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Abstract
Reservoir Computing (RC) has recently been introduced as

an interesting alternative for acoustic modeling. For phone and
continuous digit recognition, the reservoir approach obtained
quite promising results. In this work, we further elaborate this
concept by porting some well-known techniques used to en-
hance recognition rates of GMM-based models to Reservoir
Computing. In particular, we introduce context-dependent (CD)
triphone states to model co-articulation and pronunciation mis-
matches arising from an imperfect lexicon. We also propose to
incorporate two speaker normalization methods in the feature
space, namely mean & variance normalization and vocal tract
length normalization. The impact of the investigated techniques
is studied in the context of phone recognition on the TIMIT cor-
pus. Our CD-RC-HMM hybrid yields a speaker-independent
phone error rate (PER) of 22% and a speaker-dependent PER of
20.5%. By combining GMM and RC-based likelihoods at the
state level, these scores can be reduced further.
Index Terms: Reservoir Computing, Acoustic Modeling,
context-dependency, speaker normalization

1. Introduction
Automatic speech recognition (ASR) has considerably im-
proved over the last decades and has become an admitted en-
abling technology for multiple multimedia and information re-
trieval applications. A core component of an ASR is the Acous-
tic Model (AM) that captures the relation between the speech
signal and the spoken sounds, the so-called phones. Most state-
of-the-art speech recognizers rely on a combination of Gaus-
sian Mixture Models (GMMs) and Hidden Markov Models
(HMMs). However, recent work on Multi-Layer Perceptrons
(MLPs) [1, 2] and Deep Neural Networks (DNNs) [3–5] has
shown that neural models can offer sustainable improvement
over GMMs for continuous speech recognition on small and
large vocabulary benchmarks.

Motivated by this success, we started to investigate Reser-
voir Computing (RC) [6–9] as an alternative neural-based ap-
proach to acoustic modeling. We already obtained quite com-
petitive results for phone recognition [10–12] as well as for
noise-robust continuous digit recognition [13, 14]. The under-
lying idea of RC is to combine the power of a Recurrent Neural
Network (RNN) – a complex dynamical model – with the ele-
gance of a linear regression model whose global optimum can
be written in a closed form. The main differences with the tra-
ditional RNN-based approach [15] are: (1) in RC there are only
recurrent connections between hidden neurons, (2) the output
neurons are linear and (3) only the output weights are trained.
Every hidden neuron can be connected to any other hidden neu-
ron and the hidden layer can be considered as a pool of fixed (=

non-trained) non-linear neurons that is called a reservoir.
Given that RC-based acoustic modeling is a fairly new ap-

proach, more research is needed to establish whether it can lead
to improvements, and if so, whether these improvements will
also lead to better large vocabulary continuous speech recog-
nition (LVCSR). In this paper we address the first issue, and
we take the context-independent RC-based phone recognizer
developed in [10] as our point of departure. We investigate
whether RC-based systems can benefit from techniques that
were shown to improve GMM-based [16] and neural-based sys-
tems [1, 4]. More in particular, we introduce context-dependent
phone states and speaker normalization methods such as Mean
& Variance Normalization (MVN) and Vocal Tract Length Nor-
malization (VTLN). In addition, we also investigate model
combination (MC) at the state level.

In the following, we first describe our baseline RC-based
phone recognizer and discuss the proposed extensions and im-
provements in Sections 3–5. The experimental validation is de-
scribed in Sections 6 & 7. At the end of the paper we formulate
our conclusions and propose some ideas for future work.

2. RC-based speech recognition
The combination of a reservoir of fixed non-linear neurons and
a layer of linear output neurons driven by the reservoir state is
called a reservoir network. The reservoir networks we employ
in our systems are Echo State Networks (ESNs) [6], the most
popular form of reservoir networks.

2.1. A reservoir network

At time t each reservoir neuron is driven by an input vector
U [t] and a delayed reservoir state vector R[t − 1]. We utilize
so-called Leaky Integrator Neurons (LINs) [7] with a leak rate
λ < 1. The reservoir state at time t is computed as

R[t] = (1−λ)R[t−1]+λfres(WinU [t]+WrecR[t−1]) (1)

with fres being a non-linear activation function (e.g. tanh(.)),
and with Win and Wrec encompassing the weights of the ex-
ternal and the recurrent input connections. All elements of the
weight matrices are independently drawn from a zero-mean nor-
mal distribution. The variance of the recurrent weight distribu-
tion controls the spectral radius ρ, defined as the largest absolute
eigenvalue of Wrec [6, 8]. If it is smaller than 1, the reservoir
network is stable and it provides a fading memory of the past.
The variance of the external input distribution, Vin, controls the
impact of the inputs U [t] on the reservoir state.

The linear output neurons of the reservoir network are
called readouts because they ‘read out’ the reservoir state. They
are computed as Y [t] = WoutR[t], with R[t] being the reser-
voir state augmented with a bias and with Wout comprising



the output weights. The output weight matrix is designed (=
trained) to minimize the mean squared error between the read-
outs Y [t] and the desired readouts D[t] over the training ex-
amples [10]. The reservoir state space can be compared to the
inner space of a Support Vector Machine (SVM) [17] with the
difference that the reservoir space is untrained whereas that of
an SVM follows from a delicate supervised training procedure.

2.2. An RC-HMM hybrid for speech recognition

The simplest way to construct an RC-based ASR system is to
create an RC-HMM hybrid [18] that derives acoustic likeli-
hoods from the outputs of a reservoir network. This network
can be a simple network with one reservoir or a deep network,
obtained by cascading multiple simple reservoir networks. Each
simple network is then called a layer. The general architecture
of the hybrid is depicted in Figure 1. The first layer processes
the inputs U [t] and the further layers process the outputs of the
preceding layer. The layers are trained one after the other. Per
layer, the optimal settings of the reservoir (ρ, λ, ...) emerge
from an efficient user-controlled search procedure (see [10]).
We have shown that new layers can actually correct some of the
mistakes made by the preceding layer. We attribute this to the
fact that every new layer offers additional temporal modeling
capacity and a new inner space. The readout neurons of each
layer represent phone states (see Figure 1) and their weights are
trained with the desired outputs D[t]. The vector D[t] is a unit
vector with a non-zero entry at the position that corresponds to
the desired phone state label at time t. Since the outputs of a
neural network adhere to posterior probabilities [19] and since
we want to find the phone state sequence emerging from

Q̂ = arg max
Q

P (Q|U) = arg max
Q

P (U |Q) P (Q),

we insert an extra step for converting the outputs of the last
layer to likelihoods using Bayes’ law [18]. In the case of phone
recognition, the admissible state sequences can represent an ar-
bitrary sequence of phones (including silence) and the prior
probability P (Q) is computed by means of an n-gram phone
language model (LM).

Since reservoirs only provide a fading memory of the
past, they make no use of the future. Yet, the theory of co-
articulation [20,21] claims that a phone is also influenced by the
next phone (= anticipation). Therefore, we have also considered
bi-directional reservoirs [10]. The backward reservoir is iden-
tical to the forward reservoir, but it processes the data stream
from right-to-left. Per layer, the readout neurons are trained on
the joined reservoir state R̂[t] composed of the neurons outputs
of both reservoirs. As explained in [10], one can implement bi-
directional reservoirs in a ‘real-time’ system with a latency of
no more than 100 ms.

3. Context-dependent phone states
The baseline reservoir systems investigated thus far [10] uti-
lized context-independent (CI) phone states, whereas research
on LVCSR with GMM-HMM systems has clearly demonstrated
the benefits of context-dependent (CD) phone states. Models
for such states allow the system to cope in a transparent way
with cross-phone co-articulations and mismatches between the
word pronunciations found in the lexicon and those actually em-
ployed by the speaker [21]. The main reason for our former
reluctance to introduce CD states was that RC-based systems
seem to need very big reservoirs (e.g. 20K neurons). But, as the

number of trainable parameters is equal to the number of reser-
voir neurons times the number of states, the number of trainable
parameters significantly increases when moving from e.g. 150
CI states to e.g. a few thousand CD states (as in [22, 23]).

In this work we model the CD phone states that followed
from a decision tree clustering using phonological questions
that was performed during the training of a CD-GMM-HMM
recognition system. Although this clustering is sub-optimal be-
cause it does not take the properties of the reservoir into ac-
count, our strategy conforms with the approach also adopted in
recent work on DNNs [3, 24] and MLPs [1, 23].

4. Speaker-dependent models
The models developed thus far are speaker-independent (SI)
models, trained on speech uttered by a large number of speak-
ers. However, in many real-world applications of ASR, the
speaker identity is known from the user profile (mobile devices,
GPS, etc.) and the ASR can, after some time, adapt itself to
the specific speaker. Many state-of-the-art GMM-HMM speech
recognizers therefore apply speaker normalization and/or adap-
tation of their acoustic model [16, 25, 26]. In this work we
investigate what speaker normalization in the acoustic feature
space can achieve in an RC-HMM system. We consider two ap-
proaches: Mean & Variance Normalization (MVN) and Vocal
Tract Length Normalization (VTLN).

4.1. Mean & Variance Normalization (MVN)

Due to physiological differences, the observed distributions of
acoustic features across states differ from speaker to speaker.
A simple approach to handle this variability is to normalize
the distributions by shifting and rescaling the individual fea-
tures [25, 26]. Based on the data available for a certain speaker,
the feature-wise mean & variance is estimated over all frames
of that speaker. The estimated mean values are then subtracted
from the raw features and the estimated variances are used
to make the variances of the normalized features equal to the
global variances, measured over all speakers.

4.2. Vocal Tract Length Normalization (VTLN)

One of the important physiological differences between per-
sons is the length of their vocal tract. That of a male speaker
for instance is on average 10-15% larger than that of a female
speaker. Since the formant frequencies are proportional to this
length, a large part of the speaker variability can be annihi-
lated by normalizing the frequency scale during feature extrac-
tion [25, 26]. In this work, we use the VTLN procedure avail-
able in the SPRAAK toolkit [27]. It first estimates the most
likely gender of the speaker and then it uses this information to
compute a suitable warping factor.

5. Model combination (MC)
The likelihoods emerging from the RC-based AM at time t are
actually based on a fading memory of the past. Consequently,
they are supposed to differ considerably from the likelihoods
at time t computed by a traditional GMM-based AM that just
takes U [t] into account. Since the two AMs use exactly the
same CD states, we can easily combine their likelihoods at the
state-level by computing the weighted sum of likelihoods [28].
The weighting factor is tuned on the development data.
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Figure 1: An RC-HMM hybrid speech recognition system comprising a multi-layer reservoir network. The outputs are converted
to acoustic likelihoods and used by a Viterbi decoder that finds the most likely state sequence in a HMM representing all structural
knowledge about the recognition task.

6. Experimental setup
6.1. Speech corpus & acoustic front-end

We perform phone recognition on the TIMIT corpus [29] that
contains recordings of 630 native American speakers (438
males & 192 females) divided over eight dialect regions. Each
speaker reads eight phonetically rich sentences (calibration sen-
tences are discarded). The training set contains 462 speakers
and the test set the remaining 168. 48 training speakers are used
as a development set. We report Phone Error Rates (PERs) in
% on the so-called core test set (24 speakers) which is a subset
of the full test set. The PER counts the percentage of deletions,
insertions and confusions between 39 phone classes (see [30]).

The acoustic front-end computes Mel Frequency Cep-
stral Coefficients (MFCCs) [31] based on 25 ms Hamming-
windowed speech frames with a shift of 10 ms. A 24 channel
mel-filterbank is used to compute the intermediate spectrum.
Utterance-based Cepstral Mean Subtraction (CMS) is applied
and the final feature vectors are composed of 13 normalized
MFCCs (c0,...,c12) and their first and second order derivatives.

6.2. Acoustic models

In our experiments we investigate different RC-based and
GMM-based Acoustic Models. We use three states per phone
and there are 3x51 CI phone states1. In the case of CD phone
states, we create models for 516 tied states resulting from a de-
cision tree clustering [27].

The GMMs compute weighted sums of Gaussians selected
from a fixed pool and the corresponding mixture models are
developed by means of the SPRAAK toolkit [27]. The mixture
weights are trained using Maximum Likelihood (ML) training.
The number of Gaussians, states and mixtures are determined
automatically from the size and the statistics of the data, so that
the risk of over-fitting is low.

The reservoir neurons are sparsely connected. Each neuron
is driven by 5 randomly selected inputs and by 5 randomly se-
lected reservoir state components. The reservoir networks are
trained by means of a Tikhonov regression [32]. As described
in [12], the inputs to the first layer are divided in three sub-
groups, namely C, ∆C, ∆∆C, and the features of each sub-
group are rescaled so that the mean squared norm of the sub-
vectors in the sub-groups are equal to 1.0, 0.7 and 0.3 respec-
tively. The latter values express the relative importances of the

1Note that in [10] we reduced the number of states to 51 in the sec-
ond and higher layers, but maintaining 3x51 states throughout is a more
uniform approach and it performs marginally better.
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Figure 2: PER in % as a function of the number of layers.

sub-groups. Per layer, we determine the reservoir control pa-
rameters (Vin, ρ, λ) on the development set. The spectral radius
was chosen differently for the first two layers (ρ1=0.5,ρ2=0.8).
All further layers have a ρ = 0.6 (see [10] for more details).
Leaky integration (λ=0.3) is only applied in the first two layers.

6.3. Viterbi-decoder

Each phone is modeled by a three-state HMM and the language
model (LM) is an n-gram stochastic phone LM derived from
the hand label strings provided for the training utterances. The
LMs are developed with the SRI language modeling toolkit [33]
using Kneser-Ney discounting [34] with a discount of 5. We
have designed a unigram, a bigram and a trigram. The test set
perplexities are 42.6, 16.7 and 15.3 respectively.

The relative importance of the LM with respect to the AM
is controlled by an exponent αLM on the n-gram probabili-
ties. The balance between phone deletions and insertions is
controlled by a phone insertion penalty Pins which is applied
every time one enters a new phone. The decoder parameters
αLM and Pins are optimized on the development set.

7. Experimental results
7.1. Context-dependent states

In a first experiment we test two types of uni-directional RC-
HMM hybrids, one type utilizes CI state and one type utilizes
CD states. All reservoirs comprise 20K neurons. Figure 2
shows the PER as a function of the number of layers per type.
The PER monotonously decreases, but it starts to saturate at a
depth of 4 layers. At that point the PER is 23.6% for the CI
models and 22.5% for the CD models. Note that the CD models
have 516 output classes, and thus incorporate about three times
more trainable parameters than the CI models working with 153
classes. However, a CI system cannot reach the performance of



Table 1: PER in % of different speaker-independent models
(GMM-HMM, RC-HMM, bRC-HMM). Comparison between
context-independent (CI) and context-dependent (CD) phone
state modeling [LM: bigram].

model CI CD

GMM-HMM 27.8 25.5
RC-HMM (uni-directional) 23.6 22.5
bRC-HMM (bi-directional) 22.6 22.0

Table 2: PER in % of different speaker-independent context-
dependent models (CD-GMM-HMM, CD-RC-HMM, CD-
bRC-HMM). Model evaluation with different LMs. Additional
results for model combination (MC) listed.

model (CD) unigram bigram trigram

GMM-HMM 27.9 25.5 24.5
RC-HMM 22.8 22.5 22.1
bRC-HMM 22.3 22.0 21.5

MC: GMM+RC 22.2 21.7 21.2
MC: GMM+bRC 21.4 21.1 20.5

the CD system, even if it is allowed to comprise the same num-
ber of trainable parameters.

In Table 1 we list the benefit of CD state modeling. Clearly,
GMM-based models benefit more from CD states than RC-
based models. This was somehow expected since the reservoir
already handles part of the cross-phone co-articulation through
its temporal modeling capability. This fact also explains why
a bi-directional system (bRC-HMM) with the same number of
trainable parameters is even less improved by the introduc-
tion of CD states. Important for us was to establish that in
a large reservoir state space it is possible to find a good re-
gression model with a few hundred phonetic classes, in spite
of the large number of training parameters such a model im-
plies (516×20K≈10M parameters per layer). Apparently, the
reservoir approach does not suffer from over-training. Note that
a CI-DNN-HMM used for the same phone recognition exper-
iments [5] has approximately the same complexity per layer
(3K×3K=9M), but it uses 8 layers. Even though CD reservoir
models do not yield a large improvement, we prefer them over
CI models for two reasons. First of all, they are slightly better,
but more importantly, they will be required in LVCSR [3,16,24]
to cope with mismatches between the actual word pronuncia-
tions and the pronunciations available in the lexicon [21].

In Table 2 (upper part) we show results obtained with differ-
ent phone LMs. Clearly, the RC-HMM systems do not benefit
that much from higher-order LMs. This is not because they can-
not exploit the contextual information, but because they auto-
matically cope with this information through the reservoir mem-
ory. This explains why an RC-HMM system already performs
so well in combination with a unigram LM. Nevertheless, the
stronger LMs still have some effect on the recognition results of
the RC-models. In case of a trigram LM the bRC-HMM system
achieves a PER of 21.5%. The fact that reservoir models learn
some phonotactics is a promising result in view of LVCSR. The
word-level n-grams and the phonotactic constraints imposed by
the reservoir may together constitute a better LM. Note that our
speaker-independent results are very competitive with those of
DNNs [5, 35] (PER=22-23%) and CD-MLPs [1] (PER=21.2%)

Table 3: PER in % of different speaker-dependent context-
dependent models (CD-GMM-HMM, CD-bRC-HMM). Com-
parison between different normalization methods. Additional
results for model combination (MC) listed.

model (CD) SI VTLN MVN VTLN
+MVN

GMM-HMM 25.5 24.8 25.0 24.4
bRC-HMM 22.0 21.1 21.1 20.5

MC: GMM+bRC 21.1 19.8

when the same acoustic features are used.
By applying state-wise likelihood combination with a mix-

ture weight of 0.5 we could further reduce the PER with all in-
vestigated LMs by about 1% (Table 2, lower part). This proves
that the RC-based and GMM-based models are to some extend
complementary. Note that in [4] the combination of a GMM
and a DNN only yielded an improvement of 0.1%.

7.2. Speaker-dependent (SD) modeling

In this section we discuss the impact of speaker normalization.
The MVN and VTLN measurements are performed on the 8 test
sentences of each speaker (as in [4,16]). Table 3 shows that both
approaches applied independently lead to improved recognition
results for a GMM and a reservoir-based system, with MVN
being more beneficial for the neural approach. If both normal-
ization methods are applied together, the individual gains nearly
add up and the PER of the RC system can be reduced to 20.5%.
A combination of the RC and GMM-based model on state-level
leads to a final speaker-dependent PER of 19.8%.

8. Conclusions & future work
In this work we introduced context-dependent phone states for
RC-based acoustic modeling and showed that reservoirs with
large linear output layers can be trained successfully. The re-
sulting models provide a small improvement for phone recogni-
tion and a final speaker-independent phone error rate of 22.0%
is obtained. This figure is very competitive with the figures
published for other methods applied to phone recognition. In
spite of the relative small gain we were able to demonstrate on
TIMIT, we are contented with this result because it manifests
that a context-dependent reservoir network can be trained un-
complicated. We are convinced that these CD models are in-
dispensable for good LVCSR which is, after all, our final goal.
In future work we will investigate how beneficial the temporal
modeling of a reservoir still is in a full recognizer using a dic-
tionary, transcription-based segmentation and a word-level LM.

We have also analyzed some speaker normalization ap-
proaches, namely VTLN and MVN, to canonicalize the speak-
ers. Both methods improve the recognition accuracy of an RC-
based system and lead to a PER of 20.5% in the case of a bigram
phone LM. Additional model adaptation [13] in complement
to this feature normalization may provide additional improve-
ments. This is another route to explore in future work.
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