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Summary: Thispaper dealswith thegener alization of the symmetrical componentstechniqueto
periodic non-sinusoidal three-phase cur rentsand voltages. Thegener alization of the concept of
symmetrical componentsisdiscussed together with their derivationin both time- and frequency
domain. Themain conclusion of the paper isthat an orthogonal decomposition of periodic non-
sinusoidal three-phase signalsinto positive sequence, negative sequence and zer o-sequence
componentsisnot possible, but that an additional current and voltage component should be

introduced whichiscalled theresidual component.

1. INTRODUCTION

The use of symmetrical components is a well known
classical technique for the analysis of symmetrical three-
phase power systems with unbalanced sinusoidal currents
and/or voltages. The decomposition of sinusoidal three-
phase signals into positive sequence, negative sequence and
zero-sequence components is used to simplify the analysis
of a three-phase electrical power system. It makes it possible
to reduce the analysis of a balanced linear three-phase system
to the analysis of three decoupled single-phase systems.
Linearity is required to be able to use superposition of the
currents produced by the three sequence components of the
voltages; the network should be balanced so that a
symmetrical set of voltages (positive sequence, negative
sequence, or zero-sequence) yields a symmetrical set of
currents and the three-phase network can be analysed as a
single-phase network.

Due to the presence of nonlinear loads, such as power
electronic equipment, the currents and/or voltages in power
systems are not purely sinusoidal. The question that arises
is whether a technique, similar to the symmetrical components
technique, can be developed for three-phase power systems
with non-sinusoidal periodic currents and voltages. This
question is dealt with in the present paper. First the
generalization of the definition of positive sequence, negative
sequence, and zero-sequence quantities is discussed. Then
the decomposition of a periodic three-phase signal into such
components is analysed. It is shown that a straightforward
general extension of the symmetrical components method to
the periodic non-sinusoidal situation is not possible, but that
an additional current and voltage component should be
introduced which is called the residual component.

2. PROBLEM STATEMENT

Consider a periodic three-phase signal (a current or a
voltage, in a three-phase system with or without neutral
conductor). To avoid some specific special cases, we assume
that there is no d.c. component. The phases are denoted by

the subscripts a, b, and c¢. The period is denoted by 7,
the frequency by f= 1/7, and the angular frequency by
w=2nxf=2m/T. This signal can be decomposed in the
following way: in each phase the periodic signal is
decomposed in a Fourier series of sinusoidal functions (in
the three phases) of frequencies 4/7 with k any positive
integer. Considering the signal components at each frequency
separately, the corresponding (sinusoidal) components in
the three phases can be decomposed in the positive
sequence, the negative sequence, and the zero-sequence
components, as in classical theory for sinusoidal currents
and voltages. These components can then be dealt with by
techniques for single-phase circuits if the network is balanced
with respect to the three phases. The orthogonality of the
components enables one to calculate powers, rms values,
etc, for the components separately and adding them
afterwards in the appropriate way:.

The question however arises whether a simpler single-
phase decomposition can be obtained without needing a
decomposition with respect to the frequency components.
In other words, can the concept of symmetrical components
be directly applied to the three-phase periodic non-sinusoidal
voltages and currents? A generalization of the concept of
symmetrical components would be as follows, respectively
for the positive sequence, the negative sequence and the
zero-sequence components:

1. acomponent which is such that the current (or voltage)
in phase b is the same as in phase a, but lagging over
773, and the current (or voltage) in phase c is the same as
in a, but lagging over 27/3;

2. acomponent which is such that the current (or voltage)
in phase b is the same as in phase a, but leading over
773, and the current (or voltage) in phase c is the same as
in @, but leading over 277/3;

3. acomponent which is such that the currents (or voltages)
in phase b and in phase ¢ are the same as in a.

These three components can respectively be seen as the
generalized positive sequence, generalized negative sequence,
and generalized zero-sequence components.

In addition to the symmetry properies discussed above, a
requirement of orthogonality between the components




should be introduced since this is interesting (in fact
necessary) for the simplification of the analysis as is known
from the sinusoidal case. One of the essential features of the
symmetrical components decomposition of sinusoidal three-
phase time functions is indeed the orthogonality of the
components. Explicitly two three-phase periodic time vectors
Sf(¢) and g() are orthogonal if the internal product, defined as:

]
frg=2[(fa®5a®+ fhO%BO + fOgO)d (1)
0

vanishes. This orthogonality property implies that the active
power and the square of the rms value can be computed as
the sum of the corresponding values for the sequence
components. This is a very interesting feature which
considerably simplifies the analysis of three-phase systems.

In the Appendix an algorithm is derived to compute these
generalized sequence components. It is shown that some
part of the general periodic three-phase signal cannot be
taken care of by the above framework, and that therefore an
additional component is to be considered. Also we will notice
some other differences with the classical case of sinusoidal
three-phase quantities.

3. DERIVATION OF THE GENERALIZED
COMPONENTS

The derivation of the generalized components and the
underlying mathematical concepts are discussed in the
Appendix. It is shown that the components can be derived in
arigorous mathematical way by finding currents (or voltages)
in the three phases which have the property of a positive
sequence, a negative sequence or a zero-sequence
component, which are orthogonal to the other sequence
components and are as close as possible (in the least squares
sense) to the given three-phase currents (or voltages).
Denoting the current (or voltage) in phase a by f, (¥), the
current (or voltage) in phase b by f, (¢), and the current (or
voltage) in phase ¢ by . (f), the mathematical analysis leads
to the following expressions for the decomposition of the
three-phase quantities:

1. the components with zero-sequence symmetry:

foa(t) fo (1)
1:ob ® = fo ®) )
foc ()] [ fo(®)

with the generalized zero-sequence component:

fo ) = 3(fa(t)+ fo(t) + (1)) 3)

2. the components with positive sequence symmetry:

fpa(t) fo (t)
folt) |=| fot-T/3) @
foo()| | fpt—2T/3)

with the generalized positive sequence component:

fat)— f, @)+ fy(t+T/3)— f,(t+T/3)
fp<t>=é[ ’ ] )

+ f(t+2T /3) - f,(t+2T /3)

3. the components with negative sequence symmetry:

fra (1) fa (1)
fo® |=| f,t+T/3) (6)
frc() f,(t+2T/3)

with the generalized negative sequence component:

fn(t)=§[fa(t)_fO(t)+fb(t‘T/3)—fo(t—T/s)] )

+f (t-2T/3)— f,(t-2T /3

Since the expression of the generalized zero-sequence
component is exactly the same as for the sinusoidal case, the
adjective ‘generalized’ could be dropped. It is clear from the
above that there is a high degree of similarity between the
expressions obtained here and the classical expressions used
in the sinusoidal situation. An essential difference is that it is
necessary to subtract the zero-sequence component from
the phase quantities to calculate the positive sequence and
the negative sequence components. This is not necessary
for the sinusoidal case where the same result is obtained
with or without subtracting the zero-sequence component
first.

Expressions (5) and (7), of f,, and f, respectively, can easily
be understood from algebraic considerations. Consider, in
fact, the positive sequence component: it is obtained by
shifting the second waveform ahead by 1/3 of period T and
the third by 2/3 of period T, then computing the mean value
of the three superimposed variables. It is a known property
that the mean value of a number of quantities has the minimum
rms distance from this set of quantities. Thus the variables
Jpa> Jpbs Jpe are the positive sequence components which are
closest to f,, f, f. . Similarly for the negative sequence
components. A more comprehensive demonstration, in the
linear space domain, is given in the Appendix.

4. ALTERNATIVE EXPRESSIONS

The analysis in the previous section leads to a slightly
different approach to the decomposition. First the phase
quantities are decomposed in zero-sequence or homopolar
quantities, which are the same in the three phases, and
heteropolar quantities (denoted by a tilde) which are such
that the sum over the three phases vanishes for all times.
Explicitly:

.07 | fo®+ fa®
fo®) |=| fo®)+ fy (1)

8
fe(t) f (1) + (1) ®

10

Power Quality and Utilization, Journal e Vol. XllI, No 1, 2007



The heteropolar component is the difference between the
phase quantity and the zero-sequence component; it is clear
that the sum of the heteropolar quantities in the three phases
at any time vanishes. The positive and the negative sequence
components can then be expressed in a somewhat simpler
way using the heteropolar quantities:

fo® =3(fa®+ e+ TIY+ T +2T/3) O

and:
fa) = 3(fa®+ fot-T/ 3+ ft-2T/3) (10)

These expressions are formally the same as in the
sinusoidal case.

5. THE RESIDUAL COMPONENTS

An important question is whether the zero-sequence, the
positive sequence and the negative sequence components
of the phase quantities add up to the phase quantity. The
analysis of the Appendix leads to the conclusion that, in
contrast with the sinusoidal situation, this is not the case.
Therefore it is necessary to define a residual component which
is the remaining part; its physical meaning is discussed in Section
9. The explicit expression of the residual component is:

fra®=1(fa)+ fLt+T/3+ +21/3) (D
fp®=3(f®+ HE+T/Y+ f+2T/3) (12)

fo® =1(f+ o+ T/9+ fyt+21/9) (13)

This expression shows that the residual components
constitute periodic functions with period T/3. The residual
components vanish if and only if:

fL(t)+ fu(t+T/3)+ f (t+2T/3) =
= T, (t)+ f (t+T/3)+ f (t+2T /3=
= .0+ f+T/3+ [ (t+2T/3=  (14)

= fa®+ fp (O + ()

hold for all time in the period. It is readily checked that the

residual component vanishes for sinusoidal time functions.
Note finally that all symmetrical components are easily

derived in the time domain on an instantaneous basis.

6. DECOMPOSITION INTO GENERALIZED
SYMMETRICAL COMPONENTS

The periodic non-sinusoidal three-phase quantities can
be exactly decomposed into the generalized zero-sequence

components, the generalized positive sequence components,
the generalized negative sequence components and the
residual components.

f,(t) fo®+ fo (M) + fo (1) + fra ()
fot) [=| fo(t-T/3)+f,(t+T/3)+ (1) + (1) as)
fo®] | fo(t-2T/3)+ f,(t+2T/3)+ f(t)+ (1)

This is called the decomposition into generalized
symmetrical components. The important feature is that, except
for the residual components, the analysis of a blanced three-
phase system can be reduced to the analysis of a single-
phase system.

The essential differences with respect to the well known
sinusoidal case are
— the existence of the residual components,

— the fact that the zero-sequence components should be
subtracted for the computation of the positive and
negative sequence components

Even if the sum of the three-phase quantities is identically
zero (as is the case for line-to-line voltages or for the currents
in a three-wire three-phase system), such that the zero-
sequence component is identically zero, the three-phase
currents and/or voltages cannot necessarily be represented
by generalized positive and negative sequence components,
with the symmetry properties set forth in Section 3. The
residual component is necessary.

7. ORTHOGONALITY OF THE COMPONENTS

As pointed out in Section 3, the orthogonality of the
components obtained for the symmetrical components in the
sinusoidal case is a very interesting property. The
decomposition of the periodic three-phase quantities into
the generalized zero-sequence components, the generalized
positive sequence components, the generalized negative
sequence components and the residual components, is a
decomposition into mutually orthogonal components, as
follows from the analysis in the Appendix.

This orthogonality property implies:

— The active power corresponding to a three-phase
periodic non-sinusoidal voltage and a three-phase
periodic non-sinusoidal current is the sum of the active
powers corresponding to the zero-sequence components
of current and voltage, the generalized positive sequence
components of current and voltage, the generalized
negative sequence components of current and voltage,
and the residual components of current and voltage.

— The rms value of a three-phase periodic sinusoidal
quantity can be computed from the rms values of the
generalized symmetrical components by means of the
expression

17 =t <[t 44l +10° (19
where f,,, f,, f, and f, denote the three-phase rms quantities
corresponding to the generalized symmetrical and the residual
components.

11



It also follows from the analysis of the Appendix that even
stronger properties hold than the orthogonality property with
respect to the internal product defined in Section 3.

— The dot product, as defined in the Appendix, of the
generalized zero-sequence component and any of the
other components (heteropolar, generalized positive
sequence, generalized negative sequence, residual) is
zero, which is a strong form of orthogonality, much
stronger than the orthogonality corresponding to a zero
internal product.

— The generalized dot product, as defined in the Appendix,
of any of the pairs of components corresponding to the
generalized positive sequence components, the
generalized negative sequence components, or the
residual components, is zero. This is a weaker form of
orthogonality than the one corresponding to a zero dot
product, but still a much stronger form than the one
corresponding to a zero internal product.

These stronger orthogonality properties imply features
with respect to the instantaneous powers and the
instantaneous rms values, similar to the features with respect
to the average powers and rms values referred to above.

8. THE RELATION TO THE FOURIER SERIES
EXPANSION

It was pointed out in Section 3 that another approach to
the analysis of three-phase non-sinusoidal three-phase
quantities [1] is to decompose the periodic functions into
Fourier series and to use a decomposition into symmetrical
components for the sinusoidal three-phase time functions at
each harmonic frequency. It is interesting to see how this
decomposition relates to the decomposition into generalized
symmetrical components obtained in the previous sections.
The following results are readily obtained:

— Consider a harmonic of frequency order (34+1), withk a
nonnegative integer. The positive sequence, the negative
sequence and the zero-sequence components of the
corresponding sinusoidal three-phase function have
respectively the symmetry properties of the generalized
positive sequence, the generalized negative sequence
and the generalized zero-sequence components.

— Consider a harmonic of frequency order (34+2), with k a
nonnegative integer. The positive sequence, the negative
sequence and the zero-sequence components of the
corresponding sinusoidal three-phase function have
respectively the symmetry properties of the generalized
negative sequence, the generalized positive sequence
and the generalized zero-sequence components.

— Consider a harmonic of frequency order 3k, with & a
positive integer. The positive sequence and the negative
sequence components of the corresponding sinusoidal
three-phase function do not have the symmetry
properties of any of the generalized positive sequence,
the generalized negative sequence and the generalized
zero-sequence components. On the other hand the zero-
sequence components (it is because of these terms that
the generalized zero-sequence component has to be
subtracted for computing the generalized positive and

negative sequence components) of the corresponding
sinusoidal three-phase function have the symmetry
properties of the generalized zero-sequence components.

This shows that the generalized positive sequence,
negative sequence, and zero-sequence components are not
sufficient to describe all periodic time three-phase functions.
A component should be added, the residual component,
which corresponds in the Fourier expansion approach to the
positive and negative sequence components of the harmonics
of orders which are multiples of 3. Note that the residual
components completely correspond to the harmonics of
orders which are a multiple of 3 if the sum of the three-phase
quantities are zero, as is the case for line-to-line voltages or
for the currents in a three-wire three-phase system.

The mutual orthogonality of the generalized positive
sequence, the generalized negative sequence, the zero
sequence, and the residual components, in the sense of a
zero internal product, can obviously also be derived from the
mutual orthogonality of the symmetrical components in the
sinusoidal case and from the mutual orthogonality of
sinusoidal functions of different harmonic orders.

It is interesting to notice that for a harmonic of an order &
which is not a multiple of 3, the negative and positive
sequence symmetrical components for this sinusoidal
function of period 7/k is different from the generalized
symmetrical components for this periodic function with
fundamental period 7.

9. RELATION TO DEPENBROCK’S ANALYSIS

In a contribution to the previous workshop [3] M.
Depenbrock proposes an algorithm to derive generalized
symmetrical components. For the case of zero-sum three-
phase quantities he claims that three-phase distorted
quantities can be decomposed into generalized positive and
negative sequence components. Examples below show the
necessity of the residual components. We consider two
simple examples:

1. A three-phase voltage with a positive sequence
fundamental and a positive sequence third harmonic:

v, (t) = V42 sin(27150t) + /2 sin (27150t)

W (t) =Viv2sin(2n —%”)+v3ﬁsin(2n15 -2?”)

v, (t) = V;+/2 sin (2750t +%”) +V5+/2 sin( 27150t +2?”)

2. A three-phase voltage with a positive sequence
fundamental and a negative sequence third harmonic:

v, (t) = V42 Sin(27150t) + V3+/2 sin (27150t)

Vo (t) =Vi2 sin(2n —%”)+v3&sin(2n150t+%”)

Ve (t) = V,/2 sin (250t +%”) +V,/2 sin (27150t —2?”)
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In the first example the analysis of the present paper yields
the fundamental component as the generalized positive
sequence component, the third harmonic as the residual
component, and no negative sequence or zero-sequence
components. The same conclusion is obtained for the second
example.

For both examples Depenbrock’s theory yields the complete
three-phase signal as the generalized positive sequence
component, and no negative sequence or zero-sequence
component. However it is clear that the three-phase signals
do not have positive sequence symmetry, since the voltages
in the phases b and ¢ cannot be obtained from the voltage in
phase a by lagging over respectively 7/3 and 2773.

10. FURTHER OBSERVATIONS

In the literature [2, 4] one often sees the statement that for
three-phase periodic distorted currents (or voltages) the
harmonics of order 1,4, 7, ... or in general (3k+1), correspond
to a positive sequence current, the harmonics of order 2, 5, 8,
... or in general (3k—1), correspond to a negative sequence
current, the harmonics of order 3, 6, 9, or in general 3k,
correspond to a zero-sequence current. The analysis of
Section 9 shows that this statement should be used carefully.
It is indeed only valid if the three-phase current (or voltage)
in phase b is the same as in phase a, but lagging over T/3,
and the current (or voltage) in phase ¢ is the same as in phase
a, but lagging over 2T/3. If this symmetry property does not
hold, then the statement is not valid.

11. FINAL REMARKS

Summarizing the following conclusions follow from the
analysis in this paper:

— The three-phase current (or voltage) cannot always be
derived from generalized positive sequence, generalized
negative sequence and generalized zero-sequence
components. A residual component may be required.

— To compute the generalized positive and negative
sequence components, the zero-sequence components
should first be subtracted from the phase quantities, in
contrast with the sinusoidal case where this is not
necessary.

— In the sinusoidal case the residual component is absent
and the other components reduce to the classical
symmetrical components.

— The generalized positive sequence, negative sequence,
and zero-sequence components have complete phase
symmetry (up to displacement over a third of a period).
This implies that the three-phase analysis can be reduced
to a single-phase analysis for a balanced three-phase
power system.

— The residual component does not have the same
symmetry, and the corresponding three-phase analysis
cannot be reduced to a single-phase analysis. It
corresponds to a periodic time function in each of the
three phases with a period which is one third of the period
of the currents and voltages; this also may simplify the
analysis.

APPENDIX

Derivation of the sequence components

To derive the explicit expressions for the generalized
symmetrical components we first formulate the classical
symmetrical components in a linear algebraic setting.

A general three-phase sinusoidal quantity (current or
voltage) can be represented either as a three-dimensional
vector of phasors:

(A.1)

where the entries are complex numbers, or as a three-
dimensional vector of sinusoidal time functions:

Fa\/icos(wHaa)
f (t) =| F,v/2 cos(wt+ay)

(A2)
FC\/E cos(wt+a;)

The decomposition into symmetrical components is
equivalent to writing the phasor vector as a sum of three
vectors, respectively from the linear subspaces defined by
vectors of the forms:

fo fp fn
fo=|fo| fo=| foe /23| fo=| f,¥° | (A3)
f, fpej27r/3 f g i27/3

and similarly for the corresponding vectors of sinusoidal time
functions.

The symmetrical components are derived by expressing
that the sum of three component vectors, one from each
subspace, should be equal to the given three-dimensional
vector. Another approach is to express that the component
vector from each subspace is the projection of the given
vector onto that subspace. Equivalently, we can obtain the
components by considering the component vector in the
subspace as the best approximation of the given vector in
the least squares sense.

To generalize this concept to periodic three-phase
quantities, we consider a three-dimensional vector in the linear
space:

fa (t)
f)=| ()
fe(t)

where f,(?), f;(¢) and f,(¢) are periodic functions with period 7.
The question is to write this vector as the sum of components
from the linear subspaces s,, s, and s, of the vectors,
respectively of the forms:

(A.4)
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o0
fo(t-T13) |, fo(0) =
fo(t—2T13)

fo (®)
fot) =] fo()
fo (®)

fa(t)
f(t+T/3
f(t+2T13)

- = (AS)

where f,(7),/,(?) and f,(?) are periodic functions with period 7.

The following questions are essential for the analysis of
the possibility and the unicity of the decomposition:

— are the three subspaces mutually independent?
— are the three subspaces mutually orthogonal?
— do the three subspaces span the whole linear space?

The answer to these questions is affirmative in the
sinusoidal case. This is the fundamental reason why
symmetrical components are so useful. In the general periodic
case the situation is not so favorable.

The three subspaces are indeed not independent (and
hence not mutually orthogonal). This can be seen by
considering the example of the following vector which lies in
each of the three subspaces:

AJ2 cos(3mt)
f (t) =| AJ2 cos(3wt)

(A.6)
AJ2 cos (3wt)

It can also be shown that the subspaces do not span the
total linear space of periodic vectors. Below is an example of
aperiodic vector which cannot be composed by vectors from
the three subspaces:

AJ2 cos(3mt)
f(t) =| AV2cos(Bwt—27/3)

(A.7)
AJ2 cos(3wt — 4/ 3)

The required orthogonality corresponds to the condition that
the internal product, defined by (1), is zero. For the further
analysis we define two other products for two three-
dimensional periodic vectors f{f) and g(¢):

— The dot product is defined as:

f(t)eg(t) = fa(t)ga(t) + fb(t)gb -+ fc (t)gc t) (A8)

— The generalized dot product is defined as:

f(t)eg(t)+ f(t+T/3)egt+T/3

oqft) = 1
f(t)g(t) 3{ +f(t+2T/3)eg(t+2T/3)

} (A9)

The problem that the three linear subspaces s, s, and s,
are not independent and hence not orthogonal, is taken care
of by restricting the subspaces defined by the vectors f,(t)
and f,(¢) to the vectors of which the sum of the components
is zero f,(f). Mathematically speaking the subspaces of the
vectors f,() and by the vectors f,,(¢) are restricted to their
subspaces orthogonal to the subspace of the vectors f,(7)
(or to their projections on the orthogonal complement). In
this way we obtain three subspaces linear subspaces s, s,

p
and s,” which are linearly independent. Moreover the

subspaces are mutually orthogonal in the sense of the
internal product defined by (1). Even more, the dot product
of a vector in s, and a vector in s, or s, is zero. Also the
generalized dot product of a vector in s/ and a vector in s,
vanishes.

Since the subspaces s,, s, and s, do not span the complete
space, the generalized symmetrical components cannot be
obtained, as in the sinusoidal situation, by expressing equality
of the periodic vector and the sum of the three generalized
symmetrical components. They should therefore be derived by
computing the projection on the subspaces or by considering
the best approximation in the subspaces. For example, the
generalized positive sequence component is obtained by
expressing that f,(?) is in s, and that:

p

T T
[ —t)e —fydt=[[d - 1)t (A10)
0 0

is as small as possible. This can be formulated as an
optimization problem that can be solved by means of the
Lagrange multiplier technique. In this way the expressions
shown in Section 4 are readily obtained.
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