
Evaluation of Current Java Technologies for
Telecom Backend Platform Design

Bruno Van Den Bossche

Supervisor(s): Bart Dhoedt, Filip De Turck

Abstract— The Java programming language and more specifically the
J2EE platform has evolved towards the most important software frame-
work for designing and implementing business logic on a telecom backend
platform. However, the real time aspects of J2EE based telecom applica-
tions are often questioned. In 2004, a new Java-based application server
technology, JAIN SLEE, has been standardized which seems a promising
candidate for the development of (soft) real time telecom applications. A
functional comparison of J2EE and JAIN SLEE and the concepts they are
built on is presented.

Java, and JAIN SLEE in particular, has been subject to a performance
evaluation study evaluating the real time aspects of both the application
server and the Virtual Machine. The evaluation procedure and obtained
evaluation results are detailed. Moreover, the influence of the Java Vir-
tual Machine tuning parameters for the Garbage Collector has been inves-
tigated and will be reported upon.

Keywords— Telecom Applications, Java Garbage Collection, Perfor-
mance Evaluation

I. INTRODUCTION

THE Java language is highly structured, strongly typed and
object oriented. It is not compiled to machine specific in-

structions but a byte code, which is executed on a virtual ma-
chine, available for all sorts of platforms. This makes Java
highly portable although at a certain performance cost. Another
feature with important implications is the use of a garbage col-
lector. Java includes automatic memory management (garbage
collection) as a part of the Java runtime. This means that many
very common errors made by developers related to memory
management cannot occur. However, since garbage collection
is part of the Java runtime, it is not under control of the applica-
tion developer.

As telecom applications typically have very specific require-
ments regarding high throughput (e.g. the number of Voice over
IP (VoIP) calls a softswitch can process per second) and low la-
tency (e.g. the setup of a call should be very fast) Java might
not seem to be the best possible solution for designing telecom
backend applications or Service Enabling Platforms (SEP). To
meet the requirements of the Telecom industry the JAIN [1]
(Java APIs for Integrated Networks) initiative is providing us
with an extensive set of standardized APIs for network related
applications. JAIN builds on the portability of Java and stan-
dardizes the signaling layer of the communication networks in
the Java language. The importance of the appropriate tuning of
the Java Virtual Machine will be addressed in this paper.

As handling of VoIP calls is an important example of current
telecom applications we evaluated the available Java technolo-
gies by studying the performance of Session Initiation Protocol

B. Van Den Bossche is with the Department of Information
Technology, Ghent University (UGent), Gent, Belgium. E-mail:
Bruno.VanDenBossche@UGent.be .

(SIP) Proxy applications. The Session Initiation Protocol is typ-
ically used for the setup and teardown of VoIP calls.

II. JAIN SLEE

The JAIN SLEE specification, defined in Java Specification
Request 22 and 240, provides us with an application server tai-
lored for telecom. There is a certain similarity between J2EE
and JAIN SLEE but there are some important differences as
well. We will first give an overview of the architecture of the
SLEE (Service Logic Execution Environment) followed by a
comparison with the J2EE architecture.

A. Architecture

The basic architecture of a JAIN SLEE application server is
similar to the J2EE architecture. Applications in a JAIN SLEE
are hosted in a container and consist of one or more Service
Building Blocks (SBB). Such an SBB can be best compared
with an Enterprise Java Bean (EJB) in a J2EE server. SBBs
are usually organized in a hierarchy with one root SBB.

Internally almost all communication in the SLEE happens
through events. The SLEE uses the publish-subscribe model
for event distribution. The idea behind the event based commu-
nication between SBBs is that every SBB performs its own task
and then hands the result off to the next SBB in line. One could
compare this to an assembly line in a factory.

The communication with the outside world happens through
the so called Resource Adaptors (RA). This RA then accepts
incoming messages, parses them and turns them into events un-
derstandable by the SLEE. Through the use of RAs the JAIN
SLEE can be protocol agnostic. This means that any protocol
can be supported by adding an appropriate RA.

B. Relation to J2EE

As already mentioned JAIN SLEE and J2EE have a lot in
common. Both are container based designs and the SBBs of
JAIN SLEE are the equivalent components of the EJBs in J2EE.
Both technologies also exploit the component based architec-
ture by allowing application designers to transparently use home
made and third party components in order to build applications.
The use of off-the-shelf components is made very easy.

Nevertheless, there are some significant differences as well.
JAIN SLEE is strongly optimized for asynchronous event-driven
logic. J2EE on the other hand, was primarily designed for syn-
chronous calls. It does have some support for asynchronous
logic through the use of the Java Message Service (JMS) and
Message Driven Beans. The use of JMS would require a lot of
extra work when developing and when deploying if the same
level of abstraction would be required.

Sixth FirW PhD Symposium, Faculty of Engineering, Ghent University, 30th November 2005 – paper nr. 125 1



III. SESSION INITIATION PROTOCOL

The Session Initiation Protocol (SIP) is defined in RFC3261
and describes an application-layer control (signaling) protocol
for creating, modifying, and terminating sessions with one or
more participants. These sessions include Internet telephone
calls, multimedia distribution, and multimedia conferences. SIP
is used in most VoIP systems.

Alice BobProxy

INVITE

INVITETRYING [100]

RINGING [180]
RINGING [180]

OK [200]
OK [200]

ACK
ACK

BYE
BYE

ACK
ACK

Media Session

R
es

po
ns

e 
tim

e

Fig. 1. SIPStone proxy 200 test

The scenario used for the testing and benchmarks is the Proxy
200 test shown in figure 1. This is one of the benchmarks de-
fined in the SIPstone [2] benchmark specification. We are in-
terested in the time it takes to set up a call. This is the time it
takes from the initial INVITE of Alice till she receives an OK
from Bob, indicating the call is set up. After this Alice will send
and acknowledgement to Bob saying she received the OK and
the media session (e.g. voice or video conference) can start. As
soon as this media session has ended a BYE is sent and acknowl-
edged to end the call. Note that the BYE may be sent by both
parties. When benchmarking no media session was initiated and
the call was terminated immediately after it was established.

IV. PERFORMANCE TUNING: JVM TUNING

As important as the actual hardware platform the application
is run on, are the used Java Virtual Machine and the used tun-
ing parameters. Of great importance is the Garbage Collection.
Garbage collection may lead to the whole virtual machine being
paused. With requirements of response times being within 25ms
a pause of the virtual machine of multiple milliseconds may be
dramatic. Appropriate tuning of the virtual machine can im-
prove the perceived latency and improve the garbagecollection
results. The most important choice is the actual garbagecollec-
tor. In this case the combination of a parallel collector and a
concurrent collector proves to be the most succesful. A detailed
description of available garbage collection options can be found
in [3].

V. RESULTS

The graph presented in Figure 2 shows the obtained results
of the OpenCloud JAIN SLEE implementation Rhino using the

default (faded) and optimized (strong) JVM options. One of the
first things to notice is the almost perfectly linear correlation be-
tween the system load and number of calls per second, which
shows the scalability of the technology. The cpu-load for the
optimized JVM-options is also higher than for the default op-
tions.

Fig. 2. Performance results of JAIN SLEE on a dual processor architecture with
default (faded) and optimized (strong) garbage collection options.

If we analyze at the average response times and the 50th per-
centile theres only a small increase as the number of calls in-
creases. At 80 caps the average response time is approximately
4ms and the 50th percentile lies below 3ms. The 50th percentile
remains at 3ms till 150 caps, at that point the average response
time is approximately 8ms. The 95th percentile however starts
increasing at around 80 caps, till that point it also was below
3ms. Notice the system load has yet to reach 50%. We assume
that the explanation of these results is related to the garbage col-
lection. The system load presented in the graph is the average
obtained during the test run. In reality the system load does vary
and small peaks do occur. The messages arriving simultane-
ously with these peaks are most likely those to suffer the small
delays surfacing when looking at the 95th percentile.

VI. CONCLUSIONS

The results show that JAIN SLEE is a scalable technology and
that the requirements for the telecom applications, in this case a
SIP Proxy, are met. The average response time for 95% of the
calls is below 50ms and the average response time for 50% of
the calls is below 25ms up to over 160 calls per second. Without
the tuning of the Java Virtual Machine these requirements are
met until 100 calls per second.

REFERENCES

[1] John de Keijzer, Douglas Tait, and Rob Goedman, “JAIN: A New Ap-
proach to Services in Communication Networks,” IEEE Communications
Magazine, vol. 38, no. 1, pp. 94–99, January 2000.

[2] Henning Schulzrinne, Sankaran Narayanan, Jonathan Lennox, and Michael
Doyle, “SIPstone - Benchmarking SIP Server Performance,” April 2002,
http://www.sipstone.org/.

[3] Sun Microsystems, “Tuning Garbage Collection with the 5.0 JavaTM Virtual
Machine,” 2003, http://java.sun.com/docs/hotspot/gc5.0/gc tuning 5.html.

Sixth FirW PhD Symposium, Faculty of Engineering, Ghent University, 30th November 2005 – paper nr. 125 2


	Go Back
	Start Page

