J2EE-based Middleware for Low Latency Service
Enabling Platforms

Bruno Van Den Bossche, Filip De Turck,
Bart Dhoedt, Piet Demeester
Ghent University - IBBT - IMEC
Department of Information Technology
Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium

Abstraci— While the Java programming language and the
J2EE platform are increasingly popular for implementing busi-
ness logic on backend platforms, new emerging Java technologies
such as JAIN SLEE and SIP Servlet are focusing on the develop-
ment of low latency Java applications. As J2EE mainly focuses
on enterprise applications with complex long lasting transactions,
this technology is considered unsuitable for applications with low
latency and high throughput characteristics.

This paper compares these telecom oriented Java technologies
to J2EE both in terms of functionality and through a detailed per-
formance evaluation, JVM performance tuning has been studied
as well and is explained in the paper. We performed a SIP Proxy
benchmark with strict low latency requirements of which the
results are presented. Furthermore, design guidelines for JZEE
applications are discussed to optimize for low latency behavior
together with an interpretation of the obtained performance
results.

I. INTRODUCTION

Java and J2EE are increasingly popular for developing large
scale backend applications. An important advantage of using
J2EE is that it simplifies managing complex transactions,
allows for a fast development of complex applications and it is
platform independent. Another feature of Java with important
implications is the use of a garbage collector. Java includes
automatic memory management (garbage collection) as a part
of the Java runtime. This means that very common errors made
by developers related to memory management cannot occur.
Since the garbage collection is part of the Java runtime it is
not completely under the control of the application developer.
One of the side effects of the garbage collection is that the
application execution can be paused, at unpredictable times,
to allow for garbage collection. These pauses are highly
undesirable when dealing with low latency services such as
Voice over IP (VoIP) offerings. Thus, the question arises
whether Java in general, and J2EE in particular are suitable
for applications with strict Jow latency requirements.

Apart from J2EE two new Java Application Frameworks
have emerged, namely JAIN SLEE and SIP Serviet. Both
are part of the Java APIs for Integrated Networks (JAIN [1])
which provide us with an extensive set of standardized APIs
to facilitate the development and deployment of telecom ser-
vices. Telecom applications often have very strict requirements
regarding throughput (e.g. the number of VoIP call setups a

Gerard Maas, Johan Moreels,
Bert Van Vlerken, Thierry Pollet
Alcatel
Research & Innovation
Copernicuslaan 50, 2018 Antwerpen, Belgium

softswitch can process per second) and latency (e.g. the setup
of a call should be very fast).

In this paper we will evaluate SIP Servlet as well as
JAIN SLEE and compare them against J2EE, which was not
originally designed for this type of applications, but has the
advantage it is a mature, well known technology.

The structure of this paper is as follows: firstly the Session
Initiation Protocol (SIP) and the use case for the benchmark
is briefly explained in Section II. Next a description of the
technologies is presented in Section III, highlighting the dif-
ferent architectures and features. A more detailed description
of the J2BE implementation of the selected use case is given
in Section V. Section V details the test setup used, followed
by the actual test results and design guidelines in Section VL
Final conclusions and future work are discussed in Section VIL

II. Low LATENCY SERVICES
A. Motivation

Easy deployment of services and combining existing ser-
vices is getting more important in current software and plat-
form architectures. For example the IP Multimedia Subsystem
(IMS) is an open standardized multi-media architecture for
mobile and fixed IP services [2]. It is a VoIP implementation
based on a variant of SIP, and runs over IP. The aim of IMS
is not only to provide new services but to provide all the
services, current and future, that the Internet offers. Massively
Multiplayer Online Gaming will be an important domain
requiring low latency and high throughput capabilities. Online
virtual worlds will become more pervasive and are already
stretching out into the real world through auctions of in-game
properties and game characters contacting you in real life thus
having the same requirements of existing telecom applications.
Convergence of these types of applications are a domain where
Service Enabling Platforms can play an important role, In this
paper we evaluate a VoIP use case with strict low latency and
high throughput requirements.

B. Session Initiation Protocol (SIP)

The Session Initiation Protocol is defined in RFC 3261 {3]
and describes an application-layer control (signaling) protocol
for creating, modifying and terminating sessions with one or
more participants. These sessions include Internet telephone

1-4244-0357-X/06/$20.00 ©2006 [EEE

This full fext paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

calls, multimedia distribution, and multimedia conferences.
REC 3261 also defines the use of SIP proxies and how they
should interact with other SIP applications and proxies.

The scenario used for testing is the Proxy 200 test, shown
in Figure 1 and defined in the SIPstone benchmark [4]. We are
interested in the time it takes to set up a call. This is the time
it takes from the initial INVITE of Alice till she receives an
OK from Bob, indicating the call is set up. Subsequently Alice
will send an acknowledgment to Bob saying she received the
OK and the media session (e.g. voice or video conference) can
start. When benchmarking the call was immediately terminated
by the caller and no media session was initiated.

[o=] [o=]

; T
: i
: INVITE !
3t
] i
| OTRYING[100] | INVITE

RINGING [180]

Response time

OK [200}

3

o e o s i e
1 MediaiSession t
L et e e

H BYE H ':
H
d

Fig. 1. Proxy 200 test used for the performance evaluation of the discussed
technologies

The SIP Proxy use case was chosen as it is an important
step in setting up a typical SIP Session and the requirements
are very well defined. Both low latency requirements and high
throughput requirements can be evaluated using this example.

11I. TECHNOLOGY DESCRIPTION

All technologies discussed are component based and offer
a container for the applications to be deployed and run in. A
major function of the container is the life cycle management
of the application (i.e. starting and stopping the application or
application components). Also a number of non-functionals
are delegated to the container in stead of the actual appli-
cation (e.g. logging, authentication, management of external
resources etc).

The global overview of a container managed framework is
shown in figure 2. In the container multiple applications and/or
application components are deployed. These components can
interact with each other and other data sources, such as a
database. Clients may interact directly with the application
or may interact with the application container through the use
of “Resource Adapters” (RAs) which manage communication
with the outside of the confainer.

The following sections describe each application framework
and a comparative overview is presented in table 1. For each
platform a SIP Proxy implementation has been evaluated. A

Data-
source

@pﬁcation Server
Application

1 Component

|

Application
Component
Resource
Java Virtual Machine \ Adapter

(QOperating System & Hardwﬂv
Application @ Application Client))

Fig. 2. Container based architecture that all of the discussed technologies
have in common.

Application
Component

//

detailed description of the J2EE implementation is given in
Section IV.

A. JZEE

A typical J2EE Application Server consists of both an Ap-
plication Container and a Web Container. The Web Container
hosts all web related application components such as HTTP
Servlets, Java Server Pages, etc. The application container
hosts J2EE applications composed of Enterprise Java Beans
(EJBs). There are three type of EIBs: Session Beans which
usually contain business logic, Entity Beans which represent
data and Message-Driven Beans which allow for asynchronous
communication,

J2EE supports communication with clients through its web
container, using HTTP, or application clients can interact
directly with application components using a J2EE application
client which performs Remote Method Invocation. Apart from
this there is also support for deploying J2EE Connector
Architecture Resource Adapters (RA) [5] into the application
server. Through the use of these RAs, which can be deployed
on any J2EE application server, it is possible to extend the
application server and support extra methods of communi-
cation. A well known example using the JCA is the Java
Message System (JMS). The J2EE Connector Architecture
was originally designed for implementing RAs to interface
with existing (legacy) systems, but it can be used in a more
general context to extend the J2EE application server with
extra protocol stacks.

B. SIP Servlet

The primary goal of the SIP Serviet API [6] is to simplify
the development of SIP enabled applications. By using the
existing servlet architecture it is relatively easy for developers
who are familiar with HTTP Serviets to create SIP enabled
applications. For each type of SIP Message a method is defined
to handle it. One example is a “dolnvite” method which will

1-4244-0357-X/06/$20.00 ©2006 EEE

This jull fext paper was peer reviewed at the divection of IEEE Communicotions Soclely suhject maiter experts for publication in the IEEE GLOBECOM 2006 proceedings.

TABLE 1

COMPARISON OF THE MAIN CHARACTERISTICS OF J2EE, SIP SERVLET AND JAIN SLEE

-

J2EE

SIP Serviet

JAIN SLEE

Design Goal

Manage complex business transactions and
data management.

Simplify SIP development.

Applications which require high through-
put and low latency event processing.

Architecture

Component based, Object Orientated archi-
tecture. Unit of logic is the EJB Support for
composition and reuse

Based on HTTP Servlets. Unit of applica-
tion logic is the Serviet. No standard model
for composition and reuse.

Component based, Object Orientated archi-
tecture Unit of logic is the SBB Support for
composition and reuse

Protocol
Support

Limited to RMI and HTTP by default. But
can be extended through the use of the
J2EE Connector Architecture.

Limited to SIP and HTTP. Can not be
extended by application programmers.

No protocols supported (protocol agnostic)
out of the box. Any protocol can be added
through the use of Resource Adapters.

Communication

Optimized for synchronous request-
response model. Support for event driven
fogic through Message-Driven Beans.

Optimized for synchronous

response model.

request-

Optimized for event driven logic. Limited
Support for synchronous request-response
model.

Clustering

Vendor specific extensions for clustering
multiple application servers.

Vendor specific extensions for clustering
multiple application servers.

Replication in cluster defined in the speci-
fication.

handle SIP INVITE messages. This technology is targeted
specifically toward SIP applications and is less generic than
J2EE or JAIN SLEE.

In the container multiple applications can be deployed, each
consisting of one or more SIP Servlets. Each application
also contains a deployment descriptor which describes the
application and tells the container which SIP message it
should direct to which servlets. The servlets can then process
the SIP messages and if necessary pass them on to other
servlets. Furthermore multiple serviets may process the same
SIP message.

The proxy implementation used for evaluating the platform
consists of one SIP Serviet and made use of the proxy
component part of the SIP Servlet specification. The SIP
communication is completely managed by the application
server and does not require any additional components.

C. JAIN SLEE

The JAIN Service Logic Execution Environment (SLEE)
specification [7] provides an application server tailored for
telecom. Applications are composed of Service Building
Blocks (SBBs) which are the equivalent of the J2EE EJBs. One
of the key features of the JAIN SLEE application container is
the use of asynchronous communication. Internally almost all
communication in the SLEE happens by using events. The idea
behind the event based communication between SBBs is that
every SBB performs its own task and then hands the result
off to the next SBB in line. One could compare this to an
assembly line in a factory

The internal routing is completely taken care of by the
application server. A key component in the routing of events
is the Activity Context which manages the links between
logically connected SBB entities. When an initial event (e.g. &
SIP IN'VITE) enters the SLEE an Activity Context is created.
The SBBs processing this event will be attached to this
Activity Context and all following events which logicaily
belong together (e.g. all events related to the same SIP call)
will be fired on the same Activity Context and processed by

the same SBB entity. This is important as the SBB entities
can share data on this Activity Context.

Communication with the outside world happens through
RAs. For example we have an RA for SIP related communica-
tions which accepts incoming SIP messages, parses them and
turns them into events understandable by the SLEE. Through
the use of RAs the SLEE can be protocol agnostic. This means
that any protocol can be supported by adding an appropriate
RA. To perform the SIP Proxy test a SIP Resource Adapter
was deployed in the application server together with a proxy
SBB. The proxy implementation consisted of one SBB which
accepted incoming SIP events and performed the necessary
routing.

IV. J2EE SIP PROXY ARCHITECTURE

This section will give a detailed overview of the SIP
Proxy Design in J2EE. To build a functional proxy, two
key components are required. A Resource Adapter to extend
J2EE with SIP capabilities and one or more components o
implement the actual proxy logic. An overview of the J2EE
SIP Proxy application is given in figure 3.

A. SIP Resource Adapter

Implementing an RA requires fuifilling a number of system
level contracts regarding the management of connections,
transactions and security. Furthermore, a listener interface
needs to be defined which listening application components
(Message-Driven Beans) have to implement to receive incom-
ing events. If required, custom event types can be defined
as well. In order to send outgoing messages a connection
interface must be defined which application components (an
J2EF component type) can use to connect to the RA.

To implement the SIP RA we used the publicly available
JAIN SIP [8] stack and exposed its API to the J2EE application
components. It is however possible to insert an extra layer of
abstraction and define a new API for SIP communications, just
like SIP Servlet does.

1-4244-0357-%/06/$20.00 ©2006 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Sociely subject maiter experis for publication in the IEEE GLOBECOM 2006 proceedings.

J2EE Application Server \
|

‘Work Manager

(App!icakion Container \\
Proxy MDB }‘l k
SB proxy MD’ ‘
Proxy MDB ’ i

=

Resource
Adapter

Fig. 3. Application architecture of I2EE SIP Proxy implementation. The RA
accepts SIP Messages and uses the Work Manager for multi-threading. The
Proxy MDB can then process the messages and uses the RA to send out SIP
Messages again.

B. Proxy Message-Driven Bean

The proxy logic of the implementation is embedded in a
Message-Driven Bean, This component registers itself to the
SIP RA and listens for any incoming SIP Messages. Upon
receiving a SIP Message it is determined which call it is part
of and the necessary routing is performed. Any responses Or
forwarded messages are sent using the SIP RA.

Message Driven Beans are stateless components and can
easily be pooled by the application server. Hence, if it is nec-
essary to maintain a certain state over multiple SIP Messages it
is required to keep this state manually. This can be done either
on the application side or inside the RA, which then needs
to provide the necessary methods to access this information.
In the current implementation all state considering the SIP
Sessions is maintained by the SIP RA.

C. Event Filtering

Based on the description so far, all SIP Messages that arrive
at the SIP RA will be sent to every application component.
This is usually not desirable and it can be a cause of overhead.
Furthermore, not every application or service is interested
in receiving every SIP Message. A billing component for
example only needs to know when a call is started and when
it is ended. All intermediate messages, are of no use and can
be discarded.

To allow this, an Event Filter was implemented which
accepts regular expressions that are added to the applications
deployment descriptor and can be used to filter out any
unwanted messages.

Y. TEST SETUP

Before we discuss the obtained results, a short overview of
the test setup used, is presented.

A. Software Setup

For benchmarking purposes SIPp {9] is used. SIPp is a free
Open Source test tool/traffic generator for the SIP protocol.
It allows generating SIP traffic and establishing and releasing
multiple calls. It can also read custom XML scenario files,
describing from very simple to complex call flows. It includes
a few basic SIPstone defined test setups. All tests in this
paper were performed using SIPp and the previously specified
scenario.

B. Hardware Setup

All tests were performed using a dual Opteron 242 (1.6GHz)
HP DL 145 with 2GB of memory for the proxy. The two
clients were run on AMD athlonXP 1600+ machines with
everything interconnected in a 100Mbit switched ethernet
network. All platforms were running Debian GNU/Linux with
a 2.6 kernel and the Sun JDK 1.4.2.

C. Platform Tuning

For all the presented test results extensive tuning of the JVM
and garbage collector was performed. Without tuning of the
JVM the garbage collector initiated pauses in the execution of
the application which resulted in calls to timeout, even at low
call rates. With appropriate tuning, these pauses can be min-
imized and thus the obtained results significantly improved.
The basic set of tuning options used for all platforms is shown
in table II. Detailed results of JVM tuning were previously
reported on in [10].

-Xmx512m [6))
-XX:NewSize=32m)
-XX:MaxNewSize=32m 3)
-XX:Max Tenuring Threshold=0)
-X¥:SurvivorRatio=128 (5)
-XX:+UseParNewGC 6)
_XX:+UseConcMarkSweepGC @)
SXX:A+CMSIncrementalMode ®)
XX:+CMSIncrementalPacing 9
-XX:CMSIncrementalDutyCycleMin=0 [§10)]
-XX:CMSIncrementalDutyCycle=10 (i

TABLE 11
VIRTUAL MACHINE TUNING OPTIONS FOR LOW LATENCY BEHAVIOR.

The options specified in table Il are specific to the Sun JVM,
but other virtual machines offer similar tuning options which
can be used to achieve the same effect. The memory managed
by the virtual machine is divided into muliiple generations
(Young, Tenured and Perm), depending on the age of the
objects. As objects live longer they are moved into the next
generation after a certain amount of time or a number of
garbage collections. By specifying the sizes of the generations
(1-3) and limiting the amount of time before an object is
promoted to the next generation (4-3), we can achieve that
objects lasting the whole call are moved to an older generation
very fastly. This is heneficial as the older generations do not
need 1o be garbage collected as often since the the majority of
objects die very young. The garbage collector itself can also
be tuned (6-11) to use multiple threads on multi-cpu machines

1-4244-0357-X/06/$20.00 ©2006 [EEE

This full text paper was peer reviewed af the direction of IEEE Communications Society subject matier experts for publication in the IEEE GLOBECOM 2006 proceedings.

and to work concurrently with the application execution for as
long as possible. This allows to limit the time the execution of
the virtual machine needs to be paused completely for garbage
collection.

VI, EVALUATION RESULTS

This section gives an overview of the obtained test results.
All platforms were submitted to a number of subsequent test
runs that allowed us to evaluate and interpret the obtained data.
Although setting up a session using SIP is not bound by the
same latency requirements of the VoIP media session itself, it
is necessary to achieve a low latency behavior as typically
6 to 7 hops, such as proxies, need to be traversed in the
network. Considering additional network delays when setting
up a SIP call using the specified scenario (see figure 1), 95% of
the acknowledgments for the INVITE messages should arrive
within 50ms and 50% should arrive within 25ms. Furthermore,
design guidelines are proposed to optimize the architecture and
implementation of J2EE applications for low latency behavior.

A. Performance Results

Figure 4 shows the performance results of the tested appli-
cation servers. The graphs show the average response time,
the 50" percentile and the 95 percentile plotied against the
average cpu load at the given call rate. As all tests were
performed on a dual cpu machine the cpu load is the average
of the load of the two cpus during the test.

During each test every call rate, starting at 10 calls per
second (caps) was run for 5 minutes. Then there was a pause
of 1 minute after which the subsequent call rate was tested.
The call rates were increased for as long the system under
test could sustain the tested call rate. Each such test run was
repeated three times to check consistency among the different
test runs. Before every test run a dummy run was performed
to allow the JVM to “warm up”. This is necessary as the
Virtual Machine will perform internal optimizations, try to
reuse allocated memory resources etc. which could influence
the measurements.

There is a significant difference in the maximum call rate all
the application servers can sustain that lies within the specified
requirements. For J2EE the maximum achievable call rate is
approximately 150 caps (at higher call rates some calls did
timeout), for JAIN SLEE this is 190 caps (at higher call rates
the latency requirements are not met anymore) and for SIP
Servlet this is 240 caps (at higher call rates some calls did
timeout). A general remark is that all application servers are
able to meet the low latency requirements for a certain call
rate. At a call rate of 150 caps, J2EE even shows the best
results regarding latency, although it is supposed to be the
slowest technology.

It is important to note that with the J2EE test the load was
not equally distributed over the two cpus. We assume this is
due to limitations of the SIP stack used. The implementation
of the JAIN SIP Stack used is a reference implementation, not
optimized for production use. Tests, previously reported on
in [11], show that an example proxy implementation based on

the same stack could only sustain a call rate of approximately
30 caps. This is also the reason why the cpu load does not
increase above 70% as the SIP Stack is overloading one cpu.
In the tests with the other application servers the load was
distributed more equally over the two cpus.

Figure 5 shows the response time distribution for a call
rate of 100 caps for each tested platform. The ceiling for
the number of calls completed, plotted on the Y-axis, has
been limited to a maximum of 1000 calls for clarity. For all
platforms the majority of the calls is answered within a few
milliseconds. This also shows in figure 4.

The tail of the distribution does show some distinct differ-
ences between the tested platforms. For J2EE (figure 5(a)) it
is very short and the vast majority of the calls is answered
within 30ms. For JAIN SLEE (figure 5(c)) and SIP Serviet
(figure 5(b)) the tail is much longer, however they are capable
of sustaining higher call rates. A possible cause for this
behavior is the J2EE Server used as different implementations
could have an influence on the application latency. However,
we verified the results by deploying the SIP RA on other
J2EE servers which performed similarly, excluding the J2EE
server as a possible cause of this result. Our feeling is that the
shorter tail of the distribution is caused by a difference in the
implementation of SIP Resource Adapter. The management of
SIP transactions and SIP dialogs is all included in the J2EE
SIP RA, whereas this is (partially) handled by application
components for SIP Serviet and JAIN SLEE.

B. J2EE Design Guidelines

An RA is responsible for its own thread and resource
management, it is in fact the only J2EE software component
allowed to create and manage threads by itself. However, it is
suggested to use existing features such as the Work Manager
which allows the RA to submit Work units. These Work units
are then scheduled and executed automatically, not requiring
the RA to explicitly manage the actual threads. As much actual
processing possible should be done inside Work units and the
processing in the RA should be limited to the receiving and
sending of messages.

By using this approach the RA implementation is simplified
as no manual thread management needs to be performed and
the actual core of the RA is restricted to receiving and sending
messages over the network. An additional benefit is that it
allows the J2EE application server to optimize the scheduling
of work for the entire application server whereas local thread
management inside the RA is limited to the threads and
resources managed by the RA itself.

Depending on the application and the services to be pro-
vided it can also be beneficial to embed more (or less) respon-
sibilities inside the RA. The SIP Proxy could for example be
embedded in the RA. Or the RA could be used to interact with
existing platforms. For example, t0 develop a billing service it
would be enough to be notified when a SIP call starts and when
it ends. All intermediate SIP Messages do not necessarily need
to be processed inside the J2EE container but could be handled
either inside a SIP Proxy RA or in an existing Proxy platform.

1-4244-0357-X/06/$20.00 ©2006 IEEE

This full text paper was peer reviewed at the divection of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

Response time as a function of call rate and system load Response time as a function

of call rate and system load Response time as a function of call rate and system toad

20 100 200 200 100
—a— Average response time (- Average response timez — System load | [To- Average resp time L——'System toad
180F! - 501 percentiie . T80 180} - 50th percentile | 90 180F) -« 50th percentile 80
- 981 il - h it e
160 percentite a0 160 95th percentile 80 160 95th percentile i 50
5 140 70 5140 70 140 70
£ g E £ E =
120 50 5 120 60 5 gt oy
2 3 2 H F 20, 60 3
3 100 so 3 100 50 2 g 100 50 -
4 = 2 g g
2 80 40 § 2 8o0) 0 § 2 80 0 §
& 60 30 80 A30 & 80 v 30
.
40 20 40 a0 40
20 e 10 20 10 20 >
A e 4 e A A e e g
4] 50 100 150 200 258 o 50 100 160 200 25% 0 50 100 150 200 25
Cali Rate (caps) Call Rate (caps} Call Rate (caps)
(a) J2EE (b) SIP Servlet (¢) JAIN SLEE
Fig. 4. The results of the SIP Proxy 200 test on all evaluated platforms.
Response time histogram for J2EE at 100 calls per second Response time histogram for SIP Servist at 100 calls per second Response time histogram for JAIN SLEE at 100 calls per second
1000; 1000 1000
900 900 9060
800 800 800
o o T
% £ 700 3 700
£ £ £
8 g 600 § 600
£ 2 £
3 g 500 § 0
° o 400 S 400
33 3 g
8 k-1 2
3 £ 300 E 300} &
z z z <
200 2001 |4
100; 100+
01 245, o 23 e el
80 80 100 0 20 40 0 80 100 4] 20 40 80 80 100
Response time (ms) Response time (ms) Response time {ms}
(a) J2EE (b) SIP Servlet (c) JAIN SLEE

Fig. 5. The response time distribution of the SIP Proxy 200 test

VI1I. CONCLUSIONS

In this paper we described the use of J2EE for low latency
use cases and compared it to both JAIN SLEE and SIP
Servlet. Based on the obtained results we can conclude that
Java technologies in general are suitable for low latency, high
throughput applications. All tested platforms were able to meet
the low latency requirements and could sustain a significant
call rate in the proxy 200 test.

The test results also show J2EE (although being limited
by the SIP Stack used) being capable of producing satisfying
results for this type of applications. As all technologies are
capable of achieving low latency performance, increasing the
capacity is possible by clustering multiple application servers.
Improving the low latency behavior usually is much more
complicated.

Depending on the type of application or Service Enabling
platform to create, J2EE, JAIN SLEE, SIP Serviet or a com-
bination of the different platforms are all suitable candidates
and decisions should be made based on the required base
functionality, service complexity and available development
time.

ACKNOWLEDGMENT

We would like o thank OpenCloud for providing us with a
license for their JAIN SLEE implementation Rhino and BEA
for providing us with a license for their Communications plat-
form. The research presented in this paper is partially funded

on all evaluated platforms for a call rate of 100 calls per second.

by the IBBT T-Case project. F. De Turck is a postdoctoral
Fellow of the Fund for Scientific Research - Flanders (FW.O.-
Vlaanderen).

REFERENCES

3. de Keijzer, D. Tait, and R. Goedman, “JAIN: A New Approach to Ser-
vices in Communication Networks,” IEEE Communications Magazine,
vol. 38, no. 1, pp. 94-99, January 2000.

3GPP, “3GPP A Global Initiative,” [online], http://www.3gpp.org/.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “Session Initiation Protocol,”
{online], 2002, hitp//www.ietf.org/rfc/rfc3261 (xtInumber=3261.

H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle, “SiP-
stone - Benchmarking SIP Server Performance,” [online], April 2002,
http://www.sipstone.org/.

(1]

{2]
(3]

[41

[5] Sun Microsystems, “12EE Connector Architecture 1.5 [online],
hitp:/iwww.jep.org/en/jsr/detail Tid=112.

[6] ———, “SIP Serviet APL” [online], http://jep.org/en/jsr/detail7id=116.

7 - “JAIN SLEE APl Specification,” [online],
http://jcp.org/en/jsr/detail 7id=22.

{8] M. Ranganathan and P. O’Doherty, “jain-sip: JAVA. API for SIP Signal-
ing,” [online}, https://jain-sip.dev.java.net/.

9] Hewleti-Packard, “SIPp SIP benchmarking utility,” [online],
http://sipp.sourceforge.net/.

{10} B. Van Den Bossche, F. De Turck, B. Dhoedt, and P. Demeester, “En-
abling Java-based VoIP backend platforms through JVM performance
ning,” 2006, to be published in the proceedings of The Ist [EEE
workshop on VolP Management and Security: VoIP MaSe co-located
with IEEE NOMS 2006.

[11] B. Van Den Bossche, F. De Tarck, B. Dhoedt, T. Pollet, B. Van Vlerken,

J. Moreels, N. Janssens, P. Demeester, and D. Colle, “Evaluation of
Current Java Technologies for Telecom Backend Platform Design,”
in Proceedings of the 2005 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems, July 2005,
pp. 699-709.

1-4244-0357-%/06/$20.00 ©2006 IEEE

This full text paper was peer reviewed af the direction of IFEE Communications Sociely subje

of matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

