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Abstract

The nematofauna associated with a cold-water coral degradation zone in the Porcupine Seabight (NE Atlantic) was

investigated. This is the first comprehensive study of nematodes associated with cold-water corals. This research mainly

aimed to investigate the influence of microhabitat type on nematode community structure. Three distinct microhabitats for

nematodes were distinguished: dead coral fragments, glass sponge skeletons and the underlying sediment. The nematode

assemblages associated with these three microhabitats were significantly different from each other. Coral and sponge

substrata lie relatively unprotected on the seafloor and are consequently more subjected to strong currents than the

underlying sediment. As a result, both large biogenic substrata were characterized by higher abundances of taxa that are

less vulnerable and more adapted to physical disturbance, whereas the underlying sediment yielded more slender, sediment-

dwelling taxa. Typically epifaunal taxa, such as Epsilonematidae and Draconematidae, were especially abundant on dead

coral fragments, where they are thought to feed on the microbial biofilm which covers the coral surface. Several epifaunal

genera showed significant preferences for this microhabitat, and Epsilonema (Epsilonematidae) was dominant here. Sponge

skeletons are thought to act as efficient sediment traps, resulting in a lower abundance of epifaunal taxa compared to coral

fragments. The underlying sediment was dominated by taxa typical for slope sediments. The considerable degree of overlap

between the communities of each microhabitat is attributed to sediment infill between the coral branches and sponge

spicules. It is assumed that the nematofauna associated with large biogenic substrata is composed of a typical sediment-

dwelling background community, supplemented with taxa adapted to an epifaunal life strategy. The extent to which these

taxa contribute to the community depends on the type of the substratum. Selective deposit feeders were dominant on

sponge skeletons and in the underlying sediment, whereas coral fragments were dominated by epistratum feeders. The

presence of a microbial biofilm on the coral fragments is proposed as an explanation for the significant preference of

epistratum feeders for this microhabitat. Densities in the underlying sediment were low in comparison with other studies,

but biodiversity was higher here than on the coral and sponge fragments, a difference which is attributed to lower

disturbance. Nevertheless, the large biogenic substrata provide a microhabitat for rare, epifaunal taxa, and fragments of

both substrata within the sediment increase habitat complexity and hence biodiversity.
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1. Introduction

Until recently, most studies on deep-sea meiofau-
na focused on the interstitial and mud-dwelling
meio-infauna. The term ‘meio-epifauna’ was intro-
duced by Raes and Vanreusel (2005) to define the
meiofauna living epifaunally on well-defined sur-
faces of diverse origin (biogenic debris, seagrasses,
macro-algae, coral fragments, sponge skeletons,
manganese nodules, pebbles, etc). According to
their definition, suitable substrata for meio-epifauna
(1) should be discrete and well-defined structures of
at least about 5mm in diameter and (2) should not
be completely covered with sediment, implying that
at least part of the surface area remains in contact
with the water column. In the present study, suitable
surfaces were found on large biogenic substrata,
namely dead fragments of the framework building
cold-water coral Lophelia pertusa (Linnaeus, 1758)
and skeletons of the glass sponge Aphrocallistes

bocagei (Schultze, 1886).
Dead coral fragments are the result of a bioero-

sion process that starts with the death of L. pertusa

colonies due to the persistent attack by fouling
organisms, the formation of a microbial biofilm and
endolithic fungal infestation, followed by colonisa-
tion of the coral skeleton by sessile invertebrates
such as sponges and octocorals (Freiwald and
Wilson, 1998). Locally intense sponge excavation
results in skeletal loss, and the in situ collapsing of
the dead L. pertusa framework. On the other hand,
the encrusting sponges speed up the closure of gaps
in the open coral framework and promote sediment-
trapping, resulting in the strengthening of the
framework architecture. This facies type is called
sediment-clogged coral framework (Freiwald et al.,
2002). In a final stage of the degradation process,
intensified bioerosion results in accumulation of
centimetre-sized coral rubble. Because of the dy-
namic origin of the habitat between living coral
thickets and coral rubble, it is referred to as a ‘coral
degradation zone’.

Because of the sheltering function and higher
habitat complexity of three-dimensionally branched
coral skeletons, the diversity of megafauna living in
the zones with living or dead coral framework is
higher than that in the coral rubble zone (Morten-
sen et al., 1995). According to Mortensen et al.
(1995) and Jensen and Frederiksen (1992), the dead
coral framework harbors the most diverse macro-
and megafauna. Healthy, living L. pertusa responds
to the settlement of sessile organisms by (1) an
increase in mucus production and (2) selective
sclerenchyme precipitation (Freiwald and Wilson,
1998). These protective properties have proven to be
rather successful antifouling measures against
macrofauna (Mortensen, 2000). For the same
reasons, living coral is assumed not to be a suitable
substratum for meiofauna.

Cold-water corals have been known to science
since the 18th century (Pontoppidan, 1755). Never-
theless, the associated fauna has by no means been
studied as intensively as it has for tropical corals.
Moreover, most studies dealing with epifauna on
either living or dead L. pertusa focused on the
macro- and megafauna (Dons, 1944; Le Danois,
1948; Burdon-Jones and Tambs-Lyche, 1960; Jen-
sen and Frederiksen, 1992; Mortensen et al., 1995;
Fosså and Mortensen, 1998; Rogers, 1999).

The present paper provides a first overview of the
nematode communities inhabiting cold-water coral
degradation zones. Additionally, we aim to deter-
mine whether the trends observed by Raes and
Vanreusel (2005) across the entire meiofaunal
community on a higher taxon level can be specifi-
cally extended to a lower taxonomic level, i.e. within
the nematode community. As in the case of deep-sea
sediments that are not associated with large
biogenic structures, nematodes are the dominant
metazoan meiofaunal taxon in this deep-sea habitat.

The main topic of interest is the influence of
habitat type on nematode community structure. For
nematodes, the conditions within the sediment are
different from those on a complex elevated structure
on the sea floor. Next to this distinction between
large biogenic substrata and the underlying sedi-
ment as a habitat, small differences in microhabitat
structure could also influence the nematode com-
munity composition. Skeletons of dead L. pertusa in
the Porcupine Seabight area are highly branched,
dendroid structures with slender but solid branches
and well-developed, cup-shaped corallites. The sur-
face of the branches is smooth, although calcified
tubes of the polychaete Eunice norvegica (Linnaeus,
1767) may be attached to the skeleton, and the coral
surface is sometimes covered with a thin layer of
bryozoan colonies. In contrast, skeletons of the
glass sponge A. bocagei form a dense, complex,
three-dimensional latticework of fine silica spicules.
The underlying sediment in the area consists of
Foraminifera-rich silty sand or soupy, foraminiferal
sand. In the vicinity of coral banks the sediment
becomes littered with coral fragments and other
biogenic debris.
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2. Materials and methods

2.1. Sampling sites and procedure

Material was obtained by means of a round
NIOZ (Netherlands Institute for Sea Research) box
corer (+ 32 cm). Two box cores were taken
during the 9–19 June 2000 sampling campaign on
the R.V. Belgica at 51124048.200N 11145055.400W and
51124049.400N 11145055.900W. A third box core was
taken at the same location during the 2–11 May
2001 sampling campaign on the same vessel, at
5112507.700N 1114609.300W. All material originates
from the top and slope of a single seabed mound at
depths between 972 and 1005m, located in the
Belgica mound province of the Porcupine Seabight
(Fig. 1). The Porcupine Seabight is a large embay-
ment of the European continental slope, located in
the North-East Atlantic Ocean, southwest of Ireland.
Fig. 1. Map of the Porcupine Seabight area and a detail showing the rid

exact box core locations (bathymetry after Beyer et al., 2003). (Mmp

Bmp ¼ Belgica mound province).
In this area numerous seabed mounds occur,
grouped in three so called ‘mound provinces’: the
Hovland mound province, the Magellan mound
province and the Belgica mound province (Fig. 1).
The Belgica mound province is the most southern of
the seabed mound provinces. The mounds in this
province are known to be associated with deep-water
coral banks, constructed mainly by the framework
builder L. pertusa and associated fauna such as the
glass sponge A. bocagei.

The presence of transversal sand dunes in the
Belgica mound region indicates very high current
velocities, up to 100 cm/s (De Mol, 2002). Although
these very high velocities are probably exceptional,
normal current speeds are still considered high:
about 10–25 cm/s (White, 2006) or even 40–50 cm/s
(V. Huvenne, pers. comm.). High current speeds are
attributed to the combination of strong, northward
along-slope bottom currents, internal tides and
ge of mounds in the Belgica mound province with indication of the

¼Magellan mound province; Hmp ¼ Hovland mound province;
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waves, and the presence of mounds (Rice et al.,
1991; Van Rooij et al., 2003; White, 2006).

The Porcupine Seabight area is also known to be
subject to substantial phytodetrital deposition
(Billett et al., 1983; Lampitt, 1985; Gooday et al.,
1996). The detritus itself, as well as the bacteria and
protozoa that rapidly colonize it, are the main food
source for deep-sea meiofauna. Taking into account
both timing of surface blooms in 2000 and 2001 as
well as sinking rates (Billett et al., 1983), it was
calculated that phytodetritus should have been
present on the bottom on both sampling dates. It
is, however, not clear whether this deposited
material was available for the benthic fauna in the
Belgica mound region, as strong bottom currents
will certainly cause resuspension and relocation of
the organic material. Down-slope and along-slope
variability of phytodetrital deposition in this region
makes generalizations even more difficult
(D. Billett, pers. comm.). Our samples did not show
any evidence of a detrital layer covering the
sediment or the large biogenic substrata (pers. obs.).

In all cases, the surface of the sediment was partly
or entirely covered with several fragments of dead
corals (L. pertusa) and dead sponge skeletons
(A. bocagei). Only a very small amount of living
coral was present. The large coral and sponge
fragments were collected separately. After removal
of the large biogenic substrata, three sediment cores
(10 cm2) were pushed into the underlying sediment
of each box core. All material was fixed with 4%
buffered formalin. Each coral fragment, sponge
fragment and sediment core is indicated here as a
subsample.

2.2. Material

In total, 28 subsamples were examined: 18
subsamples were collected in the first box core from
2000, six subsamples in the second box core from
2000 and another four subsamples in the box core
from 2001. After thorough examination of its
content, each subsample was classified into one of
the following groups, each of them representing a
microhabitat type: (1) dead coral fragments, (2)
dead sponge skeletons (i.e. the two large biogenic
substrata), (3) underlying sediment and (4) mixed
substratum. The underlying sediment consisted of
fine to medium sand (median 194.9 mm) with a small
fine silt fraction and a high amount of planktonic
foraminifera. It was observed that this was a poorly
sorted sediment, also containing small fragments of
both large biogenic substrata, as well as some small
mollusc shells and echinoid spines. Subsamples
belonging to the mixed substratum-group contained
coral fragments as well as sponge skeletons and
some sediment.

2.3. Laboratory analyses

Each Lophelia and Aphrocallistes fragment was
rinsed thoroughly over sieves with mesh sizes of 1mm
and 32mm to separate macrofauna and meiofauna.
Meiofauna was extracted from the underlying or
remaining sediment by density gradient centrifuga-
tion, using Ludox (a colloidal silica polymer; specific
gravity 1.18) as a flotation medium (Heip et al., 1985;
Vincx, 1996). From each subsample, 200 nematodes
(or a lower number when less than 200 nematodes
were present in the examined subsample) were
randomly picked out. They were subsequently
mounted onto slides using the formalin–ethanol–gly-
cerol technique described by Seinhorst (1959) and
Vincx (1996), and identified to the genus level.
Volumes of coral fragments and sponge skeletons
were calculated by means of immersion.

The trophic composition of the nematode com-
munity was analyzed according to the classification
of Wieser (1953) for reasons of comparability with
other studies, although its practical application is no
doubt questionable, and new feeding type classifica-
tions have been proposed (Moens and Vincx, 1997;
Moens et al., 2004). Representatives of the families
Benthimermithidae (Petter, 1980) and Rhaptothyr-
eidae (Hope and Murphy, 1969) were eliminated
from the trophic analysis because they are parasitic
in their larval stages and the adults lack a buccal
cavity.

2.4. Statistical analyses

The PRIMER5 software (Plymouth Marine
Laboratory; Clarke and Gorley, 2001) was used to
calculate Bray-Curtis similarities between all sub-
samples, ultimately resulting in a test statistic R

reflecting within-microhabitat as well as between-
microhabitat similarities. The obtained similarity
matrix was applied to produce a non-metric multi-
dimensional scaling two-dimensional plot (MDS).
The stress value gives a measure for goodness-of-fit
of the MDS ordination: a low stress value (o0.2)
indicates a good ordination with no real prospect
for a misleading interpretation (Clarke, 1993).
One-way analysis of similarities (ANOSIM) was
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performed to test for significant differences
(po0.05) in the nematode community structure
between the different microhabitats. Similarity of
percentages (SIMPER) was carried out to investi-
gate which genera were responsible for these
differences. All absolute data were square root
transformed prior to the analysis.

Several biodiversity indices were calculated: The
Shannon–Wiener index H0 (Loge) and Pielou’s
evenness J (Pielou, 1975) are included mainly for
reasons of comparability with other studies. Hill’s
diversity numbers (Hill, 1973) gradually change
from indices of species richness to indices of
dominance with increasing number: N0 is identical
to the number of species, N1 ¼ exp (H0) and NN

reflects evenness. The expected number of genera
for a theoretical sample of 100 individuals EG (100)
was calculated in analogy with the expected number
of species (Hurlbert, 1971). EG ( )-values were also
used to construct rarefaction curves.

Indicator genus analysis was performed using the
PC-ORD4 software, by analogy with the indicator
species analysis of Dufrêne and Legendre (1997).
For this type of analysis absolute data were used
without transformation. The mixed substratum
subsamples were omitted from the analysis, and
only the dominant genera (40.5%) were consid-
ered. Calculated indicator values were tested for
statistical significance using a Monte Carlo test.

Parametric (one-way ANOVA) and non-para-
metric (Kruskal–Wallis ANOVA by ranks) analysis
of variance was performed using the STATISTICA6
software. Cochran’s C, Hartley’s F and Bartlett’s
Chi-square tests were used to verify the homogene-
ity of variances prior to the analysis.

3. Results

3.1. Nematode community composition and habitat

preferences

In total, 5036 nematodes belonging to 136
different genera and 38 different families were
included in the analysis. Of these 136 genera, 10
are considered new to science. Only 69 genera out of
136 were present in both the coral fragments,
sponge skeletons and underlying sediment micro-
habitat. Table 1 lists the relative abundances of the
20 most abundant nematode genera for the coral,
sponge, mixed and sediment microhabitats, calcu-
lated as the average of the relative abundance per
subsample. All microhabitats, except for the coral
fragment microhabitat, were dominated by Desmos-

colex. Sabatieria was the second most abundant
genus in the underlying sediment and Pselionema

the second most abundant genus on sponge
skeletons. The genus Epsilonema was dominant on
dead coral fragments, but was not found among the
20 most abundant genera either on sponge skeletons
or within the underlying sediment. Desmoscolex

was the second most abundant genus on coral
fragments.

Representatives of the closely related families
Epsilonematidae and Draconematidae, which are
characterized by an aberrant body shape, were
found in all microhabitats and were especially
abundant on the coral fragments. Three genera of
Epsilonematidae (Epsilonema, Triepsilonema and
Glochinema) and two genera of Draconematidae
(Tenuidraconema and Cygnonema) were found
amongst the 20 most abundant genera on coral
fragments. Epsilonematids were much more abun-
dant on coral fragments (16.8%) and sponge
skeletons (6.1%) than in the underlying sediment
(2.7%). Draconematidae were also more abundant
on coral fragments (4.7%) and sponge skeletons
(1.4%) than in the underlying sediment (0.5%).
Only the epsilonematid Glochinema was found
abundantly on both coral fragments, sponge skele-
tons and within the underlying sediment.

Although a certain degree of overlap between the
different microhabitats in terms of associated
nematofauna composition was obvious from the
MDS graph (stress 0.15) given in Fig. 2, there was a
clear trend in three directions, distinguishing be-
tween the three most distinct microhabitats: coral
fragments, sponge skeletons and the underlying
sediment (see arrows in Fig. 2). The mixed
substratum subsamples took up a central position
between these three microhabitats in the MDS
graph. This distinction between microhabitats in
terms of community structure was confirmed by a
one-way analysis of similarities (ANOSIM): overall
differences between all four microhabitats were very
highly significant (p ¼ 0.001). Pairwise tests re-
vealed the absence of significant differences only
between (1) the mixed substratum and sponge
skeletons and between (2) the mixed substratum
and the underlying sediment (Table 2). R values
were generally low, which was due to the observed
overlap between the microhabitats (see MDS).
Nevertheless, the number of actual permutations
(between 210 and 999) was high enough to trust the
significance levels.
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Table 1

Relative abundances of the 20 most abundant nematode genera and overall average densities (with standard deviations) of the

nematofauna associated with cold-water coral degradation zones for each distinguished microhabitat. Representatives of the epifaunal

families Epsilonematidae and Draconematidae are underlined

Coral fragments (10) Sponge skeletons (8) Mixed substratum (4) Underlying sediment (6)

Genus (%) Genus (%) Genus (%) Genus (%)

Epsilonema 8.51 Desmoscolex 7.85 Desmoscolex 9.66 Desmoscolex 9.01

Desmoscolex 7.71 Pselionema 7.56 Pselionema 6.06 Sabatieria 8.27

Halalaimus 6.84 Halalaimus 6.59 Ceramonema 4.96 Acantholaimus 6.78

Acantholaimus 6.70 Actinonema 6.15 Acantholaimus 4.88 Desmodora 5.68

Anticoma 4.94 Ceramonema 5.19 Halalaimus 4.62 Halalaimus 4.10

Theristus 4.40 Tricoma 4.84 Anticoma 3.64 Microlaimus 3.09

Triepsilonema 3.69 Calomicrolaimus 4.75 Araeolaimoidea sp.1 3.52 Tricoma 3.04

Tricoma 3.48 Acantholaimus 4.61 Epsilonema 3.23 Syringolaimus 3.03

Prochromadorella 2.97 Anticoma 4.17 Theristus 3.23 Bathynox 2.92

Actinonema 2.77 Glochinema 3.43 Sabatieria 2.81 Ceramonema 2.85

Tenuidraconema 2.63 Desmodora 2.67 Tricoma 2.40 Molgolaimus 2.17

Cygnonema 2.50 Paracantonchus 2.50 Desmodora 2.37 Calomicrolaimus 2.15

Calomicrolaimus 2.34 Sabatieria 2.37 Actinonema 2.11 Paracantonchus 2.01

Glochinema 2.17 Monhystera 2.30 Triepsilonema 2.09 Aegialoalaimus 1.94

Paracantonchus 2.13 Microlaimus 1.83 Paracantonchus 2.08 Halichoanolaimus 1.82

Monhystera 2.13 Dichromadora 1.62 Monhystera 2.03 Monhystera 1.80

Innocuonema 2.12 Prochromadorella 1.57 Prochromadorella 1.99 Glochinema 1.64

Dichromadora 2.08 Araeolaimoidea

sp.1

1.42 Procamacolaimus 1.90 Araeolaimoidea sp.1 1.58

Chromadorina 1.67 Theristus 1.29 Viscosia 1.46 Anticoma 1.54

Ceramonema 1.64 Metadasynemella 1.17 Microlaimus 1.37 Metadesmolaimus 1.36

Average density 891572891 49952740660 23039719711 3017102

ind/l� ind/l ind/l ind/10 cm2

�For one substratum the volume could not be measured; average densities based only on the subsamples with known volume.

Coral

Sponge
Sediment

Stress: 0.15

Coral fragments Sponge skeletons Mixed substratum

Underlying sediment

Fig. 2. Multidimensional scaling (MDS) two-dimensional plot of

all subsamples. The trend in three directions, reflecting different

communities in the three distinct microhabitats as mentioned in

chapter 3.1, is visualized here with three arrows radiating from

the center.
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Attention will be focused now on the coral
fragments, the sponge skeletons and the underlying
sediment. The average dissimilarity in community
composition between sponge skeletons and the
underlying sediment was 47.7% and mainly attrib-
uted to the higher abundance of Sabatieria in the
underlying sediment (explains 3.4% of the dissi-
milarity) and Pselionema on the sponge skeletons
(explains 3.1% of the dissimilarity), as indicated by
SIMPER. The average dissimilarity between coral
fragments and sponge skeletons was 46.6%, ex-
plained mainly by Epsilonema (4.4%, more abundant
on coral fragments) and Pselionema (3.6%, more
abundant on sponge skeletons). The average dissi-
milarity between the underlying sediment and the
coral framework, in terms of community composition,
was the highest (51.9%). This dissimilarity was
explained mainly by Epsilonema (3.9%, more abun-
dant on coral fragments) and Sabatieria (3.2%, more
abundant in the interstices of the sediment).

All significant microhabitat preferences, as in-
dicated by an indicator genus analysis, are summar-
ized in Table 3. The analysis confirmed the above
proposed habitat preferences: Sabatieria within the
underlying sediment (p ¼ 0.006), Pselionema on
sponge skeletons (p ¼ 0.006) and Epsilonema on
dead coral fragments (p ¼ 0.001). This analysis also
indicated the preference of several representatives of



ARTICLE IN PRESS

Table 2

Results of ANOSIM pairwise test: values of the R statistic and corresponding p-levels are indicated

Coral fragments Sponge skeletons Mixed substratum Underlying sediment

Coral fragments ��� � ���

Sponge skeletons 0.44 —�� �

Mixed substrate 0.357 0.026 —��

Underlying sediment 0.715 0.314 0.075

�0.01o pp0.05.
��—p40.05.
���pp0.001.

Table 3

Microhabitat preferences, as indicated by an indicator genus

analysis. Only the statistically significant preferences are shown.

Significance level is indicated. IV ¼ Indicator Value

Genus Preferred

microhabitat

IV Significance

level

Actinonema Sponge skeletons 59 0.004��

Aegialoalaimus Underlying

sediment

57 0.024�

Akanthepsilonema Coral fragments 66 0.003��

Bathyepsilonema Sponge skeletons 60 0.020�

Ceramonema Sponge skeletons 58 0.014�

Cygnonema Coral fragments 74 0.002��

Epsilonema Coral fragments 89 0.001���

Halichoanolaimus Underlying

sediment

64 0.004��

Innocuonema Coral fragments 79 0.002��

Molgolaimus Underlying

sediment

61 0.011�

Prochromadorella Coral fragments 56 0.005��

Pselionema Sponge skeletons 66 0.006��

Sabatieria Underlying

sediment

71 0.006��

Syringolaimus Underlying

sediment

76 0.002��

Tenuidraconema Coral fragments 67 0.001���

Theristus Coral fragments 63 0.004��

�0.01opp0.05.
��0.001opp0.01.
���pp0.001.
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the closely related families Epsilonematidae and
Draconematidae for the coral substratum: Akanthep-

silonema (p ¼ 0.003), Epsilonema (both Epsilonema-
tidae), Cygnonema (p ¼ 0.002) and Tenuidraconema

(p ¼ 0.001) (both Draconematidae). Bathyepsilonema

was the exception here: this epsilonematid genus
preferred sponge skeletons (p ¼ 0.02).

All microhabitats were dominated either by
selective deposit feeders (Wieser group 1a) or by
epistratum feeders (Wieser group 2a). Predators/
omnivores (Wieser group 2b) always constituted the
least abundant group (Fig. 3). There were, however,
small differences between the microhabitats: selec-
tive deposit feeders were the dominant trophic
group in all microhabitats except for the coral
fragments, which were dominated by epistratum
feeders. This observed preference of epistratum
feeders for the coral fragment microhabitat was
statistically highly significant (ANOVA; df ¼ 1;
p ¼ 0.002) and attributed mainly to Epsilonema

(IV ¼ 65; p ¼ 0.001), as pointed out by an indicator
genus analysis. The relative importance of both
non-selective deposit feeders (Wieser group 1b) and
predators/omnivores was clearly higher in the
underlying sediment compared to both large bio-
genic substrata, with the mixed substratum taking
up an intermediate position. The prevalence of
predators/omnivores in the underlying sediment, in
contrast to other microhabitats, was proven to be
statistically very highly significant (ANOVA;
df ¼ 1; po0.001) and was attributed mainly to
Syringolaimus (IV ¼ 67; p ¼ 0.001).

3.2. Densities

Average nematode densities and standard devia-
tions for each microhabitat are given in Table 1.
Nematode densities are expressed as ind/l on the
substrata and as ind/10 cm2 in the sediment for
reasons of comparison with other studies. Densities
tended to differ to a large extent between sub-
samples of the same microhabitat type as standard
deviations were high. Nevertheless, the sponge
skeletons were characterized by significantly higher
densities of nematodes than the coral fragments
(Kruskal–Wallis ANOVA; df ¼ 1; po0.001).

3.3. Biodiversity

For all microhabitats a whole spectrum of
biodiversity indices, ranging from indices of genus
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Coral fragments

Sponge skeletons

Mixed substratum

underlying sediment

1a 1b 2a 2b

relative importance (%)

0 20 40 60 80 100

42.1% 10.0% 45.4% 2.6%

50.6% 9.3% 37.0% 3.1%

49.6% 13.0% 32.5% 4.9%

40.0% 16.9% 34.9% 8.2%

Fig. 3. Composition of Wieser (1953) feeding types for each microhabitat: selective deposit feeders (1a), non-selective deposit feeders (1b),

epistratum feeders (2a) and predators/omnivores (2b).

Table 4

Biodiversity indices: Hill’s diversity numbers N0, N1 and NN, the expected number of genera for 100 individuals EG (100), the Shannon-

Wiener diversity index H0 and Pielou’s evenness J. Under (a) the average value over all subsamples, with its standard deviation, is given,

under (b) the value for the pooled data of all subsamples for the respective microhabitat. The p-level indicates the overall statistical

significance level for the observed differences between microhabitats

N0 EG (100) N1 H0 J NN

Coral fragments (a) 40.6078.78 33.4775.07 26.4875.85 3.2570.23 0.8870.03 8.0372.10

(b) 93 38.41 40.13 3.69 0.81 11.24

Sponge skeletons (a) 42.38710.81 33.7075.04 25.6376.38 3.2270.25 0.8670.04 7.5171.96

(b) 93 38.00 39.44 3.67 0.81 12.41

Mixed substratum (a) 53.2574.57 40.3475.52 34.0975.53 3.5270.16 0.8970.03 9.4371.48

(b) 91 43.40 47.20 3.85 0.85 10.67

Underlying sediment (a) 51.0072.45 40.2672.48 32.1673.98 3.4670.13 0.8870.04 8.3672.95

(b) 106 43.29 47.26 3.86 0.83 10.94

p-level 0.02� 0.03� 0.04� 0.05� 0.58 (NS) 0.56 (NS)

(NS) not significant (p40.05).
�Significant (0.01opp0.05).
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richness (N0, EG (100)) to indices of evenness
(J, NN), is given in Table 4. Dominance was
generally low, and there were no significant
differences between microhabitats in terms of
evenness (ANOVA; J and NN). The sediment
clearly harbored the highest number of genera N0,
whereas the other microhabitats had more or less
the same number of genera. It should be noted that
the coral fragments and sponge skeletons yielded
nevertheless the highest number of individuals. It
was found that on average, both substrata were
characterized by a significantly lower number of
genera compared to the underlying sediment and
the mixed substratum (Kruskal–Wallis ANOVA;
df ¼ 1; p ¼ 0.016). This was confirmed by a
comparison of the EG (100) values (Kruskal–Wallis
ANOVA; df ¼ 1; p ¼ 0.02). Moreover, Hill’s N1

(ANOVA; df ¼ 1; p ¼ 0.004) and the Shannon–Wie-
ner index H0 (ANOVA; df ¼ 1; p ¼ 0.005) were also
significantly higher for the sediment and mixed
substratum microhabitats than for both separate
substrata.
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The rarefaction curves for the total community
associated with each microhabitat and for the entire
community combined over all microhabitat types
(pooled data) (Fig. 4) show that the expected
number of genera for coral fragments and sponge
skeletons falls below that of the sediment and the
mixed substratum. The presence of these substrata
even lowers the value for the added-up community
in comparison with the sediment. This combined
community is not to be interpreted as a representa-
tion of the natural situation as it is not possible to
calculate the relative importance of the three
microhabitats in the cold-water coral degradation
zone.

4. Discussion

The present paper is part of the first comprehen-
sive study dealing with the community structure,
habitat preferences and biodiversity of the metazo-
an meiofaunal community associated with cold-
water coral degradation zones (Raes and Vanreusel,
2005). The main conclusions of this study, which
dealt with meiofauna at higher (i.e. coarser)
taxonomic levels, are briefly as follows. The meio-
infaunal community composition in the sediment
beneath the large biogenic substrata was similar to
that of other slope sediments. However, the meio-
epifaunal community associated with the large
biogenic substrata was significantly different from
the meio-infauna: it was characterized by a lower
dominance of nematodes and higher abundances of
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Fig. 4. Rarefaction curves for the pooled data for each microhabi
several other taxa. This indicates a positive influence
of large biogenic substrata on the number of taxa
present in the whole ecosystem. In particular, coral
fragments housed a characteristic community that
was significantly different from that found in the
sediment. Nevertheless, the meio-epifauna was
composed of a typical sediment-dwelling back-
ground community, supplemented with taxa
adapted to an epifaunal life strategy. This was
attributed to the presence of sediment infill within
the framework of both substrata and the close
contact with the underlying sediment. Densities in
the underlying sediment were low. In contrast, both
large biogenic substrata were thought to be low-
disturbance habitats, rich in food and hence densely
populated. Because of these properties of the two
substratum types, the high microhabitat diversity
and the low dominance of nematodes, cold-water
coral degradation zones were assumed to be
biologically diverse. Of all microhabitat types, coral
fragments supported the most diverse communities,
whereas the underlying sediment was the least
diverse. Whether the same conclusions can be
drawn for the nematode community at a generic
level will be discussed next.

4.1. Nematode community composition and habitat

preferences

Dead coral fragments and sponge skeletons lie
relatively unprotected on the sea floor. The fauna
associated with these substrata could therefore be
00 120 140 160 180 200

ndividuals n

tat and for the combined community over all microhabitats.
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strongly influenced by the vigorous bottom currents
that prevail in the area (White, 2006). The danger of
physical erosion and removal by these hydrody-
namic forces prevents most nematode taxa from
living here. However, taxa that are able to withstand
the currents’ eroding effect will have an advantage
in these exposed habitats. Coral fragments were
dominated by Epsilonema, a nematode belonging to
the family Epsilonematidae. SIMPER showed that
Epsilonema was the main explanatory taxon for the
dissimilarity between coral fragments on the one
hand and sponge skeletons and sediment on the
other hand. This is remarkable given that Epsilo-
nematidae were, until recently (Neira et al., 2001,
2005; Gad, 2002, 2004; Raes et al., 2003, 2006),
unknown from deep-sea habitats (Decraemer et al.,
2001). Moreover, both Epsilonematidae and the
closely related Draconematidae were much more
abundant on coral fragments than in either of the
other microhabitats, and an indicator genus analysis
revealed significant preferences of two epsilonema-
tid and two draconematid genera for the coral
fragment microhabitat. Because of their peculiar
locomotory pattern and morphology, Epsilonema-
tidae and Draconematidae are well-adapted to
living with physical disturbance. First of all,
representatives of both families are known to move
forward over a substratum just like looper-cater-
pillars, alternately attaching and releasing the
anterior and posterior end of the body (Stauffer,
1924; Lorenzen, 1973). To perform this kind of
locomotion, they possess typical locomotory struc-
tures known as cephalic and posterior adhesion
tubes (Draconematidae) or ambulatory setae (Epsi-
lonematidae), which they can use together with the
caudal glands to attach themselves firmly to a
substratum and hence better withstand removal by
current activity. Secondly, most Epsilonematidae
(e.g. Epsilonema) are stout, heavily cuticularized
nematodes, which makes them more stable and less
vulnerable to physical damage. The idea that small,
short and stout nematodes, which are characterized
by higher growth rates and a reduced age at first
breeding and which are more able to withstand
different types of disturbance, act as opportunists in
shallow and ocean-margin areas, has been proposed
by several authors (Soetaert et al., 2002; Vanaver-
beke et al., 2004). Desmoscolex is also a stout
nematode with a cuticle strengthened by bands of
secretion and foreign material, called desmen.
According to Stauffer (1924), Desmoscolex also
moves forward like a caterpillar, using specialized
setae associated with glands, which are located
subdorsally. In this way Desmoscolex is able to
firmly attach itself to a substratum, which might
partly explain its high abundance on both large
biogenic substrata. On the other hand, Desmoscolex

was also the dominant genus in the underlying
sediment. This nematode is considered a typical
sediment-dwelling genus for these depths (Soetaert
and Heip, 1995; Vanaverbeke et al., 1997), and its
importance on both large biogenic substrata could
well be the result of considerable sediment infill.

The nematofauna inhabiting the underlying sedi-
ment is relatively protected from current activity by
the substrata that cover it, which means that its
composition is not fundamentally structured by
physical disturbance. As a result, the opportunistic
Epsilonematidae and Draconematidae are much less
abundant here in comparison with the substrata,
and most nematodes in the sediment-dwelling
community belong to the slender morphotype
typical for an interstitial microhabitat (Giere,
1993). This is thought to be the reason why the
sediment communities and coral communities are so
different from each other. Only Vanaverbeke et al.
(1997) have described the nematode genus composi-
tion in sediment not associated with large biogenic
structures at a nearby location (Goban Spur) and at
a comparable depth. Station B in their study was
located at a depth of 1034m and is therefore our
main source for comparison. The nematode com-
munity at this station appears to be dominated by
Acantholaimus and Sabatieria. However, the genera
Desmoscolex and Pareudesmoscolex were counted
separately in this study, although Pareudesmoscolex

is considered a subgenus of Desmoscolex (Decrae-
mer, 1985) and was accordingly identified in our
study. Thus, when the relative abundances of these
two genera at station B of Vanaverbeke et al. (1997)
are added up, a co-dominance of Desmoscolex

(9.8%), Acantholaimus (9.8%) and Sabatieria

(9.3%) arises. This corresponds relatively well with
what was found in the underlying sediment of our
study. Sabatieria and Acantholaimus are considered
typical slope genera for the North Atlantic and
Mediterranean (Soetaert and Heip, 1995). Accor-
ding to Vanaverbeke et al. (1997), Acantholaimus and
Desmoscolex are typical deep-sea genera that are
also frequently found on the lower slope (i.e. station
B and deeper stations), whereas Sabatieria is more
abundant at shallower stations (see also Soetaert
and Heip, 1995). Except for Desmodora, the eight
most abundant genera in the underlying sediment of
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our study were also found among the 20 most
abundant genera in station B of Vanaverbeke et al.
(1997). It can be concluded that, despite the
presence of small fragments of both large biogenic
substrata, mollusc shells and echinoid spines within
the underlying sediment in cold-water coral degra-
dation zones, the nematode communities are still
dominated by typical soft sediment slope taxa. In
contrast to normal slope sediments, which are not
supplemented with these biogenic structures, epsi-
lonematids and draconematids were still relatively
well-represented in the underlying sediment of our
study. Nevertheless, the only epsilonematid among
the 20 most abundant genera here was Glochinema

(subfamily Glochinematinae). This is a long and
slender nematode, supported by long and fine
ambulatory setae, and is therefore less stable and
more vulnerable to current activity than most other,
shorter and thicker Epsilonematidae. So this might
be more of a sediment dweller, taking advantage of
the presence of smaller substrata within the under-
lying sediment. On the other hand, several repre-
sentatives of the subfamily Glochinematinae have
been found in soft sediments (Gad, 2004). Sabatieria

plays an important role in the underlying sediment.
The dissimilarity between the sediment and both
other microhabitats was attributed mainly to this
genus, and indicator genus analysis revealed sig-
nificant preferences of Sabatieria for the sediment
microhabitat. As argued above, Sabatieria is a
typical slope genus. According to Soetaert and
Heip (1995), Sabatieria also has a preference for
suboxic or anoxic environments. This is very
interesting, given that the depth distribution of
cold-water coral reefs in the Porcupine Seabight
coincides with the OMZ (Oxygen Minimum Zone)
layer in this area (Freiwald, 2003).

Although sponge skeletons are also large biogenic
structures that stick out from the sediment, they
house a community significantly different from the
one associated with coral fragments (Table 2;
Fig. 2). Moreover, this microhabitat does not favor
the epifaunal taxa as strongly as the coral frag-
ments. As in the underlying sediment, the only
abundant epsilonematid here is Glochinema. We
propose a structural explanation for this discre-
pancy. Because of its complex, three-dimensional
latticework of fine silica spicules, a glass sponge
skeleton is probably able to trap more sediment
than a dead coral framework. It was observed that
the dead sponge skeletons were coloured greyish-
brown and that a considerable amount of sediment
was accumulated in the central spongocoel. In
contrast, only a small amount of sediment was
accumulated in the felty layer of bryozoan colonies,
which covered parts of the surface of the coral
fragments (M. Raes, pers. obs.). As a result, the
sponge microhabitat is more suitable for slender,
sediment-dwelling taxa than the coral habitat.
Nematodes could also be slightly more protected
from physical erosion in this microhabitat, which
means that opportunistic epifaunal taxa will have
fewer advantages here. On the other hand, the
spicules might still serve as a suitable substratum for
epifaunal nematodes, as indicated by the observed
preference of Bathyepsilonema for sponge skeletons.
The indicator genus analysis revealed only two
other indicator genera for this microhabitat, Pselio-

nema and Ceramonema. Both ceramonematids are
heavily armored nematodes, which is again inter-
preted as an adaptation to physical disturbance by
hydrodynamic forces. However, it must also be
mentioned here that Ceramonematidae are not
uncommon in slope soft sediments (Vanaverbeke
et al., 1997).

Although the communities in different microha-
bitats were significantly dissimilar from each other,
the MDS-biplot (Fig. 2), the low R-values (ANO-
SIM; Table 2) and the low average dissimilarity
numbers (SIMPER) indicate a considerable degree
of overlap. Accumulation of sediment between the
sponge spicules or coral branches and the presence
of small fragments of both biogenic substrata within
the sediment are introduced here as explanations.
Sediment infill is caused either by close contact
between the biogenic substrata and the underlying
sediment or by the deposition of suspended
material. It is assumed that the nematofauna
associated with large biogenic substrata in cold-
water coral degradation zones is composed of a
typical slope sediment-dwelling, interstitial back-
ground community, supplemented with taxa
adapted to an epifaunal life strategy. The extent to
which these epifaunal taxa contribute to the
community depends on the substratum type. The
central position of the mixed substratum subsam-
ples on the MDS biplots also reflects the combined
effect of the three microhabitat types on the
nematode community structure.

The nematode communities on the continental
slope are usually dominated by selective and non-
selective deposit feeders (Soetaert and Heip, 1995).
However, in station B of Vanaverbeke et al. (1997)
there was a co-dominance of these two trophic
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groups and the epistratum feeders. Thus, the trophic
composition of the nematode communities in the
present study can be considered normal for this
location and this depth. The statistically significant
preference of epistratum feeders for coral fragments
is attributed to the presence of a microbial biofilm
that covers the surface of these structures (Freiwald
and Wilson, 1998) and might act as an important
food source here. This preference was attributed
mainly to Epsilonema. Indeed, when epsilonematids
or draconematids ‘walk’ over the dead coral
fragments, their buccal cavity is ideally positioned
for feeding on the biofilm. The prevalence of
predators/omnivores in the underlying sediment
could be related to the presence of a more
stable community in this relatively undisturbed
microhabitat.
4.2. Densities

As nematode densities on both substrata in our
study are expressed as individuals per unit of
volume (i.c. ind/l), comparison with other studies
dealing with epifauna, e.g. on seagrasses or macro-
algae, is impossible as densities are usually ex-
pressed as individuals per unit of surface area.
Because of the irregularity and three-dimensional
complexity of the substrata at hand, it was
impossible to measure the exact surface area.
Moreover, the accumulation of sedimented material
on the substrata obscures the concept of total
available surface area. The significantly higher
densities of nematodes on sponge skeletons com-
pared to the dead coral fragments can be explained
by the higher degree of sediment infill in the former
substratum. The presence of interstitial microniches
is considered essential for nematode colonisation
(Danovaro and Fraschetti, 2002), and sediment
infill might therefore be essential to the building of a
well-developed, and hence dense, nematode com-
munity. Moreover, Giere (1993) stated that most
nematodes are morphologically more adapted to
move between the sand grains than to crawl over a
substratum.

According to Raes and Vanreusel (2005), the
sediment-clogged coral framework and associated
glass sponge skeletons could be densely populated
by meiofauna as a result of low disturbance, low
predation pressure and abundant food. However,
the nematode data contradict low disturbance
on these substrata. Moreover, the same authors
observed significantly lower abundances of nema-
todes on these substrata.

In the underlying sediment, densities varied
between 166 and 429 ind/10 cm2. This number is
consistently lower than in the studies of Pfannkuche
(1985) (Porcupine Seabight—960m, 1429 ind/10 cm2;
1492m, 820 ind/10 cm2), Vanaverbeke et al. (1997)
(Goban Spur—670m, 580 ind/10 cm2; 1034m,
587.5 ind/10 cm2; 1425m, 482 ind/10 cm2) and Good-
ay (unpubl. in Vincx et al., 1994) (Porcupine
Seabight–1340m, 1026–1211 ind/10 cm2). All of these
studies were carried out at nearby locations, at
comparable depths and, in the case of the study by
Pfannkuche (1985), at a similar time in the year.
Raes and Vanreusel (2005) proposed several poten-
tial explanations for the low meiofaunal densities in
the underlying sediment: (1) effect of different
sampling gear; (2) limited food supply due to
phytodetritus-trapping by the coral framework
which covers the sediment or (3) due to strong
currents; (4) physical removal by strong currents; (5)
presence of biogenic structures in the sediment or (6)
high predation pressure. As argued above, the
erosive effect of current activity (fourth explanation)
is thought to be rather limited in the underlying
sediment.

4.3. Biodiversity

Several indices (N0, EG (100), N1, H0) indicated a
significantly higher diversity in the underlying
sediment compared to both large biogenic substra-
ta, despite the expected higher habitat complexity of
the branched coral fragments and the network of
sponge spicules compared to the interstitial habitat,
especially when the sediment infill between these
structures is taken into account. As mentioned
above, both substrata, especially the coral frag-
ments, are rather hostile environments for most
nematodes and the majority of nematodes are better
adapted to an interstitial life strategy (Giere, 1993).
The interstitial habitat of the underlying sediment is
a more suitable one for nematodes than the
substratum surface and is relatively undisturbed,
enabling a more diverse community to establish
itself in the former habitat. Consistent with this
idea, Gage et al. (1995) found that macrofaunal
species diversity was markedly depressed by high
current energy in the deep sea. It appears that only a
few, well-adapted nematodes can thrive on the
substrata, whereas the other genera are dependent
on the presence of sediment infill, especially for
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sponge skeletons. This is, however, not reflected in
the indices of evenness. Thus it seems that although
fewer genera are able to live in these more disturbed
microhabitats, the community is not merely domi-
nated by the best adapted ones. Our results also
indicate that the presence of a higher number of
epifaunal genera on these substrata is not able to
compensate for the loss in genus richness due to the
physical erosion by strong currents.

The presence of small biogenic structures in the
underlying sediment considerably adds to its habitat
complexity and heterogeneity and therefore its
biodiversity. Hence, both interstitial and epifaunal
taxa will be present here, and their combined
presence increases genus richness. This is confirmed
by the high N0-value of the sediment. Furthermore,
this value is much higher than for the Goban Spur
stations I, B and II in Vanaverbeke et al. (1997) (106
vs. 45–72), although fewer individuals were identi-
fied. The same is true for N1 and EG (100). The
higher genus richness of the nematode community
on the mixed substratum can easily be explained as
this community recruits from both the sponge and
coral communities, each with a different genus
composition.

Both coral fragments and sponge skeletons
provide a microhabitat for representatives of the
Epsilonematidae and Draconematidae, which are
rare or not yet recorded elsewhere along the
continental margin and in the deep sea (Decraemer
et al., 2001; Gad, 2004), and small degradation
products of the two substrata positively influence
the biodiversity in the underlying sediment. The
importance of such ‘habitat islands’ for deep-sea
fauna has been confirmed by Gage (1996), who
states that they attract aggregations of species,
including many specialist taxa that are very rare in
the background community.

In conclusion, the nematode data largely confirm
the hypotheses proposed by Raes and Vanreusel
(2005) for taxa at a higher taxonomic level.
However, these data contradict low disturbance on
the large biogenic substrata. In addition, the
nematode community in the underlying sediment
is significantly more diverse than on the coral
fragments, whereas the opposite is true for the
meiofaunal community at a higher taxonomic level.
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korallrev og metoder for overvåkning. Fisken og Havet 17,
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