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ABSTRACT

This paper treats the full-wave inverse electromagnetic
scattering problem of complex permittivity reconstruc-
tion in three dimensions. Two Newton-type methods
are used to solve this non-linear and ill-posed problem
by minimizing a new type of regularized cost function.
The Gauss-Newton method and the Broyden-Fletcher-
Goldfarb-Shanno quasi-Newton algorithm are compared
and results are presented, both from simulated and mea-
sured data.

Key words: microwave imaging, complex permittivity,
inverse problems, nonlinear optimization, gauss-Newton
optimization, quasi-Newton optimization, regularization.

1. INTRODUCTION

Most of the work done so far in the field of quantita-
tive electromagnetic imaging has been concerned with
2D problems. As valuable as these explorations in two
dimensions are to learn about the nature of inverse elec-
tromagnetic problems, sooner or later the step towards
realistic full-vectorial 3D inversion must be taken. More-
over, indications arose recently that 3D measurements
will become available in the near future [1]. Therefore
in this paper a 3D complex permittivity reconstruction
algorithm is presented. It uses Newton-type optimiza-
tion algorithms to tackle the non-linear and ill-posed in-
verse problem, as is the reconstruction of inhomogeneous
dielectric objects from scattering experiments. Newton-
type algorithms were already used on 2D problems [2],
[3] and are known to have valuable convergence proper-
ties. Since they involve matrix operations, the dimen-
sion of the optimization problem must be limited and
therefore only the permittivity, which has to be recon-
structed, is parameterized. Auxiliary variables, such as
the field inside the reconstruction domain must be elimi-
nated. To do so, several direct scattering problems must
be solved. This can be a computationally demanding

task in the 3D full-vectorial case, so attention is paid to
efficient forward solvers. To alleviate the ill-posedness
of the problem a regularized cost function is optimized
which gives good reconstruction results. Two types of
Newton-like methods are used on a generic example and
compared: the Gauss-Newton method and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algo-
rithm. Finally a reconstruction from measured data is
presented.

2. FORMULATION OF THE INVERSE PROB-
LEM

Consider a 3D inhomogeneous lossy dielectric object sit-
uated in an infinite homogeneous and isotropic back-
ground (Fig. 1). For a fixed frequency f = ω/2π and
from a number of source points rS

is
, is = 1 . . . NS , the

object is illuminated by electric dipoles oriented along
the directions û

D
id,is

, id = 1 . . . ND ≤ 3. For ev-
ery such excitation, the scattered field is measured in
the set of receiver points rR

ir
, ir = 1 . . . NR and along

the directions û
C
ic,ir

, ic = 1 . . . NC ≤ 3. The objec-
tive is to reconstruct the complex permittivity distribution
ε(r) = ε′(r)+ jε′′(r) within the volume D that encloses
the object, i.e. ε(r) = εb, the background permittivity,
whenever r /∈ D.

It is well known that this inverse scattering problem is
ill-posed, i.e. the existence, uniqueness and stability of
the solution are not simultaneously guaranteed. Nonexis-
tence, which is caused by noise on the measurements and
the modeling error, is coped with by redefining the solu-
tion as the minimizer of a cost functional. Usually a least
squares cost functional is applied:

F (ε) =
1

F0

(

E
s
(ε) − E

m
)H (

E
s
(ε) − E

m
)

, (1)

where E
m

is a vector that contains the data and E
s
(ε)

contains the calculated values of the field, scattered by a
permittivity distribution ε(r). (·)H denotes the complex
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Figure 1. The 3D geometry for the inverse problem.

conjugate. Nonuniqueness can be solved theoretically by
using “complete data”, i.e. the fields are known in ev-
ery point of a sphere around D and this for excitations in
every point of such a surface [4]. Naturally in real ap-
plications such complete data is often not available and
the optimization algorithm can also be trapped in local
minima of the cost functional. Finally the solution of the
inverse scattering problem as the minimizer of Eq. 1 is
known to be very sensitive to noise on the data. Because
of the above, a regularization of the problem is necessary
and this will be discussed in more detail in section 6.1.

3. CONTRAST SOURCE FORMULATION

The contrast source formulation is used to describe the
scattering from the inhomogeneous object when it is illu-
minated by an incident field ei(r) (the time dependency
ejωt is omitted). Once the electric field e(r) in the ob-
ject is known, the scattered field es(r) is calculated as
the field, generated by the so-called contrast currents:

js(r) = jω [ε(r) − εb] e(r) = jωχ(r)e(r), (2)

es(r) = −jωµb

[

I +
1

kb

∇∇

]

·

∫

D

Gb(r−r′)js(r′)dr′,

(3)
where kb is the background wavenumber and µb the back-
ground permeability. Gb(r− r′) is the Green function of
the infinite background medium:

Gb(r − r′) =
e−jkb‖r−r′‖

4π‖r − r′‖
. (4)

To know the total field e(r) in D and thus the contrast
currents, the following equation is solved

e(r) = ei(r) + es(r), ∀r ∈ D, (5)

which is referred to as the domain equation. Eq. 3 is used
to calculate the scattered field in the receiver points and
is called the observation equation.

4. PARAMETERIZATION

In order to obtain a finite number of optimization vari-
ables, the permittivity profile ε(r) must be parameter-
ized. First the domain D is discretized using a uniform
cuboidal grid of A×B×C cells. Then the contrast χ(r)
is approximated by a piecewise constant function that has
one value in each cuboidal cell:

χ(r) =
A−1
∑

a=0

B−1
∑

b=0

C−1
∑

c=0

[εa,b,c − εb] Ψa,b,c(r), (6)

where Ψa,b,c(r) = 1 in cell (a, b, c) and zero elsewhere.
As for the fields in the domain D, the electric flux den-
sity d(r) = ε(r)e(r) rather than e(r) is expanded in 3D
rooftop functions [5] on the same grid or on a finer grid.

5. FORWARD PROBLEM

In every iteration of the optimization process a multiview
forward scattering problem has to be solved: for every
excitation along û

D
id,is

in rS
is

the field eid,is
(r) in D has

to be known to calculate es
id,is

(rR
ir

) · û
C
ic,ir

. Also the
derivatives of these fields with respect to the optimization
parameters εa,b,c are needed for the optimization. Analyt-
ical expressions for the derivatives can be obtained using
reciprocity and this results in

∂es
id,is

(rR
ir

)

∂εa,b,c

· ûC
ic,ir

=

jω

∫

D

Ψa,b,c(r
′) (eid,is

(r′) · eic,ir
(r′)) dr′, (7)

where eic,ir
(r) is the field in D due to a dipole excita-

tion along û
C
ic,ir

in rR
ir

. This means that for every an-
tenna, wether source or receiver, a forward problem must
be solved. Since the solution of a full-vectorial 3D scat-
tering problem is a computationally demanding task, two
accelerating techniques are used. The FFT method [5]
uses the convolution structure of Eq. 3 to accelarate the
calculation of the scattered electric field in D. In conjunc-
tion with an iterative solver this allows for rapid solution
of Eq. 5. The Marching on in Angle method is an ap-
plication of an extrapolation procedure described in [6].
The idea is to find a better initial estimate for the iterative
solution of a linear system based on a number of previous
solutions.

6. THE OPTIMIZATION ALGORITHM

6.1. Regularization

As mentioned in section 2 a regularization of the inverse
problem is necessary. The parameterization of ε(r) it-
self already alleviates the ill-posedness of the problem



by reducing the degrees of freedom. On top of this we
propose an alternative cost functional FR(ε) = F (ε)(1 +
ασ(ε)). The functional σ(ε) is always positive and penal-
izes strong local variations in the permittivity distribution
which can otherwise be induced by noisy data. In dis-
cretized form it is given by

σ(ε) =

A
∑

a=0

B−1
∑

b=0

C−1
∑

c=0

|εa,b,c − εa−1,b,c|
2

+

A−1
∑

a=0

B
∑

b=0

C−1
∑

c=0

|εa,b,c − εa,b−1,c|
2

+
A−1
∑

a=0

B−1
∑

b=0

C
∑

c=0

|εa,b,c − εa,b,c−1|
2
, (8)

where εa,b,c = 1 if a = −1, a = A, b = −1, b = B,
c = −1 or c = C. α is a positive real parameter that is
chosen based on very general a priori knowledge, such as
the maximal size of the object (already used to choose a
domain D) and an upper limit for the permittivity (already
used to choose a mesh size for the forward problem).

6.2. Newton Type Optimization Methods

Let ε and ε∗ be the vectors containing the coefficients
εa,b,c from Eq. 6 and their complex conjugate respec-
tively. For a real-valued function F (ε, ε∗), the gradient

vector g(ε, ε∗) and the hessian matrix H(ε, ε∗) are de-
fined:

g(ε, ε∗) =





∂F
∂ε

∂F
∂ε∗



 , H(ε, ε∗) =





∂2F
∂ε∂ε

∂2F
∂ε∂ε∗

∂2F
∂ε∗∂ε

∂2F
∂ε∗∂ε∗



 ,

(9)

In iteration k of Newton’s method the function F (ε, ε∗)
is approximated by a quadratic function, the minimum of
which serves as next iterate:

[

εk+1

ε∗k+1

]

=

[

εk

ε∗k

]

+

[

∆εk

∆ε∗k

]

=

[

εk

ε∗k

]

−
(

H
)−1

k
gk (10)

where the subscript k indicates evaluation in (εk, ε∗k).
Drawbacks of the method are the fact that convergence
may not occur when far from the solution, Fk =

F (εk, ε∗k) may not even decrease, Hk may not be positive
definite, which means that the quadratic approximation
does not have a minimizer and second order derivatives
of the scattered fields are needed, which cannot be easily
and economically calculated.

The explicit expressions for g and H in case of the least

squares cost function of Eq. 1 are:

g(ε, ε∗) =
1

F0





J
T [

E
s
(ε) − E

m
]∗

J
H [

E
s
(ε) − E

m
]



 (11)

H(ε, ε∗) =
1

F0

[

B J
T

J
∗

J
H

J B
∗

]

(12)

with

Jij =
∂Es

i

∂εj

and Bij =
∂2E

s

∂εi∂εj

T
[

E
s
(ε) − E

m
]∗

.

(13)
(·)T stands for transpose. When the submatrices B in the
Hessian matrix are neglected because of the appearance

of
[

E
s
(ε) − E

m
]∗

, which should become small, one ar-

rives at the Gauss Newton method. In iteration k, the
updates are then given by (the index k is omitted)

∆ε = −

(

J
H

J

)−1

J
H [

E
s
(ε) − E

m
]

. (14)

Applying the same approximation for the regularized cost
function FR(ε, ε∗) = F (ε, ε∗)(1+ασ(ε, ε∗)), one arrives
at

∆ε = −

(

J
H

J(1 + ασ) + αFΣ

)−1

×

(

J
H [

E
s
(ε) − E

m
]

+ αΩ

)

, (15)

with

Σij =
∂2σ

∂εi∂ε∗j
, and Ωi =

∂σ

∂εi

. (16)

Note that no second order derivatives of the scattered
fields are needed. Also, the reduced Hessian matrices in
Eq. 14 and Eq. 15 are always positive definite, so that
the update directions are always downhill. It should also
be mentioned that, to ensure decreasing values of the cost
function, it is better to consider the updates Eq. 14 and
Eq. 15 as directions along wich a line search is performed
to find the next iterate.

A second class of methods that avoid calculation of sec-
ond order derivatives is the class of the so-called quasi-
Newton methods. Again, Eq. 10 is used to find an update
direction along which the next iterate is located using a

line search.
(

H
)−1

k
, however, is not explicitely calcu-

lated, but is obtained by updating an initial positive defi-
nite matrix in every iteration, thereby using first order in-
formation. Eventually the updates become close approx-

imations to
(

H
)−1

k
. In this paper we used the BFGS

updating formula proposed by Broyden, Fletcher, Gold-
farb and Shanno [7] and take the unit matrix as starting
point. The advantage of such quasi-newton methods over
the Gauss-Newton method is that no linear system must
be solved in every iteration as in Eq. 14 and Eq. 15. Only
a matrix-vector multiplication is needed.



7. NUMERICAL EXAMPLES

The first reconstructed object is an inhomogeneous cube
of side 0.6λb, with λb the background wavelength. Per-
mittivities are 1.5εb for the outer cube and (2 − 2j)εb for
the inner cube (Fig. 2(a) and Fig. 2(b)). The antennas
are placed on circles with radius R = 2λb around the
center of the cube. Two measurement configurations are
used. Configuration 1 has 6 meridional circles, evenly
distributed on the sphere, each with 12 antennas. In this
configuration, two dipoles û

D
id,is

per source position rS
is

are used, the first tangential to the meridional circle and
the second perpendicular to the first and tangential to the
sphere. Configuration 2 has one circle in the xy-plane,
one in the xz-plane and one in the yz-plane, each again
with 12 antenna-positions. In this configuration only
meridional dipoles are used. All antennas act as both
source and receiver. The number of datapoints obtained
from the first configuration is 20736 and for the second
configuration we have only 1296 datapoints. The inver-
sion domain D is a cube with side λb and is discretized
using 10 × 10 × 10 cubes for both the inverse and the
forward problem. The data are generated with the same
forward solver as used in the reconstruction. Fig. 3 shows
the evolution of the cost function and the reconstruction
error errε for some inversions using the regularized cost
function of section 6.1 with α = 10−4. errε is defined as

errε =

√

√

√

√

1

ABC

A−1
∑

a=0

B−1
∑

b=0

B−1
∑

b=0

|εr
a,b,c − ε0a,b,c|

2

|ε0a,b,c|
2

(17)

where εr
a,b,c and ε0a,b,c are the reconstructed and true per-

mittivity values respectively. It is clear that the best re-
construction is obtained when no noise is present and
when the system is most overdetermined. For the recon-
struction from the data of configuration 2, wich are far
from complete, the reconstruction is less good, although
the cost function can be made very small. This is the ef-
fect of the non-uniqueness of the problem. For the recon-
struction from the noisy data, the iteration was terminated
once the cost function reached the noise level. Some re-
construction results are depicted in Fig. 2. From Fig. 3
it can also be seen that the quasi-Newton approach with
the BFGS formula results in a much slower convergence
than the Gauss-Newton optimization: after 100 iterations
the reconstruction error was still 0.106 and the cost func-
tion was only reduced to 6 · 10−5. Here the advantage
of not having to solve a linear system in every iteration
is completely annihilated by the large number of itera-
tions needed to converge to the desired accuracy. This
kind of behaviour was noticed in all our inversions with
the BFGS-method. Hence the Gauss-Newton method on
the regularized cost function seems better suited for 3D
inversion than the BFGS-method.

The second example is an inversion from measurements
obtained with the bistatic free space scattering measure-
ment facility of Institut Fresnel [1]. The object is a
polyethylene cube (ε = 2.4εb) with side 8 cm. The mea-
surements were performed at a frequency of 2 GHz. Ear-

lier simulations with an FFT solver showed good agree-
ment with the measurements [8]. For the reconstruction
only limited data were available: we used 2064 data-
points to invert for 3375 unknowns. Yet, the results are
promising, see Fig. 4.

8. CONCLUSIONS

The three dimensional inverse scattering problem was
solved using Newton-type optimization algorithms. Two
such methods were compared and the Gauss-Newton
method is found to be favourable. A multiplicative reg-
ularization was applied to the least-squares cost function
which resulted in satisfactory reconstructions after only a
few iterations.
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(a) Real part of ε-profile (b) Imaginary part of ε-profile (c) Real part of ε-profile

(d) Imaginary part of ε-profile (e) Real part of ε-profile (f) Imaginary part of ε-profile

(g) Real part of ε-profile (h) Imaginary part of ε-profile

Figure 2. Real (2(a)) and imaginary (2(b)) part of the true (relative) permittivity profile, reconstructed profile after 11
iterations for configuration 1 (heavily overdetermined system) without noise (2(c), 2(d)), reconstructed profile after 13
iterations for configuration 2 (slightly overdetermined stystem) without noise (2(e),2(f)) and reconstructed profile after 3
iterations for configuration 2 with noise: S/N = 30 dB (2(g), 2(h)).
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Figure 3. Reconstruction error (3(a)) and cost function (3(b)) for Gauss-Newton in configuration 1 without noise (solid),
Gauss-Newton in configuration 2 without noise (dashed), Gauss-Newton in configuration 2 with noise (signal to noise
ratio S/N = 30 dB) (×) and BFGS quasi newton in configuration 2 without noise (◦).

(a) Real part of ε-profile (b) Imaginary part of ε-profile

Figure 4. Real (4(a)) and imaginary (4(b)) part of the reconstruced (relative) permittivity profile after 4 iterations from
measured data. From comparison of the measurements with simulations the noise level is obtained: S/N = 27 dB. The
value of the regularisation parameter was α = 10−5
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