
1

Cloud-based Desktop Services for Thin Clients
Lien Deboosere, Bert Vankeirsbilck, Pieter Simoens, Filip De Turck, Bart Dhoedt and Piet Demeester

Abstract—Cloud computing and ubiquitous network availabil-
ity has brought the thin client concept again under the attention.
Executing applications in virtual desktops on servers in the
cloud enables accessing any application from any location with
any device. To be a successful alternative for traditional offline
applications, important challenges have to be overcome. First
of all, the performance of the thin client protocol is essential:
the audiovisual output has to be displayed fluently. Second, the
desktop should be executed on a server with sufficient resources,
ideally close to the user’s current location to limit the impact
of network delay on the interactivity. In addition to delivering
excellent user experience, reducing costs is important for service
providers. This paper discusses these challenges from both the
user’s and the service provider’s point-of-view and roads to
solutions enabling cloud-based desktop services for thin clients.

I. INTRODUCTION

RECENTLY, cloud computing [1] services have become
widely available, offering an on-demand availability of

computing resources (e.g. Amazon EC2). Thanks to these
advances and ubiquitous network availability, the thin client
computing paradigm is enjoying an ever increasing popular-
ity. The paradigm, originally intended for wired local area
network (LAN) environments [2], is repeating its success in
the mobile context. Furthermore, a study from ABI Research
forecasts a 20 B$ turnover associated with services directly
associated with mobile cloud computing by the end of 2014.
Clearly, when offloading is applied, the functionality of the
terminal is limited to presenting audiovisual output to the user
and to conveying user input to the remote servers, thereby
considerably reducing the computational complexity on the
client device. Consequently, these applications can be run as-
is, without the need to provide (many) scaled-down versions
for mobile devices.

Currently, popular applications are already executed on
servers in the cloud (e.g., Google Docs, Microsoft Live).
Accessing applications in the cloud is referred to as Software-
as-a-Service (SaaS), while hosting a virtual desktop (VD) is
referred to as Desktop-as-a-Service (DaaS). DaaS implemen-
tations can be categorized according to the location where
the VD is executed (locally or remotely) or according to the
method to access the output of the VD (browser or thin client
protocol such as Microsoft’s Remote Desktop Protocol (RDP)
and Virtual Network Computing (VNC)). This paper specif-
ically focuses on mobile users, and hence, due to resource
constraints, VDs are executed remotely. To enable access to
existing operating systems and applications, we will focus
on using a thin client protocol to visualize the output of
applications executed by a VD.

All authors are with the Ghent University - INTEC - IBBT Belgium.
Simoens is also affiliated with INWE, Ghent University College.

Current DaaS deployments such as VMWare Virtual Desk-
top Infrastructure (VDI) are mainly concentrated in corpo-
rate environments. The availability of (virtual) computing
resources distributed over the network makes cloud computing
a big enabler for offering desktop services in mobile WAN
environments.

In Fig. 1, we propose a system architecture for offering
efficient desktop services in the cloud. Simplified OS image
management (i.e. re-using an OS image among users and
consequently reducing the storage per user) and application
management are essential for the scalability of the service. In
our system architecture, a VD is built from a shared golden
image from the OS database, merged with personal settings,
for example by using a copy-on-write solution with unionFS.
Schwarzkopf et al. show how multi-layer VDs simplify the
complexity of upgrading the golden image without causing
broken dependencies and/or conflicts [3]. To improve the
usability of DaaS, combining DaaS with application virtu-
alization technologies such as Softricity and Microsoft App-
V is very promising. The applications are then dynamically
delivered to the user’s VD without the need for installing,
configuring and updating the applications. This approach fur-
ther reduces the complexity of upgrading golden images since
applications are not installed in the user’s VD and thus cannot
be broken.

Existing cloud platforms fulfill the hardware requirements
to implement a DaaS service. However, we are witnessing the
emergence of a new category of mobile applications (e.g., aug-
mented reality, rich sensing and multimedia editing), posing
stringent requirements on delays. Current cloud management
systems are not able to meet user expectations from these app-
lications, especially in terms of latency. There is a clear need
for novel cloud management algorithms to take into account
the specific requirements of mobile thin client computing. In
our system architecture, these cloud management algorithms
are implemented in the self management component of the
service manager, which can be implemented as part of existing
cloud management systems such as OpenNebula, OpenStack
and Eucalyptus.

In this paper, we present and discuss solutions to adequately
address the challenges for providers offering a cloud-based
desktop service. First, we look at the service from the user’s
point-of-view and discuss how the user experience can be
improved. Second, from the service provider’s point-of-view,
we discuss how to reduce the costs for offering the service.

II. USER EXPERIENCE

Two aspects are important for the user experience: (i) high
performance of the thin client protocol, i.e. crisp interactivity
and fluent audiovisual output, and (ii) sufficient allocated re-
sources on the server-side so the applications respond quickly.

2

application
virtualization

service

thin client
users

service manager

thin client
protocol

host 1

host H

...

virtual
desktops
(VD)

data center

self management

overbooking allocation

consolidation relocation

data center

data center

thin client user

thin client
users

OS image
& profile
database

monitoring framework

resource
overbooking

Fig. 1: System architecture to enable cloud-based desktop services for thin clients. Users
connect via a thin client device (e.g., smartphone, tablet PC, PDA, netbook, minimal state or
zero-state thin client device) to their remote applications executed in a virtual desktop. The
self management component of the service manager covers optimizations to increase the user
experience and decrease the costs of the service provider.

For mobile users, it is also important to reduce the energy
consumption on the client device.

A. Crisp interactivity

Acceptable interaction delay bounds depend on the app-
lication at hand. For office automation applications, delays
up to 150ms can be tolerated [4], while for multimedia
applications such as video games, users are already susceptible
for interaction delays higher than 80 ms. Because the result
of user input can only be seen after at least one round-trip
time (RTT), delay for critical applications should be addressed
through the use of a proximate server. Every time a user
connects to the service, a data center has to be selected that
can be reached fast enough from the user’s current location.
Inside the data center, the selection of an appropriate server
is based on the expected resource requirements of the user’s
applications based on the user’s profile and the current load
on the servers (see section II-C).

Due to user mobility, guaranteeing delay bounds can imply
that a VD is to be migrated to another server. In practice, the
desktop service is continuously monitored and, for example,
when the RTT exceeds a predefined boundary based on the
type of active applications, the user’s VD is relocated to a more
suitable host. The relocation is performed by live migration of
the VD [5].

By storing the unionFS delta filesystem of the VDs on
network storage equipment, the cost of relocating VDs from
the service provider’s point-of-view is reduced to copying
the current active memory and in worst-case (i.e. migration
across data centers) also copying the delta filesystem of the
VDs. During the migration process, resources are required on

both the original and target host. In a heavily loaded system,
these double resource reservations can lead to rejecting new
user requests while also causing substantial network traffic
for the memory copying process. Therefore, relocating VDs
should only be performed when valuable improvements for
the customer and/or the service provider can be achieved.

B. Fluent audiovisual output

Multimedia content has been a stumbling block for thin
client computing for many years, especially in mobile WAN
environments where bandwidth availability is limited and ex-
pensive, mainly due to the fact that the same coding is applied
to static (e.g., text editing) and to dynamic (e.g., video game)
content. Recently, several bandwidth optimizations for thin
client protocols have been proposed. An important innovation
implements a channel to redirect multimedia in its original
format to the client (e.g. Citrix SpeedScreen), at least when
the appropriate codec is available on the client device. This
approach is only valid for playing multimedia streams and not
for displaying high-motion output from an application (e.g., a
video game). We have evaluated a thin client protocol opti-
mization that encodes the high-motion output of applications
with a video codec and switches to a thin client protocol
to encode low-motion output [6] and show its feasibility for
popular mobile devices in Table I. In these experiments, a full-
screen video was played on the server and streamed to the
client. Since the bottleneck of the live encoding process is the
CPU of the server, higher framerates are reached for smaller
screen resolutions. Using the processing power of a Graphical
Processing Unit (GPU) on the server-side could improve the
framerate.

3

device screen resolution available codecs streaming framerate [fps]

iPhone 4 640 x 960 H264, MPEG-4, M-JPEG 27
Samsung Galaxy S 800 x 480 H263, H264, MPEG-4, WMV, VC-1 23
iPad 1024 x 768 H264, MPEG-4, M-JPEG 20
laptop 1280 x 1024 depends on OS/applications 12

TABLE I: Comparison of the performance of thin client computing on popular mobile devices. The output of a graphical-
intensive application (i.e., a full-screen video) is live encoded with H264 before streaming to the client device. The bottleneck of
the live encoding process is the CPU of the server. Therefore, a higher framerate can be reached for smaller screen resolutions

Fig. 2: Simulation results of the proposed allocation algorithm in a scenario with 10 hosts and an average utilization of 90%.
An SLA violation means that the user applications receive less resources than requested.

Vankeirsbilck et al. propose to cache important output
sequences such as the desktop view and menu items to reduce
both the required bandwidth and the interaction delay [7].
Simoens et al. present a complete overview of recent thin client
protocol optimizations in [8].

C. Resource allocation

In the data center, a suitable host to satisfy an arriving
user request must be found. From the customer’s point-of-
view, the least utilized host is preferable, while from the
provider’s point-of-view the host resulting in the least resource
fragmentation (i.e. the best-fit host) is preferable since this can
reduce the energy consumption. The resources needed by a
user are specified in a Service Level Agreement (SLA). To
observe the balance expressed above, the allocation algorithm
attributes a penalty of α for each request receiving too few
resources, and a penalty β related to resource fragmentation,
i.e. to the amount of non-reserved resources on this host.
The host with the lowest penalty is selected to handle the
user request. In Fig. 2, the influence of the ratio α/β on the
probability of SLA violations is shown for a simulation with
10 hosts and an average utilization of 90%. In this context, an
SLA violation implies that the user applications receive less
resources than requested. When α/β increases, i.e. when SLA
violations are expensive, the allocation algorithm is able to
reduce the probability of SLA violations with 10%. An SLA
violation as defined here might not be noticeable or obstructive
for the user experience as it might just take some longer for
the user applications to execute a task.

For scalability, we cannot assume that every user has a
dedicated profile. Rather, the resource requirements of VDs
should be clustered offline into a finite number of profiles. At

subscription time, a user is assigned one of those predefined
profiles. An online clustering algorithm such as the decentral-
ized clustering algorithm presented by Quiroz et al. [9] could
be used to map the current resource requirements of a user’s
VD to one of the cluster profiles. This online mapping can be
used to adapt the current resource allocation or even the user’s
profile when appropriate.

In case the current resource requirements do not corre-
spond with the user’s profile (e.g., bursts of SLA violations
are detected), the cloud management can decide, based on
the user’s SLA contract, to adapt the resource allocation to
the current needs. In case more resources are required and
sufficient resources are available on the current host, these
additional resources are simply allocated. A problem arises
when the current host cannot update the resource reservation
to the desired level. Two actions can be taken: relocating the
user’s VD to a host with sufficient free resources, or relocating
other VDs from the current host until sufficient resources are
freed. The preferred choice depends on several factors such as
the users’ SLA contracts and the memory consumption of the
VDs which is known to determine the time required to finish
the live migration of a VD.

D. Battery autonomy

Limited battery drain is important for mobile users. Since
the computing power is shifted to the network, one could
expect a small battery drain, but on the other hand, the
continuous wireless network connection is a huge battery
consumer.

Several approaches exist to reduce the energy consumption
of the wireless network connection, for example, Simoens
et al. propose a cross-layer optimization [8]. Even with this

4

Fig. 3: Non-consumed reserved resources are collected in the host’s resource pool to be shared among VDs requesting more
resources than reserved. The presented simulation results (averaged over 15 simulations) concern a fully reserved host with
normal VDs requesting resources (based on the planning guide by Citrix Inc. [11]) according to a normal distribution N(µ, σ2)
with µ taken from N(10, 3.5) and σ2 taken from N(3.5, (2/3× 3.5)).

adaptation, offloading all applications cannot be justified in
terms of reducing energy consumption. Therefore, we propose
to weigh the advantages of offloading an application to a
remote server versus local execution of the application. Lu et
al. propose a solution between these two extremes: offloading
parts of the applications and rendering to remote servers and
executing the other parts locally, which could also reduce the
interaction delay [10].

III. SERVICE PROVIDER COSTS

The most important challenge for a service provider is
satisfying the customers while minimizing the costs. We focus
on optimizing the number of users served by a single host and
minimizing the energy consumption of the hosts in the cloud.

A. Number of users served by one host

Depending on the targeted user experience, resources should
be reserved on the infrastructure. Of course, reserving worst-
case resource needs will lead to an over-provisioning of cloud
resources. The planning guide by Citrix Inc. [11] suggests
assigning at most 10 normal VDs or 4 heavy VDs to a single
host. Since resolutions of mobile devices are becoming closer
to resolutions of regular screens, the difference in resource
requirements for hosting a VD for a mobile or for a fixed user
is negligible. Therefore, the study is also valid in nowadays
mobile context. Berryman et al. show that, when more VDs are
assigned to a host, the performance degradation depends on
the type of applications executed in the VDs [12]. Therefore,
the number of allocated resources should be dependent on the
applications expected to be executed, as specified in the user’s
profile.

Urgaonkar et al. demonstrate the importance of resource
overbooking to avoid over-provisioning of resources in the
context of shared internet hosting platforms [13]. Based on
the observation that the resource requirement of a VD varies

a lot and depends on many factors such as multiple active app-
lications, there is an opportunity to use a resource overbooking
technique in the context of virtual desktop computing.

In Fig. 3, we propose a novel overbooking technique that
takes advantage of the host’s shared resource platform used to
execute the VDs. In our approach, the provider reserves a part
of the expected resource requirements according to the adopted
overbooking degree. The overbooking degree is defined as the
probability of not being able to satisfy a user’s request. The
host’s resource scheduler assures that a VD can always con-
sume at least the reserved resources. Non-consumed resources
are collected in the host’s resource pool. VDs requesting more
resources than reserved can receive additional resources from
the resource pool. The figure shows that when the overbooking
degree increases, also the utilization of the host increases. In
that case, less resources are reserved and hence the probability
of SLA violations increases.

VDs with different profiles or SLA contracts can be as-
signed different overbooking degrees. As emphasized before,
the user experience is not only determined by the resource
allocation for her VD, but also by the audiovisual quality and
the interaction delay with the application. To globally optimize
the user experience and resource allocation, future research
should be devoted to couple the resource allocation strategy
with the thin client protocol settings in a global framework.

B. Energy cost

To achieve a green cloud-based desktop service, a consolida-
tion algorithm should be implemented to adapt the online host
pool to the current system load. The consolidation algorithm
has to predict the (near) future system load in order to
determine the required number of hosts. The time between
two iterations of the consolidation algorithm is called the time
window. During a time window, monitoring information is
collected. Based on this information and the assumption that
the system load during the next time window will vary in a

5

predicted
additional
utilization

max utilization
umax,τ

previous
utilization uτ-1

current
utilization uτ

time window τ time window τ+1

predicted max
utilization umax,τ+1

uτ+1

(a) Prediction of the system load in the next time window

0

1

2

3

4

5

6

0

50

100

150

200

250

disabled enabled

av
er

ag
e

Pr
ob

[S
LA

 v
io

la
tio

n]
 [

%
]

en
er

gy
 c

on
su

m
pt

io
n

[k
W

h]

consolidation algorithm

energy consumption Prob[SLA violation]

(b) In the simulation, a daily-cycle of arrivals of two types
of users are considered in a ratio of respectively three to one:
normal users and heavy users with an average resource request
distribution of respectively N(10, 3.5) and N(25, 5).

Fig. 4: A consolidation algorithm aims at reducing the energy consumption of servers in the cloud by adapting the number of
online servers to the system load. The cost of the energy saving is a small increase in SLA violations.

similar way, the system load is predicted by means of linear
extrapolation (see Fig. 4(a)).

When additional hosts are required, they are simply put
online. When there are redundant hosts, more elaboration is
required to decide which hosts should be put offline. Idle hosts
are of course the best choice to put offline since no VDs have
to be relocated before the hosts can be put offline. In case
there are not enough idle hosts to put offline, the hosts are
sorted by ascending amount of VDs. To minimize the number
of relocations, the algorithm tries to relocate the VDs from
the hosts in the order of the sorted list. When not all VDs
on a host can be relocated to other hosts, it makes no sense
to relocate any of the VDs from that host and the algorithm
should continue with the next host from the list, until sufficient
hosts are put offline, or until no hosts are remaining in the list.

When the real system load appears to be higher than
expected, the monitoring framework notices this unfavorable
situation and requests the cloud management component to
take appropriate actions.

The simulation results in Fig. 4(b) from a scenario with
realistic user behaviour (i.e. a daily cycle of user requests
according to the Lublin model [14]) show that there is a large
potential to save energy at the cost of a small increase in SLA
violations. In this scenario, up to 36.6% energy can be saved
at the cost of an additional 1.7% SLA violations.

IV. CONCLUSION

Accessing a desktop in the cloud by means of a thin client
protocol enables accessing any application from any device
and any location. In this paper, an overview of challenges and
approaches is given to offer efficient desktop services in the
cloud.

Existing optimizations of thin client protocols and desktop
services each focus on a specific part of the user experience.
Currently, the user experience of thin client based virtual
desktops can only be quantified offline by means of the slow-
motion benchmarking technique [12]. There is a clear need

for a novel, objective metric representing the global user
experience and online measurement methodologies. Future
research should be devoted to integrate relevant thin client
protocol optimizations with resource allocation strategies to
achieve the best user experience. To further increase the user
experience, the cloud management algorithms presented in this
paper should be extended to operate on interconnected data
centers, e.g., by relocating virtual desktops from overloaded
to less loaded data centers.

6

REFERENCES

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg and I. Brandic, “Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, 2009.

[2] A. Lai and J. Nieh, “On the performance of wide-area thin-client
computing,” ACM Transactions on Computer Systems, vol. 24, no. 2,
pp. 175–209, 2006.

[3] R. Schwarzkopf, M. Schmidt, N. Fallenbeck, and B. Freisleben, “Multi-
Layered Virtual Machines for Security Updates in Grid Environments,” in
proceedings of 35th EUROMICRO Conference on Internet technologies,
quality of service and applications, pp. 563–570, 2009.

[4] N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantifying Inter-
active User Experience on Thin Clients,” Computer, vol. 39, no. 3, pp.
46–52, 2006.

[5] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat, J. Mambretti,
I. Monga, B. van Oudenaarde, S. Raghunath, and P. Y. Wang, “Seamless
live migration of virtual machines over the MAN/WAN,” Future Gener-
ation Computer Systems, vol. 22, no. 8, pp. 901–907, 2006.

[6] P. Simoens, P. Praet, B. Vankeirsbilck, J. De Wachter, L. Deboosere,
F. De Turck, B. Dhoedt, and P. Demeester, “Design and implementation
of a hybrid remote display protocol to optimize multimedia experience
on thin client devices,” in proceedings of the Australasian Telecommuni-
cations Networks and Applications Conference, 2008.

[7] B. Vankeirsbilck, P. Simoens, J. De Wachter, L. Deboosere, F. De Turck,
B. Dhoedt, and P. Demeester, “Bandwidth optimization for mobile thin
client computing through graphical update caching,” in proceedings of the
Australasian Telecommunications Networks and Applications Conference,
2008.

[8] P. Simoens, F. De Turck, B. Dhoedt, and P. Demeester, “Remote display
solutions for mobile cloud computing,” in Computer, vol. 44, no. 8,
pp. 46–53, 2011.

[9] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam and N. Sharma,
“Towards autonomic workload provisioning for enterprise Grids and
clouds,” in proceedings of IEEE/ACM International Conference on Grid
Computing, pp. 50–57, 2009.

[10] Y. Lu, S. Li, and H. Shen, “Virtualized Screen: A Third Element for
Cloud-Mobile Convergence”, in IEEE Multimedia, vol. 18, no. 2, pp. 4–
11, 2011.

[11] Citrix Inc., “XenDesktop Planning Guide - Hosted VM-Based Resource
Allocation,” white paper (CTX12277), 2010.

[12] A. Berryman, P. Calyam, M. Honigford, A. Lai, “VDBench: A Bench-
marking Toolkit for Thin-client based Virtual Desktop Environments,”
in proceedings of the 2nd IEEE International Conference on Cloud
Computing Technology and Science, pp. 480–487, 2010.

[13] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking and
application profiling in a shared internet hosting platform,” ACM Trans-
actions on Internet Technology, vol. 9, no. 1, pp. 1–45, 2009.

[14] U. Lublin and D. G. Feitelson, “The workload on parallel supercomput-
ers: modeling the characteristics of rigid jobs,” Journal of Parallel and
Distributed Computing, vol. 63, no. 11, pp. 1105–1122, 2003.

