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Abstract

An important branch in electromagnetic research is the construction of circuit models for devices starting from electromagnetic
field simulations. Among the first of such descriptions was the transmission line representation of TEM fields along a coaxial cable,
the so-called telegrapher’s equations. Although the transmission line representation directly follows from Maxwell’s equations
only in the pure TEM and, at low frequencies, also in the quasi-TEM situations, many authors have published representations
that are valid for the propagation at arbitratry frequencies in general waveguides. These representations usually are based on
the assumption that equal complex power is propagated in both the waveguide and the transmission line. However, this leads to
problems regarding the reciprocity of such transmission line representations. About 10 years ago Prof. de Hoop suggested the
present authors a solution to these problems. In honor of the celebration of Prof. de Hoop’s 75th anniversary, we present in this
paper these “reciprocity based transmission line representations” in a new and concise manner and apply them to a new problem
dealing with higher order eigenmodes in single conductor waveguides. It is shown that again reciprocity leads to simple and
hence esthetically pleasing results.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the mid of the 19th century the first submarine telegrapher cables were installed, first between Calais and Dover
and later across the Atlantic. These cables were coaxial cables with the sea water acting as the return conductor.
Actually, the first succesful submarine cable of 1851 from Dover to Calais was a multiconductor coaxial cable with
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four inner conductors. Due to the use of ever longer cables the need arose for a mathematical description of the
propagation of currents and voltages. Lord Kelvin applied Ohm’s and Kirchhoff’s laws to an infinitesimal length of
the line to obtain the equations

∂

∂z
v(z, t) = −Ri(z, t), (1)

∂

∂z
i(z, t) = −C

∂

∂t
v(z, t). (2)

Eliminating the current yields a parabolic type of equation. In 1874 Oliver Heaviside correctedEqs. (1) and (2)by
first introducing the conductanceG of the insulation and finally in 1876 by adding the inductanceL to obtain the
famous telegrapher’s equations[1]

∂2

∂z2
i(z, t) − LC

∂2

∂t2
i(z, t) − (RC + GL)

∂

∂t
i(z, t) − GRi(z, t) = 0, (3)

∂2

∂z2
v(z, t) − LC

∂2

∂t2
v(z, t) − (RC + GL)

∂

∂t
v(z, t) − GRv(z, t) = 0. (4)

A few years later these equations were verified using Maxwell’s equations.
Both electromagnetic waveguides and transmission lines are structures that guide waves in one direction. Oliver

Heaviside proved that the propagation of TEM electromagnetic waves along a coaxial cable can be described by the
propagation of current and voltage waves along a transmission line. This is easily generalised to the TEM fields in
the so-called homogeneous multiconductor waveguides, i.e. waveguides consisting of a number of parallel perfect
conductors embedded in a homogeneous isotropic dielectric. In this case the coupled transmission line equations
follow unambiguously from Maxwell’s equations.

In the 1970s and early 1980s this was generalised to inhomogeneous multiconductor waveguides. In this case the
analysis was limited to low frequency where the fields are still quasi-TEM. By using a low frequency expansion,
Maxwell’s equations still reduce to the transmission line equations[2,3]. The quasi-TEM fields correspond to the
lowest order or fundamental eigenmodes in the waveguide. These eigenmodes have no cut-off frequencies and at
low frequencies the longitudinal field components along the propagation direction become negligible compared to
the transverse components.

With the use of microwave circuits at higher frequencies, the quasi-TEM assumption became questionable. In
the full-wave regime the non-negligible longitudinal field components impede an unambiguous deriviation of the
transmission line equations from Maxwell’s equations. The reason being that current and voltage in the waveguide
loose their strict meaning. Nevertheless, the analogy between a waveguide and a transmission line and the need for
circuit descriptions resulted in the construction of several transmission line representations valid in the full-wave
regime. These models are based on the assumption that the same complex power is propagated in the waveguide and
the transmission line. The first attempts[4,5] faced some inconsistencies that were remedied in[6]. Different power
based transmission line representations were built, so-called PI-models, where the current on the transmission line
has a physical meaning, and PV-models, where the voltage has a physical meaning.

Application of these new transmission line representations to multiconductor waveguides involving losses re-
sulted in a set of coupled transmission lines that was no longer reciprocal, whereas the original waveguide is
composed of reciprocal media only. This was noticed by the first author and taken as a fact. However, Prof. de
Hoop, having carefully read the PhD[7] of the first author, suggested a new transmission line representation, which
is not based on the conservation of complex power but on the orthogonality of the eigenmodes. We call these reci-
procity based transmission line models. Also in this case one can distinguish between RI-models and RV-models.
These new results were published in[8]. For lossless waveguides or at low frequencies there is no difference between
the power and reciprocity based transmission line models.



F. Olyslager et al. / Wave Motion 41 (2005) 229–238 231

The publication[8] was the onset of extensive research to generalise the theory to non-isotropic waveguides
[9]. First anisotropic waveguides were considered and later bianisotropic waveguides leading to the concept of
bitransmission lines. Also the inclusion in the transmission line model of external fields incident on the waveguide
[10] and the representation of waveguide discontinuities[8] were investigated. All these results are summarized in
a monography[11] which was a direct consequence of Prof. de Hoop’s comments on[7].

As implicitly mentioned above, transmission line models are usually applied for to describe the fundamental
eigenmodes in multiconductor waveguides. In this contribution we wish to apply the power and reciprocity based
transmission line models to higher order eigenmodes in a single conductor waveguide, i.e. a waveguide with one
signal conductor and a reference conductor, such as the coaxial cable. We will show that the above mentioned
transmission line models remain valid but that extra degrees of freedom are available. In particular it will be shown,
exploiting these extra degrees of freedom, that reciprocity based models can be constructed in such a way that the
set of coupled transmission lines become decoupled.

As an example we will apply the theory to a coaxial cable with a lossy core referring to the original submarine
telegrapher cables that led to the telegrapher’s equations.

In the first part of the paper we will present the power and reciprocity based transmission line models. This
theory obviously is not new but we will present it in a slightly different and more efficient manner than e.g. in[8].
Next we adapt the theory to higher order eigenmodes in a single conductor waveguide and we finally illustrate the
technique with the analysis of the lossy coaxial cable.

2. Theory

We assume that all fields, voltages and currents have the same time-harmonic ejωt dependence and we orient the
z-axis along the propagation or longitudinal direction of the waveguides and transmission lines.

We restrict the analysis to waveguides filled with inhomogeneous isotropic media characterised by a permit-
tivity ε(ρ) and permeabilityµ(ρ), whereρ = xux + yuy. The fields in a waveguide can be expanded in the set of
eigenmodes of the waveguide[11]. Let us write the fields of an eigenmode as

e(r ) = E(ρ) e−γwz, h(r ) = H(ρ) e−γwz, (5)

whereγw is the propagation coefficient of the eigenmode. The considered waveguides are bidirectional[12] meaning
that the eigenmodes come into pairs, one with propagation coefficientγw and another with propagation coefficient
−γw. For two eigenmodes with indicesi andj we define the integral

Rw
ij = 1

2

∫
S

[Ei(ρ) × Hj(ρ)] · uz dS, (6)

whereS is the cross-section of the waveguide. The orthogonality of the eigenmodes in a waveguide yields that
Rw
ij = 0 when i �= j, or more correctly whenγwi �= γwj . From now on we will neglect degenerate eigenmodes

with γwi = γwj for i �= j. However, using e.g. a Gram–Schmidt procedure, the theory can be extended to include
degeneracy of eigenmodes as well. The complex cross-powerPw

ij between two eigenmodes is defined as

Pw
ij = 1

2

∫
S

[Ei(ρ) × H∗
j (ρ)] · uz dS. (7)

In generalPw
ij �= 0 wheni �= j. However, in a lossless waveguide, see[11], one can choose the transverse parts of

Ei(ρ) andHj(ρ) to be real such thatPw
ij = Rw

ij , meaning power orthogonality. A set of coupled transmission lines
is described in time-harmonic regime by

d

dz
v(z) = −Z · i(z), (8)
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d

dz
i(z) = −Y · v(z), (9)

with v(z) and i(z) vectors grouping the voltages and currents of the different lines and withY andZ the circuit

admittance and impedance matrices, respectively, also separated in a real and imaginary part asY = jωC + G

andZ = jωL + R, with C the capacitance matrix,G the conductance matrix,L the inductance matrix andR the
resistance matrix. The eigenmodes in the coupled transmission lines are

v(z) = V e−γ l z, i(z) = I e−γ l z, (10)

whereV andI are the modal voltages and currents. Substitution of(10) in (8) and(9) yields that

−γlV = −Z · I , (11)

−γlI = −Y · V. (12)

It is immediately obvious that also here for an eigenmode with propagation coefficientγl there exists an eigenmode
with propagation coefficient−γl. For two eigenmodes with indicesi andj we define

Rl
ij = 1

2VT
i · I j. (13)

Wheni �= j,Rl
ij = 0 due to the orthogonality of the eigenmodes[11]. The cross-powerPl

ij between two eigenmodes
is given by

Pl
ij = 1

2VT
i · I ∗

j . (14)

In generalPl
ij �= 0 wheni �= j. For a lossless coupled set of transmission lines, i.e. whenZ

T = −Z
∗

andY
T = −Y

∗
,

Vi andI i can be chosen real such thatPl
ij = Rl

ij.
We will now construct a coupled transmission line model for a set of eigenmodes in a waveguide. This means

that we will derive expressions for the transmission line parametersY andZ as a function of the modal fields in the
waveguide.N eigenmodes in the waveguide are represented by a set ofN coupled transmission lines.

First we demand that arbitrary waves composed from the considered eigenmodes in both the waveguide and the
transmission line have the same velocities. Therefore, it is needed thatγli = γwi , with i = 1,2, . . . , N. If we group

the propagation coefficients on the diagonals of two diagonal matricesγ
l
andγ

w
, then this means that

γ
l = γ

w
. (15)

A second requirement is that the same complex power be propagated in the waveguide and the set of coupled
transmission lines. This is guaranteed by expressing that

P
l = P

w
, (16)

whereP
l
andP

w
areN × N matrices constructed fromPl

ij andPw
ij .

When grouping the modal currentsI i andVi, i = 1,2, . . . , N, columnwise in matricesI andV , then it follows
from (11)and(12) that

Z = V · γ l · I−1
, (17)

Y = I · γ l · V−1
. (18)
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Fig. 1. Cross-section of a multiconductor waveguide withN conductors and a reference conductor.

Using(15)andP
l = (1/2)V

T · I∗ = P
w

this can be written as

Z = 2(I
T∗

)−1 · (P
w

)T · γw · I−1
, (19)

Y = 1
2I · γw · [(P

w
)T]−1 · IT∗

. (20)

The parametersY andZ are fully defined when the matricesI have been determined.
Let us now make the assumption that we have a multiconductor waveguide withN signal conductors and one

reference conductor (Fig. 1) and that we consider theN fundamental eigenmodes that have no cut-off frequency,

i.e. that exist for all frequencies. An obvious choice for the elements ofI is to assign to them the currents flowing
in each conductor for each eigenmode, i.e.

Iij =
∮
cj

Hi(ρ) · dl, (21)

wherei, j = 1,2, . . . , N andcj is the boundary of thejth conductor. In this way all quantities on the right-hand
side of (19) and(20) follow from quantities in the waveguide. The transmission line model constructed in this

way is called the PI-model. It is also possible to relateV to voltages in the waveguide. In this way a PV-model is
constructed. We will not pursue voltage based models but rather refer to[8] and[11] for more information on these.

A reciprocal transmission line is characterised by symmetricY andZ matrices. However, the expressions(19)

and(20)do not indicate thatY andZ indeed are symmetric. On the contrary numerical examples[8,13]have shown

that in generalY andZ are not symmetric. Prof. de Hoop suggested a way out of this problem by dropping the
demand that the same complex power be propagated in the waveguide and the set of coupled transmission lines.

Instead, it is required thatR
l = R

w
. This then yields the following expressions for the transmission line parameters

Z = 2(I
T
)−1 · (R

w
)T · γw · I−1

, (22)

Y = 1
2I · γw · [(R

w
)T]−1 · IT

. (23)

Since,R
w

is a diagonal matrix it follows thatY andZ are symmetric.
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Fig. 2. A set of coupled transmission lines with all lines connected at the load and generator.

Let us now consider a single conductor waveguide, i.e. a waveguide with one signal conductor and a reference
conductor. Such a waveguide will have one eigenmode that exists for all frequencies. We wish to construct a trans-
mission line model that incorporates not only this eigenmode but also higher order eigenmodes. ForN eigenmodes
a set ofN coupled transmission lines will be derived.Eqs. (19) and (20)or (22) and(23) are still applicable to this

case. However, it is not clear how to define the elements ofI since there is only one signal conductor and notN as
in (21). We can still demand that the total current on the signal conductor in the waveguide is equal to the sum of
all the currents on all the lines in the transmission line, i.e.

N∑
j=1

Iij =
∮
c

Hi(ρ) · dl, (24)

wherec is the boundary of the signal conductor. This assumes that at the load and generator of the set of coupled
transmission lines all the signal conductors are connected with each other as is shown inFig. 2. Obviously(24)

defines onlyNconditions onI, leaving many degrees of freedom. A particular simple choice is to makeI a diagonal
matrix such that

Iii =
∮
c

Hi(ρ) · dl. (25)

From(22)and(23) it then follows thatY andZ are diagonal matrices, i.e. that the set of transmission lines becomes

a decoupled set of equations. Note thatY andZ following from (19)and(20)will not be diagonal.
The simple choice(25) is only permisable as long as the integral(25) does not vanish. This would lead to a

singularZ-matrix as it need the inverse ofI. In (21) the problem of the existence ofI
−1

poses less of a problem.

Indeed, at low frequencies a quasi-TEM analysis directly leeds to the existence ofY andZ indicating the existence

of I
−1

. Of course, it cannot be guaranteed that higher frequencies exist for whichI
−1

is singular.

3. Coaxial cable

As an example we consider a coaxial cable with a lossy conductor core. The coaxial structure allows an analytical
treatment. We will consider the geometry ofFig. 3consisting of a core cylinder with radiusa and complex medium
parametersε2 andµ2 surrounded by another cylindrical medium with complex parametersε1 andµ1 and radiusb.
The whole structure is enclosed by a perfect electric conducting shield. In the limit forε2 → −j∞ andε1 andµ1
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Fig. 3. Geometry of a coaxial cable with a lossy core.

real a lossless coaxial cable with a perfect electric conducting core is obtained. We will limit the discussion to fields
that only depend on the radial coordinate. In this case the eigenmodes of the structure still fall apart in TE and TM
eigenmodes. We will only consider the analysis of the TM eigenmodes.

Using polar coordinates as shown inFig. 3, the TM modal field componentsEz(ρ), Eρ(ρ) andHφ(ρ) satisfy

1

ρ

∂

∂ρ

[
ρ
∂

∂ρ
Ez(ρ)

]
+ κ2

i Ez(ρ) = 0, (26)

with κ2
i = ω2εiµi + (γw)2 and

Eρ(ρ) = −γw

κ2
i

∂

∂ρ
Ez(ρ), Hφ(ρ) = − jωεi

κ2
i

∂

∂ρ
Ez(ρ), (27)

with i = 1,2. By writing the general solution of(26)in both layers and imposing the appropriate boundary conditions
one finds the following transcendental dispersion relation for the propagation coefficients

J0(κ1a)Y0(κ1b) − J0(κ1b)Y0(κ1a) − κ2ε1J0(κ2a)

κ1ε2J1(κ2a)
[J1(κ1a)Y0(κ1b) − J0(κ1b)Y1(κ1a)] = 0. (28)

The modal field componentEz,j(ρ) for an eigenmode with propagation coefficientγj can be written as

Ez,j(ρ) = J0(κ1,jρ) − J0(κ1,jb)

Y0(κ1,jb)
Y0(κ1,jρ), (29)

for a < ρ < b and as

Ez,j(ρ) = J0(κ1,ja)Y0(κ1,jb) − J0(κ1,jb)Y0(κ1,ja)

Y0(κ1,jb)J0(κ2,ja)
J0(κ2,jρ), (30)

for ρ < a. The other field componentsEρ,j(ρ) andHφ,j(ρ) are obtained fromEz,j(ρ) through(27).
As signal conductor we use the outer conductor. The total current on this outer conductor for eigenmodei is

given by

Iii = − 4jωε1

(κ1,i)2Y0(κ1,ib)
. (31)

The modal cross-power between eigenmodesi andj is given by

Pw
ij = π

∫ b

0
Eρ,i(ρ)H∗

φ,j(ρ)ρ dρ. (32)
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Fig. 4. Real (α) (dashed lines) and imaginary (β) (solid lines) part of the normalised propagation coefficientsγ/k0 for two eigenmodes in the
coaxial cable ofFig. 3as a function of the parameterν (ε2 = −jνε0) ((©) fundamental eigenmode, (×) higher order eigenmode).

The diagonal elements ofR
w

are given by

Rw
ii = π

∫ b

0
Eρ,i(ρ)Hφ,i(ρ)ρ dρ. (33)

Both the integrals(32)and(33) require numerical evaluation.
Let us now investigate some numerical results for a cable witha = 0.0059 m,b = 0.02 m, ε1 = 2.1ε0 and

µ1 = µ2 = µ0, whereε0 andµ0 are the vacuum permittivity and permeability, respectively. The permittivity of the
core is given byε2 = −jνε0, with ν a parameter that we will vary. Forν = +∞ the structure becomes a coaxial
cable with a perfect conducting core. We chose a frequency of 10 GHz and we consider the fundamental eigenmode
and one higher order eigenmode. When the core becomes perfectly conducting the fundamental eigenmode reduces
to the classical TEM eigenmode of a coaxial cable.

In Fig. 4 the normalised propagation coefficientsγi/k0 = αi + jβi, with k0 = ω
√
ε0µ0, of the two considered

eigenmodes are plotted as a function of the parameterν. Whenν increases the real parts ofγi decrease due to a

Fig. 5. Inductance matrix obtained from the PI-model (solid lines) and RI-model (dashed lines) for two eigenmodes in the coaxial cable ofFig. 3
as a function of the parameterν (ε2 = −jνε0) ((©) L11, (�) L22, (×) L21, (+) L12).
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Fig. 6. Capacitance matrix obtained from the PI-model (solid lines) and RI-model (dashed lines) for two eigenmodes in the coaxial cable of
Fig. 3as a function of the parameterν (ε2 = −jνε0) ((©) C11, (�) C22, (×) C21, (+) C12).

decrease of the losses.Figs. 5–7show the elements of theL, C andR matrices in the PI-model as a function of
the parameterν. The non-reciprocity of this transmission line model is clearly visible. Whenν becomes large the
elementsL11 andC11 reach their respective values of a coaxial cable given by

L = µ log(b/a)

2π
= 244.2 nH/m, C = 2πε

log(b/a)
= 95.65 pF/m, (34)

and the elements ofR decrease. Note that the off-diagonal elements ofL andC also decrease. InFigs. 5–7also the

elements of the diagonalL,C andR matrices in the RI-model as a function of the parameterν are shown. For large
values ofν the difference between the RI-model and the PI-model disappears.

Fig. 7. Resistance matrix obtained from the PI-model (solid lines) and RI-model (dashed lines) for two eigenmodes in the coaxial cable ofFig. 3
as a function of the parameterν (ε2 = −jνε0) ((©) R11, (�) R22, (×) R21, (+) R12).
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4. Conclusions

In this paper we have extended transmission line models for the fundamental eigenmodes in multiconductor
waveguides to higher order eigenmodes in single conductor waveguides. We have considered power based and
reciprocity based representations and have shown that reciprocity – as was advocated by Prof. de Hoop – results in
the most natural, consistent and simple transmission line equations.
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