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Abstract 

Recent developments in cellular and molecular biology require the accurate quantification of 

DNA and RNA in large numbers of samples at a sensitivity that enables determination on 

small quantities. Five current methods for nucleic acid quantification have been compared: 1) 

UV absorbance spectroscopy at 260nm, 2) Colorimetric reaction with the orcinol reagent, 3) 

Colorimetric reaction based on diphenylamine, 4) Fluorescence detection with reagent 

Hoechst 33258 and 5) Fluorescence detection with thiazole orange reagent. Genomic DNA of 

three different microbial species (with widely different G+C content) was used as well as two 

different types of yeast RNA and a mixture of equal quantities of DNA and RNA. 

We can conclude that for nucleic acid quantification a standard curve with DNA of the 

microbial strain under study is the best reference. Fluorescence detection with reagent 

Hoechst 33258® is a sensitive and precise method for DNA quantification if the G+C content 

is lower than 50%. In addition this method allows quantification of very low levels of DNA 

(ng-scale). Moreover, the samples can be crude cell extracts. Also UV absorbance at 260nm 

and fluorescence detection with thiazole orange reagent are sensitive methods for nucleic acid 

detection, but only if purified nucleic acids have to be measured. 
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1 Introduction 

Whereas in the past the genetic potential of a microbial strain was improved by the iterative 

process of random mutagenesis and screening, the advent of recombinant DNA techniques 

and functional genomics made a goal-oriented approach for genetic modification possible 

(Metabolic Engineering) [1]. However, in most cases the construction of a producer strain did 

not turn out to be as straightforward as was initially presumed. Indeed, in complex metabolic 

networks, it is often a difficult task to ad hoc predict the impact, both qualitatively and 

quantitatively, of a genetic intervention [2]. Moreover, as the focus in metabolic engineering 

is shifting from massive overexpression and inactivation of genes towards the fine tuning of 

gene expression [3, 4], the need for a reliable, quantitative predictor, i.e. a model, is rapidly 

growing. Based on a given metabolic model, different computational tools for simulation, data 

evaluation, system analysis, prediction, design and optimization have been developed [5]. A 

central element of metabolic models is biomass, mainly composed of proteins, lipids, DNA 

and RNA. The accurate quantification of DNA and RNA for large numbers of samples at the 

highest possible sensitivity is required in order to obtain accurate data for the parameter 

estimation of those models. 

A wide variety of methods have been used to quantify both RNA and DNA and assumptions 

have been made of both steady state and dynamic metabolic modelling. For example, 

Neidhardt and Umbarger [6] considered the ratio of the components of biomass of 

Escherichia coli to be constant. Several metabolic models are based on this assumption [7-

12], where nucleic acids determination was based upon both UV absorbance spectroscopy at 

260nm and the colorimetric diphenylamine reaction. In contrast, Pramanik and Keasling [13], 

presented a stoichiometric model of E. coli in which the ratio of biomass compounds is 

growth-rate dependent using the empirical formula described by Churchward et al. [14, 15]. 



Others [16-18] follow this assumption but DNA and RNA levels were determined using UV 

absorbance at 260nm. 

 

The applied methods to quantify nucleic acids can be classified based on their detection 

principle namely spectrophotometric and fluorometric. In this study, we have assessed the 

performance of five nucleic acid quantification methods: 1) UV absorbance spectroscopy at 

260nm [19-21]; 2) colorimetric reaction of orcinol with the carbohydrate moiety of the 

nucleic acid [22-24]; 3) colorimetric reaction of deoxyribose sugar with diphenylamine in a 

mixture of acetic acid and sulphuric acid [19, 25-30]; 4) fluorescence detection after non-

intercalatively binding of Hoechst 33258 with high specificity to double-stranded DNA [19, 

31-33] and 5) fluorescence detection after complexation of thiazole orange with nucleic acids 

[31, 34]. We have used genomic DNA of three different bacterial species (with different G+C 

content): gDNA from Clostridium perfringens (DNA_C, 26.5%GC), gDNA from Escherichia 

coli (DNA_E, 50%GC) and gDNA from Micrococcus luteus (DNA_M, 72%GC). We also 

used two different types of yeast RNA: RNA type III from Saccharomyces cerevisiae 

(RNA_S) and RNA type VI from Torula yeast (RNA_T) and a mixture of equal quantities of 

DNA_E and RNA_S (DNA_RNA) to investigate the interference of DNA and RNA in the 

different methods. 

 

2 Materials and methods 

2.1 Chemicals and solutions 

Tris, diphenylamine, Hoechst 33258® reagent, HCl, H2SO4, thiazole orange reagent and 

glacial acetic acid were obtained from Sigma (Belgium); NaCl, CaCl2, ethanol, HClO4 and 



FeCl3.6H2O from VWR (Belgium). EDTA and acetaldehyde were obtained from Across 

(Belgium). 

2.2 Nucleic acid analysis 

2.2.1 Nucleic acid standards 

Genomic DNA of five different species with varying G+C content: gDNA of Clostridium 

perfringens type XII (DNA_C, 26.5%GC), gDNA of Escherichia coli type VIII (DNA_E, 

50%GC), gDNA of Micrococcus luteus type XI (DNA_M, 72%GC), gDNA of Calf thymus 

type IV (42%GC) and gDNA of herring testes type XIV (43%GC), two different types of 

RNA: RNA type III from Saccharomyces cerevisiae (RNA_S) and RNA type VI from Torula 

yeast (RNA_T) and a mixture of equal quantities of DNA_E and RNA_S (DNA_RNA) were 

used. All nucleic acids were purchased from Sigma (Belgium). EB-buffer (10mM Tris-HCl 

pH8.5) was used as solvent. 

2.2.2 UV absorbance spectroscopy at 260nm 

Nucleic acid measurements were performed as described by Sambrook and Russell [20]. 

Absorbance data (A = log I/I0) were collected using a UVIKOM 922 (BRS, Belgium) 

spectrophotometer. The absorption of DNA and RNA is maximal at 260nm. The extinction 

coefficients of nucleic acids are the sum of the extinction of each of their constituent 

nucleotides. For large molecules however, where it is impractical or impossible to sum up the 

coefficients of all nucleotides, an average extinction coefficient is used. According to 

Sambrook and Russell [20], for double-stranded DNA, the average extinction coefficient is 50 

(µg/ml)-1 cm-1; for single stranded DNA or RNA the average coefficient is 38 (µg/ml)-1 cm-1. 

Also, for single-stranded DNA and RNA the values 37 and 40 (µg/ml)-1 cm-1 are found, 

respectively. Thus, using a 1cm length path, 1 A260 unit equals 50µg/ml double-stranded DNA 

or 38µg/ml single-stranded DNA or RNA. 



2.2.3 Colorimetric reaction with orcinol  

The measurements were performed as described by Endo [23] with some minor modifications 

to simplify the procedure. 0.5ml sample was added to 0.5ml orcinol solution (0.1% orcinol 

and 0.1% FeCl3.6H20 in concentrated HCl) in double. The 2 Eppendorf tubes were incubated 

at 100°C for 2min to quantify DNA and 15min to quantify all nucleotides (DNA+RNA), 

respectively, followed by immediate cooling under running water and putting on ice to stop 

the reaction. After cooling the Eppendorf tubes, taken out at 2min, were allowed to incubate 

at 37°C for 2h and the absorbance at 600nm was measured using a UVIKOM 922 

spectrophotometer. The absorbance of the solutions, taken out at 15min, was measured 

immediately after cooling. Blanks (EB-buffer) were included for both methodologies.  

2.2.4 Colorimetric reaction with diphenylamine  

The measurements were performed based on the Burton diphenylamine method [25]: 1ml of 

4% diphenylamine in glacial acetic acid was added to 0.5ml test volume solved in 1M H2SO4. 

The reaction mixture was kept overnight (16h) at 30°C. Two different absorbance 

wavelengths were tested, encoded DPA_1 and DPA_2. In method DPA_1, the colouring was 

measured by reading the absorbance at 600nm as described by Dische [26]. In method 

DPA_2, the resulting blue colouring was measured as the absorbance difference between 

595nm and 700nm as described by Giles and Myers [28]. They reported that measuring the 

595nm-700nm absorbance difference, eliminates the error due to turbidity generated by 

precipitation of impurities during incubation, as the absorbance of these impurities is the same 

for both wavelengths. EB-buffer was used as a blank. 

2.2.5 Fluorescence detection with Hoechst 33258® 

The nucleic acid determination was performed as described by Bachoon et al. [34] with some 

modifications. Hoechst solution was fresh made by adding 4ml Hoechst 33258® (0.5µg/ml) to 



5ml 10x TNE buffer (1M NaCl, 10mM EDTA, 0.1M Tris-HCl pH7.4) and 41ml MiliQ-H2O. 

0.5ml sample was added to 1ml Hoechst solution and a black 96-well microtiter-plate was 

filled with 100µl Hoechst-sample mixture. As a blank 0.5ml EB-buffer was used. Different 

excitation wavelengths and emission wavelengths have been reported [20, 31, 32, 34, 35]. 

Three pairs of excitation/emission wavelengths were used: 360nm excitation/ 460nm emission 

(H1), 360nm excitation/ 465nm emission (H2) and 356nm excitation/ 458nm emission (H3). 

The measurements were performed with a Spectramax Gemini XS (Molecular Devices, 

Belgium). 

2.2.6 Fluorescence detection with thiazole orange (TO) 

The measurements were performed as described by Berdalet and Dortch [31]. 0.5ml sample 

(in EB-buffer) was added to 0.55µM thiazole orange solution (in ethanol) and 1.45ml 

TrisCa2+ buffer (132.4mg/l CaCl2, 5.84g/l NaCl, 12.11g/l Tris-HCl pH 7.5). Black 96-well 

microtiter-plates were filled with 100µl mixture and readings were carried out at 511nm 

excitation wavelength and 533nm emission wavelength with auto cut off on a Spectramax 

Gemini XS. 

2.2.7 Statistical analysis 

The different methods can not be compared directly, as they do not give the same response 

and are not applicable to the same range of concentrations. Most methods work well in the 

range of 100 µg/l nucleic acid, while the Hoechst methods are more sensitive and measure in 

the range of 1 ng/l nucleotides. Therefore, for each method the concentrations and responses 

(absorbance or fluorescence) were rescaled between zero and one. The statistical package R 

[36] was used to perform the linear regression on those rescaled data and to calculate the 95% 

confidence intervals. 



The quality of the different nucleic acid quantification methods is mainly determined by the 

slope of the response variable (absorbance or fluorescence) to concentration. The lower this 

slope, the less sensitive the method. However, the slope is not the only important parameter. 

Also the variance on the slopes should be taken into account. Therefore each slope is divided 

by its variance. This value represents the reliability of the method. 

After performing the linear regression, the residuals were calculated. A boxplot of these 

residuals was made using the statistical package R. This boxplot enables one to compare the 

different quantification methods for the different nucleotides. 

 

3 Results and discussion 

3.1 Sensitivity of the methods  

Varying concentrations of the different nucleic acids were measured using an average 

extinction coefficient (50 or 38) as described above. For each DNA/RNA species a linear 

regression was performed using the statistical package R (data not shown). From this linear 

regression the average extinction coefficient was calculated. Table 1 illustrates that the 

“standard” of an average extinction coefficient of 50 is only valid for Escherichia coli gDNA 

(50%GC). As to the other bacterial species, this reference does not hold. It is clear that 

different species give different average extinction coefficients. This is due to the differing 

G+C content and the nucleotide sequence structure. Consequently, it is essential to generate a 

standard curve for each gDNA species under study, in order to produce highly accurate data 

for metabolic modelling. DNA from calf thymus or from herring testes should not be used as 

standard although this has been reported in literature [37]. 

 

Table 1 



 

In the lower part of figure 1, the slope of the linear regression for each combination of method 

and type of nucleic acid is depicted. This is a measure for the sensitivity of a method to 

different nucleic acids. However, to compare the methods in a statistically way, the slope was 

divided by their variance. This measure is depicted in the upper part of figure 1. 

 

Figure 1 

 

As reported in the literature [20, 31, 32, 34, 35], the diphenylamine and Hoechst 33258® 

based methods are only able to detect DNA, whereas the other tested protocols can also be 

used to quantify RNA. 

For all methods, one can thus conclude that it is preferable to use a standard curve on the basis 

of nucleic acids of the microbial strain under study. 

Although UV absorbance at 260nm is one of the most popular methods for nucleic acid 

quantification, it requires extremely pure samples of nucleic acids, due to the interfering 

absorbance of contaminating molecules. As can be seen in figure 1 the method is not really 

reliable for DNA/RNA mixture. For the other nucleic acid types, the method is quite sensitive 

and reliable. 

The sensitivities of the orcinol method are significantly differing for the distinct nucleic acids, 

except for DNA_C and DNA_M. Thus, it seems better to use the nucleic acid from the 

species under study as a reference to compute a standard curve. The reliability of RNA_T, 

RNA_S and DNA_RNA are smaller than for the other nucleic acid types.  

It can be concluded that there is no significant difference between the two procedures for the 

DPA method. However, this method can not be used for RNA quantification. Moreover there 

is a significant difference between DNA_C and the other two DNA’s (DNA_E and DNA_M). 



DNA_E and DNA_M are not significantly different in sensitivity, but DNA_E shows a higher 

reliability. Although, it is better to use as standard the nucleic acid from the species under 

study, for DNA_E and DNA_M, these standards can be interchanged. 

From three excitation/emission wavelengths pairs tested in the Hoechst protocol, the third one 

(H3) is the most reliable. As reported in the literature [20], the fluorescence intensity 

increases proportionally with the A+T content of the DNA. For gDNA with a G+C content 

lower than 50, the sensitivity of the method increases but the reliability decreases. The results 

confirm that Hoechst 33258® preferentially interacts with the A/T rich regions of the DNA 

helix; the log10 of the intensity of fluorescence increases in proportion with the A+T content 

of the DNA. Because Hoechst 33258® has little affinity for proteins or rRNA, cell lysates or 

purified preparations of DNA can be used for DNA quantification. This method allows the 

detection of nanogram quantities of DNA. 

In contrast with Hoechst 33258®, it can be concluded that for fluorescence detection with 

thiazole orange, the intensity of fluorescence of gDNA increases with the G+C content of the 

gDNA. Hansen et al. [38] and Jacobsen et al. [39] have reported that the homodimeric 

thiazole orange (TOTO) binding is sequence selective at 5’-CTAG-3’ and 5’- CCGG-3’ sites. 

This might explain the increase in fluorescence intensity with the G+C content. This method 

is less sensitive for RNA. 

3.2 Comparison of the different methods 

To be able to compare the different quantification methods for the different nucleotides, 

residuals were calculated after performing a linear regression. The boxplot of these residuals 

can be found in figure 2. Each entry represents a nucleic acid species/method combination. 

RNA and DNA/RNA mixtures for the methods DPA and Hoechst 33258® were not included 

in the figure as they are not suitable for RNA quantification. 

 



Figure 2 

 

Although the colour reaction with diphenylamine has been studied and modified many times 

[19, 25, 27-30], figure 2 shows clearly that it is not a precise method for DNA quantification 

(high spread of the residuals in figure 2). 

Whereas the colorimetric reaction of orcinol with the sugar component is described as a 

widely used method for the estimation of RNA, D-ribose and other pentoses [22, 23], this 

method is only precise for DNA quantification, not for RNA and DNA/RNA mixtures. This 

might be explained by the reaction mechanism described by Brückner [22]. The colour 

development due to the reaction of carbohydrates and mono-or poly-hydric phenols heated in 

the presence of strong mineral acids is usually attributed to the formation of furfurals from 

pentoses which condense with phenolic reagents to give coloured products. 

As can be seen in figure 2, the Hoechst 33258® method becomes more and more accurate for 

DNA quantification when the G+C content decreases. However DNA_C (26.5%GC) shows 

more variability. 

Both UV absorbance spectroscopy at 260nm and fluorescence detection with thiazole orange 

are good methods for nucleic acid quantification. However, for DNA/RNA mixtures, UV 

absorbance at 260 shows more variability and is thus less suitable. 

4 Conclusion 

Recent developments in cellular and molecular biology require the accurate quantification of 

DNA and RNA in large numbers of samples at a sensitivity that enables determination on 

small quantities. In this study, five state of the art methods for nucleic acid quantification have 

been evaluated using different bacterial gDNA and yeast RNA types. It was found that for 

nucleic acid quantification, a standard curve with DNA from the species being assayed is the 

best reference. Fluorescence detection with Hoechst 33258® is a sensitive and precise method 



for DNA quantification provided that the G+C content is lower than 50%. In this case, the 

method allows quantification of very low levels of DNA (ng-scale). Moreover, even crude 

cell extracts can be used as sample. On the other hand, every nucleic acid species can be 

quantified with UV absorbance at 260nm or fluorescence detection with thiazole orange 

reagent provided that the samples are purified. 
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Figure legends 
 
Figure 1 

 

The lower part (sensitivity) represents the slope of the concentration versus the response for 

each species of nucleic acid/method combination. For each method both the concentration and 

the response (absorbance or fluorescence) were rescaled between zero and one. Thus no 

method comparison is possible here. The error bars represent the 95% confidence interval. In 

the upper part of the figure, each slope is divided by his standard deviation (reliability). This 

way, different methods can be compared. 

 

Figure 2 

Box plots for each nucleic acid/method combination after rescaling the response for each 

method between zero and one. RNA and RNA/DNA mixtures for the methods DPA and 

H33258 were not included because these methods can not quantify RNA. 

 

 

Table legends 
 
Table 1  

The calculated average extinction coefficient divided by the theoretical average extinction 

coefficient (50 (µg/ml)-1 cm-1) for gDNA from different species 
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