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Abstract—We introduce a dynamical model of mutually attracting agents
with the long term behavior consisting of agents organized into several
groups or clusters. The cluster structure is completely characterized by
means of a set of inequalities in the parameters of the model and transitions
between different cluster structures take place when the intensity of the at-
traction is varied. We illustrate the relation with the Kura moto model on
interconnected oscillators and we discuss an application on compartmental
systems.
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I. I NTRODUCTION AND MOTIVATION

The clustering phenomenon is observed in fields ranging from
the exact sciences to social and life sciences; consider e.g.
swarm behavior of animals or social insects [1], opinion forma-
tion [2] or the clusters in the frequency space for synchronized
coupled oscillators [3] as a model for heart cells. We present a
model that captures this phenomenon and at the same time al-
lows a mathematical analysis. We formulate necessary and suf-
ficient conditions for the occurrence of a given cluster structure.
The model, or elaborated versions, may be used as a tool for
explaining some of the phenomena mentioned above, for sys-
tematizing arguments, for prediction and for control.

II. T HE DYNAMICS

In general interacting agents are bound to generate unpre-
dictable unstructured behavior. We propose a mathematical
model with a particular type of interaction such that through
self-organization a structure emerges where sets of clustered
agents find themselves in balance.

We present a simple model admitting a succinct formulation
of the conditions governing the cluster configuration at which
the system settles. The differential equations for the model con-
sisting ofN agents (N > 1) are

ẋi(t) = bi +
1

N

N
∑

j=1

f(xj(t) − xi(t)), (1)

∀ t ∈ R,∀ i ∈ {1, . . . , N}, with xi(t), bi ∈ R; xi(t) describes
the state of agenti at time t, ẋi(t) the time derivative, andbi

represents the autonomous component in each agent’s behav-
ior. The summation term represents the attraction exerted by the
other agents on each agent. The functionf : R → R is odd
and non-decreasing with respect to distances between agents.
This implies asymmetric attractionbetween any two agents.
We assume that the interaction intensifies with separation up to
a certain saturation level:

∃ d > 0 : f(x) = F, ∀x ≥ d.
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A Lipschitz condition onf is introduced for technical reasons;
it guarantees a unique solution to the differential equation with
respect to a set of initial conditions.

For convenience we will present our results for the model (1),
but an extension to the following generalization is possible [4]:

ẋi(t) = bi + Ai

N
∑

j=1

Kijγjf (xj(t) − xi(t)) , (2)

∀ t ∈ R, ∀ i ∈ {1, . . . , N}. The functionf has the same char-
acteristics as before. The interpretation ofbi remains unaltered.
The parametersAi andγi are all positive. The matrixK is sym-
metric and irreducible withKij ≥ 0. It is important to notice
that the interaction structure of (2) is completely arbitrary, while
model (1) involves all-to-all coupling. The elements of matrix
K represent levels of attraction between agent pairs (e.g. noat-
traction between agentsi andj if Kij = 0); the extent to which
each individual agentj tends to attract other agents is denoted
by γj . The parameterAi reflects the sensitivity of agenti to
interactions with other agents.

III. A NALYSIS AND RESULTS

Assume that, for a particular solution of (1), the behavior of
the agents can be characterized as follows by an ordered set of
clusters(G1, . . . , GM ) defining a partition of{1, . . . , N}:

• The distances between agents in the same cluster remain
bounded (i.e.|xi(t) − xj(t)| is bounded for alli, j ∈ Gk, for
anyk ∈ {1, . . . ,M}, for t ≥ 0).
• After some positive timeT , the distances between agents in
different clusters are at leastd and grow unbounded with time.
• The agents are ordered by their membership to a cluster:k <
l ⇒ xi(t) < xj(t), ∀ i ∈ Gk, ∀ j ∈ Gl, ∀ t ≥ T .

We will refer to this behavior asclustering behavior.

For any non-empty setG0 ⊂ {1, . . . , N}, with the number of
elements denoted by|G0|, we introduce the notation〈b〉G0

for
the average value ofbi overG0:

〈b〉G0
,

1

|G0|

∑

i∈G0

bi.

In [4] we derive the following set ofnecessary and sufficient
conditions for clustering behavior ofall solutions of the system
(1), with the cluster structure(G1, . . . , GM ) independent of the



initial condition:

〈b〉Gk+1
− 〈b〉Gk

>
F

N
(|Gk+1| + |Gk|) ,

∀ k ∈ {1, . . . ,M − 1};
(3)

〈b〉Gk,2
− 〈b〉Gk,1

≤
F

N
|Gk|,

∀Gk,1, Gk,2 ( Gk, with Gk,2 = Gk \ Gk,1,

∀ k ∈ {1, . . . ,M}.

(4)

The characteristics of the interaction play a key role in the
proof. Sincef is odd all internal interactions (i.e. interactions
between agents in the same cluster) cancel when calculatingthe
velocity of the ‘center of mass’ of a cluster, similar to the cancel-
lation of internal interactions in mechanics. The saturation of f
implies that the interactions between agents from different clus-
ters reduce toF/N or −F/N whenever agents from different
clusters are separated over at least a distanced. The monotonic-
ity of f will guarantee that the resulting clustering behavior is
independent of the initial condition.

Under the assumption of clustering behavior and taking into
account the previous considerations, the ordering of the agents
and distances growing unbounded with time for agents in dif-
ferent clusters will lead to the condition (3). Similarly, since
distances between agents from the same cluster remain bounded
the condition (4) can be derived. This implies the necessityof
the inequalities (3) and (4) for the existence of a solution of (1)
satisfying clustering behavior. Next we give an outline of the
proof of sufficiency.

The main idea is to pick an initial condition for which agents
from differentGk will always (i.e. for allt ≥ 0) be separated
over at least a distanced, with their interaction saturated as a
consequence. Invoking the condition (4) it can then be shown
that the differences inx(t)-values will be bounded for agents
in the sameGk. From this boundedness together with the con-
dition (3), it will follow that the differences inx(t)-values for
agents from differentGk will grow unbounded. The solution
of (1) corresponding to this particular initial condition will ex-
hibit clustering behavior (withT = 0, and the clusters equal to
theGk). Any other solution̂x of (1) will exhibit the same clus-
tering behavior (i.e. identical clusters, possibly a different value
for T ). This follows by observing that the distance in the state
spaceRN betweenx andx̂ is a non-increasing function of time:
d

dt

(
∑N

i=1
(xi(t) − x̂i(t))

2
)

≤ 0.
We also indicate that for every given set of parametersbi and

F there exists auniqueordered partition(G1, . . . , GM ) of clus-
ters satisfying (3) and (4) implying a unique clustering behavior.
In general there existN − 1 bifurcationvalues for the intensity
of attractionF , definingN intervals forF ; each interval cor-
responds to a particular cluster configuration, and transitions to
new cluster configurations take place at these bifurcation points.
We refer to [4] for full details.

IV. A PPLICATIONS

A. The Kuramoto model

The Kuramoto model [5] is a mathematical model describing
systems of coupled oscillators. The oscillators are characterized
by an individual frequency, which determines their behavior if

there is no interaction. When the coupling strength is increased
oscillators tend to form clusters, with all members of a cluster
moving at the same long term average frequency. Simulations
indicate that the clustering behavior is independent of theinitial
condition, as in the model (1), and also the transitions between
the different clusters for varying coupling strength are similar.

Although analytical results for the Kuramoto model exist,
a complete analytical description — as we have given for the
model (1) — is not available, and therefore the results for sys-
tems (1) and (2) may be useful in the investigation of the Ku-
ramoto model or in the investigation of synchronization of cou-
pled oscillators in general.

B. Compartmental systems

ConsiderN different basins connected by horizontal pipes,
each basin furthermore subject to either a constant external in-
flow or outflow of a fluid, e.g. water. We assume that the pipes
have a maximal throughput, which is independent of the direc-
tion of the flow, and denoted byKij for the pipe connecting
basinsi andj. Representing the water height of basini by xi,
the pressure difference between basinsi andj will be propor-
tional to xj − xi, and thus the volume flow rate through the
connecting pipe can be represented byKijf(xj − xi) wheref
relates throughput through a pipe — normalized to one — to
the pressure difference — expressed in difference in water level
height. Defining the appropriate parameters one easily derives
the model (2).

The objective consists in checking whether a network of con-
nected basins is prone to flooding. Assuming that the total exter-
nal inflow equals the total external outflow, the desired behavior
corresponds to one cluster at zero velocity. This will be fulfilled
as long as, for all partitions of the set of basins into two non-
empty subsets, the interconnections have the capacity to trans-
port a net external inflow rate from one part of the network to
the other part with the same net external outflow rate. This can
be expressed by conditions analogous to (4). If these are not
satisfied, a set of basins will overflow.
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