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An Improved Method to Determine the
Antenna Factor

Wout Joseph and Luc Martens, Member, IEEE

Abstract—1In this paper, we present an improved method to de-
termine the antenna factor of three antennas. Instead of using a
reflecting ground plane we use absorbers. Destructive interference
between the direct beam and the residual reflected beam from the
absorbers is avoided by splitting the measured frequency range
in bands and changing the distance between the two antennas de-
pending on the frequency band. Furthermore, this method is ap-
plicable for both E- and H-field probes. Our method has also the
advantage of being low-cost: The method does not need to be per-
formed in an anechoic chamber to obtain high accuracy. To take the
residual reflections of the environment into account, we perform a
de-embedding procedure. We have developed two de-embedding
methods.

Index Terms—Antenna factor, calibration, dipole antenna, split-
shield loop antenna.

1. INTRODUCTION

URING THE last decade, the use of mobile telephones

[especially global system for mobile communications
(GSM) phones] has increased enormously. At the same time,
the question whether the fields of the base stations are harmful,
becomes more and more important. So there is a need to
measure electromagnetic fields at frequencies around 900
(GSM900) and 1800 (GSM1800) MHz. Electromagnetic fields
are also measured around sources for use in electromagnetic
compatibility studies. Accurate measuring of electromagnetic
fields can only be done if the electromagnetic-field probes are
calibrated carefully. Antenna calibration involves the determi-
nation of the antenna factor (AF). The antenna factor is defined
as follows:

AF =20 - log (g) [dB(m™1)] (1)

where E is the incident electric field at the antenna to be cal-
ibrated and V' is the voltage measured at the terminals of the
antenna to be calibrated.

The principle of using three antennas for the calibration is in-
troduced by Smith [1], [2]. In this method, the reflected beam
is taken into account theoretically. Reflections can largely dis-
turb the measurements. The theoretical site attenuation values
in the ANSI C63.4 [3] are based on [1] and [2]. Antenna mea-
surements on different types of open-area test sites (OATS) with
different conducting planes are reported in [4]. In this paper, an
absorbing ground plane is used to reduce the reflections. Sev-
eral improvements to the method of Smith have been published
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[5] and [6]. These methods make use of tabulated values of
the maximum field strength for frequencies below 1000 MHz.
An advantage of our method is that it is applicable for both E-
and H-field probes. For the calibration of loop antennas, two
methods are described in [7]. The first method is based on cal-
culation of the loop impedances. The second method is by gen-
erating a well-defined standard magnetic field. The first method
cannot be used because the geometric shape of the split-shield
loop probes is not simple. For the second method, the gener-
ation of a well-defined standard magnetic field is necessary.
Our method does not need such a standard magnetic field. The
method of Glimm et al. [8] is only applicable for directional an-
tennas and not for loop antennas.

Mostly, measurements to determine the antenna factor are
done in an anechoic chamber. However, this is expensive. If
one wants to optimize the gain and the sensitivity of the mea-
surement antennas, several characterization cycles are needed.
Therefore, the use of a low-cost method is advised.

In this paper, we present a method based on S-parameter mea-
surements. The method does not make use of tabulated values
as in [5] and [6]. The frequency range that we investigate is
from 600 to 2000 MHz. This range contains the GSM900 and
GSM1800 frequencies. With our method, the antenna calibra-
tion must not be performed in an anechoic chamber but is done
in an indoor open-site surrounded by absorbers to minimize in-
terference. This makes it a low-cost method delivering accurate
results.

A limitation to our method is that it is only applicable for pairs
of omnidirectional antennas and when the antennas are carefully
aligned. By using appropriate stands, this alignment can be done
properly.

In Section II, our method is explained. The results are
described in Section III. The conclusions are presented in
Section IV.

II. METHOD
A. Configuration

The calibration setup is shown in Fig. 1. We use a well-ab-
sorbing material on the ground and name this an absorbing
ground plane.

We make sure that the far-field conditions are fulfilled

2D?2
R> B ()

with R the distance from the antenna, D the maximum di-
mension of the antenna, and ) the wavelength at the operation
frequency.
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Fig. 1. Measurement setup.

Measurements are made with a network analyzer (Rohde and
Schwarz ZVR). The network analyzer is calibrated with a SOLT
calibration, using the standards short, open, load, and thru. By
connecting these standards with the coaxial connectors of the
measurement planes and using the SOLT-calibration formulas,
the reference planes of the measurements are moved to the in-
puts of the antennas as indicated on Fig. 1. The antenna factors
are determined between 600 and 2000 MHz.

The antennas used in the method are dipoles with lengths
15 cm (A/2 at 900 MHz) and 7.5 cm (A/2 at 1800 MHz), a
conical dipole antenna and an in-house made split-shield loop
antenna, one terminated in a 50 €2 load and the other one in
a 0  load, shown in Fig. 2. The split-shield loop antenna is
designed to reject the contribution of the electric field to the
magnetic-field measurement [9]. Both split-shield loop antennas
have a diameter of 3.4 cm.

B. Theory of the Method
We start from the Friis formula [10], [11]

A 2
Pr:PiGtGr< ) .PLF 3)

47r d1

where P, is the received power delivered to the receiver load,
P; is the available input power of the transmitting antenna, G,
is the realized (apparent) gain of the receiving antenna, and Gy
is the realized gain of the transmitting antenna. G, and Gy con-
tain the mismatch of the receiving and the transmitting antenna.
Figs. 3(a) and (b) clarify the notations used in (3).

PLF stands for polarization loss factor. It is defined as PLF =
|ew - €a]? = | cos1)|? where &, is the unit vector of the incident
field, €, is the unit vector of the polarization of the field of the
receiving antenna, and ¢ the angle between the two unit vectors.
d; is the distance between both antennas.

If we measure the So1-parameter (with respect to 50 £2) be-
tween the calibration planes of the antennas, the attenuation is

P,

_ 2
A= P, [Sa1|”. 4

coax 0Oor50Q

coaxial

connector \‘ to the 50 Q
measurement system

Fig. 2.
or 50 €.
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Fig. 3. (a) Antenna setup with indication of powers and (b) its S-parameter
equivalent.

Combining (3) and (4), we obtain

A\ 2
—— | - PLF. 5
47T d1 ) ( )
When we measure with three different antennas using identical
setups characterized by (hy, hs, R), shown in Fig. 1, we obtain
the following equations:

Sarl? = GGy (

A 2

|821|%_>2 = G1G2 <m) . PLFI_,Q (6)
A 2

S21/3 3 = G1G3 <47rd1> -PLF_,3 @)
A 2

|S21|§—>3 = G2G3 <47I'd1> . PLF2—>3 (8)

with G1, Gy, G3 the realized gains of the three antennas. We
position the antennas in such a way that the PLF;_,; factors are
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approximated to one. Solving (6), (7), and (8), we obtain the
realized gains.

Using the same notations as in formula (3), the power density
W at distance R in the far field of the source antenna can be
derived

Gy FE 2

S 4mR? 120w
G is the realized gain of the transmitting antenna, F is the elec-
tric field (V/m). Considering (1) and combining formula (9) with

formula (3) also equal to V2/50 (50 © measurement system),
the antenna factor [dB(m~1)] is derived

AF = 20 - log(fy1) — 29.78 — G — 10 - log(PLF)

(€))

(10)

with fy; the frequency in MHz.

C. Improvements

Although we use an absorbing ground plane, destructive in-
terference between the direct beam and the reflected beam could
still appear, resulting in unreliable results. In Smith [1], [2], this
problem is avoided by scanning the height of the receiving an-
tenna until the maximum output voltage is measured. In our
method, we split the considered frequency range in bands. In
each frequency band, the distance between both antennas is
changed after determining the path length difference d between
both beams. For horizontal polarization and using the notations
of Fig. 1 we getd = dy — d;

d = [R?+ (hy + h2)?]Y? — [R% + (hy — ho)?]Y2. (11)

If d = n-)\ with A\ the wavelength and n = 1,2,..., then
both beams will interfere destructively. Before measuring, we
choose the height of the transmitting antenna h; and the height
of the receiving antenna hs. This choice is made such that the
antennas are polarization matched (PLF is close to 1) and that
the antennas are positioned high enough above the absorbing
ground plane. This is because of the fact that the more orthog-
onal the beam hits the absorbers on the ground the better it will
be absorbed. We then determine R, the distance between both
antennas, in a frequency band using Fig. 4 and formula (11). To
produce this figure, the reflection coefficient of the ground was
approximated to one in amplitude and 180° in phase. The points
where destructive interference occurs are indicated with black
spots. The frequencies in the neighborhood of these points of
destructive interference should be avoided because at these nulls
it will be impossible to solve (6)—(8) and the steep gradient of
the field in the region of a null can result in large measurement
errors due to small errors in antenna positioning [1], [2].

We have not yet taken into account residual reflections. To
this end, we perform a de-embedding step. We describe two
methods of de-embedding the reflected beam: The first one is
performing an additional measurement by placing an absorber
in between the two antennas. The second method uses the in-
verse fast Fourier transform (FFT) to obtain the time-domain
signals and we then apply time-domain gating [12] and [13].

The de-embedding step by placing an absorber in between the
two antennas is shown in Fig. 5. The absorption eliminates the
direct beam. This results in the measurement of all the reflec-
tions by the surrounding environment, represented by Sisflected,

— d1=0.70m
..... d1=0.60m R4
4r ._..d1=0.50m Y2

d/A

L L L L L )
1000 1200 1400 1600 1800 2000

1 L
600 800

frequency [MHz]

Fig. 4. Determination of d/\ for three values of diy (hy = 0.60 m and
ho = 0.45 m). The black spots indicate the frequency points where destructive
interference occurs.

network analyzer

transmit
antenna

calibration plane

calibration plane

absorbing
ground plane

Fig. 5. De-embedding by placing an absorber in between the two antennas.

We take the reflections into account by subtracting Sigflected

from S51°*°, where S5;°*° represents the actual measurement
2 A\
|51 — s55fected)” = GGy | —— ) -PLF (12
47 dl

with PLF ~ 1.

In the second de-embedding method, we first select the fre-
quency range where the antenna factors must be determined. An
appropriate configuration of the antennas is selected to avoid
destructive interference in the desired frequency range. To ob-
tain enough resolution in the time domain to distinguish the di-
rect and reflected beam, a measurement is performed in a much
larger frequency range. Using a tenth-order Butterworth band-
pass filter, the Soq (f)-parameters in the desired frequency range
are obtained. We then take the inverse FFT of the So (f)-param-
eters to obtain sz; (t). Next, we apply a time-domain gating tech-
nique [12], [13] to eliminate the residual reflection: The latest
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Fig. 6. Application of time-domain gating by filtering the reflected beam
arriving 2 ns later than the direct beam.

arriving time-components (the reflected beam will arrive later
than the direct beam) of so; (t) are suppressed by a tenth-order
Butterworth digital bandpass filter. This type of filter is selected
because of its flat passband and the absence of side lobes. The
difference of the propagation time between the direct and the
reflected beam can be determined using formula (11). After fil-
tering, we obtain s33°°(t). Finally we take the FFT to obtain
s&2t°d(f) and use formula (13) to relate S§2*°(f) to the gains

2
A ) -PLF

4rd, (13

@ﬁ“@f:@@(
with PLF ~ 1.

To further explain the de-embedding method based on the
inverse FFT we show as an example the determination of the
antenna factor of the conical dipole antenna in the frequency
range 1100-1400 MHz. We used as heights A; = 0.60 m and
ha = 0.45 m. Using Fig. 4 and formula (11), the distance be-
tween both antennas is chosen in such a way that no destructive
disturbance occurs in the considered frequency range. The dis-
tance between both antennas is 0.60 m. For this configuration
the difference of the propagation time between the direct and the
reflected beam is 2 ns. To obtain a resolution smaller than 2 ns,
it is necessary to use for the FFT a Af > 1/(2 ns) = 500 MHz.
The three measurements of each 801 points are performed from
300 kHz to 4 GHz, therefore, Af = 3.9997 GHz is large enough.
Fig. 6 shows how we filtered the reflected beam in the time do-
main. The measurement from Fig. 6 is performed with the 15 cm
dipole and the conical dipole antenna using the configuration de-
scribed above. The results of both de-embedding methods and a
comparison between both methods will be shown in Section III.

Finally, we had to take into account that the 15 cm dipole
(A\/2 at 900 MHz) antenna is almost insensitive for frequencies
higher than 1600 MHz, while the 7.5 cm dipole (\/2 at 1800
MHz) antenna becomes insensitive for frequencies lower than
800 MHz. So it is advisable to use the 15 cm dipole for the
calibration from 600 to 1100 MHz and the 7.5 cm dipole for the
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Fig. 7. Comparison of the antenna factors of the conical dipole antenna,
respectively, obtained by the Austrian Research Center in Seibersdorf and
obtained with our method without de-embedding.
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Fig. 8. Comparison of the antenna factors of the conical dipole antenna,
respectively, obtained by the Austrian Research Center in Seibersdorf and
obtained with our method with de-embedding by placing an absorber between
both antennas.

calibration from 1400 to 2000 MHz. In between those frequency
ranges, we can use both dipoles.

III. RESULTS

To check the accuracy of our method, we compare the
antenna factor of the conical dipole antenna, determined with
our method, with the data obtained from the Austrian Research
Center Seibersdorf where the antenna calibration is performed
in an anechoic chamber. For our method, we used as heights
h1 = 0.60 m and ho = 0.45 m. We show the results obtained
without de-embedding and obtained with the two presented
de-embedding methods in Figs. 7, 8, and 9. Table I lists the
mean and maximum deviation. As can be noted there is already
improvement by placing an absorber: The maximum deviation
is reduced by 1.5 dB. However, we obtain the best results with
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Fig. 9. Comparison of the antenna factors of the conical dipole antenna,
respectively, obtained by the Austrian Research Center in Seibersdorf and
obtained with our method with de-embedding by taking the inverse FFT.

TABLE 1
COMPARISON OF THE ANTENNA FACTOR OF THE CONICAL DIPOLE ANTENNA
OBTAINED BY THE AUSTRIAN RESEARCH CENTER IN SEIBERSDORF WITH THE
RESULT OBTAINED WITH OUR METHOD WITH AND WITHOUT DE-EMBEDDING

Deviation from antenna Without de- De-embedding by De-embedding by
factor obtained by the embedding placing an absorber taking the inverse
Austrian Research [dB(m™)] [dB(m™)] FFT
Center Seibersdorf [dB(m™)]
Mean deviation 0.67 0.41 0.39
Maximum deviation 2.80 1.30 0.84

the de-embedding by taking the inverse FFT: The deviation is
maximal 0.84 dB and the average deviation is only 0.39 dB.
We can conclude that performing a de-embedding step largely
improves the determination of the antenna factor. The Austrian
Research Center Seibersdorf specified the antenna factor with
an uncertainty of £1 dB. So our result is lying within this
uncertainty interval.

Putting an absorber in between the two antennas will intro-
duce diffracted waves. This is a reason why the results of this
method are worse than using the method with the inverse FFT.
The size of the absorber we used is 60 x 60 x 3 cm?. To investi-
gate the diffraction, we performed a worst-case finite difference
time domain (FDTD) electromagnetic simulation with a per-
fectly conducting plate in between the two antennas and with a
separation of 70 cm between the antennas. At 900 MHz and with
the dimensions of the plate equal to the absorber, we obtained
that the electric fields at the receiving antenna due to diffrac-
tion are six times lower than the direct wave when no absorber
is present. Using an absorber of dimensions 120 x 120 x 3 cm3
(3.6A x 3.6 x 0.09)\ at 900 MHz) delivers diffracted fields that
are more than 140 times lower. The method with an absorber in
between the two antennas will deliver better results when using
much larger absorbers, but this will be more expensive. The
dimensions of the absorber are determined by the lowest fre-
quency under consideration. Residual reflections from ceiling,
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Fig. 10. Comparison of the antenna factor of the split-shield loop probes using
both de-embedding methods.
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Fig. 11. Consistency check by comparison of the antenna factor of the conical

dipole antenna using our three-antenna method with different antennas.

walls, ... will not be eliminated using this method in contrary
to the method using the inverse FFT.

The antenna factors of the split-shield loop probes (used
for measuring the magnetic field) determined by means of our
method are shown in Fig. 10. For this figure, we used an ab-
sorbing ground plane and we performed the calibration for both
de-embedding methods. A disadvantage of the O {2 loop antenna
is the appearance of the resonance peak at 1000 MHz. The
resonance peak is smaller using the de-embedding by taking
the inverse FFT because of the filtering in the time domain
what comes down to a convolution and, thus, a smoothening in
the frequency domain.

To check the consistency of our method, we performed our
method with different antennas and we compared the antenna
factor of the conical dipole antenna. We used the de-embedding
by taking the inverse FFT. For the first measurement, the two
other antennas were the two dipoles and the 0 €2 split-shield
loop antenna. For the second measurement, we used a 50 {2
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split-shield loop antenna in combination with the dipoles. In
Fig. 11, we compare the obtained antenna factor of the conical
dipole antenna. The deviation of the obtained antenna factors of
the conical dipole antenna is very small, despite the fact that the
antenna factor of the 0 €2 split-shield loop antenna is totally dif-
ferent to the one of the 50 2 split-shield loop antenna in the fre-
quency range of 900-1200 MHz. The average difference of both
antenna factors for the whole frequency range is only 0.15 dB;
the maximum deviation is 0.49 dB. This shows that our method
is consistent.

IV. CONCLUSION

We have presented an improved method to determine the an-
tenna factor. From the results shown in this paper, we can con-
clude that our calibration method is accurate and consistent. By
using antennas with totally different antenna factors, the mean
deviation is only 0.15 dB and the maximum deviation is only
0.49 dB for the antenna factor of a conical dipole antenna. The
use of an absorbing ground plane and performing a de-embed-
ding step eliminate undesired reflections. Furthermore, the cal-
ibration is easy to perform with a network analyzer, and this
method does not need to be performed in an anechoic chamber
to be accurate, resulting in a low-cost method.
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