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Abstract In this paper we study an integral transform in Clifford analysis with a gen-
eral kernel expressed as an infinite series in terms of Bessel functions and Gegen-
bauer polynomials. After giving some examples, we construct the inverse of this
general transform on the Schwartz space. Moreover, we define a generalized trans-
lation operator and four types of generalized convolution associated to the general
kernel.

1 Introduction

Recently, several generalizations of the classical Fourier transform (see e.g. [12])
and its fractional version (see e.g. [10]) to the setting of Clifford analysis (see e.g.
[1, 8]) have been introduced by the authors. They are all examples of the general
transform studied in this paper. For this general transform, the kernel of which is
expressed as an infinite series in terms of Bessel functions and Gegenbauer poly-
nomials, we first determine the inverse on a basis of the Schwartz space in Clifford
analysis. Next we define a generalized translation operator in terms of the general
transform and two types of generalized convolution in terms of the translation opera-
tor. However, taking into account the interaction of the convolution with the Fourier
transform in the classical case, two other types of convolution are introduced. The
examination of the properties of the translation operator and the four types of con-
volution is postponed to a subsequent publication.
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The paper is organized as follows. In Section 2 we repeat some basic knowl-
edge of Clifford analysis. In Section 3 we introduce a general kernel, which takes
the form of an infinite series in terms of Gegenbauer polynomials and Bessel func-
tions. We briefly discuss some examples and calculate the action of the associated
transform on a basis of the Clifford Schwartz space. In Section 4, we construct the
inverse of the general transform on the Schwartz basis. Next, in Section 5, we define
a generalized translation operator related to the general integral transform. Finally,
in subsection 6.1, we introduce two types of convolution based on the translation op-
erator. However, also another type of convolution structure, based on the interaction
of the convolution with the Fourier transform in the classical case, seems natural
and is hence introduced in subsection 6.2.

2 Preliminaries

The Clifford algebra C l0,m over Rm is the algebra generated by ei, i = 1, . . . ,m,
under the relations

eie j + e jei = 0, i 6= j, e2
i =−1.

This algebra has dimension 2m as a vector space over R. It can be decomposed as
C l0,m =⊕m

k=0C lk
0,m with C lk

0,m the space of k-vectors defined by

C lk
0,m := span{ei1 . . .eik , i1 < .. . < ik}.

In the sequel, we will always consider functions f taking values in C l0,m, unless
explicitly mentioned. Such functions can be decomposed as

f = f0 +
m

∑
i=1

ei fi +∑
i< j

eie j fi j + . . .+ e1 . . .em f1...m

with f0, fi, fi j, . . . , f1...m all real-valued functions on Rm.
The Dirac operator is given by ∂x = ∑

m
j=1 ∂x j e j and the vector variable by x =

∑
m
j=1 x je j. The square of the Dirac operator equals, up to a minus sign, the Laplace

operator in Rm: ∂ 2
x =−∆ .

We further introduce the so-called Gamma operator (see e.g. [8])

Γx :=−∑
j<k

e jek(x j∂xk − xk∂x j).

Note that Γx commutes with radial functions, i.e. [Γx, f (|x|)] = 0.
Denote by P the space of polynomials taking values in C l0,m, i.e.

P := R[x1, . . . ,xm]⊗C l0,m.
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The space of homogeneous polynomials of degree k is then denoted by Pk. The
space Mk := ker∂x ∩Pk is called the space of spherical monogenics of degree k.
Similarly, Hk := ker∆ ∩Pk is the space of spherical harmonics of degree k.

Next we define the inner product and the wedge product of two vectors x and y

〈x,y〉 :=
m

∑
j=1

x jy j x∧ y := ∑
j<k

e jek(x jyk− xky j).

We introduce a basis {ψ j,k,`} for the space S (Rm)⊗C l0,m, where S (Rm) de-
notes the Schwartz space. Define the functions ψ j,k,`(x) by

ψ2 j,k,`(x) := L
m
2 +k−1
j (|x|2)M(`)

k e−|x|
2/2,

ψ2 j+1,k,`(x) := L
m
2 +k
j (|x|2)xM(`)

k e−|x|
2/2,

(1)

where j,k ∈ N, {M(`)
k ∈Mk : ` = 1, . . . ,dimMk} is a basis for Mk, and Lα

j are the
Laguerre polynomials. The set {ψ j,k,`} forms a basis of S (Rm)⊗C l0,m, see [11].

3 Generalized Fourier transforms: examples and eigenvalues

In this section we consider a general kernel of the following form

K(x,y) =
(
A(w, z̃)+(x∧ y) B(w, z̃)

)
e

i
2 (cotα)(|x|2+|y|2) (2)

with

A(w, z̃) =
+∞

∑
k=0

αk (z̃)−λ Jk+λ (z̃)C
λ
k (w)

B(w, z̃) =
+∞

∑
k=1

βk (z̃)−λ−1Jk+λ (z̃)C
λ+1
k−1 (w)

and αk,βk ∈ C, z̃ = (|x||y|)/sinα , w = 〈ξ ,η〉 (x = |x|ξ , y = |y|η , ξ ,η ∈ Sm−1),
λ = (m−2)/2, α ∈ [−π,π]. Here, Jν is the Bessel function and Cλ

k the Gegenbauer
polynomial. We exclude the case where α = 0 or α =±π .

The integral transform associated with this kernel is defined by

F [ f ](y) =
1

(π(1− e−2iα))m/2

∫
Rm

K(x,y) f (x) dx (3)

with dx the standard Lebesgue measure on Rm.
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3.1 Examples

3.1.1 The case α = π

2 : the class of Clifford-Fourier transforms

In the special case where α = π

2 , the kernel takes the form

K(x,y) = A(w,z)+(x∧ y) B(w,z) (4)

with

A(w,z) =
+∞

∑
k=0

αk z−λ Jk+λ (z)C
λ
k (w)

B(w,z) =
+∞

∑
k=1

βk z−λ−1Jk+λ (z)C
λ+1
k−1 (w)

and z = |x||y|, w = 〈ξ ,η〉 (x = |x|ξ , y = |y|η , ξ ,η ∈ Sm−1), λ = (m− 2)/2. The
corresponding integral transform is given by

F [ f ](y) =
1

(2π)m/2

∫
Rm

K(x,y) f (x) dx.

Note that the classical Fourier transform, which can for example be expressed as the
operator exponential Fcl = e

iπm
4 e

iπ
4 (∆−|x|2), takes the form (4) with

αk = 2λ
Γ (λ )(k+λ )(−i)k and βk = 0.

Also the Clifford-Fourier transform (see [2, 3, 4, 7]), a generalization of the clas-
sical Fourier transform in the framework of Clifford analysis, takes this form. It is
defined by the following exponential operator F± := e

iπm
4 e

iπ
4 (∆−|x|2∓2Γ ). In case of

the Clifford-Fourier transform F−, the coefficients αk and βk take the form:

αk = 2λ−1
Γ (λ +1)(i2λ+2 +(−1)k)−2λ−1

Γ (λ ) (k+λ )(i2λ+2− (−1)k)

βk =−2λ
Γ (λ +1)(i2λ+2 +(−1)k).

In case of the transform F+, similar expressions hold.
Moreover, in [5] we have determined a whole class of kernels of the form (4)

yielding new integral transforms that have the same calculus properties as the orig-
inal Clifford-Fourier transform, but with different spectrum.

3.1.2 The fractional Clifford-Fourier transform

The fractional Fourier transform is a generalization of the classical Fourier trans-
form. It is usually defined using the operator expression
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Fα = e
iαm

2 e
iα
2 (∆−|x|2), α ∈ [−π,π].

Recently, we have introduced a fractional version of the Clifford-Fourier transform
(see [6]). It is defined by the following exponential operator

Fα,β = e
iαm

2 eiβΓ e
iα
2 (∆−|x|2), α,β ∈ [−π,π].

The integral kernel of this transform takes the form (2) with

αk =−2λ−1
Γ (λ +1)i−k(eiβ (k+2λ )− e−iβk)+2λ−1

Γ (λ )(k+λ )i−k(eiβ (k+2λ )+ e−iβk)

βk =
2λ Γ (λ +1)

sinα
i−k(eiβ (k+2λ )− e−iβk).

3.2 Eigenvalues

Now we calculate the action of the transform (3) on the basis (1) of S (Rm)⊗C l0,m.
In a similar manner as in Theorem 6.4 of [7] we can calculate the radial behavior of
the integral transform, which in its turn leads to the following result.

Theorem 1. One has, putting β0 = 0,

F [ψ2 j,k,`](y) =
2−λ

Γ (λ +1)

(
λ

λ + k
αk− sinα

k
2(λ + k)

βk

)
ike−iα(k+2 j)

ψ2 j,k,`(y)

F [ψ2 j+1,k,`](y) =
2−λ

Γ (λ +1)

(
λ

λ + k+1
αk+1 + sinα

k+1+2λ

2(λ + k+1)
βk+1

)
ik+1

× e−iα(k+2 j+1)
ψ2 j+1,k,`(y).

4 Inverse transform

In order to construct the inverse of the general transform F on the basis {ψ j,k,`} we
consider the following integral transform:

F ∗[ f ](y) =
1

(π(1− e2iα))m/2

∫
Rm

K∗(x,y) f (x) dx,

where the kernel is given by

K∗(x,y) =
(
A∗(w, z̃)+(x∧ y) B∗(w, z̃)

)
e−

i
2 (cotα)(|x|2+|y|2)

with
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A∗(w, z̃) =
+∞

∑
k=0

(−1)k
γk (z̃)−λ Jk+λ (z̃)C

λ
k (w)

B∗(w, z̃) =
+∞

∑
k=1

(−1)k+1
δk (z̃)−λ−1Jk+λ (z̃)C

λ+1
k−1 (w)

and γk,δk ∈ C, z̃ =
|x| |y|
sinα

, w = 〈ξ ,η〉 (x = |x|ξ , y = |y|η , ξ ,η ∈ Sm−1), λ = (m−
2)/2.

Similarly as for the transform F , we can consecutively calculate the radial be-
havior of the transform F ∗ and determine its action on the basis {ψ j,k,`}.

Theorem 2. One has, putting δ0 = 0,

F ∗[ψ2 j,k,`](y) =
2−λ

Γ (λ +1)

(
λ

λ + k
γk + sinα

k
2(λ + k)

δk

)
ikeiα(k+2 j)

ψ2 j,k,`(y)

F ∗[ψ2 j+1,k,`](y) =
2−λ

Γ (λ +1)

(
λ

λ + k+1
γk+1− sinα

k+1+2λ

2(λ + k+1)
δk+1

)
ik+1

× eiα(k+2 j+1)
ψ2 j+1,k,`(y).

Combining Theorem 1 and 2, we are now able to construct the inverse of the general
transform F on the basis {ψ j,k,`}.

Theorem 3. The inverse of F on the basis {ψ j,k,`} is given by

F−1[ f ](y) =
1

(π(1− e2iα))m/2

∫
Rm

K̃(x,y) f (x) dx,

with
K̃(x,y) =

(
Ã(w, z̃)+(x∧ y) B̃(w, z̃)

)
e−

i
2 (cotα)(|x|2+|y|2)

given by

Ã(w, z̃) =
+∞

∑
k=0

1
N
(αk +βk sinα) (z̃)−λ Jk+λ (z̃)C

λ
k (w)

B̃(w, z̃) =−
+∞

∑
k=1

1
N

βk (z̃)−λ−1Jk+λ (z̃)C
λ+1
k−1 (w),

where

N =
1

22λ (Γ (λ +1))2

(
λ

λ + k
αk− sinα

k
2(λ + k)

βk

)(
λ

λ + k
αk + sinα

k+2λ

2(λ + k)
βk

)
.

Proof. Put K̃(x,y) =
(

Ã(w, z̃)+(x∧ y) B̃(w, z̃)
)

e−
i
2 (cotα)(|x|2+|y|2) where
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Ã(w, z̃) =
+∞

∑
k=0

(−1)k
γk (z̃)−λ Jk+λ (z̃)C

λ
k (w)

B̃(w, z̃) =
+∞

∑
k=1

(−1)k+1
δk (z̃)−λ−1Jk+λ (z̃)C

λ+1
k−1 (w)

and with γk,δk ∈ C. We need to have that

F−1[F [ f ]
]
= F

[
F−1[ f ]

]
= f .

Using Theorem 1 and 2, this condition is equivalent with the system of equations
(k = 0,1, . . .)(

λ

λ + k
αk− sinα

k
2(λ + k)

βk

)(
λ

λ + k
γk + sinα

k
2(λ + k)

δk

)
= (−1)k(Γ (λ +1))222λ(

λ

λ + k
αk + sinα

k+2λ

2(λ + k)
βk

)(
λ

λ + k
γk− sinα

k+2λ

2(λ + k)
δk

)
= (−1)k(Γ (λ +1))222λ .

Solving this system for γk and δk then yields the statement of the theorem. ut

5 Generalized translation operator

The classical convolution f ∗cl g plays a fundamental role in classical Fourier anal-
ysis. It is defined by

( f ∗cl g)(x) =
∫
Rm

f (y)g(x− y)dy =
∫
Rm

f (x− y)g(y)dy

and it depends on the translation operator τy : f → f (.− y). Under the classical
Fourier transform Fcl , τy satisfies

Fcl

[
τy f
]
(x) = e−i〈x,y〉 Fcl [ f ] (x), x ∈ Rm.

We now define a generalized translation operator related to the integral transform
F defined in Section 3.

Definition 1. Let f ∈S (Rm)⊗C l0,m. For y ∈Rm the generalized translation oper-
ator f 7−→ τy f is defined by

F [τy f ](x) = K(y,x) F [ f ](x), x ∈ Rm.

It can be expressed, by the inverse of F (see Section 4), as an integral operator

τy f (x) =
1

(π(1− e2iα))m/2

∫
Rm

K̃(ξ ,x) K(y,ξ ) F [ f ](ξ ) dξ . (5)
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6 Four types of generalized convolution

6.1 Definitions using the generalized translation operator

Using the generalized translation of the previous section, we can define two types
of convolution for functions with values in the Clifford algebra.

Definition 2. For f ,g ∈S (Rm)⊗C l0,m, the generalized convolution f ∗L g, resp.
f ∗R g, is defined by

( f ∗L g)(x) :=
∫
Rm

τy f (x) g(y) dy, x ∈ Rm,

resp.

( f ∗R g)(x) :=
∫
Rm

f (y) τyg(x) dy, x ∈ Rm.

Using the integral expression for the generalized translation operator (see (5)):

τy f (x) =
(
π(1− e2iα)

)−m/2 (
π(1− e−2iα)

)−m/2

×
∫
Rm

∫
Rm

K̃(u,x)K(y,u)K(t,u) f (t)dtdu,

we obtain the explicit formulae for the generalized convolutions introduced above.

Proposition 1. The generalized convolutions f ∗L g and f ∗R g take the following
explicit form:

( f ∗L g)(x) = cα,m

∫
Rm

∫
Rm

∫
Rm

K̃(u,x)K(y,u)K(t,u) f (t)g(y)dtdudy

and

( f ∗R g)(x) = cα,m

∫
Rm

∫
Rm

∫
Rm

f (t)K̃(u,x)K(t,u)K(y,u)g(y)dydudt.

with

cα,m :=
(
π(1− e2iα)

)−m/2 (
π(1− e−2iα)

)−m/2
= (2π)−m|sinα|−m.

6.2 Definitions based on an idea of Mustard

The definitions of two other types of convolutions are based on the observation
that in the classical case the following interaction between the convolution and the
Fourier transform holds:

Fcl [ f ∗cl g] = (2π)m/2Fcl [ f ] Fcl [g].
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A similar idea was used by Mustard in [9] for the fractional Fourier transform.

Definition 3. For f ,g ∈S (Rm)⊗C l0,m, the generalized convolution f ∗C,L g is de-
fined by

( f ∗C,L g)(x) :=
(
π(1− e−2iα)

)m/2
F−1 [F [ f ] F [g]] (x), x ∈ Rm.

Similarly, the generalized convolution f ∗C,R g takes the form

( f ∗C,R g)(x) :=
(
π(1− e−2iα)

)m/2
F−1 [F [g] F [ f ]] (x), x ∈ Rm.

Taking into account the integral expression for F and its inverse F−1 we obtain
the following explicit formulae.

Proposition 2. The generalized convolutions f ∗C,L g and f ∗C,R g take the following
explicit form:

( f ∗C,L g)(x) = cα,m

∫
Rm

∫
Rm

∫
Rm

K̃(u,x)K(t,u) f (t)K(y,u)g(y)dtdydu

and

( f ∗C,R g)(x) = cα,m

∫
Rm

∫
Rm

∫
Rm

K̃(u,x)K(y,u)g(y)K(t,u) f (t)dtdudy.

A thorough study of the connection between and the properties of these four types
of convolution is a topic of current research.

References

1. F. Brackx, R. Delanghe and F. Sommen, Clifford analysis, vol. 76 of Research Notes in
Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1982.

2. F. Brackx, N. De Schepper and F. Sommen, The Clifford-Fourier transform. J. Fourier Anal.
Appl. 11 (2005), 669–681.

3. F. Brackx, N. De Schepper and F. Sommen, The two-dimensional Clifford-Fourier transform.
J. Math. Imaging Vision 26 (2006), 5–18.

4. F. Brackx, N. De Schepper and F. Sommen, The Fourier transform in Clifford analysis. Adv.
Imag. Elect. Phys. 156 (2008), 55-203.

5. H. De Bie, N. De Schepper and F. Sommen, The class of Clifford-Fourier transforms. J.
Fourier Anal. Appl. 17 (2011), 1198-1231.

6. H. De Bie and N. De Schepper, The fractional Clifford-Fourier transform. Accepted in
Complex Anal. Oper. Th., 17 pages.

7. H. De Bie and Y. Xu, On the Clifford-Fourier transform. Int. Math. Res. Not. IMRN (2011),
Art. ID rnq288, 41 pages.
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