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Abstract. Code obfuscation and software watermarking are well known tech-
niques designed to prevent the illegal reuse of software. Code obfuscation pre-
vents malicious reverse engineering, while software watermarking protects code
from piracy. An interesting class of algorithms for code obfuscation and soft-
ware watermarking relies on the insertion of opaque predicates. It turns out that
attackers based on a dynamic or an hybrid static-dynamic approach are either
not precise or time consuming in eliminating opaque predicates. We present an
abstract interpretation-based methodology for removing opaque predicates from
programs. Abstract interpretation provides the right framework for proving the
correctness of our approach, together with a general methodology for designing
efficient attackers for a relevant class of opaque predicates. Experimental evalua-
tions show that abstract interpretation based attacks significantly reduce the time
needed to eliminate opaque predicates.

1 Introduction

The aim of malicious reverse engineering of software is to understand the inner work-
ings of programs in order to identify vulnerabilities, to make unauthorized modifica-
tions or to steal the intellectual property of software. Code obfuscation is a well-known
low cost approach to prevent malicious reverse engineering of software [2, 3]. The basic
idea of code obfuscation is to transform programs so that the obfuscated programs are
so difficult to understand that reverse engineering becomes too expensive in terms of
resources or time. Software piracy refers to the illegal reproduction and distribution of
software applications, whether for business or personal use. The aim of software water-
marking is to dissuade illegal copying and reseal of programs. Software watermarking
is a program transformation technique that embeds a signature into the software in order
to encode some identifying information about it [4, 22].

1.1 The Problem

A predicate is opaque if its value is known a priori to a program transformation, while it
is difficult for attackers to deduce it [2]. Opaque predicates can be used both for obfus-
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cating and watermarking programs. In the case of code obfuscation, a class of obfuscat-
ing transformations known as control code obfuscators act by masking software control
flow. Control code obfuscators often rely on inserting opaque predicates. Consider for
example the insertion of a branch instruction controlled by an opaque predicate that
always evaluates true, i.e., the true path is always followed. Attackers are not aware
of the constantly true value of the opaque predicate, and have to take into account both
true and false paths. On the other side, Monden et al. [22] store the watermark in a
piece of dead code and then they make the watermark potentially reachable by insert-
ing a true opaque predicate whose false branch transfers the control to the dead code
containing the watermark. Therefore, a static analysis-based dead code removal does
not eliminate the watermark, while the dead code itself is never executed. A different
approach by Myles and Collberg [23] instead encodes the watermark in the constants
used in opaque predicates. The resilience of an opaque predicate to attacks measures
the resilience of the corresponding obfuscating/watermarking transformation. Here, we
consider opaque predicates from number theory [1, 5, 23] such as ∀x ∈ Z : n|f(x), i.e.,
the function f always returns a multiple of n. More in general, we consider opaque pred-
icates ∀x ∈ Z : f(x) ⊆ P , i.e., the result of the function f always satisfies the property
P . An attacker is a malicious user that wants to reverse engineer or copy a program for
unlawful purposes, thus to succeed it has to defeat expected software protection tech-
niques such as opaque predicate insertion. Once an opaque predicate is inserted in a
program, it is possible to further protect the code using transformations meant to mask
the opaque predicate itself. For example, hiding constant values by use of address com-
putations or using bit-level operations to hide arithmetic manipulations are obfuscating
transformations that mask the inserted opaque predicates. The de-obfuscation of these
additional transformations and the opaque predicates detection are problems that can
be studied independently. In the following we study a general and efficient methodol-
ogy for disclosing opaque predicates, assuming that potential additional transformations
have already been handled. We introduce a novel and efficient methodology of attack,
based on Cousot and Cousot’s abstract interpretation technique [7, 9], for eliminating
opaque predicates. The present approach builds over the semantics-based view to code
obfuscation introduced in [10, 11].

1.2 Main Results

We analyze two different approaches to opaque predicates detection. The first one is
based on purely dynamic information, while the second one is based on hybrid sta-
tic/dynamic information [16]. Experimental evaluations on a limited set of inputs show
that a dynamic attack removes any opaque predicate, but it has the drawback of classify-
ing many predicates as opaque, while they are not. Thus, dynamic attacks do not provide
a trustful solution. Randomized algorithm may be used to eliminate opaque predicates,
in this case the probability of precisely detecting an opaque predicate can be increased
by augmenting the number of tries [14]. However randomized algorithms do not give
an always trustful solution, but an answer that has an high probability of being precise.
On the other hand, experimental evaluations on hybrid static/dynamic attacks show that
breaking a single opaque predicate is rather time consuming, and may become unfea-
sible. We then introduce a novel methodology, based on formal program semantics and
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semantics approximation by abstract interpretation, to detect and then eliminate opaque
predicates. Experimental evaluations show the efficiency of this new method of attack.

Attackers are malicious users that observe the behavior of the obfuscated program
at different levels of abstraction with respect to the real program execution. The basic
idea is to model attackers as abstract interpretations of the concrete program behaviour,
i.e., the concrete program semantics. In this framework, an attacker is able to break an
opaque predicate when the abstract detection of the opaque predicate is equivalent to its
concrete detection. For opaque predicates as ∀x ∈ Z : n|f(x) and ∀x ∈ Z : f(x) ⊆ P ,
this can be formalized as a completeness property of the underlying abstraction with
respect to the function f . Completeness for an abstraction A with respect to some se-
mantic function f means that no loss of precision is accumulated in the abstract com-
putation of f on A with respect to its concrete computation. Abstract interpretation
provides a systematic methodology for minimally refining an abstraction in order to
make it complete for a given function. Thus, it turns out that completeness domain re-
finements provide here a systematic de-obfuscation technique that drives the design of
abstractions, i.e., attackers, for disclosing opaque predicates.

2 Background

Notation. If f : Xn → Y is any n-ary function then its pointwise extension fp :
℘(X)n → ℘(Y ) to the powerset is defined as fp(S1, ..., Sn) def= {f(x1, ..., xn) | 1 ≤
i ≤ n, xi ∈ Si}. 〈L, ≤, ∨, ∧, 
, ⊥〉 denotes a complete lattice with ordering ≤, least
upper bound (lub) ∨, greatest lower bound (glb) ∧, greatest element 
 and least element
⊥. Given an ordered set L the downward closure of S ⊆ L is ↓ S

def= {x ∈ L|∃y ∈
S.x ≤ y}, while the upward closure ↑ is dually defined. For x ∈ L, ↓ x is a shorthand
for ↓ {x}. Given S ⊆ L, max(S) def= {x ∈ S | ∀y ∈ S.x ≤ y ⇒ x = y} is the set
of maximal elements of S. Given any two functions f, g : X → L, f � g denotes
pointwise ordering, namely for any x ∈ X , f(x) ≤ g(x).

Abstract Interpretation. The basic idea of abstract interpretation is that the program
behaviour at different levels of abstraction is an approximation of its formal semantics.
The (concrete) semantics of a program is computed on the (concrete) domain 〈C, ≤C〉,
i.e., a complete lattice which models the values computed by programs. The partial
ordering ≤C models relative precision between concrete values. An abstract domain
〈A, ≤A〉 is a complete lattice which encodes an approximation of concrete program
values. Abstract domains can be related to each other w.r.t. their relative degree of
precision. Abstract domains are specified either by Galois connections (GCs), i.e., ad-
junctions, or by (upper) closures operators [7, 9]. Two complete lattices C and A form
a Galois connection (C, α, γ, A), when α : C → A and γ : A → C form an adjunc-
tion, namely ∀a ∈ A, ∀c ∈ C : α(c) ≤A a ⇔ c ≤C γ(a). α and γ are called,
respectively, abstraction and concretization maps. An (upper) closure operator on C,
or simply a closure, is an operator ρ : C → C which is monotone, idempotent, and
extensive. We denote by uco(C) the set of closures on C. When C is a complete lat-
tice then 〈uco(C), �, �, �, λx.
, λx.x〉 is a complete lattice as well, where ρ1 � ρ2 if
and only if ρ2(C) ⊆ ρ1(C), meaning that the abstract domain specified by ρ1 is more
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precise than the abstract domain specified by ρ2. Let us recall that each closure ρ is
uniquely determined by the set of its fixpoints, given by its image ρ(C). A set X ⊆ C
is the set of fixpoints of a closure operator if and only if X is a Moore family of C,
i.e., X = M(X) def= {∧S|S ⊆ X}, where ∧∅ = 
 ∈ M(X). Given a GC (C, α, γ, A),
ρ = γ ◦ α is the closure corresponding to the abstract domain A.

Let (C, α, γ, A) be a GC, f : C → C a concrete function and f � : A → A an
abstract function. f � is a sound, i.e., correct, approximation of f if α ◦ f ≤A f � ◦ α.
When the soundness condition is strengthened to equality, i.e., when α ◦ f = f � ◦ α,
the abstract function f � is a complete approximation of f in A. This means that no loss
of precision is accumulated in the abstract computation through f �. Given A ∈ uco(C)
and a semantic function f : C → C, the notation fA def= α ◦ f ◦ γ denotes the best
correct approximation of f in A [9]. It has been proved [12] that, given an abstraction
A, there exists a complete approximation of f : C → C in A if and only if the best
correct approximation fA is complete. This means that completeness is an abstract
domain property, namely that it depends on the structure of the abstract domain only. In
particular, when an abstract domain is specified by a closure ρ ∈ uco(C), we have that
ρ is complete for f iff ρ◦f ◦ρ = ρ◦f (soundness is instead encoded by ρ◦f � ρ◦f ◦ρ).
It turns out that an abstract domain ρ ∈ uco(C) is complete for f if ∀x ∈ ρ(C):
max(f−1(↓ x)) ⊆ ρ(C), i.e., if ρ is closed under maximal inverse image of f . This
leads to a systematic way for minimally refining an abstract domain in order to make
it complete for a given semantic function [12]. The complete refinement of a domain ρ
with respect to a function f is given by Rf (ρ) def= gfp(λX. ρ�M(∪y∈Xmax(f−1(↓ y))).
It turns out that Rf (ρ) returns exactly the most abstract domain extending ρ and which
is complete for f [12]. Thus, the completeness refinement adds the minimal amount
of information needed to make the abstract domain complete. When f has more then
one argument, for example when f : C × C → C, the maximal inverse image, i.e.,
f−1(x, y) is obtained by the union of the maximal inverse images of f for each fixed
value of x and y [12]. For a set F of semantic functions, RF (ρ) denotes the complete
refinement of ρ for any function f ∈ F .

Opaque Predicates. A predicate is opaque if its outcome is known at embedding
time, but it is hard for an attacker to deduce it [2, 3]. The basic idea is that the in-
sertion of opaque predicates in a program makes the program control flow difficult
for an attacker to analyze. Opaque predicates find interesting applications not only in
code obfuscation techniques [15], but also in software watermarking [23] and tamper-
proofing [24]. There exist two major kinds of opaque predicates: true opaque predi-
cates, denoted by PT , that always evaluate true, and false opaque predicates, denoted
by PF , that always evaluate false . Opaque predicates can be derived from number the-
ory [3], alias analysis [2], concurrency [6], etc. We focus here on opaque predicates
based on number theory of the form ∀x ∈ Z : n|f(x). These predicates are applied
in some major software protection techniques as code obfuscation [3], software wa-
termarking [23], tamper-proofing [24] and secure mobile agents [19]. Moreover, this
class of opaque predicates is used in recent implementations such as PLTO [25] — a bi-
nary rewriting system that transforms a binary program preserving the functionality —
LOCO [17] — a tool for binary obfuscating and de-obfuscating transformations — and
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SANDMARK [5] — a tool for software watermarking, tamper proofing and code obfus-
cation of Java programs.

3 Dynamic Attack

Dynamic attackers execute programs with several (but of course not all) different inputs
and observe the paths followed after each conditional jump. Thus, a dynamic attacker
classifies a conditional jump as controlled by a false/true opaque predicate if, during
these executions, the false/true path is always taken. Therefore, a dynamic attacker de-
tects all the executed opaque predicates, but, due to the limited set of inputs considered,
it may classify a predicate as opaque while it is not, called a false negative. Let us
measure the false negative rate of a dynamic attacker. We execute the SPECint2000
benchmarks (without adding opaque predicates) with the reference inputs, and then we
observe the conditional jumps. We use DIOTA1 [18] to identify conditional jumps that
always follow the true path, the false path or take both of them.

Table 1. Execution after conditional jumps

The benchmarks are listed in Table 1. For each benchmark, the percentage of reg-
ular conditional jumps that look like false/true opaque predicates are annotated in the
first/second column, while the percentage of regular conditional jumps are reported in
the third column. Benchmarks do not contain opaque predicates, so that the opaque
predicates detected by dynamic attack are false negatives. This experimental evalua-
tions show that a dynamic attacker has an average of false negative rate of 39% and
22%, respectively for false and true opaque predicates. An attacker can improve these
results using its knowledge of the program functionality in order to generate different
inputs that are likely to execute different program paths. This will be very time con-
suming. Another way is to generate dynamic test data to improve the condition/decision
coverage (CDC)2. For complex programs, the CDC is at most 58% [20], so 42% of all
conditions will be seen as opaque predicates or dead code by the attacker which is of
course incorrect. This leads us to conclude that dynamic attacks are too imprecise.

1 DIOTA: a dynamic instrumentation tool which keeps a running program unaltered at its original
location and generate instrumented code on the fly somewhere else.

2 Condition/decision coverage measures the percentage of conditional jumps that are executed
true at least once and false at least once.
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4 Brute Force Attack

In this section we study an hybrid static/dynamic brute force attack acting on assembly
basic blocks3, where the instructions of the opaque predicate are statically identified
(static phase) and are then executed on all possible inputs (dynamic phase). Let us con-
sider the following opaque predicate ∀x ∈ Z : 2|(x2 + x). Let us remark that the
implementation of this opaque predicate decomposes the function x2 + x into elemen-
tary functions such as square x2 and addition x + y. We make the assumption that the
instructions (that is, elementary functions) corresponding to an opaque predicate are al-
ways grouped together, i.e., there are no program instructions between them. The static
phase aims at identifying the instructions corresponding to an opaque predicate. Thus,
for each conditional jump j the attack considers the instruction i immediately preceding
j. The dynamic phase then checks whether i and j give rise to an opaque predicate. If
this is the case the predicate is classified as opaque. Otherwise, the analysis proceeds
upward by considering the next instruction preceding i, until an opaque predicate is
found or the instructions in the basic block terminate. In this latter case, the predicate
is not opaque. The computational effort, measured as number of steps, of the attack
is n2 ∗ (2w)r, where n is the number of instructions of the opaque predicate, r is the
number of registers and w is the width of the registers used by the opaque predicate.
Consider for example the above true opaque predicate compiled for a 32-bit architec-
ture. The predicate is executed with all possible 232 inputs. This compiled code is then
executed under the control of GDB, a well known open-source debugger4, with all 232

inputs. In particular 2|(x2 + x) can be written in five x86 instructions, so that for this
architecture the computational effort to break this opaque predicate will be 52 ∗ 264.
During the hybrid attack, two variables are needed as input for the addition, so that
there are at most 2 registers taken as input during the attack, i.e. r=2, and the width of
these registers is 32 bits, i.e. w = 32.

It would be interesting to measure the time needed by this attack to detect an opaque
predicate. Let us consider the opaque predicate ∀x ∈ Z : 2|(x + x) and measure the
time needed to detect it. In assembly, this opaque predicate in a 16-bit environment con-
sists of three instructions. The execution under control of GDB of these three assembly
instructions with all 216 inputs takes 8.83 seconds on a 1.6 GHz Pentium M proces-
sor with 1 GB of main memory running RedHat Fedora Core 3. In this experimental
evaluation, the static phase has been performed by hand, meaning that the starting in-
struction of the opaque predicate was given. This leads us to conclude that the hybrid
static/dynamic approach is precise although it is noticeably time consuming.

5 Breaking Opaqueness by Abstract Interpretation

We introduce an approach based on abstract interpretation for detecting opaque pred-
icates. This novel technique leads to a formal characterization of a class of attack-
ers that are able to break a specific type of commonly used opaque predicates, i.e.,

3 A basic block is a sequence of instructions with a single entry point, single exit point, and no
internal branches.

4 http://www.gnu.org/software/gdb/
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∀x ∈ Z : n|f(x). This result can then be generalized to a wider class of opaque pred-
icates, i.e., ∀x ∈ Z : f(x) ⊆ P where P is a generic property of integer numbers.
In this case, we provide a methodology for designing efficient attackers. Experimental
evaluations show how this abstract interpretation-based approach significantly reduces
the computational effort of the attacker.

5.1 Modeling Attackers

Attackers have different precision degrees, according to the accuracy they have in ob-
serving program behaviours. We show that abstract interpretation turns out to be a suit-
able framework for modeling attackers and for classifying them according to their level
of precision [10, 11]. Let 〈℘(Z), ⊆〉 be the concrete domain for an integer program vari-
able. An attacker can be modeled by an abstract domain A ∈ uco(℘(Z)), which may
precisely represent the level of abstraction of an attacker. In the following, A denotes
an abstract domain with partial ordering relation ≤A, abstraction/concretization maps
αA : ℘(Z) → A and γA : A → ℘(Z). For example, the following well-known abstract
domains Sign =

{
Z, Z≥0, Z≤0, 0, ∅

}
and Parity =

{
Z, even , odd , ∅

}
can model

different attackers. Modeling attackers by abstract domains allows us to compare them
with respect to their level of abstraction. Consider two attackers A1, A2 ∈ uco(℘(Z)).
If A2 is an abstraction of A1, i.e., A1 � A2, then the attacker A1 is more precise (i.e.,
concrete) than the attacker A2 in observing the obfuscated program. In our model, an
attacker A breaks an opaque predicate when the abstract detection of the opaque pred-
icate is equivalent to its concrete detection. Abstract domains can encode a significant
approximation of the concrete domain. Accordingly, we will show that abstract detec-
tion of opaque predicates may result significantly simpler.

Attackers for Predicates n|f(x). Let us consider numerical true opaque predicates of
the form: ∀x ∈ Z : n|f(x), namely the function f : Z → Z always returns a value that
is a multiple of n ∈ Z. This class of opaque predicates is used in major obfuscating tools
such as SANDMARK [5] and LOCO [17], and in the software watermarking algorithm
by Arboit [1], recently implemented by Collberg and Myles [23].

In order to detect that the predicate n|f(x) is opaque one needs to check the con-
crete test CTf def= ∀x ∈ Z : f(x) ∈ nZ, where nZ denotes the set of integers that
are multiples of n ∈ Z. Our goal is to devise an abstract interpretation-based method
which allows to perform the test of opaqueness for f on a suitable abstract domain. We
are therefore interested in abstract domains which are able to represent precisely the
property of being a multiple of n, i.e., abstract domains A ∈ uco(℘(Z)) such that there
exists some an ∈ A such that γA(an) = nZ. Let f � : A → A be an abstract function
that approximates f on A. Then, the abstract test on A is defined as follows:

AT f�

A
def= ∀x ∈ Z : f �(αA({x})) ≤A an

Definition 1. AT f�

A is sound (complete) when AT f�

A ⇒CT f (AT f�

A ⇔CT f ).

When AT f�

A is complete we also say that the attack 〈A, f �〉 (or simply A when f � is
clear from the context) breaks the opaque predicate ∀x ∈ Z : n|f(x).
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Theorem 1. Consider A such that there exists an ∈ A: γA(an) = nZ, then:

(1) If f � is sound approximation of f on the singletons, that is ∀x ∈ Z, αA({f(x)})
≤A f �(αA({x})), then AT f�

A is sound.
(2) If f � is complete approximation of f on the singletons, that is ∀x ∈ Z, αA({f(x)})

= f �(αA({x})), then AT f�

A is complete.

Thus, the key point is to design a suitable abstract domain A together with a complete
approximation f � of f .

Abstract Functions. We already observed in Section 4 that a function f : Z → Z

is decomposed into elementary functions, i.e. assembly instructions within some ba-
sic block. Following the same approach, let us assume that the function f can be ex-
pressed as a composition of elementary functions, namely f = λx.h(g1(x, ..., x), ..., gk

(x, ..., x)) where h : Z
k → Z and gi : Z

ni → Z. More in general, each gi can be further
decomposed into elementary functions. For example, f(x) = x2 + x is decomposed as
h(g1(x), g2(x)) where h(x, y) = x+y, g1(x) = x2 and g2(x) = x. Let us consider the
pointwise extensions of the elementary functions, which are still denoted, with a slight
abuse of notation, by h : ℘(Z)k → ℘(Z) and gi : ℘(Z)ni → ℘(Z), and let us denote
their composition by F

def= λX.h(g1(X, ..., X), ..., gk(X, ..., X)) : ℘(Z) → ℘(Z). For
example, for the above decomposition f(x) = x2 + x = h(g1(x), g2(x)), we have that
F : ℘(Z) → ℘(Z) is as follows: F (X) = {y2 + z | y, z ∈ X}. Observe that F does
not coincide with the pointwise extension fp of f , e.g., F ({1, 2}) = {2, 3, 5, 6} while
fp({1, 2}) = {2, 6}. Let us also notice that F on singletons coincides with f , namely
for any x ∈ Z, F ({x}) = f(x). Thus, the concrete test CTf can be equivalently for-
mulated as ∀x ∈ Z : F ({x}) ⊆ nZ.

Let A ∈ uco(℘(Z)) be an abstract domain such that there exists some an ∈ A
with γA(an) = nZ. The attacker A approximates the computation of the function F :
℘(Z) → ℘(Z) in a step by step fashion, meaning that A approximates every elementary
function composing F . Thus, the abstract function F � : A → A is defined as the
composition of the best correct approximations hA and gA

i on A of the elementary
functions, namely:

F �(a) def= αA(h(γA(αA(g1(γA(a), ..., γA(a)))), ..., γA(αA(gk(γA(a), ..., γA(a))))))

When the abstract test AT F �

A for F � on A holds, the attacker modeled by the abstract
domain A classifies the predicate n|f(x) as opaque. It turns out that F � is a correct ap-
proximation of F on A, namely αA ◦F �A F � ◦αA, and this guarantees the soundness
of the abstract test AT F �

A .

Corollary 1. AT F �

A is sound.

Consider for example the opaque predicate ∀x ∈ Z : 3|(x3−x), and the abstract domain
A3+ in the figure below. A3+ precisely represents the property of being a multiple of 3,
i.e. 3Z, and its negation, i.e. Z � 3Z.
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Z

��� ���
�

3Z Z � 3Z

∅

��� ����

In this case, f(x) = x3 − x = h(g1(x), g2(x)) where h(x, y) = x − y, g1(x) = x3

and g2(x) = x, so that F : ℘(Z) → ℘(Z) is given by F (X) = {y3 − z | y, z ∈ X}.
Hence, it turns out that F �(3Z) = 3Z while F �(Z � 3Z) = Z. Here, the abstract
test AT F �

A3+
is sound but not complete, because F � : A3+ → A3+ is a sound but not

complete approximation of f on the singletons. In fact, for {2} ∈ ℘(Z), it turns out that
αA3+({f(2)}) = αA3+({6}) = 3Z while F �(αA3+({2})) = F �(Z � 3Z) = Z. Thus
the abstract test AT F �

A3+
, i.e., ∀x ∈ Z : F �(αA3+({x})) ≤ 3Z does not hold even if

CT f does. Thus, in general AT F �

A is sound but not complete, meaning that the attacker

〈A, F �〉 is not able to break the opaque predicate ∀x ∈ Z : n|f(x).
Recall that abstract domain completeness is preserved by function composition [12],

i.e. if an abstract domain is complete for f and g then A is complete for f ◦ g as well.
As a consequence, if an abstract domain A is complete for the elementary functions
h and gi that decompose F then A is complete also for their composition F . It turns
out that completeness of an abstract domain A w.r.t. the elementary functions compos-
ing F guarantees that the attacker A is able to break the opaque predicate ∀x ∈ Z :
n|f(x).

Corollary 2. If A is complete for the elementary functions h and gi composing F then
〈A, F �〉 breaks the opaque predicate ∀x ∈ Z : n|f(x).

Let us consider the opaque predicate ∀x ∈ Z : 3|(x3 − x) and the abstract domain
3-arity represented in the following figure.

Z

���� �����

3Z 1 + 3Z 2 + 3Z

∅

���� 					

The function f(x) = x3 − x is decomposed as h(g1(x), g2(x)) where h(x, y) = x− y,
g1(x) = x3 and g2(x) = x. It turns out that the abstract domain 3-arity is complete
for the pointwise extensions of h, g1 and g2, i.e. λ〈X, Y 〉.X − Y , λX.X3 and λX.X ,
and therefore, by Corollary 2, the attacker 3-arity is able to break the opaque predicate
∀x ∈ Z : 3|(x3 + x).

Lemma 1. 3-arity is complete for λX.X3, λX.X and λ〈X, Y 〉.X − Y .

Experimental results. A prototype of the above described attack based on the abstract
domain Parity has been implemented using LOCO [17], a x86 tool for obfuscation/de-
obfuscation transformations which is able to insert opaque predicates. This experimen-
tal evaluation has been conducted on the aforementioned 1.6 GHz Pentium M-based
system. Each program of the SPECint2000 benchmark suite is obfuscated by inserting
the following true opaque predicates: ∀x ∈ Z : 2|(x2 + x) and ∀x ∈ Z : 2|(x + x).
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It turns out that Parity is complete for addition, square and identity function, thus by
Corollary 2, the abstract domain Parity models an attacker that is able to break these
opaque predicates. In the obfuscating transformation each basic block of the input as-
sembly program is split into two basic blocks. Then, LOCO checks whether the opaque
predicate can be inserted between these two basic blocks: a liveness analysis is used
here to ensure that no dependency is broken and that the obfuscated program is function-
ally equivalent to the original one. In particular, liveness analysis checks that the regis-
ters and the conditional flags affected by the opaque predicate are not live in the program
point where the opaque predicate will be inserted. Moreover, our tool also checks by
a standard constant propagation whether the registers associated to the opaque predi-
cate are constant or not. If constant propagation detects that these are constant then the
opaque predicate can be trivially broken and therefore is not inserted. Although liveness
analysis and constant propagation are noticeably time-consuming, they are nevertheless
necessary both to certificate functional equivalence between original and obfuscated
program and to guarantee that the opaque predicate cannot be trivially broken by con-
stant propagation. The algorithm used to detect opaque predicates is analogous to the
brute force attack algorithm described in Section 4. Fig. 1 describes the basic block, by
pseudo-code, which implements the opaque predicate ∀x ∈ Z : 2|(x2 + x).

Fig. 1. Breaking ∀x ∈ Z, 2|(x2 + x)

Let us describe how our de-obfuscation algorithm works. For each conditional jump
j, jump if zero in the figure, we consider the instruction i which immediately
precedes j, cond=z%2 in the figure. The instructions j and i are abstractly executed
on each value of the abstract domain (i.e. the attack). In the considered case of the
attack modeled by Parity, both non-trivial values even and odd are given as input to
cond=z%2. When z evaluates to even , cond evaluates to 0 and therefore the true
path is followed. On the other hand, when z is evaluated to odd, cond evaluates to 1
and the false path is taken. Thus, i does not give rise to an opaque predicate, so that we
need to consider the instruction z=x+y which immediately precedes i. The instruction
z=x+y is binary and therefore we need to consider all the values in Parity×Parity. This
process is iterated until an opaque predicate is detected or the end of the basic block
is reached. In our case, the opaque predicate is detected when the algorithm analyses
the instruction y=x*x because whether x is evaluated to even or odd the true path
is taken. The number of computational steps needed for breaking one single opaque
predicate by an attack based on an abstract domain A is n2 ∗ dr, where n is the number
of instructions composing the opaque predicate, r is the number of registers used by
the opaque predicate and d is the number of abstract values in A. The reduction of the
computational effort of the abstract interpretation-based attack with respect to the brute
force attack can therefore be huge since the abstract domain can encode a very coarse
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approximation. In the considered example, the number of steps for detecting ∀x ∈ Z :
2|x + x through the abstract domain Parity results to be 32 ∗ 22. In fact, the opaque
predicate consists of 3 instructions, uses 2 registers and Parity has 2 non-trivial abstract
values. In Table 2 we show the results of the obfuscation/de-obfuscation process on the
SPECint2000 benchmark suite. The first and second columns report respectively the
number of opaque predicates inserted in each benchmark and the time needed for such
obfuscation, while the third column lists the time needed to de-obfuscate. It turns out
that the Parity-based de-obfuscation process is able to detect all the inserted opaque
predicates. Let us recall that the brute force attack took 8.83 seconds to detect only one
occurrence of the opaque predicate ∀x ∈ Z : 2|x+x in a 16-bit environment, while the
abstract interpretation-based de-obfuscation attack took 8.13 seconds to de-obfuscate
66176 opaque predicates in a 32-bit environment.

Table 2. Timings of obfuscation and de-obfuscation

6 Designing Domains for Breaking Opaque Predicates

This section shows how the completeness domain refinements can be used to derive
models of attackers which are able to break a given opaque predicate. Let us consider
the opaque predicate ∀x ∈ Z : 3|(x3 − x) and the attacker A3

def= {Z, 3Z}, that is the
minimal abstract domain which represents precisely the property of being a multiple
of 3. Recall that the function f(x) = x3 − x is decomposed as h(g1(x), g2(x)) where
h(x, y) = x−y, g1(x) = x3 and g2(x) = x. It turns out that A3 is not able to break the
above opaque predicate, since F � : A3 → A3 is not a complete approximation of f on
singletons. In fact, consider {2} ∈ ℘(Z), it turns out that αA3({f(2)}) = αA3({6}) =
3Z while F �(αA3({2})) = F �(Z) = Z. Corollary 2 does apply here because A3 is
complete for g1 and g2 but not for h. However, as recalled in Section 2, completeness
can be obtained by a domain refinement. We thus systematically transform A3 by the
completeness domain refinement w.r.t. h = λ〈X, Y 〉.X − Y . We obtain the abstract
domain Rh(A3) that models an attacker which is able to break ∀x ∈ Z : 3|(x3 −
x). As recalled in Section 2, the application of the completeness domain refinement
adds to A3Z the maximal inverse images under h of all its elements until a fixpoint is
reached, that is for any fixed X ⊆ Z and a belonging to the current abstract domain, we
iteratively add the following sets of integers: max{Z ⊆ Z | Z − X ⊆ a}. It is not hard
to verify that the following elements provide exactly the minimal amount information
to add to A3 in order to make it complete for h.
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– if X = {0} then: max{Z ⊆ Z | Z − X ⊆ 3Z} = 3Z

– if X = {1} then: max{Z ⊆ Z | Z − X ⊆ 3Z} = 1 + 3Z

– if X = {2} then: max{Z ⊆ Z | Z − X ⊆ 3Z} = 2 + 3Z

Therefore, Rh(A3) = {Z, 3Z, 1+3Z, 2+3Z, ∅} = 3-arity . Let us notice that we were
able to systematically obtain the attacker 3-arity , which is able to break the opaque
predicate, through a completeness refinement of the minimal abstract domain A3.

It turns out that given n ∈ N, the abstract domain n-arity , in the figure below, is
complete for addition, difference and, for k ∈ N, k-power (i.e., λX.Xk). Therefore, by
Corollary 2, the attacker n-arity breaks the opaque predicates ∀x ∈ Z, n|f(x), where
f is a polynomial function. Observe that the abstract domain n-arity is an instance of
Granger’s domain of congruences [13].

Theorem 2. The attacker n-arity breaks all the opaque predicates of the following
form: ∀x ∈ Z : n|f(x), where f(x) is a polynomial function.

⊥

Z

nZ . . . (n − 1) + nZ2 + nZ1 + nZ

6.1 Breaking Opaque Predicates P (f(x))

Let us now consider the wider class P (f(x)) of opaque predicates where each predicate
has the following form: f(x) ⊆ P , with P ⊆ Z and f : Z → Z. It is possible to general-
ize the results of the previous sections, in particular Theorem 1, Corollary 1 and Corol-
lary 2, to opaque predicates in P (f(x)). This is simply done by replacing the property
nZ of being a multiple of n, with a general property P over integers. This allows us to
provide a formal methodology for designing abstract domains that model attackers able
to break opaque predicates in P (f(x)). Let ∀x ∈ Z : f(x) ⊆ P be an opaque predicate
and let us consider the minimal abstract domain AP that represents precisely the prop-
erty P , i.e., AP

def= {Z, P}. As above, we assume that the function f can be expressed as
a composition of elementary functions, namely f = λx.h(g1(x, ..., x), ..., gk(x, ..., x))
where h : Z

k → Z and gi : Z
ni → Z. Then, we compute the completeness do-

main refinement of AP w.r.t. the set of elementary functions composing f , namely
Rh,g1,...,gk

(AP ). It turns out that the refined domain is able to break the opaque predi-
cate ∀x ∈ Z : f(x) ⊆ P .

Theorem 3. The attacker modeled by the abstract domain Rh,g1,...,gk
(AP ) breaks the

opaque predicate ∀x ∈ Z : f(x) ⊆ P .

Thus, completeness domain refinements provide here a systematic methodology for
designing attackers that are able to break opaque predicates of the form: ∀x ∈ Z :
f(x) ⊆ P .

The previous result is independent from the choice of the concrete domain Z and can
be extended to a general domain of computation Dom.
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Corollary 3. Consider an opaque predicate ∀x ∈ Dom: f(x) ⊆ P , where f : Dom
→ Dom, f = h(g1(x, ..., x), ..., gk(x, ..., x)), and P ⊆ Dom. The abstract domain
Rh,g1,...,gk

({Dom,P}) is able to break opaque predicate.

7 Conclusion and Future Work

In this work we propose an abstract interpretation-based approach to detect opaque
predicates. It turns out that, considering opaque predicates of the form: ∀x ∈ Z :
n|f(x), the ability of an attacker, i.e., an abstract domain, to break opaque predicates
can be formalized as a completeness problem w.r.t. function f . Consequently complete-
ness domain refinement can be used to derive efficient attackers. In particular it turns
out that the abstract domain n-arity breaks the opaque predicate ∀x ∈ Z : n|f(x),
where n ranges over N and f is a polynomial function. This result is then generalized
to a wider class of opaque predicates of the form ∀x ∈ Z : f(x) ⊆ P , where the at-
tacker able to break the opaque predicate is obtained by completeness refinement of the
abstract domain AP = {Z, P}.

The insertion of an opaque predicate code creates a path that is never taken. Notice
that when the false path of a true opaque predicate contains another opaque predicate
the degree of obfuscation of the transformation increases. The two opaque predicates
interact with each other, and this dependence adds more confusion in the understanding
of the original control flow of the program. Thus the insertion of dependent opaque
predicates can be seen as a novel obfuscation technique.

Fig. 2. Dependent opaque predicate

Consider for example the true opaque predicates P1 : ∀x ∈ Z : 2|(x2 + x) and
P2 : ∀x ∈ Z : 3|(x3 − x) that interact with each other as depicted in the above figure.
On the left-hand side we have the opaque predicate P1, while on the right-hand side
we have P2, expressed in terms of elementary functions, i.e., assembly instructions.
Observe that the false branch of predicate P1 enters the second basic block of predicate
P2 and vice versa. The attacker modeled by the abstract domain Parity should be able
to break opaque predicate P1. The problem is that Parity cannot break P2 and therefore
we have an incoming edge on the second basic block of opaque predicate P1 coming
from P2. This gives the idea of why we are no longer able to break opaque predicate P1
with the Parity domain. Therefore when there are opaque predicates that interact with
each other the attacker needs to take into account these dependencies. Our guess is that
a suitable attacker to handle this situation could probably be obtained by combining the
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abstract domains breaking the individual opaque predicates. The main problem is that
one opaque predicate which is not breakable by our technique could protect breakable
opaque predicates by interacting with these opaque predicates.

It would be also interesting to consider abstract domains that are more complex than
the ones considered so far. Program properties that can be studied only on more complex
domains could lead to the design of novel opaque predicates. Since these properties
derive from a more complex analysis the corresponding opaque predicates should be
more resilient to attacks. Consider for example the polyhedral abstract domain [8] and
the abstract domain of octagons [21] for discovering properties of numerical variables.
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