
On the Effectiveness of Source Code Transformations for
Binary Obfuscation

Matias Madou Bertrand Anckaert Bruno De Bus Koen De Bosschere
Department of Electronics and Information Systems

Ghent University
St.-Pietersnieuwstraat 41
B-9000 Ghent, Belgium.

{mmadou,banckaer,bdebus,kdb}@elis.ugent.be

Jan Cappaert Bart Preneel
Department of Electrical Engineering

Katholieke Universiteit of Leuven
Kasteelpark Arenberg 10

B-3001 Heverlee, Belgium.
{jan.cappaert,bart.preneel}@esat.kuleuven.be

Abstract

Obfuscation is gaining momentum as a protection mech-
anism for the intellectual property contained within or en-
capsulated by software. Usually, one of the following three
directions is followed: source code obfuscation is achieved
through source code transformations, Java bytecode obfus-
cation through transformations on the bytecode, and binary
obfuscation through binary rewriting. In this paper, we
study the effectiveness of source code transformations for
binary obfuscation. The transformations applied by several
existing source code obfuscators are empirically shown to
have no impact on the stripped binary after compilation.
Subsequently, we study which source code transformations
are robust enough to percolate through the compiler into
the binary.

Keywords: Source and Binary Obfuscation, Software
Security, Intellectual Property, Program Transformations

1 Introduction

While copyright laws cover most of the intellectual prop-
erty contained within or encapsulated by software, eco-
nomic realities teach that these laws are often hard to en-
force. As a result, many software providers revert to tech-
nical means of protection, instead of legal means.

Many different technical security solutions have been
devised, some of which provide a high level of security, at
the cost of limited applicability. For example, when neither
network bandwidth nor latency is an issue, software can be
run from a remote server. That way, the user will not gain

physical access to the program. If the end user can be con-
vinced to use tamper resistant hardware, the program can
be encrypted before shipping and decrypted and executed
entirely in hardware.

In many situations however, we cannot change the soft-
ware distribution model or user hardware. Obfuscation
can provide a certain level of protection in these situations.
While a competent attacker will always be able to reverse
engineer a program, given enough time and perseverance,
obfuscation could make the attack economically inviable,
i.e. the cost of the attack could outweigh the benefits of a
successful attack.

Depending on the format in which software will be
distributed, different types of obfuscation can be applied.
When the source code of a program needs to be distributed,
source code obfuscation can be applied. Likewise, byte-
code obfuscation can protect software which will be dis-
tributed as Java bytecode, and binary obfuscation can pro-
tect software which is distributed as native code.

Typically, there is a one-to-one mapping between the
type of transformations that are applied and the type of ob-
fuscation that is pursued: source code obfuscation is at-
tained through source code transformations, bytecode ob-
fuscation through transformations on the bytecode and bi-
nary obfuscation through binary rewriting. This paper stud-
ies how well binary obfuscation can be achieved through
source code transformations.

Source code transformations for binary obfuscation have
a number of potential advantages over binary transforma-
tions: (i) source code contains more high-level informa-
tion about the software, (ii) source code is architecture-
independent, and (iii) code added for obfuscation purposes
may blend in better with the existing code. Local binary

transformations can often be detected because the charac-
teristics of the modified code differ from the characteristics
of the unmodified code.

On the other hand, source code transformations have
a number of potential disadvantages compared to binary
transformations: (i) the transformations may be undone by
the compiler, (ii) low-level information, such as addresses,
is not yet available, and (iii) usually, there is no global view
of the entire program, as source code transformations will
typically be performed per compilation unit.

Bytecode transformations could be situated in between
source code and binary transformations. As bytecode con-
tains the low-level instructions for the virtual machine and
still contains virtually all source level information, this fa-
cilitates the transformations. On the other hand, the degree
of obfuscation that can be applied to Java bytecode is lim-
ited, as it should still be able to pass the bytecode verifier.

Given the potential advantages of source code transfor-
mations, it is interesting to study how useful source code
transformations are for binary obfuscation and to study how
the potential disadvantages can be avoided. Furthermore,
applying source code transformations for binary obfusca-
tion might be able to exploit the advantage of having source
level information with less restrictions on the degree of ob-
fuscation that can be present in the low-level representation.

The remainder of this paper is structured as follows:
Section 2 discusses related work and positions this research
within the domain of software obfuscation. Next, two
frameworks for source-to-source transformation are dis-
cussed in Section 3. These frameworks are used in Sec-
tion 4 to study which types of transformations survive a
pass through a compiler and stripping tool. Finally, conclu-
sions and future work are drawn in Section 5.

2 Related Work

The goal of software obfuscation is to prevent an attacker
from understanding the software to which he has access.
This attacker could have access to the software in different
forms. He could, e.g., have access to the source code, to a
native executable or to Java bytecode. In this section, we
will divide the field of software obfuscation into categories
according to the form from which an attacker is assumed to
depart to obtain program understanding.

2.1 Source Code Obfuscation

Source code obfuscation consists of any technique that is
targeted at making the source code less intelligible. In order
to be useful, the resulting source code should still compile
and result in a functionally equivalent program.

Source code obfuscation can thus take place at any point
in the software development cycle before the source code is
abandoned for a more low-level representation. Program-
ming software in a bad way is a possible way of making
more complicated source code. In practice, this way of
writing software is rarely an option. Therefore, obfusca-
tion is best added automatically at a point where human
interaction is no longer required. For source code, the only

remaining option is therefore to automatically transform the
programmer’s source code into more complex, functionally
equivalent source code.

A notable exception, where obfuscation is not added au-
tomatically, is the International Obfuscated C Code Con-
test1. In this contest, laboriously hand-crafted programs
compete for the title of the most obfuscated program. While
this has lead to dazzling, visually very appealing, illustra-
tions of how far source code obfuscation could go, its labor-
intensiveness makes it inviable for large projects where
maintainability and time-to-market are important factors.

Not surprisingly, the process of obfuscating source code
has been automated through source code transformations
which guarantee functional equivalence and make the code
more complex for a human observer. The commonly ap-
plied transformations include: (i) replacing symbol names
with non-meaningful ones, (ii) substitution of constant val-
ues with arithmetic expressions, (iii) removing source code
formatting, and (iv) exploiting the preprocessor.

Tools such as the SD Obfuscator for C(GCC3) by SD2,
the source code obfuscator CXX-Obfus by Stunnix3 and the
freeware C/C++ Sourcecode Obfuscator (COBF) by Bern-
hard Baier4 all apply one or more of these transformations.
The output of these tools shows that program understanding
through simple visual inspection is indeed seriously ham-
pered. An example is given in Figure 1.

In Section 4.1, we study the effect of these transforma-
tions on a compiled, stripped binary. As will be discussed,
these transformations do not change the resulting binary.
This may very well have been a deliberate design decision,
as it also guarantees that performance will not be adversely
affected by these transformations.

2.2 Binary Obfuscation

Binary obfuscation aims at making the binary representa-
tion of software more difficult to understand. Stripped,
native code is inherently harder to understand than source
code, as binary code is more low-level and contains fewer
abstractions than source code. However, it is still not im-
possible and a number of techniques have been devised to
further complicate the understanding of binary code.

Binary obfuscation can be obtained through binary
rewriting [22]. The difficulties in binary rewriting can how-
ever seriously limit the transformations that can safely be
applied to the binary. Therefore, most applications of bi-
nary rewriting use extra information (relocation informa-
tion, boundaries between code and data, . . .) to guarantee
correctness [12, 14].

Binary rewriting has a number of advantages over source
code rewriting: transformations which require information
about the exact addresses or the assembly instructions can-
not be applied on source code as this information is not yet
available. For example, the use of code addresses as data or

1http://www.ioccc.org/
2http://www.semanticdesigns.com/Products/Obfuscators/CObfuscator.html
3http://www.stunnix.com/
4http://home.arcor.de/bernhard.baier/cobf/

int my_output()
{

int count;
for (count = 0; count < MAX_INDEX; ++count)
printf("Hello %d!\n", count);

}
(a)

#define a int
#define b printf
#define c for
a l47(){a l118;c(l118=0;l118<0x664+196-0x71e;++l118)
b("\x48\x65\x6c\x6c\x6f\x20\x25\x64\x21\n",l118);}

(b)

Figure 1. Example source code before (a) and after (b) obfuscation

overlapping instructions cannot be specified in source code.
Furthermore, as this is the final step in the software devel-
opment cycle, no subsequent step will cancel out the effect
of the applied transformations. A final advantage that bi-
nary rewriting may have over source code rewriting is that it
is typically performed on the entire program, while source
code rewriting is usually done per compilation unit.

Binary rewriting is however limited by the absence of
high-level information, such as type information, which
complicates the transformation of datastructures. Further-
more, the location of the changed or added code is some-
times easily detected as this code might blend in poorly
with the original code [1]. For example, code added after
register assignment often needs to free registers to perform
computations and this could lead to unusual register spills.
If the transformations would be applied on the source code,
register assignment would be performed in the same way
as for the original code. Likewise, the original code could
contain compiler idioms which are not or no longer present
in the added or changed code. An additional disadvantage
of binary rewriting is its architecture-dependence.

When the transformation can be specified at the source
code level, a number of these disadvantages can be over-
come. For as far as we are aware, the only publication
which deals with source code transformations is due to
Wang et al. [20]. She has suggested a number of control
flattening transformations, which are applied on the source
code and the effect of these transformations is evaluated at
the binary level.

Note that we were unable to evaluate the source code
transformations applied by the commercial software pro-
tection tool by Cloakware5, because we did not receive
a version for research purposes. According to the web-
site, the Cloakware Transcoder is a command line utility
that transforms source code into mathematically modified
source. When compiled with commercial, off-the-shelf com-
pilers, transcoded source results in object code that is func-

5http://www.cloakware.com/

tionally identical to the original but resistant to reverse en-
gineering and tampering attacks.

2.3 Java Bytecode Obfuscation

Java bytecode obfuscation is, in a way, similar to binary ob-
fuscation: the binary representation for the Java Virtual Ma-
chine is obfuscated. On the other hand, it can be compared
to source code obfuscation, because it contains virtually all
source code information. Because bytecode contains that
much information, it is very susceptible to reverse engineer-
ing. As a result, a considerable amount of research has been
done on the obfuscation of Java bytecode [4, 9, 11, 13].

The same holds for the Common Intermediate Language
(CIL) of the .NET Framework, but because most of the
work on the obfuscation of CIL is proprietary, e.g., Dot-
fuscator by PreEmptive Solutions6, we will focus on the
obfuscation of Java bytecode.

Java bytecode contains extensive information, mainly to
enable the bytecode verifier to verify the reliability of the
code. This verifier needs to check if the code (i) does not
forge pointers, (ii) does not violate access restrictions, and
(iii) accesses objects as what they are. To this end the byte-
code verifier traverses the bytecodes, constructs the type
state information, and verifies the types of the parameters
to all the bytecode instructions. This enables safe execution
of untrusted bytecode. Clearly, to ensure this, a number of
restrictions are imposed on what bytecode may do. For ex-
ample, (i) once code has been loaded into the Java inter-
preter, it cannot modify itself, (ii) there can be no operand
stack overflows or underflows, (iii) the types of the parame-
ters of all bytecode instructions should always be verifiably
correct, and (iv) object field accesses have to be legal. None
of these restrictions applies to binary code.

On the one hand, this limits the extent to which Java
bytecode can be obfuscated: the bytecode verifier should
still be able to prove the reliability of the code no matter
how high the degree of obfuscation. Likewise, because this

6http://www.preemptive.com/products/dotfuscator/

type of code still contains a lot of high-level information,
more obfuscating transformations can be applied than on
binary code. For example, type information is available
and thus transformations on data are in this case easier ap-
plicable than on a binary program.

3 Source Code Transformations

Transformations on source code can be performed on dif-
ferent intermediate representations. Similarly to the many
different intermediate representations used by compilers to
transform source code into binary code, different represen-
tations of the source code can be used to transform source
code into source code. Different representations are typi-
cally useful in different contexts. Unfortunately, none of
them is ideal for all applications, otherwise we would no-
tice a convergence towards this optimal representation.

While many different intermediate representations have
been devised for the use in compilers, they cannot all be
used for source-to-source transformations, as some of them
are too low-level to be easily transformed back to source
code. For this paper, we have looked at a number of dif-
ferent source-to-source transformation frameworks, based
on different intermediate representations, of which we have
selected two for deeper inspection7. These frameworks are
TXL (Turing eXtender Language) [7] and SUIF (Stanford
University Internal Format) [10]. We will now continue
with a discussion of these two frameworks.

3.1 TXL

TXL [8] is a programming language and rapid prototyp-
ing system specifically designed for implementing source
transformation tasks. It was originally designed in 1985
and has since been used in a wide range of practical applica-
tions. It is developed and maintained by the Software Tech-
nology Laboratory of Queen’s University, Canada. The
TXL paradigm consists of parsing the input text into a parse
tree according to a grammar, transforming the parse tree to
create an output parse tree, and unparsing this new parse
tree to create the output text. A parse tree is a high-level
representation, very close to the source code and can thus
easily be transformed back into source code.

In TXL, transformations are specified using a set of
transformation rules. Each transformation rule specifies a
target type to be transformed, a pattern, and a replacement.
When a pattern is matched, variable names are bound so
that they can be used in the replacement to copy their bound
instance into the result. The pattern and replacement are
specified as augmented source text. As such, the specifica-
tion of transformations is very intuitive.

3.2 SUIF

The SUIF compiler system is a free infrastructure designed
to support collaborative research in optimizing and paral-
lelizing compilers. It was originally designed in 1991 and

7Note that we were unable to take commercial program transformation
systems such as DMS [3] into account.

a first public version was released in 1994. It was devel-
oped by the Stanford Compiler Group of Stanford Univer-
sity, California, USA. Unfortunately, the last release dates
back to 1999 and SUIF is no longer maintained.

The kernel of SUIF, a.o., defines the intermediate repre-
sentation and provides functions to access and manipulate
the intermediate representation. The intermediate represen-
tation is a mixed-level representation. Besides low-level
operations, it includes three high-level constructs: loops,
conditional statements, and array accesses. The symbol ta-
bles in a SUIF program hold detailed symbol and type in-
formation. This additional information allows us to trans-
late the intermediate representation back into legal C code.

Functions are provided to access and manipulate the in-
termediate representation, which hide the low-level imple-
mentation details. However, the user is still very aware of
the internal structure of the intermediate representation and
needs to specify the transformations in a very procedural
way. As such, it is less intuitive than TXL. On the other
hand, we found it to be more powerful, as we will discuss
in Section 4.

4 Source Code Transformations for
Binary Obfuscation

In this section, we will study the impact of source code
transformations on the stripped binary obtained after a pass
through the compiler and a stripping tool. Stripping dis-
cards symbols from object files and is a first form of obfus-
cation which should always be applied when distributing
a binary program if a minimal level of protection against
program understanding is required.

We will follow the classification of obfuscating trans-
formations introduced by Collberg et al. [6]. This classi-
fication is based upon the transformation target and distin-
guishes between layout obfuscation, data obfuscation, and
control obfuscation. We do not consider preventive ob-
fuscation here, as it is typically applied on a lower level
than source code. While most of the transformations in
the aforementioned paper are described in a generic way,
they have been designed and implemented against the back-
ground of Java bytecode. To the best of our knowledge, un-
less stated otherwise, this is the first time they have been
applied on source code for binary obfuscation.

4.1 Layout Obfuscation

In the context of C code obfuscation, we could exploit the
preprocessor to make the code unreadable and we could
scramble identifiers, change formatting and remove com-
ments. As can be seen in Section 2.1, these types of ob-
fuscation are already commonly used for source code ob-
fuscation. However, not a single of these layout obfusca-
tion transformations survives the compilation process. The
resulting stripped binaries are identical to those where no
layout obfuscation was applied. This could be expected,
as preprocessing is already performed automatically, com-
ments and formatting are not part of the binary and strip-
ping already scrambles identifiers. We would like to state

clearly that layout obfuscation is useful when delivering IP
in source form to customers, for some classes of customers,
and not for others.

Remark that changing library function names will end
up in the final program. The drawback is that all programs
calling a library function should also be changed and this
makes the use of such obfuscation transformation very lim-
ited. As layout obfuscations does (in general) not survive
the compiler process, we focused on the remaining obfus-
cation transformations: control flow obfuscations and data
obfuscations.

4.2 Control Flow Obfuscation

Control flow obfuscation consists of applying transforma-
tions in order to hide the control flow of a program. Well-
known examples of control flow transformations are con-
trol flow flattening [19] and the insertion of opaque predi-
cates [2, 5]. For this paper, we inserted opaque predicates,
flattened a program through a control flow flattening algo-
rithm, and turned a reducible control flow graph into a non-
reducible one.

Opaque Predicates An opaque predicate is a predicate
whose evaluation is known at obfuscation time, but whose
evaluation is hard to deduce afterwards [5]. They were first
described by Collberg et al. [6]. Opaque predicates have
since been used for obfuscation [6], watermarking [21],
tamper-proofing [18], and to protect mobile agents [16]. A
true opaque predicates PT always evaluates to true, while a
false opaque predicates PF always evaluates respectively
to false. Many true and false opaque predicates can be
found in literature; for example the true opaque predicate
∀x ∈ Z

+ : 9|10x + 3.4x+2 + 5 and the false opaque predi-
cate ∀x ∈ Z : 7 6 |x2 +1 [17].

Clearly, trivial opaque predicates, such as 4 ≡ 0
(mod 2) will not survive the optimization step. This could
be remedied by assigning the constants to new global vari-
ables. Then, as the compiler cannot assume that they are
constant, they will survive the optimization phase of the
compiler. For more complicated opaque predicates, it is
difficult to know which property has been used and there-
fore, they are hard to remove.

The insertion of a non-trivial opaque predicate based
on variables requires type information of the variables, be-
cause the programmer has to make sure overflow will not
occur during the computation of the opaque predicate. In
theory, 3|x(x2 −1) is always true, but in practice this com-
putation will be executed in, e.g., a 32-bit environment
which is vulnerable to overflow. When the type of x is
known, an appropriate domain could be taken to make sure
no overflow will occur. For example, in a 32-bit environ-
ment the opaque predicate ∀x ∈ [0,1024] : 3|x(x2 −1) will
never result in overflow. SUIF can easily determine the type
of the variable used, while in TXL, this is more difficult.

Control Flow Flattening Control flow flattening is in-
troduced in the PhD dissertation of Wang [19] and aims to

obscure the control flow of a program by “flattening” the
control flow graph. As can be seen in Figure 2, the default
algorithm transforms a function into a functionally equiva-
lent one where all direct control flow edges between code
are changed into control flow edges towards a single redi-
rection block.

Figure 2. Basic control flow flattening

We implemented a form of control flow flattening in
both TXL and SUIF. For this paper, we flattened nested
if-then-else clauses, as illustrated in Figure 3. The main
goal is to group the different conditions in a single value
and to replace the nested if-then-else clauses by a single
switch based upon this value. On the left hand side, two
conditions have to be evaluated to know the control flow
of the program. In the transformed control flow graph we
force the attacker to analyze all three conditions. In partic-
ular, a new variable will be introduced and each bit of that
variable contains the true/false state of each test condition
of the if-then-else statement to be flattened. For the exam-
ple in Figure 3, the test of the switch will be (a&&1) <<

2|(b&&1) << 1|(c&&1). Note that this means that both b
and c will always be evaluated, regardless of the outcome
of a. Therefore, we need to assure that b and c can be eval-
uated without side effects or errors. The last bit of the test
condition will be condition c, while the second last one is
the condition of b and the third last one is the state of con-
dition a. Assuming that condition a is true and condition b
is true, code block A will be executed in the original pro-
gram. In the obfuscated program, the variable in the switch
will evaluate to 6 or 7, depending on b. Both numbers will
transfer control to code block A and the program is func-
tionally equivalent to the original one.

Figure 3. Flattening an if-then-else tree

Plenty of similar control flow flattening algorithms could
be easily implemented into SUIF.

Irreducible Programs Most well-written programs are
reducible which is an advantage for analysis, especially

identifying loops. Our obfuscator contains a transformation
to make a reducible program non-reducible by duplicating a
loop, and adding goto’s to switch between both loops. This
is illustrated in Figure 4. The transformation survives the
compilation step, as long as P? is executable both ways. P?

could be a random check because it is not important which
direction will be taken, as both ways will execute the same
code block A. Both paths could now be obfuscated dif-
ferently and as a compiler can not optimize paths that are
functional equivalent but syntactical different this obfusca-
tion transformation will last in the final program.

Figure 4. Making a program irreducible

4.3 Data Obfuscation

Understanding a simple algorithm such as sorting elements
of an array is easy. Applying a simple data transformation
on such algorithm can make it hard for someone to under-
stand the code. We will apply a data transformations on the
following piece of code:

for(i=0;i<10;i++)
for(j=i;j<10;j++)

if(a[j]>a[i])
swap(a[i],a[j]);

Aggregation The first data transformation we would like
to discuss is restructuring arrays. Arrays can be split,
merged, folded or flattened [6]. We will merge two or more
arrays into one:

Figure 5. Array transformations

Applying this transformation to our example will force
the attacker to evaluate details of the algorithm if he wants
to understand it. The test and swap lines will be trans-
formed into the next piece of code, assuming that a is the
array on the odd indices of the interleaved array.

if(a[2j+1]>a[2i+1])
swap(a[2j+1],a[2i+1]);

Finding similar transformations for arrays is not hard
and implementing them into the right tool neither. As it
is already difficult in TXL to get type information, it makes
this data transformation impossible to apply in a safe way.

E.g., modifying a datastructure, requires the location of ev-
ery instance of that data structure. On a parse tree this
is non-trivial as the same name might be used in differ-
ent scopes for different datastructures. While the parse
tree does contain sufficient information to deduce the type
of datastructure when, it is a more straightforward to per-
form this on an intermediate representation which contains
a symbol table, such as SUIF.

Ordering An obfuscation transformation which reorders
arrays is neither difficult in SUIF. A symbol table is at our
disposal so each pointer to the array is known, which makes
finding all accesses to the array straight forward. The in-
dices used to access the array can be changed by a function
mapping the original position i into its new position of the
reordered array. The test and swap lines of our example
will be changed into the next piece of code which will no
longer order the array as in the original program. Although,
all indices will be changed in the program, so the resulting
code stays functionally equivalent with the original one.

if(a[f(i)]>a[f(j)])
swap(a[f(i)],a[f(j)]);

Storage and encoding Data flow optimizations such as
common subexpression elimination and constant propaga-
tion are able to undo very trivial data obfuscations. For ex-
ample when splitting constant 10 into subexpression 2+8,
constant propagation will undo this transformation.

Non-trivial data obfuscations such as these shown above
always survive the compilation process because these trans-
formations change the context of the program. While a
compiler only has optimizing transformations at his dis-
posal, he is unable to undo such context changing data
transformations. On the other hand is variable splitting
a deoptimization transformation and applying such trans-
formation should take into account the optimizations per-
formed by the compiler.

We had a look at binary obfuscators [15, 12] and found
out that no non-trivial data transformations were imple-
mented. Only trivial data transformations such as constant
splitting are implemented at binary level and without fur-
ther obfuscation, an optimization run afterwards could re-
move these transformations. It is not astonishing that bi-
nary obfuscators only contain trivial data transformations
as the types of datastructures are lost during compilation.
Passing extra information to do such transformations at a
binary level is feasible, but intensive and rather artificial if
these transformations can be a source code level and af-
terwards survive the compiler optimizations. As the SUIF
framework provides all the necessary information to prop-
erly apply data transformations, we encourage to perform
data obfuscation at a source code level if the final goal is
binary obfuscation.

4.4 TXL versus SUIF

The first advantage of TXL is the fact that the representa-
tion of the source code in a parse tree is close to the source

code itself. Also, the learning process of doing transforma-
tions on a parse tree benefits from the similarity between
the original code and the internal representation of the code
into TXL. But as this internal representation is strongly re-
lated to the source code, more complicated transformations
are hard. Especially transformations that require type infor-
mation are difficult to implement. Propagating information
such as type information is necessary to safely apply ob-
fuscation transformations but this approach resembles more
the intermediate representation of SUIF. Identifying control
flow in TXL has the same problems as trying to deduce type
information. It is difficult to extract control flow informa-
tion out of the parse tree and deriving it from the tree leads
to an intermediate representation. The last disadvantage we
discovered, is the fact that each transformation has to be
applied on the entire file. It is only possible to prevent a
transformation of going into an infinite recursive loop, but
is hard to apply the transformation on some matches. Ap-
plying the transformation on some matches leads to varia-
tion and this could also confuse the attacker.

A medium-level intermediate representation such as the
SUIF representation consists of type information available
through a symbol table. This is a major advantage when
applying data transformations. As SUIF is some sort of
compiler, control flow can easily be followed through the
program. A disadvantage is the fact that the intermediate
representation is farther from the source code than the rep-
resentation of the code in TXL.

5 Conclusion and Future Work

In this paper, we studied the effectiveness of source code
transformations for binary obfuscation. We first gave a
brief overview of the existing obfuscators and which code
they obfuscate. Then, we implemented several obfusca-
tion transformations into two source code transformation
frameworks (TXL and SUIF) and we evaluated whether
these transformations produced an obfuscated program af-
ter compilation. We illustrated that it is possible to apply
source code obfuscation when binary code obfuscation is
desired. We also concluded that SUIF is a powerful frame-
work to implement data obfuscation transformations, while
TXL is a simpler framework, straight forward to learn and
suitable for basic, global obfuscation transformations.

Future Work As the SUIF framework provides all the
necessary information to properly apply data transforma-
tions and data transformations are useful for binary code
obfuscation, the future work is exploring all possibilities of
data obfuscation at source code level to achieve binary code
obfuscation. In literature, interesting data transformations
are available, but only few are implemented in an obfusca-
tion tool because data transformations require a extensive
knowledge about the program and most of the obfuscators
are unable to provide the necessary information to apply the
obfuscation transformation.

Acknowledgments

The authors would like to thank the Institute for the Pro-
motion of Innovation by Science and Technology in Flan-
ders (IWT) and the Fund for Scientific Research Flanders
(FWO) for their financial support. This research is also par-
tially supported by Ghent University, the HiPEAC network,
and the by the Concerted Research Action (GOA) Mefisto
2000/06 of the Flemish Goverment.

References
[1] B. Anckaert, B. De Sutter, D. Chanet, and K. De Bosschere.

Steganography for executables and code transformation signatures.
In Proc. 7th International Conference on Information Security and
Cryptology, pages 425–439, 2005.

[2] G. Arboit. A method for watermarking java programs via opaque
predicates. In Proc. of ICECR-5, October 2002.

[3] I. Baxter, C. Pidgeon, and M. Medhlich. DMS: Program Transfor-
mations for Practical Scalable Software Evolution. In Proc. Inter-
national Conference of Software Engineering, May 2004.

[4] C. Collberg, G. Myles, and A. Huntwork. Sandmark - a tool for
software protection research. In IEEE Security and Privacy, vol-
ume 1, July/August 2003.

[5] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap,
resilient, and stealthy opaque constructs. In Principles of Program-
ming Languages, POPL’98.

[6] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfus-
cating transformations. Technical Report 148, The University of
Auckland, New Zealand, 1997.

[7] J. Cordy. Txl: A rapid prototyping system for programming lan-
guage dialects. Computer Languages, 16(1):97–107, January 1991.

[8] J. Cordy. Source transformations, analysis and generation of txl. In
Proc. of ACM SIGPLAN 2006 Workshop on Partial Evaluation and
Program Manipulation (PEPM ’06), 2006.

[9] L. Ertaul and S. Venkatesh. Jhide-a tool kit for code obfuscation. In
Proc. of IASTED International Confrerence on Software Engineer-
ing and Applications (SEA 2004), 2004.

[10] S. C. Group. The SUIF Library: A set of core routines for manipu-
lating SUIF data structures, Stanford University, 1999.

[11] S. V. Levent Ertaul. Novel obfuscation algorithms for software se-
curity. In Proc. International Conference on Software Engineering
Research and Practice (SERP05).

[12] C. Linn and S. Debray. Obfuscation of executable code to improve
resistance to static disassembly. In Proc. 10th. ACM Conference on
Computer and Communications Security (CCS03).

[13] D. Low. Java control flow obfuscation. Master’s thesis, University
of Auckland, New Zealand, October 1998.

[14] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Sutter, and
K. De Bosschere. Software protection through dynamic code mu-
tation. In The 6th International Workshop on Information Security
Applications (WISA), 2005.

[15] M. Madou, L. Van Put, and K. De Bosschere. Loco: An in-
teractive code (de)obfuscation tool. In Proc. of ACM SIGPLAN
2006 Workshop on Partial Evaluation and Program Manipulation
(PEPM ’06), 2006.

[16] A. Majumdar and C. Thomborson. Securing mobile agents control
flow using opaque predicates. In Knowledge-Based Intelligent In-
formation and Engineering Systems: 9th International Conference,
KES, 2005.

[17] G. Myles and C. Collberg. Software watermarking via opaque pred-
icates: Implementation, analysis, and attacks. In ICECR-7, 2004.

[18] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and
Y. Zhang. Experience with software watermarking. In 16th An-
nual Computer Security Applications Conference (ACSAC00).

[19] C. Wang. A Security Architecture for Survivability Mechanisms.
PhD thesis, Department of CS, University of Virginia, 2000.

[20] C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of software-
based survivability mechanisms. In International Conference of
Dependable Systems and Networks, Goteborg, Sweden, July 2001.

[21] K. S. Wilson and J. D. Sattler. Software control flow watermarking,
Aug 2004. Baker and Botts, US2005/0055312 A1.

[22] G. Wroblewski. General method of program code obfuscation. In
Proc. International Conference on Software Engineering Research
and Practice (SERP 02), pages 153–159, Las Vegas, USA.

