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Abstract (max 300 words) 

Girdling can be used as a valuable research tool to improve our 

understanding of the integrated water (xylem) and sugar (phloem) transport. 

Therefore, girdling was applied in two ways on young oak trees (Quercus robur L.): 

manipulation of the sugar flow by mechanically removing a half band of bark (half-

girdling) and a complete band of bark at two different heights (double girdling). The 

double girdling effects on both the water and sugar transport were investigated by 

analysing stem diameter variations, photosynthesis, xylem sap flow and 

concentrations of carbohydrates. The double-girdled oak trees could be divided in 

three stem zones: (1) the upper stem zone (U) still receiving new assimilates from the 

leaves, (2) the lowest stem zone (L) receiving only stored sugars from the roots, and 

(3) the middle stem zone (M) completely isolated from crown and roots. As 

downward carbon transport was interrupted by girdling, the stem expansion and 

carbohydrate content increased in U, indicating that U became the major sink 

instead of the roots. In contrast to U, stem expansion and carbohydrate content 

decreased in the two lower stem zones (M and L). Furthermore, a decrease in 

photosynthesis and sap flow rate was observed, which could be attributed to an 

indirect girdling effect. In the half-girdled trees, a labelling with radio-active 
11

C was 

applied to visualise the sugar flow in small stem segments. The images of the labelled 

sugar flows showed that the translocation in the transport phloem was sectorial in 

both treated and untreated trees. However, half-girdling demonstrated that this 

sectorial behaviour was plastic and that lateral sugar translocation in the transport 

phloem was enhanced after wounding. In conclusion, different ways of girdling were 

successfully applied to test and confirm several in literature proposed hypotheses. 

 

INTRODUCTION 

 The carbon status of a tree not only depends on the photosynthesis and the 

respiration rate, but also on the carbon translocation (carbon flow towards the growing 

organs). The translocation mechanism is often described by the well known Münch theory 

(Münch, 1930). According to this theory, the carbon flow in the phloem is induced by a 

gradient in turgor pressure which is caused by a difference in carbohydrate concentration 

between the regions of phloem loading and unloading (Münch, 1930). The preservation of 

this gradient relies on the balance between the loading and unloading processes (Ortega et 

al., 1988; Gamalei, 2002). The loading processes occur at the sources where 

carbohydrates are assimilated or produced from breakdown of stored products; whereas 

the unloading processes occur at the sinks where carbohydrates are diluted, stored or used 

for growth and respiration (Pritchard, 2007).  
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The main objective of the present study was to investigate the effects of a 

modified tree carbon status on the water and carbon transport in young oak trees. 

Therefore, we altered the carbon status of young oak trees (Quercus robur L.) by double 

and half-girdling of the stem. During the double girdling experiment carbon-related 

processes, such as stem diameter variations, photosynthesis and carbohydrate 

concentrations, were continuously measured together with sap flow. During the half-

girdling experiment, the sugar flow was radio-actively labelled with 
11

C to investigate 

some properties of the labelled flow. Hence, this paper presents the eco-physiological 

responses induced by double and half-girdling related to both the water and the carbon 

transport in the tree. 

 

MATERIAL AND METHODS 

Plant material and experimental setup 

Two-year-old oak trees (Quercus robur L.) previously grown in an outdoor tree 

nursery were replanted in 50-l containers before spring. The trees were watered every two 

to three days to assure the potting mixture remained well humidified. As a first treatment, 

a double girdling experiment was performed during the growing season (DOY 244-284). 

On 10 September (DOY 253), two bands of bark were carefully detached from the xylem 

at a height of approximately 25 cm and 15 cm and it was checked that no residual phloem 

tissue was left after removal. Whereas double girdling is assumed not to hamper the 

upward water flow in the xylem tissue, it produces three distinguished horizontal zones 

with respect to downward phloem flow (Daudet et al., 2005). The upper stem zone (U) is 

positioned above the upper-girdled-zone and can still receive carbohydrates from the 

sources (i.e. the leaves). The middle stem zone (M) is on the other hand completely 

isolated from upward sources and downward sinks. As such, it can only use pre-existing 

local sugar reserves which are located in the bark and the xylem ray cells. The lower stem 

zone (L) is positioned below the lower-girdled-zone and may benefit from an upward 

sugar supply from the roots. Two trees were placed in a growth room: one tree was not 

double girdled and served as control tree. The growth room allowed control of the 

radiation level and the air temperature. Photosynthetic active radiation (PAR) was 

measured with a quantum sensor (Li-190S, Li-COR, Lincoln, NE, USA), mean PAR 

during the daytime period (from 06:00 h till 22:00 h) was around 134 µmol m
-2

 s
-1

. 

Relative humidity of the air (RH) was measured with a capacitive RH sensor (Hygroclip 

S, Rotronic, AG Schweiz, Bassersdorf, Switzerland). RH fluctuated freely depending on 

radiation, air temperature and transpiration rate of the trees. Air temperature (Tair) was 

measured with a copper-constantan thermocouple (Omega, Amstelveen, the Netherlands). 

Tair was set at 21°C during the light period and at 19°C during the dark period. In a 

second experiment, the strip of bark was removed along only half of the stem outer 

circumference, henceforth referred as the half-girdling experiment. Before, the tree was 

half girdled on 12 October, it was placed in a lab set-up which allows visualisation of 

radio-active isotopes. 
 

Ecophysiological measurements during the double girdling experiment:  

Stem diameter variations (∆D) were continuously measured with Linear Variable 

Displacement Transducers (DF5.0, Solartron Metrology, Leicester, England). Three 

LVDTs were mounted with custom-made stainless steel frames on the girdled tree.  

Net photosynthesis rate (Pn) was measured with an infrared gas analyser (IRGA-

225-MK3 CO2, ADC, Hertfordshire, England). A branch bag was installed on a second 
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order branch on both the girdled and control tree. Air from the growth room was blown 

into the branch bag at a rate of 4 l min
-1

. During each sample period, the incoming and 

outgoing air of the selected branch bag were continuously measured, but only the stable 

readings during the last three minutes were averaged and used for calculations. Zero 

measurements were carried out to detect possible drifts in the zero point reading of the 

IRGA. For each day, day-time net photosynthesis (Pn) and night-time dark respiration 

(Rd) were calculated as averages over fixed time periods (Pn from 07:30 h till 21:00 h; Rd 

from 22:30 h till 06:00 h).  

Sap flow rates (F) in the stem of the girdled and control tree were measured with 

sap flow sensors based on the heat balance principle (SGA10, Dynamax Inc., Houston, 

USA). F was calculated according to the approach of Steppe et al. (2005) to eliminate 

errors induced by heat storage effects.  

Stem samples were collected for sugar and starch analysis. At the day of girdling, 

the removed bands of bark were collected and used for sugar analysis. At the end of the 

experiment, four samples were collected: two samples in U, one in M and one in L. These 

samples, taken at the beginning and the end of the experiment, represented the conditions 

before and after girdling, respectively. All samples were immediately frozen in liquid 

nitrogen and were stored at -80 °C. Soluble sugars were extracted from the ground bark 

samples with 80 % ethanol at 45 °C, followed by centrifugation at 5000 g for 10 min. 

Glucose, fructose and sucrose were analyzed using high pH anion-exchange 

chromatography with pulsed amperometric detection (Dionex; CarboPac MA1 column 

with companion guard column; eluent: 50 mM NaOH, 22 °C). The remaining ethanol 

insoluble material was washed twice with ethanol 80 % and the residual pellet was treated 

with HCl 1M for 2 hours at 95 °C to achieve starch hydrolysis. Starch was determined 

spectrophotometrically at 340 nm by the enzymatic reduction of NADP
+
 (UV-VIS, 

Biotek Uvikon XL). From each sample, three repetitions were performed. The total 

amount of soluble sugar was calculated as the sum of fructose, glucose and sucrose.  

All signals from online sensors were logged at 10 s intervals and 5 min means 

were stored using a data logger (DL2, Solartron Metrology, Leicester, England), except 

for the IRGA measurements for which 1 min means were stored. 
 

Data collection and analysis during the half-girdling experiment 

PlanTIS (Forschungszentrum Jülich, Germany) is a high-resolution PET scanner 

which allows the in vivo visualization of the positron emitter 
11

C in plants by creating two 

(2D) or three (3D) dimensional images (Jahnke et al., 2009). Its detectors, frontend 

electronics and data acquisition architecture are based on the ClearPET
TM

 system (Streun 

et al., 2006). The detectors are arranged in a horizontal plane to allow the plants to be 

measured in their natural upright position. Two groups of four detector modules stand 

face-to-face and rotate around the field-of-view (FOV). More details about this PET 

system can be found in Beer et al. (2010). The oak tree was placed in the PET system one 

day before the measurements to achieve acclimatisation of the tree. The FOV focused on 

an 11-cm-long section of the main stem. Pulse labelling of 
11

C was achieved by adding 
11

C labelled CO2-gas to assimilating leaves of a first order branch. The radionuclide 
11

C 

has a half life time of 20.4 min and the signal of the tracer was measured every 5 min for 

about three hours after labelling. Due to the fast decay of 
11

C, two branches could be 

labelled per day. 

The PET data were reconstructed and converted by specific image reconstruction-

tools to 3D-images that represent half-life corrected data (Beer et al., 2010). Based on the 
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position of three reference tubes, PET images of successive 
11

C runs could be compared 

in time. The reconstructed PET data was additionally converted by Mevislab (version 2.1) 

to non half-life corrected 
11

C tracer profiles, which mimic the output of ten virtual 

detectors along the measured stem segment with a thickness of approximately 1.1cm. The 

conversion is performed in a similar way as performed by Bühler et al. (2011): the spatial 

3D-data were integrated over two dimensions and over a certain width in the third 

dimension. This third dimension was roughly the gravitational axis along the transport 

pathway.  

Afterwards, the obtained 
11

C tracer profiles were analysed with the mechanistic 

model of Bühler et al. (2011). This tracer model (Bühler et al., 2011) was fitted to the 
11

C 

tracer profiles of the first five virtual detectors in order to obtain information about 

changes in the translocation pathway above the zone with bark manipulation. The 

estimated meaningful parameters of this model were the front velocity of the fasted 
11

C 

particles in the transport pathway [mm min
-1

] and the fractional loss in steadily fixed 

tracers along the transport conduit [% cm
-1

] (Bühler et al., 2011).  

In addition, the oak tree was placed in an MRI system (Forschungszentrum Jülich, 

Germany) to obtain water content images (De Schepper et al., 2012). A 1.5T MRI system 

was used consisting of a split-coil magnet (Magnex/Agilent, Oxford, UK) and a NMR 

imaging spectrometer (Varian/Agilent, Alto Palo, USA). Parallel magnetic field gradient-

inserts at a separation of 120 mm were used (plate diameter 40 cm, gradient strength up 

to 800 mT/m). In between these two inserts a part of the oak stem was placed. A small 

solenoid radio-frequency (RF) coil was wound around the stem prior to the 

measurements. This results in a small RF coil which yields a much higher signal to noise 

ratio with respect to a standard whole body RF coil. Images were acquired using 

(multiple) spin echoes. Echo times were minimised to 5.4 ms which reduces T2 effects, so 

that the images were a good approximation of water content. A slice thickness of 2.5 mm 

was used with a fixed in-plane resolution (pixel size) of 100 µm. Due to this fixed 

resolution, FOV varied between 18 and 20 mm.  
 

RESULTS 

Double girdling responses on ecophysiological processes 

As shown in Fig. 1, double girdling had a lasting effect on the stem growth (∆D) 

of the three stem zones delimited by double girdling (U, M, L). Before girdling, the daily 

growth rates of U, M and L were identical and almost constant. These three zones reacted 

almost immediately to the girdling event, but not in the same way. The girdled stem of 

zone U showed an excessive radial increase. In contrast to zone U, the stem diameters in 

zones M and L almost immediately stopped increasing after girdling. After a few weeks, 

even negative growth rates were noted at several times.  

Pn of the girdled tree decreased significantly a few days after girdling (Fig. 2A). 

Rd of the girdled tree was significantly higher after girdling compared to Rd before 

girdling (Fig. 2B). Rd reached a maximum at the same time Pn started to decrease, 

afterwards Rd again gradually decreased. Furthermore, F was affected in a similar way as 

Pn: F significantly decreased after girdling (Fig. 2C). Noteworthy is that Pn of the control 

tree also decreased significantly after approximately one week (Fig. 2A). This decrease in 

control Pn (-8%) was however smaller than the decrease in Pn of the girdled tree (-19%). 

Additionally, Pn of the control tree remained higher than that of the girdled tree after 

girdling, which was not the case in the period before girdling. This suggests that the 
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additional decrease in Pn of the girdled tree most probably was caused by girdling. Rd and 

F of the control tree (Fig. 2B,C) did not change.  

Double girdling clearly affected soluble sugars and starch content in the bark 

(Fig. 3). Just before girdling, soluble sugars and starch were equally distributed around 

the place of girdling, because no significant difference existed between both samples 

(sample a and b). The content of total soluble sugar after girdling (samples U, M and L) 

was significantly different from the content before girdling (Fig. 3A). The sucrose content 

was different for all stem zones after girdling: it increased in zone U and it decreased in 

zones L and M. Fructose and glucose content only changed significantly in U after 

girdling. The starch content significantly increased in zone U and decreased in zone M 

(Fig. 3B). In zone L, the starch content did not significantly change, but showed a 

tendency to increase. This slight increase in L could be attributed to the sprouting of new 

assimilating shoots that appeared at the stem base. Two samples were taken above the 

girdled band in zone U: the soluble carbohydrate content of Uwound increased in a similar 

way as the content in U (Fig. 3), while its starch content did not accumulate and reached a 

level similar to that of M.  
 

Half-girdling responses on labelled phloem flow positions 

When two different branches were labelled before half-girdling, a different flow 

position depending on the position of the labelled branch was observed in the stem cross-

section (Fig. 4). Fig. 4A illustrates schematic the labelled assimilate flow in the tree, 

while Fig. 4B shows images of the tracer flow. The angels between the nodes of the two 

labelled branches were around 90°. In addition, a two dimensional cross-section is 

overlaid on a MRI-water content image of a similar oak tree (Fig. 4C) to illustrate that the 

labelled tracer is located in the phloem region of the stem which is located in the white 

band of the MRI-image (De Schepper et al., 2012). Because PlantTIS detects γ-rays that 

are produced after collision of a positron with an electron, the detected region is only near 

the position of the positron emitting 
11

C. Therefore, the visualized 
11

C flow should be 

interpreted as a cloud around the actual radio-active 
11

C flow. Furthermore, the labelled 

carbon flow did not change its position in time before half-girdling (Fig. 5A). Fig. 5A 

compares the 
11

C flow of a non-girdled tree after five days and shows that its position 

remained the same.  

When the bark of the oak trees was manipulated, the labelled carbon flow in the 

region of this manipulation changed position compared to the position before 

manipulation. Fig. 5B shows the radio-active carbon flow of branche 1 in Fig. 4 before 

and after half-girdling. The 
11

C flow of branch 1 was positioned before manipulation in 

the stem zone were the bark afterwards was cut off during half-girdling. The grey flow in 

Fig. 6B represents 
11

C transport that is labelled before manipulation. During this 

measurement, the bark was manipulated resulting in the interruption of the imaged 
11

C 

flow (Fig. 5B) because the bark and the labelled carbons within it were removed during 

manipulation. The image of this 
11

C flow (Fig. 5B) illustrates that the 
11

C transport 

changed its position already one day after half-girdling.  

The 
11

C tracer profiles derived from these images were analysed to detect changes 

during three days after half-girdling. The mechanistic modelling approach extracted 

information of the 
11

C transport located in upper half of the 11-cm long stem segment, 

positioned above the half-girdle. These analyses revealed changes in time of the 

calibrated parameters values (Fig. 6). A change in transport velocity in both branch 1 and 

2 after manipulation was observed (Fig. 6A), whereas the loss only changed in branch 2 
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(Fig. 6B). The transport velocity before half-girdling was between 8 and 12 mm min
-1

. 

The labelled carbon flow of branch 1 (Fig. 6) was positioned within the zone of removed 

bark and it corresponds with the carbon flow of branch 1 depicted in Fig. 4B. The 
11

C 

flow of branch 2 (Fig. 6) was not located in the manipulated bark zone and corresponds to 

the flow of branch 2 shown in Fig. 4B. The time profiles of velocity indicate that carbon 

flow velocity of branch 1 decreased continuously after manipulation while the flow 

velocity of branch 2 increased temporarily (Fig. 6A). The carbon loss of labelled flow of 

branch 1 substantially increased shortly after girdling and then restored to normal values 

within two days (Fig. 6B). The loss of branch 2 seemed to be unaffected by the half-

girdling event. 
 

DISCUSSION 

Double girdling affects both the carbon and water status  

Double girdling completely blocks the downward phloem transport from the 

leaves to the roots, while the upward water flow from the roots to the leaves is maintained 

(Daudet et al., 2005; Johnsen et al., 2007). Accordingly, the carbon status of the trees was 

changed, since the roots could no longer function as a major sink for new assimilates after 

double girdling. The results indicate that the stem adapted accordingly in order to cope 

with the excess amount of carbohydrates. Therefore, stem growth and carbohydrate 

content strongly changed in the stem depending on their position above or below the 

girdled zone (Fig. 1 and Fig. 3).  

After double girdling, soluble carbohydrates accumulated in zone U due to the 

phloem blockage (Fig. 3). Note that the accumulation of carbohydrates was more 

pronounced closer to the upper-girdled-zone. Hence, it is likely that double girdling 

expedited the carbon unloading of the stem tissue close to the phloem blockage. Some 

girdling studies observed a similar increase in soluble carbohydrates in zone U (Li et al., 

2003), while other studies did not (Daudet et al., 2005; Cheng et al., 2008). Cheng et al. 

(2008) and Li et al. (2003) performed girdling (DOY 262 and 268, respectively) close to 

the girdling date of our experiment, while Daudet et al. (2005) girdled earlier in the 

growing season (DOY 193). It should be mentioned that all these cited studies used 

different types of trees. The observed increased amount of soluble carbohydrates probably 

induced a higher conversion to storage carbon, because an increase in starch content was 

also observed in the bark of U (Fig. 3). This increased starch content is consistent with 

previous girdling studies (Myers et al., 1999; Li et al., 2003; Daudet et al., 2005). In 

comparison with the sample taken at 0.5 cm above the upper-girdled-zone (Uwound), the 

wound tissue displayed a different storage behaviour (Fig. 3B). Since this wound tissue 

contains less starch, it seems to have a higher respiration rate and/or growth rate.  

In M, radial stem growth was no longer observed after girdling (Fig. 1), indicating 

that carbon reserves in the stem were not sufficient to sustain growth. Since no radial 

growth was observed, the reserves of stored carbohydrates (Fig. 3) might be mainly used 

in order to maintain respiration of the living stem cells (Bryce and Thornton, 1996). In 

contrast to the findings of Daudet et al. (2005) no recovery of radial growth in M was 

observed. This might be caused by the continuous removal of newly formed axial phloem 

strings in our study. The formation of wound tissue indicates the presence of starch 

reserves in the xylem ray parenchyma (Zapata et al., 2004; Carlquist, 2007), which can be 

mobilised whenever a shortage of carbohydrate supply occurs (Carlquist, 2007). Wound 

tissue was rapidly growing by using the available sugars for structural growth and not for 

storage (Fig. 3). The small decrease in stem diameter, which was observed in M (Fig. 1B) 
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might be attributed to a decrease in water content: the decrease in soluble carbohydrate 

content attracted less water in the bark cells.  

Due to the undisrupted phloem connection between L and the roots, previously 

stored carbohydrates in the roots remained available for zone L after girdling (Von Fircks 

and Sennerby-Forsse, 1998; Zapata et al., 2004). This availability might explain the 

higher amount of soluble carbohydrates observed in L compared to M (Fig. 3) and can 

explain why the radial growth rate in L decreased more slowly compared to M (Fig. 1). 

After approximately one month new shoots and leaves were observed at L, indicating an 

important remobilization of carbon stored in the roots as a response to the above-ground 

disturbances (Rodgers et al., 1995; Landhausser and Lieffers, 2002). Similar basal shoots 

have been observed in the girdling study of Wan et al. (2006) who related these shoots to 

a blocked auxin transport in the phloem. This newly formed assimilating tissue might also 

explain why the starch content tended to increase in L after girdling. Such an increase was 

never observed before in other girdling experiments (Li et al., 2003; Daudet et al., 2005; 

Wang et al., 2006). 

Girdling is often seen as a manipulation which only affects the downward carbon 

flow and not the upward water flow (Murakami et al., 2008). However, this hypothesis is 

questionable, since in the present study the upward sap flow rate decreased a few days 

after girdling (Fig. 2). The decrease in upward sap flow was probably caused by a 

feedback inhibition of Pn (Williams et al., 2000; Cheng et al., 2008; Domec and Pruyn, 

2008). The observed trends of a decrease in Pn and an increase in Rd after girdling 

(Fig. 2A,B) suggest such a feedback inhibition. Several girdling studies (Iglesias et al., 

2002; Bondada and Syvertsen, 2005; Johnsen et al., 2007; Cheng et al., 2008; Rivas et al., 

2008) have reported this Pn inhibition which they attributed to the decreased sink demand 

in girdled trees. In literature two processes are described which might trigger inhibition of 

Pn: stomatal closure (Williams et al., 2000; Cheng et al., 2008; Domec and Pruyn, 2008) 

and damage to the photosynthesis system (Myers et al., 1999; Bondada and Syvertsen, 

2005; Rivas et al., 2008). Cheng et al. (2008) observed that these two processes occur 

simultaneously. The decreased sap flow in our study suggests that the inhibition of Pn was 

accompanied with stomatal closure.  
 

Sectorial phloem flow in oak trees becomes plastic after half-girdling 

The flow of radio-active carbon had a different position in the phloem ring 

depending on the position of the nodes of the labelled branches (Fig. 4), which 

demonstrates as such the sectorial behaviour of phloem flow in the stem of young oak 

trees. Similar sectoriality between shoot and roots has been reported earlier in herbaceous 

species (Stieber and Beringer, 1984; Marshall, 1996; Jahnke et al., 2009). In general, 

sectoriality arises when the vascular connections between sources and sinks restrict the 

movement of assimilates in such a way that carbon fixed by a leaf remains primarily 

within its orthostichy (Fetene et al., 1997; Preston, 1998). Leaf orthostichy means that 

source leaves preferentially support sink leaves directly above or below them on the stem, 

because they have direct vascular connections (Taiz and Zeiger, 2002). Therefore, the 

allocation pattern of assimilates from a source leaf to a particular sink becomes quite 

predictable from basic information on the geometry of the leaf arrangement on the stem 

(Marshall, 1996). Based on 
14

C methods and indirect clipping experiments, sectoriality in 

phloem flow was most commonly found in trees and dicotyledonous herbs (Watson and 

Casper, 1984; Vuorisalo and Hutchings, 1996). 
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The downward 
11

C flow halted immediately after half-girdling. However, one day 

after half-girdling, a downward 
11

C flow could already be detected (Fig. 5B). Most likely, 

the sugar flow found its way towards the roots by changing its position towards the 

undamaged phloem. Because the translocation pattern changed towards the undamaged 

tissue above the manipulated bark, it seems that the translocation pattern is not absolutely 

determined by the vascular architecture of the tree (Preston, 1998). The apparent fixed 

sugar pathway of a certain leaf to a certain sink is altered after half-girdling (Fig. 4), 

probably causing the leaf to nourish another sink. As such the original sectoriality, based 

on the sieve tube architecture, was altered by the applied bark manipulation. Other studies 

(Gent, 1982; Aloni and Peterson, 1990; Preston, 1998) have observed a similar 

breakdown of sectoriality after manipulation of the source-sink relations. Hence, it seems 

that the barriers to lateral flow in the sieve tubes are not absolute and that sectoriality is 

plastic (Preston, 1998; Orians et al., 2005).  

The observed transport velocity (Fig. 6A) was in range with the velocities of 

phloem water flow (12-24 mm min
-1

) observed in poplar trees with MRI (Windt et al., 

2006). The decreased velocity in the flow of branch 1 is probably related to the increased 

resistance which is induced by the lateral translocation occurring after bark cutting. It 

seems plausible that the resistance of sieve plates in the sieve tubes, which were 

destroyed after half-girdling, was lower than the lateral transport resistance. The changes 

in pathway loss for the flow of branch 1 (Fig. 6B) suggest that the lateral transport 

appears by modified plasmodesmata (Orians et al., 2005). According to this hypothesis, 

an active change in translocation pathway might be made to enhance lateral translocation. 

Hence, the amount of energy delivered by assimilates has to increase temporarily to fuel 

the vascular changes, e.g. an increased lateral plamosdesmatal conductance. Once the 

changes are completed the required amount of energy will reduce again. Therefore, this 

hypothesis seems consistent with the pathway loss that first increases and afterwards 

decreases. Probably new labelled assimilates were consumed in the wounded stem when 

the changes were made that may have contributed to the temporal increase in pathway 

loss.  

The temporary increased velocity of the flow of branch 2 after manipulation 

(Fig. 6A) was probably attributed to a temporary higher sink demand. After half-girdling, 

the roots most likely received less carbohydrates from branches with their sugar flow 

originally located in the manipulated bark zone (e.g. branch 1). The higher observed loss 

of the labelled flow produced by branch 1 suggests that a smaller fraction of assimilates, 

produced by this branch reached the lower stem and roots immediately after half-girdling. 

After two days, the flow velocity of branch 2 restored more or less to velocities observed 

before girdling which coincided with the decrease in loss of branch 1. This indicates that 

the recovery of the reduced sink translocation of assimilates, produced by branches such 

as branch 1, coincides with the reduction of the increased translocation velocity of 

assimilates produced by branches, such as branch 2. When the loss of disturbed flows of 

branches as branch 1 decreased, the amount of their assimilates reaching the sinks 

probably increased. Therefore, the reduced sink strength exercised by the roots on 

branches as branch 2, probably triggering the reduced translocation velocity of their 

assimilates. 
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Figures 

 
Fig. 1. The typical, detailed patterns of stem diameter variations (∆D) for the upper (U), 

the middle (M) and the lower (L) stem zone of the double girdled tree. The vertical 

long dashed line indicates the moment of double girdling. Note that stem growth 

of the M and L zones immediately ceased after girdling. (DOY: Day Of the Year).  

 
Fig. 2. A: Average leaf net photosynthesis rate during the daytime period (Pn) (from 

07:30 h till 21:00 h); B: average leaf dark respiration rate (Rd) (from 22:30 h till 

06:00 h); and C: daily xylem flow rate (F) (from 07:30 h till 21:00 h) of the double 

girdled and control tree. The moment of girdling is represented by the dashed line 

(DOY: Day Of the Year). 
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Fig. 3. A: Changes in the spectrum of soluble sugars due to double girdling. Error bars 

represent the standard deviation; significant differences (p<0.05) between different 

samples are indicate with symbols, capital and small letters for glucose, fructose 

and sucrose, respectively. B: The total soluble sugars and starch content. The 

samples a and b were collected before girdling (DOY 253). The other samples 

were collected after girdling (DOY 294): two in the upper stem zone (U and 

Uwound), one in the middle (M) and one in the lower stem zone (L). ‘Uwound’ 

represents a sample of wound tissue formed just above the upper-girdled-zone. 

Capital and small letters indicate significant differences (p<0.05).  
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Fig. 4. A: Schematic presentation of how the tree’s structure related to the images 

obtained by PET; B: 3D-PET-images of the labelled carbon; and C: a 2D-

horizontal cross-section of this carbon flow overlaid on an MRI image of a similar 

oak tree. The dotted lines indicate the position in the 3D-image where the 2D-

cross-section was made. 
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Fig. 5. A: Before bark manipulation carbon flow occurred at a fixed position in the cross-

section of oak tree stems. 3D-PET-images of the labelled carbon flow and a 2D 

cross-section of this flow overlaid on an MRI-image of a similar oak tree to 

illustrate the same position in the half girdled oak tree before bark manipulation. 

B: Both flows were visualised by labelling branch 2 in Fig A at different times. 

Labelled carbon flow in the zone of bark manipulation changes its position in the 

phloem ring after manipulation. 3D-PlanTIS-images of the labelled carbon flow 

and a 2D cross-section of this flow overlaid on an MRI-image of a similar oak tree 

to illustrate that the position of the 
11

C flow changed its position after bark 

manipulation. The flow in grey was measured before manipulation and the flow in 

red was measured after manipulation. The grey 
11

C flow detected before 

manipulation shows an interruption representing the removed bark. The dotted 

lines (A and B) indicate the position in the 3D-image where the 2D-cross-sections 

are made, whereas the position in between the two dashed lines roughly 

corresponds with the location of bark manipulation. 

 
Fig. 6. A: the velocity of the transported assimilates; B: about the amount of steadily 

fixed tracers lost along the transport conduit (loss); the lines and symbols represent 

parameter values of the 
11

C flow of branch 1 (black) which originally flowed 

through the girdled bark and of the 
11

C flow of branch 2 (grey) which never 

flowed through the girdled bark zone. The dotted line represents the moment of 

half-girdling.  


