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Abstract. Case studies can significantly contribute towards improving
the understanding of formalisms and thereby to their applicability in
practice. One such case, namely a cascade of the familiar 24-hour timers
(in suitably generalized form) provides interesting gedanken experiments
and illustrations for presenting, illustrating and comparing various for-
malisms for modelling real-time behaviour of systems.

The timer cascade is first modelled in a general-purpose functional
formalism (Funmath) and various properties are derived, including an
interesting algebraic monoid structure of timer programs. Then it is de-
scribed and analyzed in duration calculus, thereby highlighting, similari-
ties and differences in the approach to modelling and reasoning, and also
the link between the formalisms.

Future work consists in using this case as a running example for ex-
ploring the same issues for other formalisms intended for real time and
hybrid systems. The underlying idea is that other authors join this effort
and contribute towards extending it, finally arriving at a broad compar-
ative survey of such formalisms.

Index Terms — Automata, cascade connection, Duration Calculus,
functional description, Funmath, hybrid systems, real time systems, sys-
tems modelling, timers.

1 Introduction: Motivation and Overview

Hybrid systems formalisms have become increasingly important for modelling
interacting continuous and discrete aspects [2,9,16,23]. Research was especially
fruitful in the past two decades, but the very wealth of techniques resulting from
these efforts may be a problem for integration into practice. We briefly elaborate.

A basis for comparison is the wide and problem-free integration of mathe-
matical software such as Maple, Mathematica, Matlab and Mathcad throughout
all branches of engineering. This is possible because the mathematics is clas-
sical (linear algebra, differential and integral calculus etc.) with long-standing
notational and calculational conventions. Standard high school and college math-
ematics suffice for direct use of such software, and engineers educated 50 years
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ago apply it without further ado, yet quite reliably. Admittedly, use in discrete
mathematics is less safe due to errors as pointed out in [19] and remedied in [7].

The situation alters drastically as soon as nontrivial elements from logic enter
into the picture, as needed for software, digital hardware and hybrid systems.
The relevant concepts are neither supported by common mathematical software,
nor part of classical engineering background. Computer science students have
difficulties with logic [1], and in industry, applications with logic software often
requires external support by consultants (private or university researchers).

Quick introductions or trying to learn logic via tools are ill-advised. Habrias
[14] aptly warns against using tools without sufficient awareness. Safe use re-
quires a solid background in logic, including understanding as can be fostered
only by serious pencil-and-paper problem solving similar to common practice
in analysis and algebra. This holds for students, but even more for industrial
users.

As mentioned, the wealth of formalisms is a complicating factor. Notational
and calculational conventions are far less uniform than in classical mathematics;
hence commonality in software support is still remote. Choosing one tool ex-
cludes possibly crucial features present in an other one. Given this situation, the
(ideal) hybrid systems engineer must master several quite different formalisms,
awaiting the emergence of a common framework.

Meanwhile, there is no universal solution, only ways for alleviation.
In particular, case studies provide a good starting point for understanding

and comparing formalisms [16]. A widely studied example is the steam boiler
[22], which has proved a useful testbed for various systems aspects. However,
the crucial aspects to be highlighted are often diluted by other details.

Here we propose a case chosen to be as simple as possible and concentrating
on the time aspect in its purest form, while still offering interesting ramifications:
the 24 hour timer (somewhat generalized) and timer cascades. This turns out to
be very appropriate for studying how time is handled in different formalisms.

An important side issue is how well formalisms “scale down” in the sense that
simple systems can be described in a comparably simple way. Indeed, whereas
industrial applicability often relies on scaling up (to “large” systems with many
details), the intrinsic design quality and intellectual value of a formalism is often
characterized by its downscaling potential in the aforesaid sense.

Overview. Section 2 informally introduces the timer and the timer cascade.
Section 3 provides a formal description in the functional formalism Funmath
and illustrates the calculational derivation of interesting algebraic properties.
In section 4, similar issues are studied using Duration Calculus (DC). The link
between the two is briefly discussed in section 5, followed by an outline of future
work and suggestions for contributions by others.

2 The Timer Cascade: Informal Introduction

The 24-hour timer is a “common household” device that is plugged into a wall
outlet in order to supply power during predetermined time intervals (Fig. 1).
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Fig. 1. A 24-hour timer

An interesting configuration arose by coincidence when storing a few of these
timers, while reducing the volume by inserting them into each other (Fig. 2).
This immediately raises the question what would be the behavior of the resulting
cascade, and what would be the best way to describe and analyze it. The idea
to use this as a testbed for real time formalisms came up during a session at
ICTAC 2004 in Guiyang, where several such formalisms were presented.

We make some basic assumptions explicit. Depending on the kind of timer,
the “power on” intervals are programmed by pushing tabs or inserting plugs (for
the analog variant with a timing motor) or via pushbuttons and a small screen
(for the digital variant with electronic clock). Some digital variants support
programs for longer periods (week, month) and have a battery that preserves
the program during power failures. However, the battery also keeps the timer
going during power out intervals, making the behavior of cascades uninteresting.

Hence our abstract model follows the analog variant: removal of power does
not erase the program (which is mechanical) but pauses the timer. We also make
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Fig. 2. A timer cascade
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the model generic by supporting infinitely long programs. This is done WLOG,
since a finite program can be modelled by a periodic infinite one. Conversely, a
cascade of 24-hour timers can realize certain programs with longer periods, but
such “practical” application is not envisaged since digital timers support longer
programs in a less challenging way. Here we only want interesting behavior.

3 Functional Modelling of the Timer Cascade

3.1 The Formalism Used

By formalism we mean a language (or notation) together with formal manipu-
lation rules. In this section we shall use Funmath (Functional mathematics).

The language of Funmath [4] consists of only 4 constructs: identifier, applica-
tion, abstraction and tupling. These suffice to synthesize common mathematical
conventions while removing all defects (ambiguities, inconsistencies) and to sup-
port new and very useful styles of expression, in particular point-free ones.

The calculation rules of Funmath [5] equip all these forms of expression,
including those that are rather loose in conventional mathematics, with a precise
formal basis for symbolic manipulation, “making the symbols do the work”. This
means that calculation is guided by the shape of the expressions [11,13].

The two main elements are: (i) a functional predicate calculus [5,7], enabling
engineers to calculate with predicates and quantifiers as fluently as they have
learned for derivatives and integrals; (ii) concrete generic functionals [5,6], pro-
viding similar fluency with higher order functions (functionals), with the point-
free style, and with smooth transition between styles.

Here we use Funmath mostly in the “conservative mode” of synthesizing
conventions familiar to readers with modest mathematical background and no
prior acquaintance with our formalism. The references provide further detail.

3.2 Modelling the (Abstract) Timer and the Timer Cascade
Conventions. We do not model power inputs and outputs as AC waveforms,
but as binary signals taking the values 0 (“off”) and 1 (“on”). Signals are them-
selves functions of time. We assume the time domain T := R≥0 and value do-
main B := {0, 1}, which is a subset of R. We prefer this over {f,t} for various
reasons. Adherents of {f,t} can adapt the sequel via a characteristic function
c : {f,t} → {0, 1} with c f = 0 and ct = 1 (or simply c := (f,t)− in Funmath) .

Timer Model. Our first signal space is the set of B-valued functions (predicates)

Sig := {P : T → B | P is p.c.} . (1)

The usual notion of piecewise continuity over a closed interval is assumed gen-
eralized to possibly infinite intervals: a function is piecewise continuous (p.c.)
over an interval iff in every finite closed subinterval it has at most a finite num-
ber of discontinuities, and left and right limits exist at each discontinuity (plus
right limit at the start and left limit at the end of each of the subintervals). If
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the interval of interest is not stated explicitly, it is taken to be the domain of
the function. For the predicates at hand, p.c. amounts to piecewise constant.
Calculational reasoning about limits and derivatives using functional predicate
calculus is illustrated in [5,7].

Timer programs also have type Sig. In view of cascading timers, it does not
suffice to express behavior as the output signal with the program as the only
input parameter. Doing so would only model a single timer plugged into an outlet
(without power failures), i.e., an uninteresting autonomous system. Rather, we
model behaviors as input-output system functions of type Bvr := Sig→ Sig and
take programs as parameters, formalizing intuitive understanding by defining

def Tmr :Sig → Bvr with TmrP I t ≡ I t ∧ P (
∫
I t) . (2)

We chose mnemonic names P (program), I (input), t (time), so TmrP I t is the
timer output at time t for program P and input I. The operator

∫
: Sig →Sig is

defined by
∫
f t =

∫ t

0 fτ ·d τ for piecewise continuous (hence, integrable) f . Note
that

∫
I t remains constant whenever I t = 0 and grows with t whenever I t = 1.

A proof obligation raised by (2) is that TmrP I as specified by the r.h.s. is
indeed of type Sig, leading to a refinement beyond the scope of this discussion.

Cascade Model. Parametrized by a list of programs, with the convention that
indexing starts from the output side, the behavior of a cascade is modelled by

def Csc : Sig∗ → Bvr with Csc p = © j :D p . Tmr (p (# p − 1 − j)) (3)

where © is the elastic extension of function composition, extending ◦ in the same
way as

∑
extends +. For instance, if p = p0, p1 then Csc p = (Tmr p1) ◦ (Tmr p0).

hence Csc p I = Tmr p1 (Tmr p0 I) and Csc p I t ≡ Tmr p1 (Tmr p0 I) t.

3.3 Deriving Properties: A Few Typical Examples

Signal Flow Model. As outlined in [6], the signal flow model is obtained by
eliminating the time variable t from TmrP I t ≡ I t ∧ P (

∫
I t), since time is not

a structural element. In the calculation, the generic operator ̂ denotes direct
extension for 2-place functions � such that (f �̂ f ′) t = f t � f ′ t, and does
the same for 1-place functions g, i.e., g f t = g (f t) (note: g f = g ◦ f). For full
definitions (with types) of these and other generic functionals, see [6]. Now

TmrP I t ≡ 〈Def. Tmr〉 I t ∧ P (
∫
I t)

≡ 〈Def. ◦〉 I t ∧ (P ◦
∫

I) t

≡ 〈Def. 〉 I t ∧ P (
∫
I) t

≡ 〈Def. ◦〉 I t ∧ (P ◦
∫
) I t

≡ 〈Def. ̂ 〉 (I ∧̂ (P ◦
∫
) I) t

and, by function equality, TmrP I = I ∧̂ (P ◦
∫
) I. The structural interpretation

is the signal flow circuit in figure 3, letting the direct extension symbols (for the
memoryless devices ∧ and P ) be implicit in the boxes.
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Fig. 3. Signal flow model of a timer

The model of the timer cascade is the cascade of stages, each with its program.

State Space Model. A large class of systems [17] is modelled by a state function
stf and an output function out relating state s, input i, output u by

D s t = stf (s t, i t) and u t = out (s t, i t) (4)

where D s is the derivative of s. E.g., for linear circuits these functions are of the
form stf (s t, i t) = a t · s t + b t · i t etc. or similar matrix expressions in case there
are several state, input or output variables.

A timer is not linear (due to the way in which it depends on P ), but fits into
the generic model of (4) as follows, the state being the integrator output.

D s t ≡ I t and U t ≡ I t ∧ P (s t) . (5)

For an n-stage cascade, the state s is an n-tuple (of integrator outputs) with
∀ k : n . (D sk t ≡ ik t) ∧ (uk t ≡ ik t ∧ pk (sk t)) ∧ (k 	= 0 ⇒ ik t = uk−1 t) and
I, U = i0, un−1. For the block: n = {j : N | j < n}. The state space model is

∀ k : n . D sk t ≡ I t ∧ ∀ j : k . pj (sj t)
U t ≡ I t ∧ ∀ j : n . pj (sj t) . (6)

The calculation is based on logic only; linearity neither holds nor is assumed.

Convention. Since B = {0, 1}, we replace ∧ by ·, so TmrP I t = I t · P (
∫

I t).
For (5), this yields U t = I t · P (s t), whereas (6) can be written

∀ k : n . D sk t = I t ·
k−1∏

j=0

pj (sj t) and U t = I t ·
n−1∏

j=0

pj (sj t) . (7)

Algebraic Properties: Program Composition and the Program Monoid Since the
behavior of a timer is fully characterized by its program, we look for operators
on programs in order to reduce reasoning to programs only. Specifically, we wish
to study timer cascades via two-argument operators on programs.

A cascade of 2 timers with programs P and P ′ has behavior TmrP ◦ TmrP ′.
The question is: can we calculate a program Q such that TmrQ = TmrP ◦ TmrP ′

or, equivalently, an operator � : Sig2 → Sig satisfying the following condition?

Design requirement for � : Tmr (P � P ′) = TmrP ◦TmrP ′ (8)

Algebraic Derivation. Clearly, a timer plugged into a non-interrupted outlet re-
flects its own program at the output. Formally, for the constant signal 1 := T

• 1
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and any P : Sig we calculate TmrP 1 t = P (
∫

1 t) · 1 t = P t · 1 = P t (omitting
the obvious justifications), hence

TmrP 1 = P . (9)

So, TmrP =TmrP ′ ⇒〈Leibniz〉 TmrP 1= TmrP ′ 1 ⇒〈TmrP 1= P 〉 P = P ′,
from which we conclude the injectivity of Tmr. Therefore the inverse Tmr− satis-
fies Tmr− (TmrP ) = P for any P : Sig and, by the preceding reasoning, an explicit
formula for Tmr− is Tmr− b = b 1 for any behavior b in R Tmr, the range of Tmr.

If programs P and P ′ satisfy TmrP ◦ TmrP ′ ∈ RTmr (hypothesis) and we
impose on � :Sig2 → Sig the design requirement Tmr (P � P ′) = TmrP ◦ TmrP ′

(for any P , P ′), then

P � P ′ = 〈Tmr− (TmrP ) = P 〉 Tmr− (Tmr (P � P ′))
= 〈Dsgn. requirement〉 Tmr− (TmrP ◦ TmrP ′)
= 〈Hyp., Tmr− b = b 1〉 (TmrP ◦ TmrP ′) 1
= 〈Definition ◦〉 TmrP (TmrP ′ 1)
= 〈TmrP 1 = P 〉 TmrP P ′

This yields an explicit formula for � namely P � P ′ = TmrP P ′, depending on
the condition TmrP ◦TmrP ′ ∈ R Tmr. Next we verify that it is always satisfied.

Analytic Verification. It suffices proving that � defined by P � P ′ = TmrP P ′

satisfies the design requirement (8). Before doing so, observe that, when gen-
eralizing Sig to Sig := {f :R → R | f is p.c.} and

∫
and Tmr accordingly while

maintaining the image definition Tmr f g x = f (
∫
g x) ·g x, everything done since

replacing ∧ by · remains valid, because the proofs nowhere relied on any restric-
tion to B.

Theorem: Tmr (Tmr f g) = Tmr f ◦ Tmr g for any signals f , g.
Proof: The successive domains are clearly equal. Also, for h : Sig and x : T,

Tmr (Tmr f g)h x = 〈Def. Tmr〉 Tmr f g (
∫
h x) · h x

= 〈Def. Tmr〉 f (
∫

g (
∫

h x)) · g (
∫

h x) · h x

= 〈Def. Tmr〉 f (
∫

g (
∫

h x)) · Tmr g h x

= 〈Lemma〉 f (
∫

(Tmr g h)x) · Tmr g h x

= 〈Def. Tmr〉 Tmr f (Tmr g h)x

= 〈Def. ◦ 〉 (Tmr f ◦ Tmr g)h x

Thus far, the lemma justifying
∫
g (

∫
h x) =

∫
(Tmr g h)x is “wishful thinking”,

guided by the shape of Tmr g h x to enable the next step. Now we prove it.
Lemma:

∫
f ◦

∫
g =

∫
(Tmr f g) for p.c. f and g.

Proof: We shall invoke some properties for the derivative D, namely

(i) Fundamental theorem of calculus: D (
∫
f) = f � D (D (

∫
f)) for p.c. f .

(ii) Leibniz’s rule: D (f ◦ g)=D f (g x) · D g x provided the derivatives are p.c..
(iii) Delegation of equality to derivative: f =g ≡ f 0=g 0 ∧ D f =D g (idem).
In applying (iii), (

∫
f ◦

∫
g) 0 =

∫
(Tmr f g) 0 is trivial since

∫
f 0 = 0 for p.c. f .
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For the derivatives, the domains exclude undefined points and discontinuities do
not affect the integral [3, p. 311]. The images for x in the domain obey

D (
∫
f ◦

∫
g)x = 〈Leibniz’s rule〉 D(

∫
f) (

∫
g x) · D(

∫
g)x

= 〈Fundam. thm.〉 f (
∫

g)x · g x

= 〈Definition Tmr〉 Tmrf g x

= 〈Fundam. thm.〉 D(
∫

(Tmrf g))x

We call
∫
(Tmrf g) the timer integral for obvious reasons.

Algebraic Properties of Program Composition. Having fulfilled all proof obliga-
tions, we can now assert that � defined (for f and g in the generalized Sig)
by

Definition of � : f � g = Tmr f g (10)

satisfies

Homomorphism: Tmr (f � g) = Tmr f ◦Tmr g . (11)

Recall also that Tmr is injective. We now derive some properties.
(a) The operator � is associative. Indeed,

f � (g � h) = 〈Defin. �〉 Tmr f (Tmr g h)
= 〈Defin. ◦〉 (Tmr f ◦Tmr g)h

= 〈Prop. (11)〉 Tmr (f � g)h

= 〈Defin. �〉 (f � g) � h

(b) The operator � has 1 := R
• 1 as left and right identity. Indeed,

(1 � f)x = 〈Defin. �〉 Tmr 1 f x

= 〈Def. Tmr〉 1 (
∫

f t) · f x

= 〈Defin. 1〉 f x

(f � 1)x = 〈Def. Tmr〉 f (
∫

1x) · 1x

= 〈Defin. 1〉 f (
∫

1x)
= 〈

∫
1 x = x〉 f x

This makes Sig a monoid under � and Tmr an injective monoid homomorphism.

3.4 Conclusions

It is clear that Tmr and � have many algebraic properties, about which only the
tip of the iceberg has been explored.

One of the issues deserving further investigation is the periodicity of periodic
programs and (as a gedanken experiment) program synthesis by cascades of
periodic programs (which model the behavior of finite programs).
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4 Modelling Using Duration Calculus

Duration Calculus (DC) [10,15] is an interval temporal logic. It incorporates the
integral operator and is thus able to reason about durations of system states.
This is a particular convenient feature for modelling and reasoning about the
timer cascade as each timer is in fact a stop-watch. As in the previous section
we investigate how a cascade of two timers can be expressed using only one
timer. Although DC is equipped with a powerful proof system, we put empha-
sis on automatic verification using model-checking techniques. Modelling and
the automatic verification are performed on a more concrete level than in the
functional modelling with Funmath.

4.1 Duration Calculus

The behavior of systems is described by time-dependent variables, so called ob-
servables which have in most cases finite domains. For each timer in the cascade
we use two observables power in and power out. The observable power in models
that the timer is connected to current and power out models that it supplies
current at its output. As we use only boolean observables in this example the
semantics of an observable is a function of type Sig thus I(X) : T → B. For the
integrals to exist, we further require the functions to be piecewise constant.

Boolean combinations of observables, so called state assertions are used to
to specify the state of the system for a certain point in time.

Duration Calculus is interpreted over time intervals. Therefore DC terms
associate a real number to each interval. An integral operator can be applied to
state assertions in order to measure its duration. Furthermore DC provides global
rigid variables and the special symbol �, denoting the length of the interval.

Formally, the set of DC terms is defined by the following EBNF

θ ::= x | f(θ1, . . . , θn) |
∫

P | �

where x denotes a global time-independent variable, f an n-ary function symbol
and P a state assertion. As usual, the value of a rigid variable is determined
by a valuation V . In addition to first order quantifiers and boolean connectives,
Duration Calculus uses a special modality � called “chop”. A formula F�G is
true on an interval, iff this interval can be partitioned into two subintervals, such
that F holds on the first part and G holds on the second part. Formally, DC
formulas are generated from the following EBNF

F ::= ¬F | F1 ∧ F2 | F1
�F2 | p(θ1, . . . , θn) | ∀x.F.

As usual, the other logical connectives can be derived as abbreviations. Addi-
tionally, we introduce the following abbreviations, to denote the point interval,


� df
= � = 0

To denote that the state assertion P is true almost everywhere on a non-point
interval, we use


P � df
=

∫
P = � ∧ � > 0
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The modalities ♦DC , �DC and �DC
0 are derived by

♦DCF
df
=true�F�true �DCF

df
=¬♦DC¬F �DC

0 F
df
=¬(¬F�true)

The modality ♦DC reads as “on some subinterval”, �DC as “on every subinter-
val” and �DC

0 as “on every subinterval starting at point zero”.

4.2 Modelling the Timer Cascade

As mentioned in the introduction, we employ two boolean observables power in
and power out to model the state of one timer in the cascade. Additionally, we
use the auxiliary observable pass to denote whether current can pass through
the timer or not. We use the index i to indicate the i-th timer. For each timer
we use three parameters,

– cyclei, the cycle time of the i-th timer,
– starti the start time of the i-th timer,
– stopi the stop time of the i-th timer.

We specify the behavior of a timer cascade using the following DC formulas.

If the duration of power ini is below the start value, pass has to be false, i.e.

�DC
0 ((

∫
power ini mod cyclei < starti) ⇒ true�
¬passi�)

If the value is between start and stop, pass is true.

�DC
0 ((starti ≤

∫
power ini mod cyclei ≤ stopi) ⇒ true�
passi�)

Above the stop value, the observable pass has to be false again.

�DC
0 ((

∫
power ini mod cyclei > stopi) ⇒ true�
¬passi�)

If power can pass through the timer and it is connected to current, the outlet is
powered.


� ∨ 
(power ini ∧ pass) ⇔ power outi�

The observables power out and power in of two consecutive timers are connected.


� ∨ 
power ini+1 ⇔ power outi�

As the first timer in the cascade should always be connected to the power
supply, we assume


� ∨ 
power in0�

The behavior of the complete cascade is specified by the DC formula TC which
is defined to be the conjunction of all the formulas given above.
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4.3 Refinement

Duration Calculus can be used to describe systems at several levels of detail in
different phases of the design process. Especially, it can be used to establish a re-
finement relationship between a more abstract specification and a more concrete
implementation level.

In this section we investigate how a single abstract timer of cycle time cycleA

with program start startA and stop stopA where startA ≤ stopA can be imple-
mented by two concrete timers having the same shorter cycle-time cycleC .

To derive an implementation, we introduce the following abbreviation

∆A df
= stopA − startA

denoting the length of the program. At first, we compute how many cycles of
the concrete the cascade has to wait until the program should start. We denote
by div and rem the result of the division and the remainder respectively of the
start time startA by the cycle time cycleC of the implementation, i.e.

startA = div · cycleC + rem

such that 0 ≤ rem < cycleC . We can now implement the abstract timer by a
cascade of two concrete timers using the program

startC0
df
= rem

stopC
0

df
= rem +

cycleC

m

startC1
df
= div · cycleC

m

stopC
1

df
= div · cycleC

m
+ ∆A

for m = cycleA

cycleC ∈ N with the additional constraint that cycleC

m > ∆A. The

program of timer 0 must have a duration of cycleC

m to ensure that both timers
are in zero position after the first timer has completed m cycles. During the first
div cycles of timer 0, power outC1 is not activated. Only after div · cycleC + rem
time units power out1 becomes true for ∆A time units. This is ensured by the
extra condition cycleC

m > ∆A. It is not always possible to find an implementation
of the abstract timer, by two concrete ones. For example if the duration ∆A

of the abstract timer is greater than the cycle time of the concrete timers, it is
impossible to find an implementation. The definition above does not yield a valid
program in these cases, as the value of stopC

1 exceeds the cycle time. Nevertheless,
if all time bounds are below the cycle time, we get a correct implementation of
the abstract specification. This is to be verified formally.

Let TCA denote the specification of the abstract timer and TCC be the spec-
ification of the concrete implementation, then we have to show the refinement
requirement e.g.

TCC ∧ TCA ⇒ 
power outC1 ⇔ power outA�.
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4.4 Verification

Duration Calculus is equipped with numerous proof rules to facilitate this kind
of proofs. As we have shown such a calculation by hand in the previous section,
we concentrate on the application of tools here. DC is decidable for discrete
time domain – and undecidable for continuous time domain. A model-checker
called DCValid [18] is available, so we employ this tool for the verification of
the refinement requirement. As DCValid does not allow arbitrary computation,
we verify the refinement of one 24-hour timer by a cascade of two 12h timers.
Henceforth, we assume our two systems are defined by the following parameters.

startA = 15, stopA = 17, cycleA = 24,

startC0 = 3, stopC
0 = 9,

startC1 = 6, stopC
1 = 8, cycleC = 12.

As DCValid does not incorporate calculation of remainders, this calculation has
to be eliminated. To this end, we introduce 3 fresh observables zeroA,zeroC

1 , and
zeroC

2 to mark all points on which the respective timer is in zero position. We
specify that zero has to be true for one time unit after the timer having power in
activated for its cycle time. To this end, we define lower and upper bound for
zero by the following DC formulas.

¬♦DC(((
zero��
¬zero�) ∧ (
∫
power in < cycle))�
zero�)

¬(((
¬power in� ∨ 
�)�
power in ∧ ¬zero�)�true)

¬♦DC(
zero� ∧ � > 1)

¬♦DC((
zero��
¬zero�) ∧
∫

power in > cycle)

As we use discrete DC for automatic verification, we need not to specify a lower
bound on the duration of zero as a phase 
zero� cannot have a duration below
one time unit. Having introduced these auxiliary observables, we can modify the
specification. Instead of looking at all intervals starting at the beginning and
calculating the measure of power in modulo the cycle time, we can just measure
the amount of time power in is true since the last phase on which zero holds.

Every interval starting with a phase on which zero is true and the measure
of power in is below the start of the timer, on the end of the interval pass does
not hold.

�DC(((
zero� ∧ � = 1�(
¬zero� ∨ 
�))
∧ (

∫
power in ≤ start))

⇒ (true�
¬pass�))

If the measure is between start and stop the interval must end in a phase satis-
fying pass.

�DC(((
zero� ∧ � = 1�(
¬zero� ∨ 
�))
∧ (

∫
power in > start ∧

∫
power in ≤ stop))

⇒ (true�
pass�))
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If the measure is above stop it has to end in ¬pass.

�DC(((
zero� ∧ � = 1�(
¬zero� ∨ 
�)) ∧ (
∫
power in > stop))

⇒ (true�
¬pass�))

Using this definition, the refinement requirement can be automatically ver-
ified. DCValid takes 4.16 seconds on a 1.8 GHz Athlon XP 2200+ machine to
verify the validity. We employed manual optimisations exploiting the fact, that
power inA and power inC

2 are always true and therefore instead of calculating the
measure

∫
power inA and

∫
power inC

2 respectively, one can use the length of the
interval directly.

4.5 Conclusion

We presented how a specification of a timer cascade can be formalised in Dura-
tion Calculus. As DC incorporates the

∫
-operator, it allows natural modelling

of stop watches and henceforth the whole timer cascade. Duration Calculus can
be used in various stages of the design process. So we presented how an abstract
timer cascade can be refined and how the correctness of the refinement can be
automatically verified.

5 Final Remarks and Future Work

5.1 Linking Formalisms

Linking formalisms in a clear, formal way always contributes to a better under-
standing of all formalisms involved.

A promising approach to linking Duration Calculus as used in section 4 with
the functional approach as used in section 3 is similar to the one used for linking
R. Dijkstra’s Computation Calculus [12] to Calculational Semantics in [8].

Within the scope of this paper, only an outline can be given. Define the set
of intervals over a totally ordered time domain T by I := {[a, b] | a, b : (T2)≤}.
Various styles of DC can be defined in Funmath. Here are two of them.

– Interval style: predicates of type IP := I → B (predicates on intervals)
– Computation style: predicates of type CP := C → B where the set of compu-

tations is defined by C :=
⋃

I : I . I →S, given a suitable state space S.

In this outline, we concentrate on “chop” (�), the pivotal operator in DC.

– Interval style: � has type IP2 → IP, map (P�Q) I ≡ ∃ t : I . P I≤t ∧ Q I≥t

– Computation style: type CP2 → CP, map (P�Q) γ ≡ ∃ t :D γ . P γ≤t∧Q γ≥t

Note: filtering (↓) is defined for any set S by S ↓ P = {x :S ∩D P | P x} and for
any function f by D fP = {x : D f ∩ D P | P x} with ∀ x : D fP . fP x = f x; in
both cases P is any predicate. Abbreviating a ↓ b as ab (and a ↑ b as ab), together
with so-called partial application (as in ≤ t) explains the notation formally.
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Crucial remark Parameters like I and γ appear only in basic definitions and
calculations where axioms of the axiomatic formulations of DC are derived as
theorems. In subsequent use, the formulas can be written in exactly the same
form as in the axiomatic formulations, and calculations are “point-free”. The
difference between interval style and computation style then becomes hidden.

For instance, associativity of “chop”, namely (P�Q)�R = P�(Q�R), is
easily proven from either definition using functional predicate calculus.

Another example: let ♦ be defined in the interval style by1 ♦P I ≡ ∃P⊆I .
Defining T := I • 1 (“1 for any interval”), one proves similarly ♦P = T�P�T.

While this is only an outline, it captures the flavor of the approach.

5.2 Future Work

Obviously, the most immediate task is the complete elaboration of the link be-
tween the functional and the DC models of the timer.

However, this paper is only a first step in a more ambitious effort towards
a broad comparative survey of formalisms for real time and hybrid systems. To
this effect, we shall study several other formalisms in a similar way, elaborating
for each two examples: one that highlights its strong points (dependent on the
formalism), and the timer cascade (the same running example for all). Most im-
portantly, links and the possibility of a common framework will be investigated.
Another issue is the interaction between tools supporting various formalisms.

We hope that other researchers join this effort, most conveniently by provid-
ing a brief outline of their preferred formalism and two examples as described.
For those who are interested, we will prepare a more extensive discussion of the
kind of specifications and verification obligations that would be most helpful.
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14. Henri Habrias and Sébastien Faucou, “Linking Paradigms, Semi-formal and Formal
Notations”, in: C. Neville Dean and Raymond T. Boute, eds., Teaching Formal
Methods, pp. 166–184, Springer LNCS 3294 (Nov. 2004)

15. M. R. Hansen and Zhou Chaochen. Duration Calculus: A Formal Approach to Real-
Time Systems. EATCS: Monographs in Theoretical Computer Science. Springer,
2004.
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