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Abstract. We investigate the behaviour of an asynchronous single-wavelength fiber delay line
(FDL) buffer by means of a continuous-time queueing model. Through a limit procedure, pre-
viously obtained results for a discrete-time queueing model are translated to a continuous-time
setting. The two important cases of exponentially distributed burst sizes and deterministic burst
sizes are discussed in detail.
The performance of asynchronous optical buffers proofs to be similar to that of synchronous
optical buffers: a reduction in throughput due to the creation of voids on the outgoing channel
and a burst loss probability that is strongly influenced by the choice of FDL granularity. The
optimal value of the latter depends on the burst size distribution and the offered load. Synchron-
isation is found to be advantageous, yielding a lower loss than the asynchronous case for the
same offered load.
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1 Introduction

All-optical packet-switching is a promising network technology. Nowadays, major cities are
connected by dense wavelength division multiplexing (DWDM) links, enabling transmission
capacities well beyond the Tbit/s. Packet switching over these optical links, however, requires
that the transmission speeds over the links are matched by equivalent switching capacities in
the nodes. As current packet switches perform data processing in the electronic domain, there
is a growing discrepancy between channel capacity and switching capacity. All-optical packet
switching (OPS) could alleviate the problem, by processing data in the optical domain [1]. As
mature technology is expected to be still a few years away [2], optical burst switching (OBS)
has been proposed as an intermediate solution [3,4,5].

Both optical packet and optical burst switching suffer from (output port) contention in the
switches and therefore equally require contention resolution. Whenever two or more data pack-
ets arrive at a network node at the same time and contend for the same output, external blocking
occurs. All packets but one are perceived as superfluous, and have to be dealt with. Next to the
obvious choice of dropping all excess packets, literature [6,7] typically presents three solutions:
buffering, deflection routing or wavelength conversion. Optical buffering uses fiber delay lines
(FDLs) to delay the light, and is regarded as the most effective [7], but comes with the additional
cost of the FDLs.



Analytic results concerning the loss and queueing behaviour of optical buffer systems are
given in, amongst others, [8,9,10]. In [8], an asynchronous FDL buffer with Poisson arrivals
of bursts with exponentially distributed lengths is investigated. Synchronous FDL buffers are
studied in [9] and [10] by means of a probability generating functions (pgf’s) approach. In
particular, the latter paper concerns the performance analysis of a synchronous optical buffer.
The results obtained therein will constitute a starting point for our current contribution, dealing
with the asynchronous case. Compared to a slotted (i.e., synchronous) network, an unslotted
network is expected to be technologically more complex due to control issues. However, an
unslotted network could turn out more opportune, for reasons of robustness and flexibility. We
refer to e.g. [11] for details.

2 Model

We study a single outgoing channel, where contention is resolved by means of an FDL buffer.
The FDL buffer cannot delay bursts for an arbitrary period of time, but only for multiples of a
basic unit D, called the granularity. Buffers of this type are said to be degenerate, and contain
(N + 1) FDLs with lengths kD for k = 0, . . . , N . Each incoming burst is routed to the shortest
of these FDLs such that the burst will not overlap on departure with bursts from the other FDLs.
If such an FDL cannot be found, the burst is dropped. Typically, bursts are delayed for more
time than strictly needed. This extra delay results in so-called voids, i.e., periods during which
the output channel remains unused, despite of the fact that the system is not empty. Void-filling
policies could be used to minimize this loss in throughput, but we do not consider these here.

For ease of analysis, we will assume in Section 3 that the buffer has an infinite amount of
FDLs at its disposal, i.e., N = ∞. Heuristics are then obtained in Section 4 for finite N , based
on the results for N = ∞.

Considering the evolution of the buffer contents over time, one can distinguish three im-
portant variables. Numbering bursts in the order of their arrival, the first variable, the burst
inter-arrival time τk, captures the time between the kth arrival instant and the next. The second
variable is the burst size Bk, measuring the time needed for transmission of the kth burst. The
third important variable is the scheduling horizon Hk as observed by the kth burst upon arrival.
This quantity represents the time between the instant of arrival, and the earliest instant by which
the previous burst (and all its predecessors) will have left the system.

The relation between these variables can be described by the following equation:

Hk+1 =

[

Bk + D

⌈

Hk

D

⌉

− τk

]+

(1)

The expression dxe is the ceiling of x, i.e., the smallest integer greater than or equal to x. The
notation [x]+ is standard shorthand for max(x, 0). When the kth burst sees a scheduling horizon
Hk upon arrival, it will have to be delayed for at least that amount to avoid contention. Since the
buffer is degenerate, this delay cannot be realized exactly (in general), the closest match being
given by D dHk/De. Delaying and transmitting this burst pushes the scheduling horizon (just
after arrival) to Bk + D dHk/De. Taking then into account the burst inter-arrival time τk, and
the possibility that the system becomes empty, one easily obtains equation (1). Note that it is
valid for both continuous-time (CT) and discrete-time (DT) systems.



To analyze equation (1), we need to impose certain restrictions on the distribution of τk

and Bk. We assume the τk to form a sequence of iid (independent and identically distrib-
uted) random variables (rv’s), having a common memoryless distribution. The burst sizes Bk

also form a sequence of iid rv’s, and can have a general distribution. In the below, every time
both CT and DT variables occur under the same name, we denote DT variables with a prime,
e.g. D′, and leave CT variables unchanged, e.g. D. In DT, we will use the probability gen-
erating function (pgf) of the probability mass function (pmf), that is, for the burst sizes Bk,
B(z) = E[zB′

k ] =
∑∞

n=1 znPr[B′
k = n] . In CT we use the Laplace-Stieltjes transform (LST) of

the probability density function (pdf), where we have B∗(s) = E[e−sBk ] =
∫∞

0
e−sxb(x)dx. As

for the inter-arrival times, being memoryless, we have a geometric distribution in DT, with mean
1/p: Pr[τ ′

k = n] = p · p̄n−1 , n = 1, 2, ... (We use the standard notation p̄ = 1 − p.) In CT, we
have an exponential distribution, with arrival intensity λ: Pr[τk ≤ x] = 1 − e−λx , x ≥ 0. The
expressions for the corresponding pgf and Laplace transform are τ(z) = E[zτ ′

k ] = pz
1−p̄z

and

τ ∗(s) = E[e−sτk ] = λ
λ+s

.

3 Analysis

In this section, we take a look at the infinite system. All derivations assume the system is stable.
On this condition, the distributions of Hk converge, for k → ∞, to a unique stochastic equilib-
rium distribution, independent of the initial system conditions. The pgf and Laplace transforms
obtained are associated with this equilibrium. By H we will denote a generic rv following that
distribution (and likewise for other rv’s involved). Stability requires the offered load ρ to be be-
low some maximum value ρmax that is typically less than unity (unlike in conventional queues,
see e.g. [12]). This is also commented upon below.

We present a limit procedure to obtain, among others, the Laplace transform of H in the
continuous-time setting. This consists in taking appropriate limits for the slot size becoming
infinitely small, mapping results from the discrete-time setting to the continuous-time setting.
Before continuing, we note that two separate non-linear effects can be observed in (1): the
operation [x]+ and dxe. The former effect, related to the non-negativeness of the buffer content,
one could call the queueing effect, and requires us to analyze H = [B + F − τ ]+. The latter
effect, related to the finite granularity of the FDLs, one could call the FDL effect, and calls
for analysis of F = D

⌈

H
D

⌉

. Note how values of H are mapped to multiples of D. Below,
both effects will first be analyzed separately. Results will then be combined to yield the overall
solution.

3.1 Results for synchronous systems

In [10], both the queueing effect [x]+ and the FDL effect dxe were studied in a discrete-time
setting. The queueing effect yielded the following relation between the pgfs of the variables
involved:

H(z) =
p

z − p̄
B(z)F (z) + K ′ z − 1

z − p̄
(2)

The FDL effect leads to following relation:

F (z) =
∑

k

1

D′

zD′

− 1

zεk − 1
H(zεk) (3)



where the symbols εk = ej 2πk/D′

represent the D’ different complex D’th roots of unity, and
the summation index k runs over −D′/2 < k ≤ D′/2 (taking on integer values only). Note
that in [10], the summation ran over 0 ≤ k < D′. For our present purposes, however, using
−D′/2 < k ≤ D′/2, turns out to be more convenient.

Using the property that F (zεk) = F (z), which follows directly from the fact that the random
variable F is always an integer multiple of D′, one can combine (2) and (3). With the identity

xD′−1

zD′ − xD′
=
∑

k

1

D′

1

(zεk) − x
(4)

(evaluated at x = p̄), the expression simplifies to

F (z) = K ′

(

p̄D′−1(zD′

− 1)

zD′ − p̄D′

)

·

(

1 −
∑

k

1

D′
·
zD′

− 1

zεk − 1

pB(zεk)

(zεk) − p̄

)−1

(5)

The constant K ′ follows from the normalization condition F (1) = 1, as

K ′ =

(

1

p
− E[B′] −

D′ − 1

2
−
∑

k 6=0

1

εk − 1

p

εk − p̄
B(zεk)

)

·

(

Dp̄D′−1

1 − p̄D′

)−1

Having determined F (z), H(z) then follows readily from (2).

3.2 Limit procedure

Our scope is to derive, for the asynchronous system, the LST H∗(s) of the equilibrium distri-
bution of the scheduling horizon H as seen by arrivals. In this subsection, we discuss a limit
procedure, to retrieve H∗(s) from H(z).

To correctly convert results from discrete time to continuous time, one should first observe
quantities in the discrete domain. A distinction can be made between time-related quantities
and counting-related quantities. The former scale with the slot size ∆, the latter do not. For
example, the scheduling horizon H ′ (in slots) actually represents H ′∆ in absolute time. We can
also find a simple relation between the pgf and LST, as

H∗(s) = E[e−sH ] = lim
∆→0

E[(e−s∆)H′

] = lim
∆→0

H(e−s∆)

i.e., we need to substitute z by e−s∆ in the pgf H(z) before taking the limit ∆ → 0. The average
inter-arrival time 1/p scales as 1/(λ∆), the granularity size as D′∆ = D.

Applying this limit procedure on the DT solution (2) for the queueing effect yields

H∗(s) =
λ

λ − s
F ∗(s)B∗(s) − K

s

λ − s
(6)

(In taking the limit, here and in the following, the rules of de l’Hôpital need to be applied
frequently, to deal with e.g. indeterminate forms of type 0/0.)

Concerning the FDL effect, equation (3) results in

F ∗(s) =
∑

k

1

D

1 − e−sD

s + j 2πk/D
H∗(s + j 2πk/D) (7)



where k now runs from −∞ to +∞ (taking on integer values only).
Note that F ∗(s) is periodical too, in the sense that

F ∗(s) = F ∗(s + j 2πn/D)

for any n ∈ Z. This property now allows combining (6) and (7) to yield

F ∗(s) =

(

−K
∑

k

1

D

1 − e−sD

λ − (s + j 2πk/D)

)

·

(

1 −
∑

k

1

D

1 − e−sD

t

λB∗(t)

λ − t

∣

∣

∣

∣

t=s+j 2πk/D

)−1

A further simplification can be made by using

∑

k

1

D

1

λ − (s + j 2πk/D)
= −

1

1 − e(λ−s)d

which follows from applying the limit procedure on (4). We then find

F ∗(s) =

(

K
1 − e−sD

1 − e(λ−s)D

)

·

(

1 −
∑

k

1

D

1 − e−sD

t

λB∗(t)

λ − t

∣

∣

∣

∣

t=s+j 2πk/D

)−1

(8)

This is exactly the expression we would have found applying the limit procedure directly to (5).
The remaining unknown constant K can be determined, either by applying the limit proce-

dure once more, or by imposing the normalization condition F ∗(0) = 1. The final result reads

K =

(

1

λ
− E[B] −

D

2
−
∑

k 6=0

λ

t − λ

B∗(t)

t

∣

∣

∣

∣

t=s+j 2πk/D

)

·

(

−
D

1 − e−λD

)−1

(9)

Equations (6), (8) and (9) together fully specify H∗(s). This result was derived through a
limit procedure. Note, however, that a direct approach yields identical results. One can do such
by directly solving the queueing effect and FDL effect consecutively. Here, this method is not
further discussed, and we refer to [13] for this approach.

4 Heuristics for the Burst Loss Probability

Results up to now related to an optical buffer of infinite size. In order to obtain the burst loss
probability (BLP) in a finite system, i.e., a system with only (N + 1) fiber delay lines (realizing
delays in the set {0, D, . . . , ND}) one can rely on heuristics, as explained next.

For conventional queues, fed by a Poisson process of bursts of iid size, a relation exists
between (the distributions of) the unfinished work in an infinite system and that in a finite
system of, say, capacity M, see e.g. [14]. This relation leads to an expression for the loss ratio
(LR) in the finite system of the form

LR =
(1 − ρ)

ρ

Pr[W∞ > M ]

1 − Pr[W∞ > M ]



where W∞ denotes the unfinished work in the infinite system (as seen by arrivals). When dealing
with degenerate buffers, one can translate this into a heuristic for the BLP

BLP ≈
(1 − ρeq)

ρeq

Pr[H∞ > ND]

1 − Pr[H∞ > ND]
(10)

Here, H∞, the scheduling horizon in an infinite optical buffer, fulfills the role of W∞, ND is
the capacity of the system and ρeq is the so-called equivalent load, i.e., the load on the system
taking into account the overhead created by the voids.

We can again combine results of the synchronous FDL buffer [10] with the limit procedure
to find expressions for the unknown quantities ρeq and Pr[H∞ > ND] in heuristic (10).

The equivalent load in the synchronous setting is given by

ρ′
eq = λE[B′

eq] = p

(

E[B′] +
D′ − 1

2
+
∑

k 6=0

1

εk − 1

pB(εk)

εk − p̄

)

The limit procedure then easily leads to the equivalent load in the asynchronous setting. One
finds

ρeq = λE[Beq] = λ

(

E[B] +
D

2
+
∑

k 6=0

λ

t − λ

B∗(t)

t

∣

∣

∣

∣

t=s+j2πk/D

)

The mean equivalent burst size (E[B ′
eq] or E[Beq]) consists of the mean burst size, about half

the delay line granularity, and a term taking into account the finer details of the burst size
distribution (through its pgf B(z) or LST B∗(t)). One can show that the asynchronous system
becomes unstable when λ is such that ρeq = 100%.

The tail probabilities Pr[H∞ > ND] that appear in heuristic (10) can be computed by an
(approximate) inversion of the LST H∗(s), using a dominant-pole approximation. It was shown
in [10] that for synchronous buffers one has

Pr[H∞ > ND′] ≈
cst′

zND′

0

Here, z0 is the dominant pole of H(z) (and of F (z)). It is real, positive and larger than 1.
This approximately geometric behaviour occurs under rather mild conditions on the burst size
distribution, a sufficient (yet not necessary) condition for the burst size distribution is to have a
rational pgf. The constant cst′ follows from residue theory and is given by

cst′ = −
1

z0

D′

zD′

0 − 1

(

lim
z→z0

F (z)(z − z0)

)

Applying the limit procedure once more, we find that for asynchronous buffers

Pr[H∞ > ND] ≈
cst

γN

where we introduced γ = e−s0D = lim∆→0 zD′

0 for convenience. Here, s0 denotes the dominant
pole of H∗(s) and F ∗(s) along the negative real line. In general, a simple bisection algorithm
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Fig. 1. BLP vs. granularity for exponentially distributed burst sizes

(with possibly an initial search for the appropriate starting interval) suffices to determine γ
numerically. In some cases, an explicit expression can also be found.

For small BLP, a modified heuristic

BLP ≈ (1 − ρeq)
Pr[H∞ > ND]

1 − Pr[H∞ > ND]
(11)

(i.e., dropping the factor ρeq in the denominator in (10)) turns out to be more accurate. In the
following, we will refer to (10) as ”heuristic A” and to (11) as ”heuristic B” respectively.

It is worth to point out that the same heuristics can also be used to evaluate the BLP in
overloaded systems, i.e., when the equivalent load exceeds 100%. Strictly speaking, no equi-
librium distribution then exists for e.g. H∞. The transform H∗(s) that is used to approximate
Pr[H∞ > ND], however, remains a proper function. Formally then, one can still compute the
quantities Pr[H∞ > ND], the only caveat being that γ is then to be found in the interval [0, 1),
i.e. s0 > 0. The expression for the constant cst remains the same. (When the equivalent load
is exactly 100%, s0 = 0 and γ = 1. In principle, this requires somewhat modified expressions.
Here, we do not pursue this issue further.)

5 Numerical Examples

In this section, we take a look at the BLP of two special cases for the burst size distribution:
the exponential and deterministic. For both of them, the infinite sum appearing in e.g. equation
(8) or (9), can be removed. One obtains closed-form formulas for the LSTs and performance
measures derived therefrom. As for the derivation, we confine ourself to saying that, for both
special cases, an efficient method is to derive results in discrete time (see [15]), and obtain
continuous-time results appling the limit procedure, as explained in Section 3.2.

In Figure 1, numerical results for the case of exponentially distributed burst sizes are shown.
It compares results from simulation (points connected by dotted lines) with those obtained via
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heuristic A (solid gray curves) or heuristic B (solid black curves). The mean burst size was set
to 50 µs, which corresponds to 60 kbytes at 10 Gbps. The granularity D varied from 0 to 100
µs (in steps of 5 µs during the simulations). The left pane shows results for different values of
N, the number of available FDLs, under a constant load of ρ = 60%. The right pane, where
N = 20, shows results for different input load levels.

For small values of N , the heuristics are a bit pessimistic, i.e, they overestimate the BLP.
Heuristic B is more accurate for low values of the BLP, but does not converge to the right
asymptotic value when ρeq � 1. (Here, ρeq → ∞ as D → ∞). There is an optimal granularity
D (in terms of BLP), function of both the load and the number of FDLs, shifting toward lower
values for higher number of FDLs or higher input load levels. This was also the case for syn-
chronous FDL buffers [10]. The optimal value also depends on the burst size distribution, as we
will illustrate next.

Figure 2 depicts the BLP versus the granularity for determinstic burst sizes. It shows the
same set of curves as Figure 1. Again, the (mean) burst size was set to 50 µs, the granularity
D varied from 0 to 100 µs, the load of the left pane was set to ρ = 60%, and the number of
available FDLs on the right pane was set to N = 20.

The shape of the curves is substantially different from the ones in Figure 1, and the BLP
can be an order of magnitude smaller. Again, heuristic B is more accurate for lower values of
the BLP, but does not converge to the correct limit for ρeq � 1. There are now several “local
optima”, when B is a multiple of D. The global optimum value of D is again function of the
load, but not in a continuous fashion, as was the case for exponentially distributed burst sizes.

In Figure 3, the BLP is plotted in function of the granularity, in the case of memoryless
burst sizes (left pane) and deterministic burst sizes (right pane). The curves now have a dif-
ferent meaning, as both ρ = 60%, and N = 20 are fixed for both panes, and different curves
correspond with different slot lengths ∆. The (mean) burst size is still set to 50 µs, and the
granularity D again varies from 0 to 100 µs. In order of increasing BLP, the first three sets of
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curves (lowest BLP curves) show results for a DT setting, with a finite slot length ∆, obtained
with heuristic B. The first two sets (points connected by dotted lines) are valid for ∆ = 10µs,
∆ = 5µs respectively. The third set has a slot length ∆ = 1µs, and is depicted with solid black
curves. (The DT step, although not visible, is ∆ = 1µs.). The last set (highest BLP curves)
represents the BLP for a CT setting, and is also obtained with heuristic B. In DT, the memory-
less burst size distribution corresponds to the geometric distribution, in CT to the exponential
distribution.

Both panes illustrate how higher values for the time slot lengths result in lower losses.
For gradually reducing time slot lengths, curves evolve to the limit distribution of zero slot
length, i.e. the asynchronous case. For the memoryless burst size distribution, the curves mostly
preserve their smooth shape. For the deterministic case, the “local optima” keep occuring.

The above comparison suggests a better performance for synchronized systems in terms of
loss probabilities. Note, however, that all curves assumed that at most one arrival can occur
per slot. Results from a so-called batch arrival model, where more than one arrival per slot can
occur, confirm this trend, but show that the gain in performance is smaller.

6 Conclusions

Expressions for various performance measures for asynchronous optical buffers were derived
by taking the limit of corresponding results obtained elsewhere for synchronous ones. Based on
(approximate inversion of) the LST of the scheduling horizon in an infinite system, heuristics
were developed to determine the BLP in finite systems. Two special cases of burst size distri-
butions were used to establish the accuracy of this approximation, by comparing heuristics to
simulation results. The examples given further revealed that the BLP is rather sensitive to the
choice of the granularity D, as was the case for synchronous optical buffers. The optimal value
depends not only on the burst size distribution, but also on the offered load.



References

1. Guillemot et al., C.: Transparent optical packet switching: the European ACTS KEOPS
project approach. Journal on Lightwave Technology 16 (1998) 2117–2134

2. Blumenthal, D.: Photonic packet switching and optical label swapping. Optical Networks
Magazine (2001) 54–65

3. Qiao, C., Yoo, M.: Optical burst switching–a new paradigm for an optical internet. Journal
on High-Speed Networks 8 (1999) 69–84

4. Turner, J.: Terabit burst switching. Journal on High-Speed Networks 8 (1999) 3–16
5. Xiong, Y., Vandenhoute, M., Cankaya, H.: Control architecture in optical burst-switched

WDM networks. IEEE Journal on Selected Areas in Communications 18 (2000) 1838–
1851

6. Xu, L., Perros, H.G., Rouskas, G.: Techniques for optical packet switching and optical
burst switching. IEEE Communications Magazine 39 (2001) 136–142

7. Yao, S., Mukherjee, B., Dixit, S.: Advances in photonic packet switching: an overview.
IEEE Communications Magazine 38 (2000) 84–94

8. Callegati, F.: Optical buffers for variable length packets. IEEE Communications Letters 4
(2000) 292–294

9. Fiems, D., Walraevens, J., Bruneel, H.: Discrete time queueing analysis of a fibre delay
line structure with granularity. Proceedings ONDM 2004 (Ghent) (2004)

10. Laevens, K., Bruneel, H.: Analysis of a single-wavelength optical buffer. Proceedings
Infocom 2003 (San Fransisco) (2003)

11. Li, L.: Design and Optimization of Packet Switching and Traffic Grooming in WDM Op-
tical Networks. PhD thesis, Lincoln University, Nebraska (2004)

12. Laevens, K., Van Houdt, B., Blondia, C., Bruneel, H.: Sustainable load of fibre-delay line
buffers. Electronics Letters 40 (2004) 137–138

13. Rogiest, W., Laevens, K., Fiems, D., Bruneel, H.: A performance model for an asynchron-
ous optical buffer. Accepted for Publication in the Proceedings of Performance 2005 Con-
ference, Juan-les-Pins (2005)

14. Van Ommeren, J.: Asymptotic analysis of queueing systems. PhD thesis, Vrije Universiteit
te Amsterdam (1989)

15. Laevens, K., Bruneel, H.: Analysis of fiber delay line optical buffers. Workshop on Next
Generation Networks: Architecture, Protocols, Performance (Belize) (2005)


