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Abstract — A fast converging 2-D periodic Green’s
function for a layered medium is derived based
on eigenmodes of the layered substrate terminated
by a perfectly matched layer (PML). The PML-
termination mimics the open configuration, yet al-
lowing a description of the problem in terms of dis-
crete modes. Exponential convergence is achieved
by combining the PML-based modal series expan-
sion with a truncated periodic Green’s function se-
ries in the spatial domain. The efficiency of the new
approach is illustrated by first comparing the con-
vergence of this new series to the conventional series
expansions for the periodic Green’s function in the
spectral and spatial domains. Finally the new period
Green’s function is applied to study scattering by a
grid of metallic wires embedded in a dielectric slab.
It is shown that the new technique results in a sig-
nificant speed-up compared to existing approaches.

1 INTRODUCTION

Periodic structures with infinite extent are de-
scribed very efficiently by applying the Floquet-
Bloch theorem to limit the analysis to a represen-
tative unit cell. When applying integral equation
techniques to describe the fields in this cell, the pe-
riodic Green’s function is required to take into ac-
count the periodic character of the configuration.
In general, the periodic Green’s function is written
as a spatial domain series or as a series of Floquet
modes. Both series tend to be slowly converging for
certain positions of the excitation and the observa-
tion point. Therefore, much attention has been de-
voted in literature to derive series expansions that
converge more rapidly, mainly by combining both
the spatial and the spectral domain series.

In this contribution, we propose a new formalism
based on Perfectly Matched Layers (PMLs) to de-
rive a fast converging series expansion for the 2D
periodic Green’s function of layered media. PMLs
[1] are used to mimic the open character of the
problem, in the meanwhile transforming the open
layered medium into a closed waveguide configu-
ration, leading to an efficient expansion for the
Green’s function in terms of a set of discrete modes
of the closed waveguide. We obtain a series for
the 2D periodic Green’s function with exponential
convergence by combining the PML-based modal
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expansion with a truncated periodic Green’s func-
tion series in the spatial domain [2]. The num-
ber of terms required in both series is controlled
by a parameter, allowing to minimize CPU-time.
An optimal choice for this parameter is based on
the computational complexity of the spatial domain
Green’s function.

In Section 3, the new approach is applied to
calculate the 2D periodic Green’s function in free
space. The accuracy of the new expansion is com-
pared to the spatial domain series and the expan-
sion in Floquet modes. It is shown that the new
technique results in a significant speed-up com-
pared to existing approaches based on a combina-
tion of the spatial and the spectral domain series.
In Section 4, we study the 2D periodic Green’s func-
tion in a dielectric slab. A simple integral equation
approach has been implemented to study scatter-
ing from wire grids embedded in dielectric slabs.
It is demonstrated that the new approach shows
a significant reduction in CPU-time compared to
the approach described in [3], while maintaining a
comparable accuracy.

2 PML FORMALISM FOR THE PERI-

ODIC GREEN’S FUNCTION
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Figure 1: Stratified medium terminated by PMLs.

Assume a planar stratified medium, translation
invariant in the y-direction and with all material
variations in the z direction located within a region
bounded by the vertical distance t. Instead of using
the conventional spatial domain series expansion for
a 2-D periodic array of line sources located in that
medium, i.e.

Gper
xx (y, z|y′, z′) =

∞
∑

n=−∞

Gxx(y, z|y′ + nd, z′)e−jnkyd,

(1)



we construct a parallel plate waveguide by termi-
nating the free space with two PEC plates backed
by a perfectly matched layer (PML) with thickness
dPML and with material parameters κ0 and σ0 [4],
as shown in Fig. 1, so that the periodic Green’s
function can be expanded into a series of discrete
eigenmodes:

Gper
xx =

∞
∑

n,m=−∞

Am(βm, z|z′)e−j(βm|y−y′−nd|+nkyd)

with βm the eigenvalues and with Am(βn, z|z′) the
excitation coefficients of the eigenmodes. Assume
now that 0 < y − y′ < d. Some simple manipula-
tions result in

Gper
xx =

l
∑

n=−l

Gxx(y, z|y′ + nd, z′)e−jnkyd

+

∞
∑

m=−∞

Am(βm, z|z′)
[

ejβm(y−y′) e
−j(βm+ky)(l+1)d

1 − e−j(βm+ky)d

+e−j(βm(y−y′)) e
−j(βm−ky)(l+1)d

1 − e−j(βm−ky)d

]

(2)

for an arbitrary positive value of l. The second se-
ries is the Green’s function pertaining to an array of
2l+1 sources placed inside the background medium.
The parameter l can be controlled to reduce CPU-
time. A larger value of l results in an increased
convergence rate for the first series, at the expense
of an increased number of terms in the second se-
ries. An optimal choice for l depends mainly on the
computational complexity of the Green’s function
Gxx(y, z|y′ + nd, z′).

3 FREE SPACE PERIODIC GREEN’S

FUNCTION

To illustrate our formalism, we determine the
Green’s function Gper(y, z|y′, z′) for a periodic set
of line sources spaced at a distance d = 0.02m
and placed in free space (k = k0 = 2π

λ
) at a

wavelength λ = 25mm. The current on the line
sources is assumed to be x-oriented. When using
the PML formalism, the array of sources is sur-
rounded by two PMLs backed by perfectly elec-
trically conducting plates. The PMLs are placed
at a distance dair = 20mm and their character-
istics are chosen to be dPML = 5mm, κ0 = 10,
σ0

ωǫ0
= 5. Fig. 2 shows the amplitude of the 2D

periodic Green’s function |Gper
xx (0, z)|, given by (2)

with Am(βm, z|z′) =
j(1+δm,0)

2d̃

√

k2

0
−( 2mπ

d̃
)
2

cos( 2mπ

d̃
z) and

βm = 2mπ

d̃
(d̃ = dair + 2dPML(κ0 − j σ0

ωǫ0
) and δn,0
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Figure 2: 2D periodic Green’s function at z = 0.

the Kronecker delta), along z = 0. Because of sym-
metry, the plot is made over half a unit cell. The
spatial domain series (1), with

Gxx =
j

4
H

(2)
0 (k0

√

(y − y′ − nd)2 + (z − z′)2),

converges very slowly, except near y = 0. We used
5000 terms in the series to get a relatively accu-
rate solution. For the spectral domain series, with
βs,n = 2nπ

d
− ky,

Gper
xx = −

∞
∑

n=−∞

ejβs,n(y−y′)−
√

β2
s,n−k2

0
|z−z′|

2d
√

β2
s,n − k2

0

(3)

slow convergence is observed when |y− y′| is small,
because of the singular behavior when the obser-
vation point approaches the excitation point. We
used 40 terms in the series evaluation. As one can
see, the solution is not acceptable around the self-
patch point y − y′ = 0. The new formalism, which
only uses 10 PML-based modes combined with 7
terms of the spatial series, provides very accurate
results over the complete y-range of the unit cell.

4 PERIODIC GREEN’S FUNCTION IN

A DIELECTRIC SLAB

Finally, we apply the formalism of Section 2 to de-
termine the Green’s function Gper(y, z|y′, z′) for a
periodic set of line sources embedded in a dielec-
tric slab, as shown in Fig. 3. In order to apply
the PML formalism, the slab together with the ar-
ray of sources is surrounded by two PMLs backed
by PEC plates. In order to evaluate (2), we first
calculate the propagation constants of eigenmodes
for the waveguide formed by the slab together with
the PML, using the fast formalism described in [5].
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Figure 3: Wire grid in a dielectric slab.
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Figure 4: Power reflection and transmission coeffi-
cients for a wire grid with wire radius r = 2mm.

The coefficients Am(βm, z|z′) are then found by ap-
plying the techniques described in [6]. The spatial
Green’s function Gxx(y, z|y′, z′) is obtained by first
transforming the problem to the spectral domain
and then evaluating the inverse Fourier transform,
as in [7]. As this procedure is very time-consuming,
we retain one term in the spatial series and choose
l = 0. This Green’s function was used as kernel
function in

−Ein
x =jωµ0

∑

i

∮

Ci

Gper
xx (y, z; y′, z′)Jx(y′, z′) dc′

to model scattering by a periodic array of PEC
metallic objects buried in a dielectric slab. Let
us, e.g., consider a periodic grid of metallic wires
(Fig. 3), buried in a dielectric slab with thickness
t = 18 mm and permittivity ǫr = 3.0. The cen-
ter of each wire is placed on the symmetry axes
of the slab and the center-to-center spacing be-
tween the wires is chosen to be d = 10 mm. The
PMLs are placed at a distance dair = 5mm from
the slab and their characteristics are chosen to be
dPML = 3.5mm, κ0 = 15, σ0

ωǫ0
= 10. The structure

is excited by an x-polarized incoming plane wave,
at a free-space wavelength λ = 20mm. As the char-
acteristics of the background medium are incorpo-

rated in the Green’s function, only the currents Jx

on the wires in one unit cell remain as unknowns.
We compare this integral equation technique with
the fast periodic kernel function for the dielectric
slab with the boundary integral equation approach
presented in [3]. The kernel function used there is
either the free-space Green’s function, accelerated
by the technique described in [8], or the free-space
Green’s function in combination with the Floquet-
Bloch condition. The latter method requires the
additional discretisation of the fields at the slab-air
interface, over a complete unit cell, in addition to
the unknown currents on the wires. In Fig. 4 and
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Figure 5: Power reflection and transmission coeffi-
cients for a wire grid with wire radius r = 3mm.

Fig. 5, the power reflection coefficient R and the
power transmission coefficient T are shown for a
wire grid with wire radius r = 2mm and r = 3mm,
respectively, as a function of the angle of incidence
θ. A good agreement is seen between both the new
approach and the formalism described in [3]. In
Fig. 5, one observes a small loss in accuracy with
the new formalism (error of the order of 0.5%) for
grazing incidence (θ close to 90◦), due to some small
parasitic reflection at the PML. In both methods,
the wire in a unit cell is modeled as a hexagone,
with each side subdivided into two segments (12 un-
knowns to model the current Jx). In order to apply
the formalism described in [3], both the horizontal
walls and the vertical walls of the slab are discre-
tised into 20 segments each. Since both the tan-
gential electric and magnetic field components are
required, this results in 160 additional unknowns.
For one angle of incidence, the new implementa-
tion takes 10s of CPU time on a 2.4GHz Pentium
IV, whereas the implementation described in [3]
requires 2min 16s of CPU time. Finally, consider
a dielectric slab with a wire grid consisting of two
wires per unit cell, as shown in the inset of Fig. 6.
All wires have a radius of r = 1.5mm. In Fig. 6, the
power reflection coefficient R and the power trans-
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Figure 6: Power reflection and transmission coeffi-
cients for a dielectric slab with a wire grid consisting
of two wires per unit cell.

mission coefficient T are shown as a function of the
angle of incidence θ. A good agreement is observed
between our new technique, requiring 24 unknowns
to model the current, and the approach in [3], using
184 unknowns to model to fields and the currents.
The new implementation is faster by a factor 6,
compared to the formalism used in [3].

5 CONCLUSIONS

We introduced a new formalism based on Perfectly
Matched Layers (PMLs) to derive a fast converging
series expansion for the 2D periodic Green’s func-
tion of layered media. A modal expansion for the
waveguide formed by the layered medium termi-
nated by PMLs was combined with a truncated pe-
riodic Green’s function series in the spatial domain.
The number of terms required in both series is con-
trolled by a parameter l in order to reduce CPU-
time. An optimal choice for this parameter is based
on the computational complexity of the spatial do-
main Green’s function. When the spatial domain
Green’s function is available in closed form, as in
free space, we evaluate several terms in the spatial
series ( l > 0) in order to increase the convergence
rate of the modal series. Otherwise, l = 0 is chosen
so that only one term remains in the spatial series,
since the evaluation of the spatial domain Green’s
function then becomes computationally involved.
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