic isotropy tower for τ.

Proof. If B is split then the statement follows from the generic splitting theory for
quadratic forms. Assume that B is Brauer equivalent to an F−quaternion division al-
gebra Q. Let disc(τ) = δ ∈ F×/F×2. If δ ∈ F×2, then by Theorem 6.83, the field F1(τ)

is a generic isotropy field for τ. We have that (B, τ)F1(τ) ≅ Ad(q), for some quadratic
form q over F1(τ). Extending F ⊂ F1(τ) by a generic splitting tower for qan, yields a
generic splitting tower for τ.
Assume that δ ∉ F×2. By Theorem 6.83, F2(τ) is a generic isotropy field for τ. Let
(V,h) be a skew–hermitian space over (Q, γ) such that (B, τ) ≅ Ad(h). Since h is
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isotropic over F2(τ), and Q is still division over F2(τ) by Theorem 3.11, we have that
the anisotropic part of (B, τ)F2(τ) is a quaternion algebra with orthogonal involution
of nontrivial discriminant. The latter has a generic isotropy field by Proposition 6.39,
namely F2(τ)(

√
δ). Then F ⊂ F2(τ) ⊂ F2(τ)(

√
δ) is a generic isotropy tower for τ. �

6.85 Remark. It follows from Proposition 6.63 that there exist examples of algebras of
degree 6 and Schur index 2 with orthogonal involution of nontrivial discriminant, such
that the Witt index of the involution is equal to 1 over some field extension of the ground
field. Theorem 6.83 implies that there is no generic isotropy field for such involutions.

Degree 8

In this section, (B, τ) denotes a F−algebra with involution of the first kind of degree 8.
We first consider the orthogonal case. In the orthogonal trivial discriminant case, we
have a complete characterisation of those F−algebras with involution of degree 8 for
which there exists a generic isotropy field.

6.86 Theorem. Suppose that τ is orthogonal of trivial discriminant. We write C(B, τ) =
C+×C−. Then there exists a generic isotropy field for τ if and only if one of the following
cases occurs:

(a) one of B,C+,C− is split over F;

(b) two of B,C+,C− have Schur index 2.

In case (a), F1(τ) is a generic isotropy field for τ if B is split, and for ε = ±, Fε(τ) is a
generic isotropy field for τ if Cε is split. Furthermore, in case (a), there always exists a
quadratic form whose function field is a generic isotropy field for τ. In case (b), F2(τ)

is a generic isotropy field for τ.

Proof. Suppose that we are in case (a). If B is split, then there exists a generic isotropy
field for τ by Proposition 6.39, and this can be realised as the function field of a quadratic
form. Suppose that one of C+ and C− is split. Then there exists a generic isotropy field
for τ by Proposition 6.34. In the latter case, (B, τ) is totally decomposable by Proposition
6.10, and there is also a quadratic form whose function field is a generic isotropy field
for τ by [59, (5.1)] or Theorem 6.75.
In the sequel we use the following formula from Theorem 3.11:

ind(B⊗F Fε(τ)) = min(ind(B),4 ind(B⊗F B), ind(B⊗F Cε),4 ind(B⊗F C−ε))

= min(ind(B),4, ind(C−ε),4 ind(Cε)). (6.8.1)

Throughout the proof, let q be a quadratic form over F1(τ) such that (B, τ)F1(τ) ≅

Ad(q). Since τF1(τ) is isotropic, so is q, and we write q ≃ H ⊥ q′.
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Let us consider case (b). If two of B,C+,C− have Schur index 2, then the third one has
Schur index at most 4, since [B]+[C+]+[C−] = 0 ∈ Br(F) by Proposition 1.36 (a). Let us
assume that we are not in case (a). Then B is non–split, and hence, ind(B) = 2 or 4. We
show that F2(τ) is a generic isotropy field for τ. Since B splits over F3(τ), (B, τ)F3(τ)

contains an isotropic right ideal of reduced dimension 1, and hence, by Proposition 3.1,
there is an F−place from F1(τ) to F3(τ). Using Proposition 3.9, it therefore suffices to
prove that over F1(τ) and Fε(τ) (ε = ±), (B, τ) contains an isotropic ideal of reduced
dimension 2.
We have that q′ is a 6−dimensional form of trivial discriminant, and hence q′ is similar
to an Albert form by [47, p. 70]. In particular q′ has the same Clifford invariant as an
Albert form. We have that c(q′) = c(q) = [(C+)F1(τ)] = [(C−)F1(τ)] ∈ Br(F1(τ)). Since
at least one of C+ and C− has Schur index 2, we get that c(q′) has Schur index at most 2
and therefore, q′ is isotropic. Hence, 2 ∈ ind((B, τ)F1(τ)).
For the function fields Fε(τ), the formula (6.8.1) yields ind(B⊗F Fε(τ)) = 2. By Corol-
lary 2.16, it follows that 2 ∈ ind((B, τ)Fε(τ)), as desired. Hence, F2(τ) is a generic
isotropy field for τ in case (b).

Let us now assume that we are not in case (a) and that there exists a generic isotropy
field for τ. Since deg(B) = 8 > 6 and B is non–split, F1(τ) cannot be a generic isotropy
field for τ by Proposition 6.53. So, one of F2(τ),F+(τ) and F−(τ) is a generic isotropy
field for τ. Since we are not in case (a), B,C+ and C− are all non–split. Suppose that
B and one of C+ and C− have Schur index at least 4. Then one of ind(B ⊗F F+(τ)) or
ind(B⊗F F−(τ)) is equal to 4 and hence, the generic isotropy field would be a generic
hyperbolicity field. However, this does not exist by Theorem 6.35. So we have that
ind(C+), ind(C−) ⩾ 4. By Propositions 3.11 and 1.36 (a),

ind(Cε ⊗F F1(τ)) = min(ind(Cε), ind(Cε ⊗F B),4 ind(Cε ⊗F C+),4 ind(Cε ⊗F C−))

= min(ind(Cε), ind(C−ε),4,4 ind(B)) = 4.

Moreover, as before, we have that c(q′) = c(q) = [(C+)F1(τ)] = [(C−)F1(τ)] ∈ Br(F).
Hence, c(q′) has Schur index 4 and therefore iw(q) = 1. This contradicts the fact that
one of F2(τ),F+(τ) and F−(τ) is a generic isotropy field for τ. So, we conclude that
two of B,C+,C− have Schur index 2. �

6.87 Corollary. Assume that τ is orthogonal of trivial discriminant. We write C(B, τ) =
C+ ×C−. Assume that one of B,C+,C− is split. Then there is a generic isotropy tower
for (B, τ). Assume that two of B,C+,C− are of Schur index 2 and none of them is split.
Then there is no generic isotropy tower for (B, τ).

Proof. If B is split and q is a quadratic form over F such that (B, τ) ≅ Ad(q), then a
generic splitting tower for q is a generic splitting isotropy for τ. Suppose that B is non–
split and one of C+ and C− is split. Without loss of generality, we may assume that C+
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is split. Then F+(τ) is a generic isotropy field for τ, and in fact τ becomes hyperbolic
over F+(τ), since (B, τ) is a Pfister algebra with involution by Proposition 6.10. Hence,
F ⊂ F+(τ) is a generic isotropy tower for τ. Suppose that at least two of B,C+,C− have
Schur index 2, and that none of them is split. Then F2(τ) is a generic isotropy field
for τ. However, by Proposition 6.34, there does not exist a generic hyperbolicity field
for τ, and hence, there does not exist a generic isotropy tower for τ. This can also be
seen by looking at the anisotropic part of (B, τ)F2(τ). Since 2 = ind(BF2(τ)) ∣ iw(τF2(τ))

and (B, τ) is not a Pfister algebra with involution by Proposition 6.10, τF2(τ) is non–
hyperbolic, and hence, iw(τF2(τ)) = 2. This means that (B1, τ1) = ((B, τ)F2(τ))an is an
algebra of degree 4 with orthogonal involution of trivial discriminant, and furthermore
B1 is non–split. It follows from Theorem 6.80 that there is no generic isotropy field for
τ1. �

If the discriminant of τ is nontrivial then we do not have a full characterisation for the
existence of a generic isotropy field. We only obtain some necessary conditions that
follow from the trivial discriminant case, and some conditions which imply the non–
existence of a generic isotropy field.

6.88 Proposition. Assume that τ is orthogonal of nontrivial discriminant. Assume that
there exists a generic isotropy field for τ. Then F2(τ) is a generic isotropy field and we
have that C(B, τ) is split (and hence B is split) or ind(C(B, τ)) = 2.

Proof. Let d ∈ F× ∖ F×2 be such that disc(τ) = d ∈ F×/F×2. Assume that there exists a
generic isotropy field for τ. By Proposition 6.53, F2(τ) is a generic isotropy field for τ.
Then there also exists a generic isotropy field for τF(

√
d), namely the function field of

the F(
√

d)−variety IV2((B, τ)F(
√

d)). We write C = C(B, τ). Since C((B, τ)F(
√

d)) ≅

CF(
√

d) ≅ C× ϕC, where ϕ is the nontrivial F−automorphism of F(
√

d), it follows from
Theorem 6.86 that one of the following cases occurs:

(a) one of B,C is split over F(
√

d), or

(b) ind(C) = 2 (and possibly ind(B) = 2).

It follows from Proposition 1.36 that NF(
√

d)/F([C]) = [B] ∈ Br(F). In particular, if C

is split over F(
√

d), then B is split over F. This proves the statement. �

6.89 Corollary. Suppose that τ is orthogonal of nontrivial discriminant, and suppose
that B is a division algebra. Then there does not exist a generic isotropy field for τ.

Proof. Let d ∈ F× ∖ F×2 be such that disc(τ) = d ∈ F×/F×2. This follows from Propo-
sition 6.88 since NF(

√
d)/F([C]) = [B] ∈ Br(F) implies that ind(B) ⩽ ind(C(B, τ))2,

which is at most 4 if there would exist a generic isotropy field for τ, by Proposition
6.88. �



6.8 189

Examples 6.70 (c) yields for certain fields F examples of F−algebras with involution
of nontrivial discriminant of degree 8 and Schur index 2, for which there is no generic
isotropy field (e.g. take r = 1,n = 4 and the field k such that −1 ∈ k2). These examples
are such that B splits over F(

√
d), where disc(τ) = d ∈ F×/F×2.

Below, we give an example of an F−algebra with orthogonal involution (B, τ) of degree
8 and Schur index 4 for which there does not exist a generic isotropy field.

6.90 Example. Let k be a field and u, v, x, y independent variables over k. We write
k̃ = k(u, v) and F = k̃(x, y). By the proof of [47, (XIII.2.8)], D = (u, x) ⊗F (v, y) is
a division algebra over F. Let {1, i, j, i j} (resp. {1, i′, j′, i′ j′}) be a usual F−basis for
(u, x) (resp. (v, y)) such that i2 = u and j2 = x (resp. i′2 = v and j′2 = y). Let γ1 (resp. γ2)
be the canonical involution on (u, x) (resp. (v, y)). Then ρ = γ1 ⊗F γ2 is an orthogonal
involution on D.
Let (B, τ) be the F−algebra with involution adjoint to the hermitian form ⟨ j⊗ j′,−yi⊗i′⟩ρ
over (D, ρ). One can check that disc(τ) is trivial. Over F(

√
uv,

√
u), τ becomes adjoint

to the quadratic form

⟨y−1, x,−1,−xy,u,u, yu, yu⟩ ≃ ⟨y, x,−1,−xy,1,1, y, y⟩.

So, the above form is isometric to H ⊥ y⟨1,1,1,−x⟩ ⊥ ⟨1, x⟩, where the second part is
the Albert form of the biquaternion algebra (−1,−y) ⊗ (x, y).

Suppose that ⟨1,1,1⟩ is anisotropic over k̃(
√

uv,
√

u). (This can for example be achieved
by taking k = Q.) Then ⟨1, x⟩ is anisotropic over k̃(

√
uv,

√
u)(x), and by [47, (VI.1.9)],

⟨1,1,1,−x⟩ is anisotropic over k̃(
√

uv,
√

u)(x). Invoking the same result once more,
we obtain that that y⟨1,1,1,−x⟩ ⊥ ⟨1, x⟩ is anisotropic over F(

√
uv,

√
u).

So, we have that (B, τ)F(
√

uv,
√

u) is an algebra of degree 8 with orthogonal involution of
trivial discriminant and Witt index 1. Furthermore, the components of C((B, τ)F(

√
uv,
√

u))

are the components of C0(H ⊥ y⟨1,1,1,−x⟩ ⊥ ⟨1, x⟩). Since y⟨1,1,1,−x⟩ ⊥ ⟨1, x⟩ is an
anisotropic Albert form, we have that its Clifford invariant has Schur index 4. This
means that the components of C((B, τ)F(

√
uv,
√

u)) have Schur index 4 and so over the
ground field F, the components have Schur index at least 4. So, we see that (B, τ) does
not satisfy the conditions of Theorem 6.86 for the existence of a generic isotropy field,
and hence, there does not exist a generic isotropy field for τ.

Using the fact that Pfister algebras with involution are totally decomposable in the de-
gree 8 symplectic case (see Theorem 6.12), we easily obtain a characterisation for the
existence of a generic isotropy field in that case.
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6.91 Theorem. Suppose that τ is symplectic. Then there exists a generic isotropy field
for τ if and only if one of the following cases occurs:

(a) B has Schur index 2.

(b) (B, τ) is totally decomposable.

Proof. Corollary 6.33 and Proposition 6.39 yield that there exists a generic isotropy field
in cases (a) and (b). Assume now that there exists a generic isotropy field N/F for τ,
and that ind(B) ≠ 2. If B is split then τ is adjoint to a non–singular alternating bilinear
form, and hence τ is hyperbolic. It follows that ∆(B, τ) = 0 by [26], and hence, (B, τ)
is totally decomposable by Theorem 6.12. So, assume that ind(B) = 4 or 8. Using the
formulas of Theorem 3.11, we find

ind(B⊗F F4(τ)) = min(ind(B),4) = 4.

This means that ind(BN) ⩾ 4 and hence (B, τ) is a Pfister algebra with involution. The-
orem 6.12 then yields that (B, τ) is totally decomposable. �
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Tell me one last thing, said Harry. Is this real? Or has this been happening

inside my head? Of course it’s happening inside your head, Harry, but why

on earth should that mean that it is not real?

—– J.K. Rowling, Harry Potter and the deathly hallows
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