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Abstract

Characterisation of productivity–diversity relationships forms an essential step towards a
better understanding of biodiversity. In terrestrial systems this is a topical subject and most
studies reported a hump-shaped relationship. For marine systems, however, the number of
studies dedicated to this is low despite the high interest in this productivity–diversity
relationship.

The present study reports on meiofauna density/diversity patterns in relation to resource
availability as an indicator for the productivity of the ecosystem. Standardised meiofauna
samples were collected in tropical seagrass beds from three localities (Kenya, Mexico, the Phil-
ippines) in order to contrast local patterns with a more global scale. Although these sites were
physically comparable, a range of resource availabilities was found. These differences between
localities were mainly due to different tidal regimes and related input of organic matter. At all
sites a significant positive effect of resource increase on meiofauna densities was found. This
positive effect was less clear for meiofauna diversity. Highest density and diversity levels were
reported for the Kenyan site and this is probably linked to a high tidal range. Pooling all local-
ities together resulted in a significant positive linear relationship between resource availability
and meiofauna density/diversity. Caution should be taken when choosing resource indicators.
Chlorophyll a concentrations, for example, resulted in a positive density–productivity
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relationship while organic carbon content, an indicator for more refractory material, showed a
negative relationship. In all cases, no hump-shaped relationship could be found suggesting
that each ecosystem and each group of organisms may show a particular productivity–diver-
sity/density relationship.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The relationship of primary productivity and species diversity on a regional scale
is not straightforward (e.g., Mittelbach et al., 2001; Rosenzweig & Abramsky, 1993)
although unravelling the mechanisms driving these relationships is of fundamental
importance for a better understanding of determinants of biodiversity (Huston,
1994; Mittelbach et al., 2001). Despite the attention for this topic, considerable con-
troversy remains concerning the general shape of this relationship, what organisms
fit particular models, and what mechanisms produce the patterns (Abrams, 1995;
Waide et al., 1999).

Evidence for a hump-shaped relationship is accumulating: as productivity rises,
first diversity increases, then it declines (for overview see Mittelbach et al., 2001). Til-
man (1982) developed a theory that predicts this and he suggested that various plant
data would fit it. Later on, it was illustrated for other organisms, e.g., desert rodents
(Abramsky & Rosenzweig, 1984) and bacteria (Kassen, Buckling, Bell, & Ralney,
2000). More recently, several authors have documented other forms of the produc-
tivity–diversity relationship (e.g., Waide et al., 1999; see Mittelbach et al., 2001 for
review). Worm and Duffy (2003) suggested that biodiversity–productivity relation-
ships are often bi-directional, such that changes in biodiversity can be both cause
and consequence of changes in productivity.

However, these relationships rest on controversial surrogate variables of un-
known ability to stand in for productivity. Productivity is strictly defined as the rate
at which energy flows through an ecosystem. But in all research cited, ecologists have
used an index of productivity which is linked to resource supply (Worm, Lotze,
Hillebrand, & Sommer, 2002).

In addition, the productivity–biodiversity relationship is known to be scale-depen-
dent (Chase & Leibold, 2002; Wright, Currie, & Maurer, 1993). At a local scale, the
relationship may follow the expected hump-shaped curve, whereas at a regional scale
the relationship is often positively linear (Chase & Leibold, 2002; Wright et al.,
1993).

While these relationships are being studied in much detail for terrestrial systems,
the knowledge of such patterns in aquatic systems is limited. In the latter ones, the
supply of resources is often governed by depth as it determines the availability of
light for photosynthesis (e.g., Smith, 1978). Rex (1981) showed that diversity of
many bottom-dwelling marine taxa (e.g., Gastropoda, Polychaeta, Protobrancha,
Cumacea) follows a hump-shaped pattern with productivity. In his overview,
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Mittelbach et al. (2001) concluded that hump-shaped relationships were particularly
common in aquatic systems.

Although reported as mesotrophic in the nutrient control model of Birkeland
(1977, 1987, 1988a, 1988b), seagrass beds are known as resource-rich systems in trop-
ical regions. In addition to the carbon of the plants themselves, seagrasses are typi-
cally covered by a prominent biofilm that consists mainly of microalgae, bacteria,
etc. (e.g., Decho, 2000; Moncreiff & Sullivan, 2001; Pollard & Kogure, 1993). Due
in large part to the productivity of these epiphytes, the primary productivity of sea-
grass beds is generally several times higher than that of adjacent unvegetated habi-
tats (Moncreiff, Sullivan, & Daehnick, 1992). In addition, seagrass beds get
carbon input from nearby coastal systems such as mangrove forests (e.g., Bouillon,
Moens, & Dehairs, 2004). Several studies aimed to study the origin of carbon in these
systems (e.g., Fleming, Lin, & Sternberg, 1990; Holmer & Bachmann Olsen, 2002;
Marguillier, van der Velde, Dehairs, Hemminga, & Rajagopal, 1997) rather than
to unravel the effects of total resource availability on consumers.

Based on field experiments, Edgar (1999) found that invertebrate communities in
seagrass beds are primarily structured by food availability, particularly in the form
of seagrass debris for epifauna and fine organic particles for infaunal meiofauna
(nematodes), and show little direct dependence on structural characteristics of sea-
grass beds. Macrofaunal and meiofaunal organisms largely consume algae, and
associated protists and bacteria, and hence are secondary producers reliant directly
and indirectly on primary production. It is generally expected that the diversity of an
entire trophic level should respond to a change in productivity (Leibold, 1999;
Rosenzweig, 1995).

The present case study aimed to test the dependence of meiofauna on resource
availability. We hypothesize that a local increase in resources (mainly food) will pro-
mote meiofauna densities. Secondly, we question how resource change would have
an impact on meiofauna diversity at higher taxon level. In view of the scale-depen-
dent productivity–biodiversity relationship suggested by Chase and Leibold (2002),
local (within a site) versus global patterns (between sites) were included. Therefore,
three structurally comparable seagrass beds world-wide (Kenya, Mexico, the Philip-
pines) were selected in order to test whether a positive effect of organic matter on
meiofauna is a general rule. These sites had very similar physical characteristics
but represented a range of resource availabilities (see characterisation of sites).
2. Material and methods

2.1. Sampling sites

Three sampling sites were included in the present study: Gazi Bay (Kenya, 4�22 0S
and 39�30 0E; sampling between 10/7/96 and 7/8/96), Punta Allen (Mexico, 19�47 0N
and 87�28 0W; sampling between 10/7/97 and 7/8/97) and Pujada Bay (the Philip-
pines, 6�56 0N and 126�16 0E; sampling between 24/5/98 and 23/6/98) (Fig. 1). The
selection of these sampling sites was based on the circumtropical distribution of



Fig. 1. Location of the three sampling sites on a global and local scale. Sampling period is indicated for
each site. Sampling sites are located within the distribution region of the seagrass Thalassia association
(Brazier, 1975) (indicated by the dotted line).
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seagrass species of the Thalassia association (including the seagrass genera Syringo-

dium, Halodule and Thalassia) as defined by Brazier (1975) (Fig. 1). Furthermore,
these regions were listed among the 25 biodiversity global hotspots of the world
based on species endemisms and degree of threat (Myers, Mittermeier, Mittermeier,
da Fonseca, & Kent, 2000).

2.2. Benthic meiofauna

Benthic meiofauna was sampled using PVC meiocores of 3.6 cm inner diameter
(surface of 10 cm2). Meiocores were randomly inserted into the sediment down to
a depth of 10 cm and were vertically subdivided on site into the following depth hori-
zons: 0–1 cm, 1–2 cm, 2–3 cm, 3–4 cm, 4–5 cm and 5–10 cm, using a standard Hagge
corer for vertical sectioning (Fleeger, Thistle, & Thiel, 1988). All samples were ob-
tained by snorkelling under a water cover between 1 and 2 m. Samples were pre-
served with warm (60 �C) buffered formaldehyde in freshwater to a final
concentration of 4% (Vincx, 1996).

In each sampling site, triplicate samples were taken at random within zones of 3
seagrass species (of the genera Syringodium, Halodule and Thalassia). Within each
zone, two 5 · 5 m quadrats were selected, situated on two transects and separated
approximately 500 m from each other. Both transects represent a series of samples
along a gradient of seagrass species and were perpendicular to the beach as the sea-
grass zones were parallel to the beach.
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Taking into account the 6 depth horizons, this sampling design yielded a total of
3 · 2 · 3 · 6 = 108 samples per site (seagrass species · qaudrats on transect · repli-
cates · depth horizons). In order to report major trends, meiofauna density (ind./
10 cm2) and diversity (number of taxa, see further) of samples of transects and rep-
licates were averaged per seagrass species, resulting in a total of 18 samples per site (6
depth horizons · 3 seagrass species).

In the laboratory, samples were rinsed with a jet of freshwater over a 1 mm sieve,
decanted ten times over a 38-lm mesh sieve, centrifuged three times with Ludox
HS40 (specific density 1.18), and finally stained with Rose Bengal. Meiofauna was
sorted and enumerated at higher taxon level using a Wild M5 binocular. Meiofauna
taxa identification was based on Higgins and Thiel (1988). Meiofauna groups col-
lected were: Cnidaria, Turbellaria, Gnathostomulida, Gastrotricha, Nematoda, Rot-
ifera, Kinorhyncha, Loricifera, Priapulida, Gastropoda, Bivalvia, Polychaeta,
Oligochaeta, Sipunculida, Tardigrada, Halacarida, Ostracoda, Cephalocarida,
Copepoda, Amphipoda, Cumacea, Isopoda, �nauplii� and insect larvae.

2.3. Resources availability

Per quadrat (5 · 5 m) two sediment samples for resource analysis were taken with
a core of 6.2 cm inner diameter, and subdivided into 6 depth slices as explained for
the meiofauna. These samples were immediately stored frozen until further analysis.
Part of the sediment was dried for 4 h at 110 �C and used for organic matter analysis
(total organic matter, %TOM) by measuring weight loss after ignition at 550 �C for
2 h. %TOM was used as a broad measure for the more refractory detritus, i.e., low
quality food that refers to older material from, e.g., mangroves, decomposed sea-
grass leaves.

Per quadrat, triplicate small (�1 ml) sediment samples from the different depth
layers were taken with a syringe (with the lower end cut-off) and stored frozen. These
samples served for the chromatographic analysis of the phytopigment chlorophyll a.
Pigments were extracted in 90% acetone at 4 �C in the dark and separated by reverse
phase liquid chromatography on a Gilson C-18 HPLC-chain (fluorometrical and
spectrophotometrical detection) according to a modified protocol of Mantoura
and Llewellyn (1983). Chlorophyll a concentrations were used as a measure for mic-
roalgae and indicate the presence of �fresh� detritus. As chlorophyll a is an indication
for labile phytoplankton, it is quickly decomposed and suggests an unstable food
availability for meiofauna (e.g., Decho & Fleeger, 1988; Greiser & Faubel, 1988;
Tietjen, 1968). Taking into account the quality of the material rather than the quan-
tity of the available resources, the fraction chla/%TOM was used as a measure for
the pool of consumable organic matter.

2.4. Statistics

Linear regressions (best fitting linear curves) between meiofauna density/diversity
and resource levels were analysed with the STATISTICA software package (Stat-
Soft, 1995). Differences in meiofauna density and diversity between sampling sites
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were tested with one-way ANOVA after a Cochran�s C-test to check the assumption
of homoscedasticity. A post hoc Tukey HSD test for equal n was used for pairwise
comparison between sites (Zar, 1996).
3. Results

3.1. Available resources in relation to meiofauna density and diversity: local patterns

3.1.1. Characterisation of each sampling site

In each sampling site a highly significant positive correlation (p < 0.001) was
found between the chla/%TOM fraction and meiofauna density (Fig. 2). The corre-
lation between meiofauna diversity and chla/%TOM was never significant (correla-
tion line not shown).

In Kenya the chla/%TOM fraction varied between 0.12 and 1.03. Average (±stan-
dard error) meiofauna density corresponding to these food conditions was 732 ± 150
ind./10 cm2. An average (±standard error) number of 15.1 ± 0.7 taxa was counted.

In the Mexican samples, however, this fraction was only half of the Kenyan sam-
ples with values between 0.06 and 0.51. Corresponding lower meiofauna density (on
average 254 ± 35 ind./10 cm2) and lower average taxon diversity (11.5 ± 0.5 taxa)
were recorded in Punta Allen (Mexico).

Moreover, the fraction available food for meiofauna was even less in Mati (the
Philippines), ranging between only 0.002 and 0.102 of the total amount of organic
matter available (%TOM). In this site, meiofauna density was on average 285 ± 33
ind./10 cm2 and diversity dropped down to 8.2 ± 0.4 taxa.

The higher values of the fraction chlorophyll a/%TOM in the Kenyan sampling
site (Fig. 2, top) were linked to a wider range of organic matter i.e., ranging from
1.5 to 4.9%TOM (Fig. 3(a)). The lowest values in this range (on average
1.7 ± 0.1%TOM over all depth layers) were found at the high intertidal level where
samples were collected near Halodule wrightii. Thalassia hemprichii was characterised
by an average of 3.6 ± 0.2%TOM. The highest values were noted for the sediment
samples collected near Syringodium isoetifolium (4.3 ± 0.2%TOM). In the Mexican
seagrass bed (Fig. 3(b)) %TOM varied in a narrow range between 3.9 and 4.9,
whereas %TOM ranged between 3.2 and 4.2 in the Philippines (Fig. 3(c)).

In addition to these different %TOM concentrations, the geographic locations
were characterised by highly significant differences (F(2,51) = 8.6, p < 0.001, one-
way ANOVA) in meiofauna density. The highest numbers of meiofauna taxa
(15 ± 0.7 taxa) and meiofauna density (730 ± 150 ind./10 cm2) were noted in the
Kenyan site (Fig. 3(a,c)). A post hoc Tukey HSD test for equal n indicated no sig-
nificant differences in meiofauna density between the Mexican (255 ± 35 ind./10 cm2)
(Fig. 3(b,e)) and the Philippines site (283 ± 33 ind./10 cm2) (Fig. 3(c,f)), while both
sites were significantly different from the Kenyan samples (Tukey HSD, p < 0.01).

Secondly, chlorophyll a concentrations (Fig. 3(d)–(f)) were highest in the Kenyan
samples (Fig. 3(d)) ranging from 0.5 to 4.4 lg/g. There was a significant positive cor-
relation between chlorophyll a level and meiofauna density (p < 0.01, r2 = 0.44,



Fig. 2. Meiofauna characteristics (density and diversity) versus available resources expressed as fraction
chlorophyll a of % total organic matter (%TOM) in each sampling site. Meiofauna densities are indicated
by filled circles and plotted along the left y-axis; meiofauna diversities are indicated by open circles and
plotted along the right y-axis. Regression equation is given above each figure.
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Fig. 3. Percentage total organic matter (%TOM) (a–c) and chlorophyll a concentration (d–f) versus
meiofauna density (left axis) and diversity (right axis) for each sampling site. Meiofauna densities are
indicated by filled circles and plotted along the left y-axis; meiofauna diversities are indicated by open
circles and plotted along the right y-axis. Depth horizons were indicated as 1 (0–1 cm), 2 (1–2 cm), 3 (2–
3 cm), 4 (3–4 cm), 5 (4–5 cm) and 6 (5–10 cm). In case of significant regression, the regression equation is
given at the bottom of each figure.
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Fig. 3(d)) but not between chlorophyll a and meiofauna diversity (p = 0.2). In the
two other sites (Fig. 3(e,f)), chlorophyll a concentrations were much lower and a
highly significant (p < 0.001) positive correlation was found with meiofauna density.



Fig. 4. Global trend of meiofauna characteristics (density and diversity) versus available resources
expressed as (a) primary production in terms of chlorophyll a (lg/g sediment) and (b) % total organic
matter (%TOM) from three circumtropical seagrass sites. Meiofauna densities are indicated by filled circles
and plotted along the left y-axis; meiofauna diversities are indicated by open circles and plotted along the
right y-axis. Regression equation is given above each figure. Dotted lines indicate 95% confidence bands.
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Meiofauna diversity was also significantly positively related to the fresh available
primary production (chlorophyll a) but the correlation was much weaker with
p < 0.01 and p < 0.1; r2 = 0.47 and r2 = 0.17 at the Mexican and the Philippines sites,
respectively. At all locations, the highest values of chlorophyll a were concentrated in
the top sediment layers.

3.2. Available resources in relation to meiofauna density and diversity: a global trend?

When pooling meiofauna data for the three sampling sites, a highly significant po-
sitive correlation (p < 0.001) was found between chlorophyll a levels and meiofauna
density (r2 = 0.46) and diversity (r2 = 0.51) (Fig. 4(a)).

However, the relation between benthic meiofauna density/diversity and %TOM
(Fig. 4(b)) was much weaker with r2 = 0.14 (density) and r2 = 0.03 (diversity). The
correlation was even not significant for diversity (p = 0.25) but was highly significant
for density (p < 0.01). In contrast to the positive correlation with chlorophyll a, the
slope was negative for both density and diversity as an increase in organic matter
(%TOM) coincided with a lower meiofauna density and diversity.
4. Discussion

In spite of the increasing interest for productivity–diversity relationships, the ma-
jor source for different outcome of these studies is the surrogate for productivity that
was used. Typically, ecologists try to find an index of productivity which is linked to
resource supply (Worm et al., 2002). Moreover, this index is often selected depending
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on the group of organisms that was studied. As a result of all this, the described rela-
tionships rest on controversial surrogate variables of unknown ability to stand in for
productivity. In the present study, we used mainly indicators of primary production
(chlorophyll a, % total organic matter) as surrogates for productivity in tropical sea-
grass beds. Clearly, this selection was related to the group of organisms that was
studied. Meiofaunal organisms are metazoans between 38 lm and 1 mm and are
known as important consumers of primary production (e.g., Danovaro, Gambi, &
Mirto, 2002; Gee, 1989).

In addition, this case study aimed to document productivity–diversity relation-
ships at the higher taxon level while most previous studies reported on the species
level (e.g., Abramsky & Rosenzweig, 1984; Rex, 1981). Our rationale for studying
taxon rather than species diversity are: (1) the taxonomic limitations of different mei-
ofaunal groups, especially in tropical ecosystems (e.g., about 70% of meiofaunal
harpacticoid copepods in these regions are new to science, De Troch, 2001); (2) food
preferences and strategies within a specific meiofauna group are far from known.
Species-specific food preferences are only documented for a few nematode (e.g.,
Moens, Verbeeck, de Maeyer, Swings, & Vincx, 1999; Ólafsson, Modig, & van de
Bund, 1999) and copepod species (e.g., Buffan-Dubau & Carman, 2000; De Troch,
Steinarsdóttir, Chepurnov, & Ólafsson, 2005; Pace & Carman, 1996) and may imply
that certain levels of productivity will be used in different ways, i.e., less or more
intensive so certain segments of the productivity range will be characterised by lower
or higher species diversity. The use of higher taxa may skew the resolution of the
diversity trends, however, it is hard to say whether this would consequently result
in a hump-shaped relationship between productivity and diversity. For this, small-
scale experiments with a range of available resources and number of species to har-
bour would be a step forward. However, field or laboratory experiments would only
resolve some of the questions as historical information and evolution would be ne-
glected. Moreover, the naturally available range of resource is of major importance
in this context.

In terms of resource availability for meiofauna, the sampling sites covered a wide
range, although they were structurally comparable as similar seagrass species belong-
ing to the so-called Thalassia association (Brazier, 1975) occurred. We found that
chlorophyll a/%TOM ratio ranged from 0.002 to 1.03 which spans almost three or-
ders of magnitude. In view of their high production, seagrass beds have a high nutri-
ent demand (Holmer, Andersen, Holmboe, Kristensen, & Thongtham, 2001). As
nutrient concentrations in seawater are typically low in tropical seas, this nutrient
demand of seagrasses appears to be met by efficient systems of nutrient trapping, up-
take and recycling (Erftemeijer & Middelburg, 1995; Hemminga & Nieuwenhuize,
1991). Nutrient recycling can be accomplished through rapid in situ decomposition
of seagrass-derived organic matter within the seagrass beds, although the rate of
decomposition of detritus may be constrained by nutrient limitation as the decom-
posing plant tissues have lower nutrient contents than the decomposing bacteria
(Fenchel, King, & Blackhurn, 1998).

Another important source of detritus in seagrass ecosystems results from exported
mangrove litter (Alongi, Boto, & Tirendi, 1989; Hemminga et al., 1994), but yet it is
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not clear whether seagrass beds are net sinks or sources of dissolved inorganic and
organic matter (Holmer et al., 2001). In their study on benthic processes along a
mangrove-seagrass transect, Holmer et al. (2001) found a minor variation in benthic
mineralisation along the transect, suggesting that the mineralizable pool of organic
matter was of similar magnitude at all sites.

In the nutrient control model of Birkeland (1977, 1987, 1988a, 1988b), seagrass
ecosystem rank among mesotrophic systems whereas corals are characterised by
lower nutrient input (oligotrophic) and sponges occupy the other extreme end of
the scale (eutrophic). From this model, we expect that an increase in primary produc-
tion (mainly in the water column) would result in reduced light levels reaching the
benthos and the seagrasses. Algal growth is reduced and the bottom community be-
comes dominated by suspension-feeding animals such as epifaunal bivalves, barna-
cles, massive sponges and ascidians. As such, an increase in productivity (related
to the decreasing phase of the humped-shaped relationship) would inextricably lead
to the disappearance of seagrass plants and associated fauna. The lack of a wide
range of resources availability within seagrass beds may be a first explanation why
no hump-shaped relationship could be found in the present study.

Although local variability was not included in detail (but see De Troch, Fiers, &
Vincx, 2001, 2003), our results suggest that local processes that govern each site
clearly differ between sites but yet are complex. Local differences in the studied sea-
grass beds are primarily related to the fact that samples from different seagrass spe-
cies and different depth horizons were included, resulting in a variety of niches for
meiofauna. The wide range of %TOM in Gazi Bay can be explained by the large tidal
range that occurs along the Kenyan coast. Gazi Bay experiences semi-diurnal tides,
with spring and neap tide ranges of 3.2 and 1.4 m, respectively (Kitheka, 1997). At
this almost meso-tidal site (tide range between 2–4 m, Davies, 1964), the lowest
%TOM was noted towards the beach suggesting a kind of dilution, �run-off�, of or-
ganic matter towards the beach. In this sense, the lowest values (Halodule wrightii)
correspond to a low amount of local seagrass material. In spite of the run-off and
possible loss of organic matter on the meso-tidal site (Kenya), meiofauna density
and diversity were highest in the Kenyan site.

In contrast to Kenya, the two other sites are characterised by a micro-tidal (tide
range < 2 m, Davies, 1964), almost atidal, regime with little to no visible difference
between low and high tide. One would expect that a low tidal movement results in
a lower input of fresh material from surrounding waters (e.g., from adjacent man-
groves). In addition, less phytoplankton in combination with more refractory detri-
tus material from the autochthonous seagrass plants could be expected.

The global analysis of all sites together yielded opposite trends depending on the
measure used for the available resource (i.e., chlorophyll a or %TOM). This different
outcome illustrates that the selection of an appropriate standard for resources avail-
ability in seagrass beds, or marine ecosystems in general, is not evident as opposite
trends may emerge from it. The opposite trend of both correlations is clearly the re-
sult of a different bio-availability of organic matter in both measurements. In this
sense, the fraction chlorophyll a/%TOM (Fig. 5) gives a more reliable measure, espe-
cially on a global scale. This overall figure (Fig. 5) supports a highly significant



Fig. 5. Global trend of meiofauna characteristics (density and diversity) versus available resources
expressed as fraction chlorophyll a of % total organic matter (%TOM). Meiofauna densities are indicated
by filled circles and plotted along the left y-axis; meiofauna diversities are indicated by open circles and
plotted along the right y-axis. Regression equation is given above each figure. Dotted lines indicate 95%
confidence bands.
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positive linear relationship between this fraction of directly accessible resources and
meiofauna density and diversity in sediment of seagrass beds.

In addition, the intersite differences can also be due to the fact that we collected
samples in different years, though in the same season. So, interannual variance can
be considered as a possible source of variability of the data.

On both local and global scale, a linear relationship between meiofauna taxon
diversity and productivity was found. Although Chase and Leibold (2002) illustrated
that the productivity–diversity relationship depends on the spatial scale that is stud-
ied. They found a hump-shaped relationship on a local scale (i.e., among the ponds
studied) whereas the same data analysed on a regional scale (among watersheds)
were positively linear. However, Mittelbach et al. (2001) found that a hump-shaped
relationship was especially common (65%) in studies of plant diversity and in studies
conducted in aquatic systems. All this suggests that the hump-shaped relationship is
not as universal as expected and that each ecosytems and maybe each group of
organisms may show a particular trend.
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