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Transcript profiling is crucial to study biological systems, and various platforms have been implemented to survey mRNAs at
the genome scale. We have assessed the performance of the CATMA microarray designed for Arabidopsis (Arabidopsis thaliana)
transcriptome analysis and compared it with the Agilent and Affymetrix commercial platforms. The CATMA array consists of
gene-specific sequence tags of 150 to 500 bp, the Agilent (Arabidopsis 2) array of 60mer oligonucleotides, and the Affymetrix
gene chip (ATH1) of 25mer oligonucleotide sets. We have matched each probe repertoire with the Arabidopsis genome
annotation (The Institute for Genomic Research release 5.0) and determined the correspondence between them. Array
performance was analyzed by hybridization with labeled targets derived from eight RNA samples made of shoot total RNA
spiked with a calibrated series of 14 control transcripts. CATMA arrays showed the largest dynamic range extending over three
to four logs. Agilent and Affymetrix arrays displayed a narrower range, presumably because signal saturation occurred for
transcripts at concentrations beyond 1,000 copies per cell. Sensitivity was comparable for all three platforms. For Affymetrix
GeneChip data, the RMA software package outperformed Microarray Suite 5.0 for all investigated criteria, confirming that the
information provided by the mismatch oligonucleotides has no added value. In addition, taking advantage of replicates in our
dataset, we conducted a robust statistical analysis of the platform propensity to yield false positive and false negative
differentially expressed genes, and all gave satisfactory results. The results establish the CATMA array as a mature alternative
to the Affymetrix and Agilent platforms.

At the turn of the century, the completion of the
Arabidopsis (Arabidopsis thaliana) genome sequencing
project (The Arabidopsis Genome Initiative, 2000)
marked the emergence of the next challenge: the
assignment of function to each gene identified in the
chromosome sequence. This daunting task depends
largely on the availability of a diverse collection of
functional genomics resources to the research com-
munity (Hilson et al., 2003). It is clear that in addition
to the established gene-by-gene research approach,
novel ways of working will be essential. Indeed, some
25 years of Arabidopsis molecular biology and genet-
ics have now yielded experimental proof of function
for some 3,500 genes (Berardini et al., 2004). It is

generally believed that to increase the rate of func-
tional annotation of genes significantly, it will be
crucial to adopt computational approaches for mining
and modeling information from complex molecular
phenotypes. Such phenotypes include transcriptome,
proteome, and metabolome data. Already well estab-
lished, clustering of microarray experiment data can
yield valuable clues on the function of poorly anno-
tated genes, dubbed the guilt-by-association approach
(for review, see Quackenbush, 2003). Furthermore,
initial studies now demonstrate that modeling based
on large microarray data compendia shows potential
for the reverse engineering of genetic networks
(D’Haeseleer et al., 2000; Hughes et al., 2000; Maki
et al., 2001; Lee et al., 2002). Thus, the value of
microarray-based transcript analysis will most proba-
bly continue to increase.

In this context, we have built a novel microarray
platform for the systematic analysis of the Arabidopsis
transcriptome: the Complete Arabidopsis Transcrip-
tome MicroArray, or CATMA, array. It is the result of
a collaborative project joining the efforts and resources
of laboratories in eight European countries. The
CATMA consortium aims to produce, through PCR
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and from genomic DNA, gene-specific sequence tags
(GSTs) for most annotated Arabidopsis genes (Hilson
et al., 2004). A sizeable repertoire of sequence tags is
already available today, and all GST information is
accessible through the CATMA database (Crowe et al.,
2003; http://www.catma.org; also relayed by other
Arabidopsis Web sites). The GSTs are designed to have
minimal homology with any other sequence in the
Arabidopsis genome and consist of 150 to 500 bp
fragments (Thareau et al., 2003). The GST amplicons as
well as arrays printed with the CATMA GSTs are
available from the Nottingham Arabidopsis Stock
Centre (NASC; http://nasc.nott.ac.uk/). The GST am-
plicons can easily be reamplified, and subsets can be
picked as preferred to print dedicated arrays. Further-
more, the GSTs can be cloned and used for other
functional studies, including gene silencing (Hilson
et al., 2004). The CATMA array is being used to build
a compendium of Arabidopsis gene expression pro-
files. The main objective of the European Framework
project titled Compendium of Arabidopsis Gene
Expression (http://www.psb.ugent.be/CAGE) is to
demonstrate that a collective of research laboratories
can produce a compendium of high-quality micro-
array data that supports future microarray experimen-
tation and forms the core of a growing repository of
molecular phenotype data.

The Arabidopsis research community has been
blessed with multiple independent resources for tran-
script profiling, both from commercial sources and
academic core facilities. However, today, microarrays
that do not carry probes for the majority of transcrip-
tion units identified in the genome, prominently
cDNA arrays, are quickly becoming obsolete. There-
fore, this is an opportune moment to introduce the
CATMA array as an alternative to limited coverage
cDNA or commercial oligonucleotide arrays. The aim
of our work was to describe in detail the performance
of the CATMA array in comparison with the oligo-
nucleotide-based platforms commercialized by Agi-
lent (Arabidopsis 2 oligo array; Palo Alto, CA) and
Affymetrix (ATH1 GeneChip probe array; Santa Clara,
CA; Redman et al., 2004), and to present these results
as a reference to the Arabidopsis research community.

Several studies have already described microarray
platform comparison and quality assessment based on
various approaches (Chudin et al., 2002; Kuo et al.,
2002; Yuen et al., 2002; Lee et al., 2003; Nimgaonkar
et al., 2003; Tan et al., 2003). A common method for
platform comparison is to determine the concordance
of differential expression measurements between con-
trasted biological samples. Such studies either pointed
to platform-specific expression differences (Kuo et al.,
2002; Moreau et al., 2003; Tan et al., 2003) or illustrated
a broad concordance between different platforms
(Barczak et al., 2003). We have chosen not to focus on
gene-for-gene comparison of ratio reports between
platforms, but rather on the comparative analysis of
RNA samples designed specifically to test the hybrid-
ization characteristics of the platforms. We have

spiked aliquots of a single biological sample with
a range of calibrated quantities of in vitro synthesized
poly(A) RNAs. These series of synthetic RNAs pro-
vided detailed information about the dynamic re-
sponse of the microarrays, in the context of an
invariant base sample transcript profile. Aliquots of
a single set of spiked RNA targets were used for all
platforms. Our results indicate that CATMA arrays
perform equally well as Agilent or Affymetrix arrays
in terms of sensitivity, specificity, and the ability to
prevent detection of false negative and false positive
genes in differential expression studies. However, both
the long and short oligonucleotide platforms suffer
from signal saturation at high target concentrations,
whereas the CATMA array does not. The solid perfor-
mance of the CATMA array makes it a valid platform
for functional genomics studies, and a well-managed
core facility may be able to offer CATMA array service
at a cost highly competitive with commercial alterna-
tives.

RESULTS

In Silico Coverage

Several genome-scale microarrays are now available
for Arabidopsis transcript profiling, and choosing
a particular platform will depend on various criteria
including genome coverage, data quality, dynamic
range, and sensitivity, as well as more practical factors
such as availability, price, and logistics. We present
here a detailed analysis of the main technical charac-
teristics of the CATMA array, and compare them with
the Agilent Arabidopsis 2 oligo array (Agilent array)
and the Affymetrix ATH1 genome array (Affymetrix
array). Together, these arrays cover the three probe
types now used in genome-scale microarrays: PCR
amplicons (150–500 bp, CATMA), long oligonucleo-
tides (60mer, Agilent), and short oligonucleotide sets
(25mer, Affymetrix).

First, to determine which genes are represented in
each of the compared arrays, the sequences of their
respective DNA features, or probes, were analyzed
with BLAST against all the transcription units de-
scribed in the Arabidopsis genome annotation pro-
vided in January 2004 by The Institute for Genome
Research (TIGR; release 5.0). The total number of array
probes or probe sets was 18,981 (CATMA v1), 22,072
(CATMA v2), 21,500 (Agilent), and 22,763 (Affymet-
rix). Note that the CATMA GSTs have been produced
in two successive rounds and that this in silico analysis
presents both the data on CATMA v1 and CATMA v2
(http://www.ebi.ac.uk/arrayexpress). All hybridi-
zation data presented below were obtained with
arrays printed with the initial version of the repertoire,
CATMA v1 (Hilson et al., 2004; see ‘‘Materials and
Methods’’). Also, approximately 1,000 of the probe sets
on the Affymetrix arrays permit cross-hybridization to
1 or more other closely related genes, thus allow-
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ing transcript detection of up to 24,000 genes. The
TIGR 5.0 genome annotation contains a total of
26,207 protein-coding genes. In addition, it describes
genomic regions with homology to open reading
frames of transposable elements (2,355) and pseudo-
genes (1,652), accounting for an additional 3,786 an-
notations. The coverage is summarized in Table I. The
probe design for all platforms was done with genome
annotations predating TIGR 5.0. With the continued
refinements in the gene prediction algorithms and the
increased availability of experimental full-length
cDNA sequences, some of these gene models have
become obsolete. As a result, all platforms contain
probes designed according to previous TIGR gene
models that do not appear anymore in the latest
release. The table shows that the CATMA array also
contains probes for gene models uniquely predicted
by the EuGène gene finder software (Schiex et al.,
2001) and that Affymetrix is the only platform con-
taining probes for mitochondrial and chloroplast
genes (for further details on in silico coverage, see
Supplemental Fig. 1 and Supplemental Table I).

Calibrated RNA Samples and Hybridization Series

We chose to evaluate the performance of the three
array types by performing the same standardized
experiment on each of these platforms, with target
labeling, hybridization, and data extraction protocols
commonly considered to be optimal for the platform.
The targets were derived from the same series of RNA
samples that contain known concentrations of calibra-
ted transcripts. The base for all samples was a single
batch of total RNA extracted from whole shoots of
Arabidopsis ecotype Columbia (Col) harvested at the
developmental stage 1.04 (Boyes et al., 2001), also
known as TAIR 0000399 (http://www.arabidopsi-
s.org/index.jsp). The different RNA samples were
assembled by the addition of in vitro synthesized
polyadenylated RNA species (from now on referred
to as spike RNAs) to the shoot total RNA. The genes
corresponding to the spike RNAs fulfilled the follow-
ing criteria: (1) they were not transcribed at a detectable
level in Col shoots, as shown in prior experiments with
either cDNA or Affymetrix arrays; (2) they preferably

had to be represented on all three arrays; and (3)
plasmids with a cognate polyadenylated cDNA se-
quence flanked by the T7 promoter, convenient for in
vitro transcription, had to be available in an in-house
collection of 6,000 clones used for the production of
spotted cDNA arrays.

A total of 14 cDNA clones were thus selected (Sup-
plemental Table II) and used as templates to synthesize
bona fide polyadenylated spike RNAs. We assumed
that 14 spikes would allow an in-depth cross-platform
comparison while still constituting a number that could
practically be handled. Each spike RNA was calibrated
and mixed in equal amount with one of the other spike
RNAs to obtain seven pairs at equal concentration
(labeled a–g in Fig. 1). These seven spike RNA pairs
were then combined systematically to construct seven
complex spike mixes in a design similar to an ordered
Latin square, each mix containing six of the seven spike
pairs in staggered concentrations covering five logs
(Table II). As a result, all spike mixes contained equal
quantities [amounting to approximately 7.4% of the
endogenous cellular poly(A) RNA content] of in vitro
synthesized poly(A) RNA. To prevent loss of spike
RNA through adsorption to the plasticware, the spike
mixes were prepared in 0.5 mg mL21 shoot total RNA,
resulting in a range of concentration from 0.1 to 10,000
copies per cellular equivalent (cpc), assuming that the
total RNA contained 1% poly(A) mRNA and that a cell
contained on average 300,000 transcripts. To convert
the spike hybridization signals to ratios, an eighth
sample was prepared, called the reference sample,
consisting of the base shoot total RNA completed
with all spike RNAs at a concentration of 100 cpc.
Thereby, the comparison of any of the seven RNA
samples to the reference sample should theoretically
yield signal ratios ranging from 100-fold to 0.001-fold
across the gene subset corresponding to the spike
RNAs and a signal ratio of 1 for all other genes.

Hybridization series were set up to perform all
possible combinations with the available RNA sam-
ples. For two-color arrays (Cy3/Cy5; CATMA and
Agilent), each individual RNA sample was compared
directly to the reference sample, and both dye swaps
were analyzed, resulting in 14 slides for each platform
(Fig. 1A). For the one-color arrays (Affymetrix), each

Table I. Overview of in silico coverage

*, Approximately 1,000 genes were not taken into account because their cognate transcripts were
detected by overlapping probe sets.

CATMA v1 CATMA v2 Agilent Arabidopsis 2 Affymetrix ATH1

Probes/probe sets 18,852 22,072 21,500 22,763
Transposable elements

plus pseudogenes
363 575 572 946

TIGR 5.0 18,122 21,019 20,921 22,348*
On TIGR annotation

prior to 5.0
46 57 579 260

EuGène annotation 684 996 – –
Organelle genomes – – – 155
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sample, including the reference, was hybridized to one
slide, resulting in eight slides (Fig. 1B). Although the
total number of hybridizations on Affymetrix arrays
was only one-half that of the two-color arrays, this fact
actually reflects the practical application of the differ-
ent platforms for a single observation: two-color
arrays, one probe per gene in a dye swap; one-color
array, multiprobe set per gene in a single hybridiza-
tion.

Dose-Response Curves

Microarray data typically provide information
about the level of transcripts relative to a common
reference. Therefore, it is critical to investigate the
dynamic range of the different platforms, i.e. whether
they display a linear dose-response relationship be-

tween transcript abundance and hybridization signal,
and to determine the span of this dynamic range. In
our experimental design, all target nucleic acids were
synthesized from the same series of eight RNA sam-
ples, and the spike RNA concentration range covered
all biologically relevant transcript levels. This experi-
mental set up allowed a straightforward comparison
of the three systems.

The technical specifications for all hybridization and
raw data collection protocols are provided in ‘‘Materi-
als and Methods.’’ For each hybridization series, the
raw signals were preprocessed according to statistical
methods generally accepted as standard by the micro-
array data community to produce ratio measurements.
A debatable topic remains the issue of background
subtraction. Because it is still customary to include
background subtraction, we used it as default, al-

Figure 1. Schematic representation of
the experimental design. Each graph
represents the content of spike RNA in
the RNA sample(s) hybridized to a sin-
gle array. A, Two-channel arrays (CAT-
MA and Agilent). In series 1 to 7, the
RNA samples containing the spike
RNAs in staggered concentration were
used as template to synthesize the Cy5-
labeled targets, whereas the reference
sample was used for the Cy3-labeled
target. The inverse configuration ap-
plied to the 1# to 7# series. Cy3 and Cy5
were cohybridized. B, One-color ar-
rays (Affymetrix). The seven RNA sam-
ples containing the spike RNAs in
staggered concentrations and the
eighth reference sample were each
used as template for hybridization on
a single array.

Table II. Concentration (copies per cell) of the 14 spike RNAs for the seven different spike mixes and the reference mixa

Each spike RNAwas calibrated and mixed in equal amount with one of the other spike RNAs to obtain seven pairs at equal concentration (labeled a–g).

Spike No. Spike Mix 1 Spike Mix 2 Spike Mix 3 Spike Mix 4 Spike Mix 5 Spike Mix 6 Spike Mix 7 Reference Mix

1, 8 (a) 10,000 0 0.1 1 10 100 1,000 100
2, 9 (b) 1,000 10,000 0 0.1 1 10 100 100
3, 10 (c) 100 1,000 10,000 0 0.1 1 10 100
4, 11 (d) 10 100 1,000 10,000 0 0.1 1 100
5, 12 (e) 1 10 100 1,000 10,000 0 0.1 100
6, 13b (f) 0.1 1 10 100 1,000 10,000 0 100
7, 14 (g) 0 0.1 1 10 100 1,000 10,000 100

aMore detailed information on the spiked RNAs can be found in Supplemental Table II. bSpike 13 was eliminated from further analysis because
its quality was insufficient.
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though for some of the particular analyses described
below we applied approaches both with and without
background subtraction. To determine the dynamic
range, CATMA array data were normalized after
subtracting for each feature the median background
intensity from the mean foreground intensity. The
background-subtracted data were then normalized
using the standard locally weighted scatter plot
smoothing (LOESS) fit, for each print-tip separately.
For each feature, the LOESS normalized log2 ratios
were averaged over the two dye swaps, and the final
ratio was computed as the exponential base 2 of that
average. Similarly, the log10 ratios calculated from
Agilent array hybridizations as supplied by the service
provider were averaged over the two dye swaps, and
the final ratio was also expressed as the exponential
(Agilent, 2003). The raw Affymetrix data were pre-
processed alternatively with two software packages:
the Affymetrix Microarray Suite (MAS) 5.0 (Affymet-
rix, 2001) and RMA (Irizarry et al., 2003). Because the
Affymetrix platform does not allow direct, within
GeneChip, comparisons of two samples, ratios were
calculated for the seven samples with staggered spike
concentrations relative to the eighth reference sample.

The ratio measurements for 13 spike RNAs (one
spike RNA turned out to be faulty; see ‘‘Materials and
Methods’’) and all platforms are shown in Figure 2.

The graph in each panel is the summary of a complete
hybridization series (14 arrays for CATMA and Agi-
lent; 8 arrays for Affymetrix) where each curve repre-
sents the signal ratios associated with 1 of the 13 spike
RNAs and is plotted left to right from the highest to
the lowest concentration. The panels provide a concise
overview of the hybridization dynamic range. In all of
them and as expected, ratios calculated for samples at
100 cpc were close to 1 because the reference sample
contains all spike RNAs at that same concentration.
CATMA arrays displayed a near-perfect dynamic
range over three logs (10,000–10 cpc), whereas Agilent
and Affymetrix arrays had a somewhat wider spread
of the curves with dynamic range seldom beyond two
logs (1,000–10 cpc), depending on the spike RNA and
on the preprocessing method for Affymetrix. For
CATMA, dose-response curves obtained with back-
ground subtraction were significantly better than
without (Supplemental Fig. 3).

The leftmost portion of the curves provides infor-
mation about the high concentration spikes (ratios
superior to 1), in particular concerning saturation
effects. Clearly, only the CATMA platform reported
accurately ratios for spike RNAs at the highest con-
centration (10,000 cpc; 100-fold ratio; Fig. 2A), whereas
both the Affymetrix and Agilent platforms showed
a marked collapse (Fig. 2, B, C, and D). Interestingly,

Figure 2. Normalized intensity ratios. The abscissa indicates the cell copy number equivalent in spike mixes 1 to 7. The ordinate
shows the resulting ratios relative to the reference mix (all at concentration of 100 cpc) for the different platforms. A, CATMA. B,
Agilent. C, Affymetrix with MAS 5.0 preprocessed data. D, Affymetrix with RMA preprocessed data. Figure 2A has been
previously shown in Hilson et al. (2004; p. 2180) and is reprinted with permission from Cold Spring Harbor Laboratory Press.
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probes that showed signal saturation were automati-
cally flagged in the Agilent data output. Out of the 12
probes corresponding to spike RNAs and included on
the Agilent array (see ‘‘Materials and Methods’’), 10
were flagged as saturated in both channels when
hybridized with spikes at 10,000 cpc. None were
flagged at lower concentrations. Notably, 27 additional
Agilent probes, sharing no homology with the spike
RNAs, were also flagged for saturation (see Supple-
mental Table III). Most of them represent nuclear genes
involved in chloroplast function.

The rightmost portion of the curves (ratios below 1)
provides information on the sensitivity of each platform,
as it shows how signals of the lower target concentra-
tions get confounded with background noise. Overall,
for all three platforms, linearity of the dynamic range
ends around 10 cpc and the signal reaches a bottom
plateau marking the limit of sensitivity around 1 cpc.
Although the positions of the plateaus for some spikes
may in fact reflect a low level of transcription for the
spike RNA cognate genes, they most probably indicate
nonspecific background hybridization because the
curves are not ranked in any conserved order across
the platforms. Together, these observations suggest that
the three platforms have similar sensitivity.

In Vivo Coverage

The percentage of the probes on an array that report
a hybridization signal can also be interpreted as
a measure of platform sensitivity. However, the com-
parative analysis of this parameter across the plat-
forms is difficult because it depends on many factors,
including scanner characteristics, data extraction soft-
ware, and, subject to many different interpretations,
the decision rule to declare that a signal is above
background hybridization level. Aware of these cav-
eats, we present a summary of the results as they were
exported by the particular data extraction software
specific to each platform (see ‘‘Materials and Meth-
ods’’) to emphasize that they each rely on a different
method to distinguish detectable genes and that these
methods may yield strikingly distinct results. Only
genes transcribed in the base Col shoot sample were
considered in this analysis, based on the three hybrid-
ization series (Fig. 1). All spike probes and the various
controls were omitted.

For CATMA data, a signal was considered ‘‘above
background’’ if it fulfilled the following criterion for
both channels:

Fg . Bg 1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvar½Bg�=2 1 var½Fg�=2

q
Þ; ð1Þ

i.e. a signal or foreground intensity (Fg) is called
significant if it is larger than the background intensity
(Bg) plus 2 times the SD of background and fore-
ground, computed as the square root of the average of
their variances (var). The fraction of CATMA probe
signals above this threshold ranged between 40.4%
and 54.3% (average 50.6%). Separate experiments with

leaf and shoot RNAs conducted with CATMA arrays
also routinely showed that more than 50% of the
probes yielded signal significantly above background
according to the same criteria (data not shown).

For Agilent, the information was extracted from the
features ‘‘gIsWellAboveBG’’ and ‘‘rIsWellAboveBG’’
(Agilent, 2003) that were provided in the raw data files
in which the vast majority of probes were labeled with
signal above background in both channels: between
93.6% and 99.6% (average 96.9%). Because it is highly
unlikely that more than 95% of the Arabidopsis genes
are actually transcribed in Col shoots, we investigated
the background and foreground values for control
features in the complete Agilent dataset. As expected,
an average of 99.1% of the positive controls displayed
signal above background, but oddly some 74% of the
negative controls were also flagged as such. When
we changed the feature extraction mode to ‘‘spatial
detrending’’ instead of ‘‘background subtraction’’
(Feature Extraction Software version 7.5), we observed
some improvement. With these settings, the percent-
age of flagged negative controls decreased from 74% to
25.9%, but on average still 91.9% of all Arabidopsis
probes gave a ‘‘significant’’ signal. We have not tried
other alternative procedures for feature extraction, and
we used the data obtained following standard back-
ground subtraction for all subsequent analyses pre-
sented below. Our observations, however, suggest that
the raw data features gIsWellAboveBG and rIsWell-
AboveBG about signal significance have no absolute
biological relevance. Applying the same decision rule
(Eq. 1) as for the CATMA dataset in subsequent data
preprocessing resulted in an even larger percentage of
probes with signal above threshold, above 99.85% for
all hybridizations. By setting an alternative threshold
defined as the median signal of the negative controls
plus 2 SDs of the median signals, 63.1% of the Arabi-
dopsis probes scored positive. Also note that 0.15% to
1.5% of all probes were assigned surrogate values by
the Agilent software to minimize artifacts resulting
from division by 0 in ratio calculation (Agilent, 2003).

For Affymetrix data, we simply took the number of
probe sets labeled as ‘‘present’’ by the Detection Call
function in the MAS 5.0 software. Between 50.5% and
57.0% of all probe sets were assigned ‘‘present’’ calls
(average of 53.9%).

For CATMA and Affymetrix, we made a more de-
tailed in vivo coverage comparison. Based on Arabi-
dopsis Genome Initiative codes, 14,844 genes had
matching probes both on the CATMA v1 array and
the Affymetrix chips. The overlap between the ‘‘pres-
ent’’ and ‘‘absent’’ calls was computed for this gene
set, considering that ‘‘present’’ meant the signal was
above the platform-specific threshold for a particular
gene in at least one-half of the hybridizations. The
results are shown in Supplemental Table IV. The in
vivo coverage estimated for CATMA and Affymetrix
is similar, again suggesting that the sensitivity of the
two platforms is comparable. This is further substan-
tiated by the observation that 83.7% of the genes
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detected on CATMA arrays are also detected by
Affymetrix, and 79.4% vice versa (Supplemental Table
IV). Because the Agilent data were inherently incoher-
ent with the built-in controls, we were unable to
include that platform in the comparison.

Specificity

Probe specificity was assessed by looking for cross-
hybridization of spike RNAs to probes other than the
true cognate. For each of the spike RNAs, we focused
on the three highest concentrations among the labeled
targets and checked probes that most closely matched
the spike cDNA sequences in BLAST searches. We
could not detect hybridization patterns associated
with any of these sets of spike RNAs, for any of the
spike RNAs tested, in any of the microarray types.
This is remarkable considering that a spike RNA at
10,000 cpc represents an estimated 3.3% of the total
mRNA pool. For a more detailed description of the
results, see Supplemental Table V.

Signal Reproducibility

Because the majority of the labeled target consisted
of a single Col shoot RNA, transcript level mea-
surements should theoretically be invariant across
all hybridizations for all genes, except for those
corresponding to spike RNAs. Therefore, the different
hybridization series essentially consisted of 8 or 14
repetitions (Fig. 1) that are valuable to assess the
platforms using robust statistical methods.

In particular, our dataset was used to investigate
whether the relationship between signal reproducibil-
ity and intensity depends on the platform across the
transcript level range. Because the array signal is
defined as platform-specific intensity, the log2 inten-
sity values were first converted to a unique scale by
Z-score transformation so that the signal value distri-
bution had a mean equal to 0 and a SD equal to 1 (see
‘‘Materials and Methods’’; Tan et al., 2003). Further-
more, to compare similarly sized datasets, we calcu-
lated and plotted the Z-score curves for specific
subsets of the data. We took the converted values
from the seven Affymetrix hybridizations with RNA
samples containing the spike RNAs in staggered
concentration (1–7 in Fig. 1B, excluding the reference
sample). For two-color arrays, we used the seven pair-
wise averages of the Cy5 and Cy3 intensities corre-
sponding to the same RNA samples in the reciprocal
dye swaps (Cy5 from 1–7 and Cy3 from 1#–7# in Fig.
1A, excluding the reference channels). In doing so, we
used a 7-slide data equivalent for all three platforms
(2-color datasets typically include a dye-swap hybrid-
ization) and compared the Affymetrix 11-probe set
design (which actually measures each transcript 11
times, exporting an average) with the dye-swap de-
sign. Furthermore, only the set of 13,036 genes with
cognate probes on all three arrays were considered,
omitting, however, those matching the spike RNAs.

Figure 3A shows the corresponding Z-score fre-
quency plots. Because these plots illustrate the dis-
tribution of the normalized data within and across
platform, they allow a direct comparison of the hy-
bridization characteristics of the different systems. The
Z-score distributions of the individual arrays in any
given group were all very similar, indicating that
hybridizations were very reproducible. The frequency
distributions of CATMA, Agilent, and Affymetrix
RMA values had profiles suggestive of a Gaussian
distribution, but sometimes with quite distinct shoul-
ders. For instance, the CATMA data displayed a signif-
icant broadening of the peak, and the Affymetrix MAS
5.0 values even showed a distinct bimodal distribution
with an additional smaller peak at lower intensity.
Affymetrix data analyzed with RMA had a Z-score
distribution very similar to the distribution of CATMA
data. The difference between MAS 5.0 and RMA
indicates that at least part of the bimodality of the

Figure 3. Relationship between signal intensity and variability. A,
Comparison of the distribution of Z-score values. B, Visualization of the
signal reproducibility in function of intensity. The LOESS lines represent
for each dataset the overall trend of the Z-score SD as a function of the Z-
score mean for each gene.
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distributions resulted from data preprocessing. To
visualize the signal reproducibility in function of in-
tensity, we plotted the Z-score SD against the Z-score
mean for each gene (Supplemental Fig. 2). The LOESS
lines representing the overall trend for each system are
shown collectively in Figure 3B. CATMA values for
background-subtracted data (CATMA BGS) showed
variability independent of signal for high to medium
intensity but gradually increasing for low signal. By
contrast, CATMA non-background-subtracted data
(CATMA non-BGS) resulted in a flatter LOESS show-
ing a somewhat decreased variability at low intensity.
Agilent had overall higher variability increasing at
both ends of the intensity spectrum. We presume that
the variability at low intensity results from back-
ground subtraction, whereas higher intensity values
may reflect saturation. Finally, MAS 5.0 variability was
low for high to medium signal, but with a sharp
increase followed by a conspicuous drop for the lower
intensity values. This profile was strikingly different
for RMA-processed Affymetrix data, where the vari-
ability was overall very low and independent of
intensity. This behavior is consistent with the statistical
strategy behind RMA, which aims at reducing signal
variance. Signal intensity was also used to assess the
correlation between intensity values across platforms.
We restricted the analysis to the genes that were
present on all three platforms and that displayed
a significant signal on both the CATMA and Affymet-
rix arrays (see above). The resulting plots indicate that
there is significant correlation between the individual
signal values and, hence, the hybridization character-
istics of the probe elements (Supplemental Fig. 4). This
is particularly satisfactory considering that the strat-
egy for probe design was quite different for the three
array types. The correlation coefficients for pair-wise
comparisons are listed in Table III. Not surprisingly,
the highest correlation was measured between the
MAS 5.0 and RMA expression values, both obtained
from the same Affymetrix chips. Furthermore, there
was a fair agreement of signal intensities when Affy-
metrix was compared to either CATMA or Agilent.
The comparison of CATMA to Agilent yielded the
lowest correlation.

False Positive and False Discovery Rate

One of the most important issues in microarray
analysis is the reliability in the measurement of gene
expression differences. On the one hand, poorly cho-
sen boundaries to define meaningful fold changes may
include too many false positives or false negatives. On
the other hand, microarray statistics must cope with
genome-wide datasets and minimize the number of
false positives that may result from the multiple-
testing problem (Benjamini and Hochberg, 1995;
Storey and Tibshirani, 2003). However, it is now gener-
ally accepted that the Bonferroni correction, also refer-
red to as the ‘‘panic approach’’ by Y. Benjamini
(personal communication), is much too restrictive.

We have investigated systematically the accuracy of
the platforms in calling differentials using various
statistical tools. Although our experimental design
does not address the reliability of small fold changes
(our lowest actual real fold change is 10), it is useful
because we have ample a priori knowledge about fold
changes equal to 1. Again, we benefit from the fact that
all hybridizations rely on a single batch of Col shoot
RNA; therefore, the hybridization series essentially
consist of eight or 14 repetitions (Fig. 1) and are
valuable to assess in depth the robustness of the
platforms. Taking advantage of our datasets and
excluding the spike controls, we estimated the fraction
of genes that are erroneously called differentially
expressed using a statistical tool called LIMMA
(Smyth, 2004). LIMMA uses a moderated t statistic in
which an empirical Bayes method is used to estimate
the SD of the log-fold changes (Smyth, 2004). The
moderated t statistic follows a t distribution with
augmented degrees of freedom, which makes the test
more powerful than the conventional t test, especially
in experiments with few arrays. The LIMMA package
is part of the Bioconductor statistical analysis soft-
ware (http://www.bioconductor.org; Gentleman et al.,
2004). A gene was called differentially expressed if the
moderated t test had a P value, corrected to control for
the false discovery rate (FDR), smaller than 0.05
(Benjamini and Hochberg, 1995). To simulate a biolog-
ical sample comparison for each platform, data from
eight hybridizations were randomly assembled in two
groups of four hybridizations. For Affymetrix, the
expression measurements of these two subgroups
were compared as two different samples each hybrid-
ized four times. For the two-channel arrays, one sub-
group was used to calculate log ratios of a two-sample
comparison, whereas the second group was used to
obtain dye-swap ratios. We next used LIMMA to
identify genes that appeared to be differentially ex-
pressed, based on these eight log ratios. To get an
average estimate of this false positive fraction, the
procedure was repeated for all 70 possible different
permutations of two sets of four arrays from the eight
Affymetrix hybridizations, and for 70 different ran-

Table III. Correlation between the platforms

Correlation between the platforms was calculated for the log2

intensity signals of genes with probes on all three platforms. Only
those genes were compared that were given a present call by the
Affymetrix MAS 5.0 software in at least four of the eight hybridizations
and scored above background for at least seven out of the 14 hybrid-
izations on CATMA arrays.

Platforms Correlation

r2

CATMA/Agilent 0.5833
CATMA/Affymetrix RMA 0.6619
CATMA/Affymetrix MAS 5.0 0.6681
Agilent/Affymetrix RMA 0.7157
Agilent/Affymetrix MAS 5.0 0.7292
Affymetrix MAS 5.0/Affymetrix RMA 0.9728
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dom assemblies of the 2-channel platform array sets.
The results are shown in Table IV. Because identical
samples were compared, all differential genes consti-
tuted false positive observations. For each platform,
the minimum, average, and maximum false positive
rates are shown. The average false positive fraction
was 2.16% for CATMA BGS, whereas it was 3.43% and
8.62% for Agilent and Affymetrix (MAS 5.0), respec-
tively. The RMA-processed Affymetrix data yielded
a smaller fraction of 7.71%, whereas the CATMA non-
BGS gave 0.73% false positives. These percentages
would result in significant numbers of falsely identi-
fied differentially expressed genes, as indicated in the
last column of Table IV. Interestingly, CATMA BGS
gave the lowest range in the false positive fractions
calculated in the 70 iterations, with a SD of 0.189. These
results have to be treated with some caution, as they
not only reflect platform characteristics but also how
well the LIMMA model fits the different datasets.

The results are also presented as Volcano plots (Fig.
4). In such a graph, the fold changes (on log2 scale)
between the two samples are plotted against the log-
odds ratio. The horizontal axis displays the extent of
the observed differential expression, and the vertical
axis the confidence associated with that observation.
The resulting dot plots allow an intuitive assessment
of both the extent of fold changes and the correspond-
ing significance of these observations. For each plat-
form, we used a representative sample comparison,
i.e. a comparison that gave a percentage of differen-
tially expressed genes closest to the average obtained
from the iterative procedure. The representation of
fold changes dramatically changed when CATMA BGS
was compared to CATMA non-BGS results and Affy-
metrix MAS 5.0 with RMA processed data. Assessment
of differential expression based on the moderated t test
resulted in markedly lower numbers of false positives
for CATMA non-BGS (Table IV). It is evident from the
Volcano plots that a more detailed assessment of the
results can be achieved when we weigh both signifi-
cance and fold-change measurements to call cases of
differential gene expression. For example, the plots for
CATMA non-BGS, Agilent, and Affymetrix RMA show
considerable numbers of differentially expressed genes,
but predominantly associated with relatively small fold
changes (often much lower than 2-fold). Interestingly,
the CATMA non-BGS, Agilent, and Affymetrix RMA

results had a fold-change spread sufficiently narrow to
eliminate most false positives with a fold-change
threshold much lower than 2.

False Negatives

Finally, we compared the accuracy of the platforms
based on their ability to avoid false negative observa-
tions. Instead of investigating intensity values for
invariant genes, we now focused on those correspond-
ing to the 13 spike RNAs and determined whether the
data supported the correct statistical identification of
10-fold concentration increases. For that purpose, the
LIMMA procedure was used to test whether spike
genes were detected as differentially expressed when
comparing consecutive spike mixes (1 versus 2, 2
versus 3, etc.; Table II). The P values obtained from
the moderated t test were corrected to control the FDR,
according to the method of Benjamini and Hochberg
(1995), with a significance threshold P , 0.05. The
results of the consecutive concentration comparisons
are given in Table V. For both CATMA and Agilent
data, LIMMA failed to distinguish correctly between
a transcript absent and present at 0.1 cpc or between
0.1 and 1 cpc, confirming that the sensitivity threshold
was between 1 and 10 cpc. In the CATMA dataset, this
difference was correctly detected for 10 out of 13 cases,
and for 6 out of 12 in the Agilent data. Additionally, for
Agilent, four of the spikes were not accurately differ-
entiated between 1,000 and 10,000 cpc, which can be
explained by the saturation effect already observed in
the dose-response curves (Fig. 2). The number of false
negatives from the Affymetrix data could not be
estimated because of the insufficient numbers of
replicates.

DISCUSSION

Two technologies have dominated the microarray
field: cDNA and oligonucleotide arrays. The main
advantage of cDNA microarrays has been their rela-
tively low cost. Affymetrix oligonucleotide arrays,
however, take advantage of the available genome
sequence and are considered to offer higher repro-
ducibility, albeit at a higher cost. More recently, long
oligonucleotide platforms (60–80mers) have emerged

Table IV. Detection of false positives

For each platform, we selected all gene probes, omitting the spikes. For each platform and data
preprocessing method the percentages and numbers are given of genes flagged by the LIMMA procedure as
differentially expressed. The results reflect 70 iterations of the LIMMA procedure, as described in the text.

Platforms Low High Mean SD Mean False Positives Total Gene No.

% % % %

CATMA BGS 1.60 2.77 2.16 0.19 410 18,967
CATMA non-BGS 0.30 1.98 0.73 0.33 138 18,967
Agilent 0.56 14.59 3.43 2.60 559 21,487
Affymetrix MAS 5.0 5.58 19.69 8.62 3.59 1,959 22,732
Affymetrix RMA 1.72 36.11 7.71 7.52 1,753 22,732
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as a competing technology. Whereas the cost of these
oligonucleotide-based technologies is slowly decreas-
ing, multiple problems have eroded the attractiveness
of the cDNA-based arrays: difficulty in obtaining full-
genome coverage (because of the limited depth of
expressed sequence tag libraries), lack of standardiza-
tion among laboratories (hampering data integration),
higher levels of noise, and cross-hybridization be-
tween homologous transcripts. Here, we present the
CATMA array for Arabidopsis that addresses these
shortcomings. It is based on a standardized genome-
scale PCR amplicon library, with minimal cross-
hybridization and high quality control. The library is
available at low cost for the production of spotted
arrays.

To assess the quality of the data obtained with
CATMA arrays, we included Affymetrix and Agilent
arrays in our performance study. In each case, RNA

labeling, hybridization, scanning, and data extraction
were performed by a laboratory offering routine
microarray services with that particular platform,
and following its standard protocols and processes:
VIB-MAF microarray facility to process the CATMA
arrays, ServiceXS (a service facility in The Nether-
lands) for Agilent, and the Nottingham Arabidopsis
Stock Center for Affymetrix (GARNet program, GAR-
Net application no. SM03b/006). Thus, all datasets
were produced independently by laboratories best
positioned to provide service with their particular
platform. The differences observed resulted from
a combination of factors: the arrays themselves but
also all the equipment necessary for their processing,
including the hybridization and washing station, the
slide scanner, and the software application producing
the raw microarray data file. In all three cases, the
platforms were equipped with the standard suite of
hardware and software commercially distributed by
the Amersham BioSciences (Little Chalfont, UK), Agi-
lent, and Affymetrix companies, respectively.

The comparison was based on a single, large shoot
RNA sample spiked with synthetic poly(A) RNAs in
various quantities. These were added to evaluate
signal detection over a range of biologically meaning-
ful abundance classes. The spike concentrations span-
ned a wide range of subsequent 10-fold dilutions,
covering both the high, intermediate, and scarce
abundance classes, allowing us to establish the de-
tection dynamic range. We chose to use a significant
number of spikes (14) to guarantee the robustness of
the study and to attempt to address more extensively
than most studies the potential for illegitimate hybrid-
ization. Because we used spikes that resembled bona
fide transcripts, our approach tested the entire data
production process, and not only the hybridization
and data extraction part. Except for the faulty Spike 13,
all spike RNAs showed extremely similar hybridiz-
ation characteristics, and the hybridization results,
combining the spike genes and the genes transcribed
in Arabidopsis shoots, constituted an extensive dataset
for a detailed comparison of the different platforms.
The CATMA array performed very well when com-
pared to the commercial oligonucleotide systems.
Even at the highest concentrations (10,000 copies
per cell), it showed no sign of saturation or signal
decrease, whereas Agilent and Affymetrix arrays con-
spicuously lacked signal linearity in that range. For
Affymetrix, RMA-processed data were slightly less
saturated compared to MAS 5.0. In the Agilent data
output file, some of the spike probes at the highest
concentrations were flagged as saturated, together
with 27 other probes, almost all corresponding to
nuclear genes with chloroplast function (see Supple-
mental Table III), suggesting they still represented
biologically relevant transcript levels. Although we
could have performed multiple scans at different laser
powers or detector gains, we chose to use a single
setting because that is how microarray data are pro-
duced routinely by service providers. Also, integration

Figure 4. Volcano plots. The log2 ratio is plotted versus the log odds.
Log odds is the loge of the probability that a gene is differentially
expressed over the probability that it is not. The lower the log odds, the
more likely it is that a gene is not differentially expressed. A, CATMA
BGS. B, CATMA non-BGS. C, Agilent. D, Affymetrix with MAS 5.0
preprocessed data. E, Affymetrix with RMA preprocessed data. Hori-
zontal lines mark log odds thresholds of 10,000 to 1; vertical lines mark
2-fold log2-ratio boundaries.
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of data resulting from multiple scans is cumbersome.
Our results indicated that for abundant mRNAs, the
CATMA array performed substantially better than
both the short and long oligonucleotide arrays and
will yield more accurate ratio-fold changes for such
transcripts.

Overall, the three platforms were comparable in
sensitivity, although results varied somewhat accord-
ing to spikes. For some, the signal was still above
background level at a concentration of 1 copy per cell,
equivalent to scarce RNAs. Because of the numerous
replicates in the experimental design, the CATMA and
Agilent platform sensitivity could be assessed with the
LIMMA algorithm. The discrimination between sub-
sequent spike RNA levels started to deteriorate be-
tween 1 and 10 copies per cell (Table V), for which
CATMA data yielded a correct call for 10 out of 13
spikes, whereas the Agilent data were accurate for 6
out of 12 spikes. Thus, we conclude that the sensitivity
of CATMA arrays was at least equivalent to that of the
Agilent arrays. Although the hybridization results of
Affymetrix arrays were very good (as judged by the
signals from the controls; see ‘‘Materials and Meth-
ods’’), a direct LIMMA comparison with the other
platforms was not possible because the Affymetrix
experiment lacked sufficient replicates. However, the
internal controls used as standard for target prepara-

tion (BioB 5# and BioB 3# controls; see ‘‘Materials and
Methods’’) showed that Affymetrix arrays also had
a detection threshold between 1 and 10 RNA copies
per cell in these experiments.

The analysis of CATMA data with background
signal correction clearly produced the best dose-
response curves (for comparison, see Supplemental
Fig. 3). However, background subtraction introduced
a significant level of variance into the data, particularly
for low signal. These somewhat contradictory findings
illustrate the fact that there is still no single solution for
data preprocessing: it remains prudent to test various
alternatives even at the preprocessing level to thor-
oughly mine microarray datasets for information
about gene expression levels. This is also evident
from the differences observed between the Affymetrix
results obtained with the MAS 5.0 or RMA packages.
In our comparison, the RMA package outperformed
MAS 5.0 for all studied parameters: dynamic range,
reproducibility across the range of signal intensity, in
particular for low or background signal, and FDR. The
better performance of the RMA software clearly
demonstrates that the GeneChip mismatch features,
not taken into consideration by RMA, are better dis-
carded to measure gene expression. Interestingly, the
datasets generated for this study, containing numer-
ous repetitions and including three competing sys-

Table V. Detection of false negatives

The LIMMA procedure was used to compare consecutive sets of concentrations (0.1 cpc against 0 cpc, 1
cpc against 0.1 cpc, etc.). ‘‘21’’ and ‘‘11’’ indicate that the gene is flagged by LIMMA as down-regulated or
up-regulated, respectively, whereas ‘‘0’’ is used for genes that do not appear to be differentially expressed.
All pair-wise comparisons should theoretically be assigned ‘‘21’’.

Spike RNA 0 vs 0.1 0.1 vs 1 1 vs 10 10 vs 100 100 vs 1000 1000 vs 10,000

CATMA CATMA CATMA CATMA CATMA CATMA
1 0 0 21 21 21 21
2 0 0 0 21 21 21
3 21 11 21 21 21 21
4 0 0 21 21 21 21
5 21 0 21 21 21 21
6 11 21 21 21 21 21
7 0 0 21 21 21 21
8 0 11 21 21 21 21
9 0 11 21 21 21 21

10 0 0 21 21 21 21
11 0 0 0 21 21 21
12 0 0 21 21 21 21
14 0 0 0 21 21 21

Agilent Agilent Agilent Agilent Agilent Agilent
1 0 0 21 21 21 0
2 0 0 21 21 21 21
3 0 0 0 21 21 21
4 0 0 0 21 21 21
5 0 0 21 21 21 0
7 0 0 0 21 21 21
8 21 0 21 21 21 21
9 0 11 0 0 21 21

10 0 21 0 21 21 0
11 21 0 21 21 21 21
12 0 0 21 21 21 0
14 0 0 0 21 21 21
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tems, may serve for the comparative evaluation of
improved and future algorithms. The choice of pre-
processing protocols is especially important to estab-
lish coherent repositories of data compendia, as such
large databases will hold data from heterogeneous
sources. A major challenge will be to effectively in-
tegrate data from different platforms for analysis and
mining purposes, e.g. by using cross-platform nor-
malization methods (Ferl et al., 2003) or by taking P
values, computed from the expression measurements
of the different experiments (Rhodes et al., 2002).

CATMA array probes were selected to exclude
homology exceeding 70% identity. A similar design
strategy was used for the probes of the two oligonu-
cleotide arrays. Therefore, it came as no surprise that
cross-hybridization could not be detected for any of
the arrays, not even with spike RNAs at 10,000 copies
per cell representing up to 3.3% of the poly(A) RNA
pool. The ability of the tested platforms to exclude
cross-hybridization problems because of sequence
homology is a big advantage over cDNA-based arrays.

The coverage of the three arrays was matched
against the latest TIGR annotation (release 5.0) of the
Arabidopsis genome. The CATMA v2 array is on par
with the oligonucleotide arrays. Yet, microarray probe
design has a moving target and all platforms will
further evolve with advances in genome annotation
because experimental transcription data are constantly
accruing, gene prediction algorithms are continuously
improving, and new genome sequences are becoming
available. The ongoing design of CATMA v3 may yield
an additional 6,000 probes, taking advantage of both
the TIGR 5.0 annotation and the gene models obtained
with recent improvements of the EuGène gene finder
(http://bioinformatics.psb.ugent.be/genomes_ath_
index.php). Likewise, Affymetrix is working on a new
version of the ATH array, and Agilent has introduced
the Arabidopsis 3 oligonucleotide array with close to
40,000 features. It will take a few more years before the
Arabidopsis gene repertoire becomes completely sta-
ble, and additional updates of the array feature sets
will be necessary.

CATMA arrays are now routinely used by the
different CATMA consortium partners (Hilson et al.,
2004; Lurin et al., 2004). Furthermore, the CATMA
microarray is the platform for the production of a large
compendium of Arabidopsis gene expression data,
made available through the ArrayExpress database of
the European Bioinformatics Institute. Although not
exhaustive, this data compendium is meant to provide
a reference for analysis, mining, and modeling based
on transcript profiles. Its structure is such that addi-
tional data can be added easily, either through in-
dependently produced CATMA arrays (GSTs and GST
arrays are available through NASC) or via microarray
service (e.g. provided by CATMA partners). Alterna-
tively, we foresee that data produced by alternative
platforms may be integrated into the compendium.

The GST probe resource may constitute an afford-
able alternative to commercial whole-genome arrays.

Of course, the up-front cost to develop the resource
has not been trivial. Specific amplicon design software
needed to be developed, and the CATMA consortium
had to invest in PCR primers and amplification of the
GST collection, but thanks to this initiative (Hilson
et al., 2004), it is now possible that a well-managed
microarray core facility will be able to deliver CATMA
arrays for V 100 or less.

CONCLUSION

The CATMA array constitutes a novel platform for
transcript profiling. Its sensitivity, specificity, and cov-
erage make it a strong competitor for other microarrays
currently available for genome-scale transcript profil-
ing. Because its probes are designed from the complete
genome sequence rather than selected from available
cDNA or expressed sequence tag collections, it mini-
mizes homologies between probes and maximizes the
genome coverage. The up-front investment in the clone
library has thus resulted in an ideal low-cost alternative
for in-house spotting. As the merits of microarray
transcriptome analysis are now firmly established, the
novel CATMA array may become an important tool for
functional analysis of Arabidopsis genes.

MATERIALS AND METHODS

Plant Material and RNA Extraction

Arabidopsis (Arabidopsis thaliana L.) Heynh. Col-1 seeds were sown, cold

stratified (at 4�C for 7 d), and grown at long-day conditions (22�C, 16 h light/8 h

dark, with cool-white light [tube code: 840] 65 mE m22 s21 photosynthetically

active radiation) on agar-solidified culture medium (13 Murashige and Skoog

[Duchefa, Haarlem, The Netherlands], 0.5 g L21 MES, pH 6.0, 1 g L21 Suc, and

0.6% plant tissue culture agar [LabM, Bury, UK]). Whole shoots were harvested

at growth stage 1.04 corresponding to a fourth leaf length of approximately

1 mm (Boyes et al., 2001; developmental stage equivalent to The Arabidopsis

Information Resource development term 0000399), 6 h after dawn, and

immediately frozen in liquid nitrogen. Total RNA was extracted from pooled

plant material using the TRIzol reagent (Invitrogen, Carlsbad, CA).

Preparation of Spiked RNA Samples

Spike poly(A) RNAs were synthesized from selected cDNA clones

(Supplemental Table II; EMBL accession nos. AI997299, AI996580, AI998315,

AI999518, AI995329, AW004197, AI995484, AI993419, AI994579, AI994777,

AI992430, AI995003, AI995254, and AI994049) from a 6K cDNA collection

distributed originally by Incyte, now available through Open Biosystems

(Huntsville, AL; see http://www.microarray.be/servicemainframe.htm) and

constructed by NotI-SalI directional cloning in either Lambda ZipLox (Invi-

trogen) or pSPORT1. All clones were validated for this particular study by

sequencing. Plasmid DNA was linearized by NotI digestion, the restriction site

being positioned immediately after the poly(A) tail sequence; 1 mg of

linearized plasmid was used as template for the in vitro synthesis of sense

transcripts with the T7 RNA polymerase (AmpliScribe T7 High Yield

transcription kit; Epicentre, Madison, WI). Following DNAseI treatment, the

transcribed RNAs were purified by ammonium-acetate precipitation and

resuspended in diethyl pyrocarbonate-treated water. The quality and quantity

of all RNA samples (spikes and Col shoot total RNA) were assessed with the

RNA LabChip (Bioanalyzer 2100; Agilent Technologies) and classical spec-

trophotometry. Despite our efforts to carefully quality control all spike RNAs,

we originally overestimated Spike 13 RNA concentration and integrity and

could not draw meaningful conclusions from it in the analysis of the

hybridization data. We therefore omitted this spike from all subsequent

analyses.
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A large batch (500 mg) of Arabidopsis (Columbia) shoot RNA was diluted

to 1 mg mL21 and used to prepare 7 test samples at a final concentration of

0.5 mg mL21, each containing a full range of spike RNAs at concentrations

ranging from 0.1 to 10,000 cpc. Care was taken to use water containing total

RNA at all dilution steps, to prevent the loss of spike RNAs at low

concentrations through adsorption on plastic surfaces. An eighth RNA sample

was constructed containing all RNA spikes at a concentration corresponding

to 100 cpc. The eight RNA samples were constructed each in a single separate

tube, aliquoted, and processed according to the protocols specific to each

platform. All RNA samples were again checked for quality and quantity with

the RNA LabChip at the end of the dilution procedure.

CATMA GST Microarray

Design and synthesis of primary and secondary GST amplicons were

described elsewhere (Thareau et al., 2003; Hilson et al., 2004). As described, the

GSTs primarily match (3#) exons or 3# untranslated region (UTR) sequences

and occasionally (2.9%) contain intron sequences. The CATMA v1 array used

in this study consisted of 19,992 features, including 18,981 unique GSTs, 768

positive/negative controls (Amersham BioSciences), and 243 blanks. GST PCR

products were purified with MinElute UF plates (Qiagen, Hilden, Germany)

and arrayed in 50% dimethyl sulfoxide on Type VIIstar reflective slides

(Amersham BioSciences) using a Lucidea Array spotter (Amersham BioScien-

ces). The spots had a diameter of approximately 100 microns and were 173 3

173 microns apart. The array design can be accessed via the ArrayExpress

database as accession number A-MEXP-10 (http://www.ebi.ac.uk/arrayex-

press) or via the VIB MicroArray Facility Web site (http://www.microar-

rays.be). Prior to hybridization, the slides were washed in 23 saline-sodium

phosphate-EDTA buffer, 0.2% SDS for 30 min at 25�C.

RNA was amplified using a modified protocol of in vitro transcription as

described previously (Puskás et al., 2002). Briefly, 5mg of total RNAwas reverse

transcribed to double-stranded cDNA using an anchored oligo(dT) 1 T7

promoter [5#-GGCCAGTGAATTGTAATACGACTCACTATAGGGAGGCGG-

T24(ACG)-3# (Eurogentec, Seraing, Belgium)]. From this cDNA, RNA was

produced via T7-in vitro transcriptase until an average yield of 10 to 30 mg of

amplified RNA. The amplified RNA (5 mg) was labeled with dCTP-Cy3 or Cy5

(Amersham BioSciences), by reverse transcription using random nonamer

primers (Genset, Paris). The resulting probes were purified with Qiaquick

(Qiagen) and analyzed for amplification yield and incorporation efficiency by

measuring the DNA concentration at 280 nm, Cy3 incorporation at 550, and Cy5

incorporation at 650 using a Nanodrop spectrophotometer (NanoDrop Tech-

nologies, Rockland, DE). A good target had a labeling efficiency of 1 fluoro-

chrome every 30 to 80 bases. For each target, 40 pmol of incorporated Cy5 or Cy3

were mixed in 210 mL of hybridization solution containing 50% formamide, 13

hybridization buffer (Amersham BioSciences), 0.1% SDS. Each spike mix was

hybridized against the reference RNA (spikes at 100 cpc) and repeated with dye

swap to make up 14 hybridizations in total (Fig. 1).

Hybridization and posthybridization washing were performed at 45�C
with an Automated Slide Processor (Amersham BioSciences). Posthybridiza-

tion washing was done in 13 sodium chloride/sodium citrate buffer (SSC),

0.1% SDS, followed by 0.13 SSC, 0.1% SDS and 0.13 SSC. Arrays were

scanned at 532 nm and 635 nm using a Generation III scanner (Amersham

BioSciences). Images were analyzed with ArrayVision (Imaging Research, St.

Catharines, Canada).

All protocols are available at the VIB MicroArray Facility Web site (http://

www.microarrays.be) and at ArrayExpress under accession numbers

P-MEXP-578, P-MEXP-579, P-MEXP-581, P-MEXP-582 for Cy3 labeling, Cy5

labeling, hybridization, and scanning, respectively. The CATMA transcript

profiling data have been submitted to ArrayExpress under accession number

E-MEXP-30.

Agilent and Affymetrix Microarrays

The protocols used by ServiceXS for Agilent data production were

published by Agilent Technologies, in particular the manuals Low RNA

Input Fluorescent Linear Amplification Kit (version 1.0, February 2003) and

Agilent 60-mer Oligo Microarray Processing Protocol (version 7.0, April 2004).

Arrays were scanned with maximum (100%) laser intensity in both channels

(default settings) to obtain maximum sensitivity. Lower intensity scanning

may correct for saturated features. Features were extracted with background

subtraction or with spatial detrending (Feature Extraction Software version

7.5). Spatial detrending estimates the background signal by fitting a surface

over the lowest 1% to 2% of the intensities. By subtracting this surface fit,

a systematic intensity gradient on the microarray is removed, thereby

correcting for a background trend rather than local background measure-

ments that may be biased. Apart from a slight decrease in the percentage of

spots above background, spatial detrending gave essentially the same result

as the background-subtraction method.

The procedures used for Affymetrix data production are described in the

documentation provided by NASC (http://nasc.nott.ac.uk/; Craigon et al.,

2004), available together with the data from the ArrayExpress database

(http://www.ebi.ac.uk/arrayexpress, accession no. E-NASC-32). For Affy-

metrix data, the hybridization characteristics of the internal RNA controls

were monitored as an additional quality control: (1) the 3#:5# ratios for

GAPDH and b-actin ranged from 1.0287 to 1.2408 and from 1.8012 to 2.1705,

respectively, and are all indicative of successful hybridizations; (2) the spike

controls (BioB, BioC, BioD, BioM, and CreX) were present on all chips, except

for BioB 5# and BioB 3# called ‘‘Marginal’’ for chips 1 and 3, respectively; (3)

when scaled to a target intensity of 100 (using Affymetrix MAS 5.0 software),

scaling factors for all arrays were within acceptable limits (ranging between

0.311 and 0.518), as were background and mean intensity values. For all

hybridizations, quality and quantity of starting RNA were verified by agarose

gel electrophoresis and RNA LabChip analysis. The Agilent and Affymetrix

transcript profiling data have been submitted to ArrayExpress under acces-

sion numbers E-MEXP-197 and E-NASC-43, respectively.

In Silico Coverage

The coverage of the three platforms was compared by BLAST analysis of

their probe sequences against TIGR 5.0 gene models. The sequences of these

gene models, including pseudogenes and transposable elements, were ex-

tracted from the XML files describing the chromosomes (at ftp://ftp.tigr.org/

pub/data/a_thaliana/ath1/PSEUDOCHROMOSOMES). The probes of Affy-

metrix and Agilent were designed based on TIGR annotation releases 2 and 3,

respectively (available in the archives at http://www.tigr.org). The probes of

CATMA were designed on gene models predicted by the EuGène software

(Schiex et al., 2001), supplemented with gene models uniquely described in

the TIGR 3 release. For the analysis of Affymetrix and Agilent probes, we used

only exonic sequences to correctly position probes that span exon boundaries.

In line with the original design criteria employed for the GSTs, we used

complete gene models including 3# UTRs, to be able to correctly locate probes

that were designed to span intron-exon boundaries or exon-3# UTR bound-

aries. The set of sequences extracted from the TIGR files for the comparison

against Affymetrix and Agilent contained the complete gene structure (exons,

introns, and 3# UTR sequences) of all protein-encoding genes, including

their splice variants, and the pseudogenes. For CATMA, we extracted exon

and intron sequences of all protein-encoding genes, and the pseudogene

sequences. For both databanks, we added either the full 3# UTR sequence or

arbitrarily the 150 bases following the stop codon (when the 3# UTR was

shorter than 150 bases or if no 3# UTR was available).

The sequences of the Affymetrix probe sets were retrieved from the

company’s Web site (http://www.affymetrix.com/), the sequences of the

Agilent probes were retrieved from the company Web site (http://www.

agilent.com; restricted pages requiring transfer agreement for access), and

CATMA v2 were derived from the Array Design File accession number

A-MEXP-58, publicly available at ArrayExpress (http://www.ebi.ac.uk/

arrayexpress/). Perl scripts were used to extract the genes from XML files,

to reconstitute exonic gene sequences, to adjust 3# UTR sequences, and to

automate the BLAST and extraction of data from the BLAST output files.

CATMA sequences (150–500 bp) matched TIGR 5.0 when aligned over at

least 150 bases allowing for at most two discrepancies (base mismatch or gap);

Agilent sequences (60mer) when aligned over the whole probe length

allowing at most one base mismatch or gap; and Affymetrix probe sets (11

probes of 25 bases each) when at least eight probes from a set aligned perfectly.

Splice variants were merged to allow comparison of CATMA hits (BLAST

against gene) with Agilent and Affymetrix hits (BLAST against all possible

splice variants). TIGR 5.0 genes represented by features in the different arrays

were simply counted based on these criteria.

Distribution of Materials

Upon request, all novel materials described in this publication will be made

available in a timely manner for noncommercial research purposes, subject to

the requisite permission from any third-party owners of all or parts of the
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