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General anaesthesia in horses carries a higher risk of mortality compared to other species. The 

increased incidence of intraoperative complications and death is partly related to the dose 

dependent cardiovascular depression induced by inhalation anaesthetics, commonly used for 

long procedures. In order to reduce the required amount of inhalants and associated side 

effects, combinations of different anaesthetic drugs are often incorporated in the so-called 

‘balanced anaesthetic protocols’. Nowadays, this term has reached new dimensions with the 

use of less soluble inhalant anaesthetics in combination with short-acting intravenous (IV) 

anaesthetic drugs. In equine anaesthesia, the aims of balanced anaesthesia are to preserve an 

optimal intraoperative cardiopulmonary function and to assure good recoveries without 

adverse events. 

 

Perioperative fatalities associated with equine general anaesthesia 

The overall incidence of anaesthetic and sedation-related death has been reported to be 0.17 in 

dogs and 0.24% in cats, increasing to 1.33 and 1.40% respectively in sick patients (Brodbelt et 

al. 2007, 2008). These values are substantially higher than those seen in human anaesthesia: a 

review study reported an overall mortality rate of 0.008% that may increase up to 0.05% in 

ASA IV (American Society of Anesthesiologists) patients (Lagasse 2002). Different studies 

have been carried out in an attempt to determine the mortality rate associated with general 

anaesthesia in equines, although it remains difficult to determine whether death is either 

related purely to anaesthesia, or rather to the result of underlying diseases and/or surgical 

complications. Tevik (1983) reported a perioperative mortality of 0.8% in horses undergoing 

different types of surgery. The surgical/anaesthetic death rate was 0.63% in horses undergoing 

elective procedures, although only 0.08% was directly attributable to anaesthesia (Mee et al. 

1998a). Young & Taylor (1993) described a 0.68% incidence of anaesthetic-related deaths in 

horses undergoing orthopaedic surgery, radiography or minor soft tissue surgery. Higher 

mortality rates (31.4%) were noticed for emergency procedures (Mee et al. 1998b). More 

recently, a study performed in a private referral practice reported the prevalence of equine 

fatalities directly related to anaesthesia to be 0.12%, increasing to 0.24% when horses 

euthanized or dying within seven days after general anaesthesia were included (Bidwell et al. 

2007). However, several factors contributed to this lower fatality rate. Most of the horses were 

healthy, the duration of anaesthesia was usually shorter than sixty minutes and the 

anaesthetists were familiar with the standard protocol used in their practice. 

 The CEPEF (Confidential Enquiry into Perioperative Equine Fatalities) is the largest 

observational study of equine fatalities. This study was performed over a period of six years 
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and included data collected from 41,824 horses undergoing general anaesthesia in 129 

different equine clinics (Johnston et al. 2002). During anaesthesia or within a period of seven 

days after anaesthesia, an overall death rate of 1.9% was found. This overall number was 

reduced to 0.9% when only non-colic horses were included, but increased to 11.7% in colic 

horses. This report was also useful to identify major important risk factors other than 

emergency abdominal surgery, such as age, type and time of surgery and drugs used for 

premedication, induction and maintenance of anaesthesia. Induction of anaesthesia with 

volatile agents, night-time and weekend surgical procedures and fracture repairs were 

associated with higher risks as well. Furthermore, the maintenance of anaesthesia with 

volatile agents carried a much higher risk of death (0.99%) compared to total intravenous 

anaesthetic (TIVA) protocols (0.31%). Intravenous agents were suggested to produce less 

cardiorespiratory depression compared to volatile agents, resulting in a better outcome 

(Taylor et al. 1998). These data suggest that volatile agent anaesthesia can significantly 

contribute to the high anaesthestic mortality in equines, mostly due to the occurring 

cardiovascular effects (Steffey & Howland 1978). However, TIVA is routinely only applied 

in horses anaesthetized for less than forty five minutes (Hubbell 2007), mainly because of the 

risk of drug accumulation and associated side effects. Although the numbers in the CEPEF 

study were insufficient for a proper statistical evaluation, two out of sixty two horses (3.2%) 

anaesthetized with a TIVA protocol for more than ninety minutes died (Johnston et al. 2002). 

Johnston et al. (2002) also demonstrated that 33% of the deaths were due to cardiac 

arrest (including cardiovascular collapse). Furthermore, 32% of the horses were euthanized 

due to occurring fractures or myopathies during the recovery period with the remaining 35% 

of deaths related to a wide range of etiologies. Cardiac arrest is often the end-result of pre-

existing, pronounced cardiovascular depression. Moreover, the association between myopathy 

and hypotension has been well established in horses. Myopathy develops as a result of 

inadequate muscle perfusion during anaesthesia, caused by decreases in blood pressure and 

cardiac output      , combined with increased intracompartmental pressures in dependent limb 

muscle (Grandy et al. 1987; Lindsay et al. 1989). It also seems likely that some of the 

fractures reported in the CEPEF study were related to muscle dysfunction and/or myopathy 

caused by an inadequate oxygen delivery during anaesthesia. Indeed, Edner et al. (2005) 

demonstrated with the microdialysis technique the occurrence of an anaerobic metabolic 

response, even in muscles of healthy horses undergoing long-term inhalation anaesthesia. 

Horses with myopathy are supposed to have difficulties or are even unable to stand, leading to 

excitation and prolonged recumbency, causing further muscle damage. Moreover, fractures 
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may occur during unsuccessful attempts to stand due to muscle weakness (Lindsay et al. 

1989). Although myopathies have different intensities and are not always fatal, the prognosis 

remains very poor when a generalized myopathy is present in equine patients. Myopathy was 

also the main reported cause of death in the other study including 1314 healthy horses (Young 

& Taylor 1993). 

The studies of Young & Taylor (1993) and Johnston et al. (2002) included a large 

number of horses and showed that perioperative death in horses was closely linked with 

inadequate tissue oxygen delivery. This confirms the importance of maintaining a good 

cardiovascular function during anaesthesia, not only in high risk patients such as the colic 

horse, but also in healthy horses. Consequently, an adequate monitoring of anaesthetized 

horses must allow the anaesthetist to detect cardiovascular depression on time. 

 

Cardiovascular depression due to inhalational agents 

At the present moment, volatile anaesthetics are widely used in horses because they are the 

most controllable method for producing general anaesthesia (Steffey 2009). However, these 

agents are not free of side effects since they induce a ‘dose dependent’ cardiovascular 

depression (Clarke 2008). Halothane has been widely used since its introduction into clinical 

practice in the late 1950s by Dr. Leslie Hall (Clarke 2008) and enabled many of the advances 

in veterinary surgery. This drug is no longer available in most countries. Halothane produces 

bradycardia by increasing vagal tone, depressing sino-atrial and atrioventricular activity. 

Moreover, it reduces myocardial contractility and     and sensitizes the heart to 

catecholamines, which may lead to arrhythmias. Arterial blood pressure (ABP) also decreases 

but there is some vasoconstriction and at one minimum alveolar concentration (MAC), 

hypotension is less pronounced than anticipated (Clarke 2008). Isoflurane, a greater 

respiratory depressant than halothane (Steffey & Howland 1980), is nowadays the most 

commonly used licensed inhalation anaesthetic agent in horses. This volatile agent reduces 

systemic vascular resistance (SVR), inducing a marked vasodilation and a decreased ABP. On 

the other hand, isoflurane maintains heart rate (HR) better and has less effect on myocardial 

contractility compared to halothane, preserving a better     and peripheral perfusion. 

Sevoflurane, a newer volatile agent, has also been commercialized for dogs and is on the ‘list 

of essential substances’ for food producing horses with a six-month withdrawal (Clarke 

2008). Its use has been reported in different experimental (Aida et al. 1994; Rezende et al. 

2011) and clinical studies (Matthews et al. 1999) and cardiopulmonary depressant side effects 

have been observed. Sevoflurane anaesthetized horses will breathe at lower frequencies and 
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can become hypercapnic (Steffey et al. 2005a), which is similar to findings in horses 

anaesthetized with isoflurane (Steffey & Howland 1980). Sevoflurane also induces a fall in 

the SVR and ABP, without changes in cardiac contractility or HR. Although desflurane is not 

licensed for use in animals, this volatile agent has been studied in experimental horses (Clarke 

et al. 1996; Tendillo et al. 1997; Bettschart-Wolfensberger et al. 2001; Steffey et al. 2005b). It 

produces profound hypoventilation in horses, but a less severe cardiovascular depression at 

doses of 1-1.5 MAC compared with other inhalation anaesthetics (Steffey et al. 2005b). The 

reported cardiovascular effects are similar to those of isoflurane, although at concentrations 

above one MAC it may produce cardiovascular stimulation (Peck et al. 2008).  

As previously stated, inhalant agents carried a higher risk of mortality compared with 

TIVA protocols (0.99 versus 0.31%) (Johnston et al. 2002). In that study most of the horses 

were anaesthetized with halothane. During the latter stages of data collection, isoflurane was 

licensed as an alternative inhalational anaesthetic agent. Experimental and clinical evidence 

suggests that isoflurane has a cardiovascular benefit over halothane (Grosenbaugh & Muir 

1998; Raisis et al. 2000a; Blissitt et al. 2008), i.e.     is more depressed during halothane 

compared with isoflurane anaesthesia (Raisis et al. 2005). Isoflurane was also found to be 

safer in young horses and high risk cases (Johnston et al. 2004). During sevoflurane 

anaesthesia, haemodynamic and pulmonary indices were similar to those of isoflurane, with 

less pronounced decreases in     and systemic arterial pressure compared to halothane 

anaesthesia (Grosenbaugh & Muir 1998). Less pharmacological support (dobutamine) was 

needed during sevoflurane anaesthesia than in isoflurane anaesthetized horses, mainly because 

of less suppression of vasomotor tone (Driessen et al. 2006). Nevertheless, independently of 

the agent used, cardiovascular depression, hypoxaemia and hypoventilation are common 

problems associated with the use of volatile anaesthetics in horses and    , stroke volume and 

left ventricular work will decrease during anaesthesia, especially in dorsal recumbent horses 

(Gasthuys et al. 1991a). 
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Principles of treatment of cardiovascular depression 

Cardiovascular depression and its consequences should be anticipated in order to reduce the 

complication rate in equine anaesthesia. Preventive measures include preoperative preparation 

of the horse, correcting abnormalities such as hypovolaemia, the use of an adequate padding 

and careful positioning once the horse is positioned on the surgical table, adequate 

monitoring, availability of equipment for artificial ventilation and last but not least, a firm 

reduction of anaesthetic time. Furthermore, cardiovascular function must be restored if 

required. Overall, three general principles are the fundaments of the prevention and treatment 

of cardiovascular depression: high-volume fluid therapy, the use of cardiovascular stimulant 

drugs and reduction of anaesthetic depth. 

 Fluids can be administered in order to increase circulating volume and cardiovascular 

performance. The use of crystalloids as routine fluid therapy, colloids (Jones et al. 1997; 

Hallowell & Corley 2006) and hypertonic solutions (Dyson & Pascoe 1990; Schmall et al. 

1990; Gasthuys et al. 1992) has been studied in anaesthetized horses. Cardiovascular 

stimulant drugs including adrenaline (Gaynor et al. 1992), dopamine (Gasthuys et al. 1991b; 

Lee et al. 1998), dopexamine (Muir 1992a, b; Lee et al. 1998), ephedrine (Hellyer et al. 1998) 

and dobutamine (Donaldson 1988; Gasthuys et al. 1991b; Lee et al. 1998; Raisis et al. 2000b) 

are also widely used during routine equine anaesthesia. The use of milrinone (Muir 1995), 

enoximone (Schauvliege et al. 2007, 2009), arginine vasopressin (Valverde et al. 2006), 

noradrenaline (Valverde et al. 2006), phenylephrine (Lee et al. 1998; Raisis et al. 2000c) or 

antimuscarinics (Teixeira Neto et al. 2004; Pimenta et al. 2011) has also been reported. 

However, these drugs are not always effective or free of side effects. 

Reduction of the anaesthetic depth is another important method to treat cardiovascular 

depression. Volatile anaesthetics have only poor (if any) analgesic properties (Tomi et al. 

1993; Petersen-Felix et al. 1995) and reducing anaesthetic depth is normally not possible 

when using only an inhalant agent for maintenance of anaesthesia, especially during painful 

surgical procedures. The use of locoregional techniques (Doherty et al. 1997; Haga et al. 

2006) and/or systemically administered anaesthetics/analgesics (Muir & Sams 1992; Doherty 

& Frazier 1998; Bettschart-Wolfensberger et al. 2001) can reduce the need for volatile 

anaesthetics. 
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Balanced anaesthetic techniques in order to reduce the amount of inhalant agents 

An ideal anaesthetic protocol includes a combination of different compounds, providing 

unconsciousness and analgesia, producing muscular relaxation and suppressing autonomic 

and somatic reflexes. This principle, the so-called ‘anociassociation’ was first described by 

George W. Crile (1910) who suggested the use of light general anaesthesia with local 

anaesthesia for blocking painful stimuli. The concept of ‘balanced anaesthesia’ was first 

introduced by John S. Lundy (1926) using different agents and techniques such as 

premedication, regional analgesia and general anaesthesia in order to achieve the different 

goals of an optimal anaesthetic procedure (analgesia, amnesia, muscle relaxation and 

reduction or elimination of autonomic reflexes while maintaining homeostasis). Currently, a 

single ideal anaesthetic drug is not available. Although some drugs have advantages in certain 

areas, they lack other important properties or may even produce side effects. More recently, 

the introduction of newer volatile agents and drugs with improved pharmacokinetics allowed 

this concept to reach new dimensions. Nowadays, the idea of balanced anaesthesia may differ 

in literature but it has been stated by Tonner (2005) that ‘a combination of anaesthetics will 

act synergistically with respect to the desired effects such as hypnosis or analgesia, but not 

with respect to side-effects’. 

 Balanced anaesthesia in horses is mainly applied for inhalation-based anaesthetic 

techniques, aiming to maintain a good intraoperative cardiopulmonary function followed by a 

calm, smooth and coordinated recovery (Bettschart-Wolfensberger & Larenza 2007). 

Although the ideal equine balanced anaesthetic technique is not available, different 

combinations have shown advantages and benefits. Local and regional anaesthetic techniques 

have been described (Doherty et al. 1997; Haga et al. 2006), while the concomitant use of 

inhalants and IV anaesthetics/analgesics has gained popularity (Muir & Sams 1992; Valverde 

et al. 2005; Ringer et al. 2007; Enderle et al. 2008).  
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Intravenous drugs used in combination with 

inhalation anaesthesia 

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General introduction 

  

23 

 

Summary 

All volatile anaesthetics depress cardiovascular function dose dependently. Drugs that 

reduce the requirements for volatile anaesthetics might improve cardiovascular function 

during anaesthesia. Different drugs can be administered systemically for this purpose. 

Because of its analgesic properties, lidocaine, a classic local anaesthetic drug, can be 

used to reduce the requirements for volatiles. However, ataxia resulting in 

uncontrollable recoveries may occur so the infusion should be discontinued thirty 

minutes before the end of anaesthesia. Ketamine, a dissociative agent, can also be 

infused at a low dose to obtain additional analgesia, amnesia and immobility, with 

minimal depression of the cardiovascular function reducing the requirements of the 

inhalant agents. Unwanted emergence reactions have been reported during the recovery 

period. Although the systemic use of opioids is supposed to provide a high level of 

perioperative analgesia, the use of these narcotics remains controversial in horses, 

mainly because of adverse effects including behavioral changes and ileus, without clear 

reductions in the minimal alveolar concentration (MAC) of the inhalants. Finally, 2-

agonists provide sedation and analgesia in anaesthetized horses, considerably reducing 

the MAC, but may have a negative impact on cardiovascular function. 
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1.1. Lidocaine 

Lidocaine is an amino amide local anaesthetic that has traditionally been used to provide local 

anaesthesia in man and animals but also for the treatment of premature ventricular 

contractions when administered systemically (Peck et al. 2008). The local anaesthetic 

properties are mainly induced by the blockade of sodium channels (Peck et al. 2008) although 

other mechanism of actions have been reported, some of these effects occurring at lower 

concentrations (Hollmann & Durieux 2000). Other sites of action include calcium (Xiong & 

Strichartz 1998) and potassium channels (Bräu et al. 1998) and M1 muscarinic (Hollmann et 

al. 1999), glycine (Hara et al. 1995), gamma-aminobutyric acid (GABA)A (Sugimoto et al. 

2000), G protein-coupled (Hollmann et al. 2001) and N-methyl-D-aspartate (NMDA) 

receptors (Sugimoto et al. 2003). 

In human medicine, the use of intravenous (IV) lidocaine for anaesthetic and analgesic 

purposes was first reported over sixty years ago (Gilbert et al. 1951; De Clive-Lowe et al. 

1958) Its use decreased for over thirty years due to toxicity matters. Because local 

anaesthetics were shown to be efficient at blood concentrations lower than those considered to 

be toxic (Rimbäck et al. 1986, 1990), a renewed interest was formulated in the 1980s for new 

applications of IV lidocaine, such as the treatment of neuropathic pain (Kastrup et al. 1987; 

Ferrante et al. 1996) and the reduction of the duration of colonic stasis (Rimbäck et al. 1990). 

Additionally, IV lidocaine decreases postoperative pain (Koppert et al. 2004), has 

antihyperalgesic (Koppert et al. 1998) and anti-inflammatory properties (Hollmann & Durieux 

2000), improves gastrointestinal function postoperatively (Groudine et al. 1998), facilitates 

rehabilitation (Kaba et al. 2007) and reduces the minimal alveolar concentration (MAC) of 

volatile agents (Himes et al. 1977). 

 Systemically administered lidocaine has recently gained popularity in equine 

anaesthetized patients as it produces anaesthetic-sparing (Doherty & Frazier 1998; Dzikiti et 

al. 2003), analgesic (Murrell et al. 2005; Robertson 2005) and anti-inflammatory effects 

(Nellgård et al. 1996; Cook et al. 2009). The mechanism by which lidocaine reduces the MAC 

of volatile anaesthetics may involve different receptor types, such as NMDA, GABAA, 

acetylcholine and glycine (Zhang et al. 2007). Lidocaine dose dependently reduced the MAC 

of halothane in six experimental ponies (Doherty & Frazier 1998) receiving a loading dose 

(2.5 or 5 mg/kg) over five minutes followed by a CRI (50 or 100 µg/kg/min) for one hour. In 

a clinical study performed in twelve horses, Dzikiti et al. (2003) reported that IV 

administration of lidocaine at 2.5 mg/kg over ten minutes (fifteen minutes after induction) 
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followed by a CRI of 50 µg/kg/min during seventy five minutes resulted in a 25% reduction 

in isoflurane requirement, without negative effects on the cardiovascular system. 

Administration of IV lidocaine in colic horses (1.5 mg/kg bolus before surgery followed by a 

CRI 30 µg/kg/min) produced analgesia and dose dependent MAC sparing effects ranging 

from 20-25% with no significant cardiovascular or other side effects (Driessen 2005). More 

recently, the administration of a bolus of lidocaine (1.3 mg/kg) over fifteen minutes followed 

by 50 µg/kg/min CRI in eight experimental adult horses was shown to reduce the MAC of 

sevoflurane by 27% (Rezende et al. 2011). Nevertheless, under clinical circumstances, 

management of anaesthesia in horses receiving lidocaine (2 mg/kg over fifteen minutes plus 

CRI of 50 µg/kg/min) was more difficult and a higher expired fraction of isoflurane (FE´ISO) 

was required to maintain an appropriate, stable surgical plane of anaesthesia compared with 

those receiving medetomidine (Ringer et al. 2007). 

The new concept of partial intravenous anaesthesia (PIVA) has been recently 

introduced in equine anaesthesia (Bettschart-Wolfensberger & Larenza 2007; Nannarone & 

Spadavecchia 2012). This principle has been defined as a form of balanced anaesthesia and 

implies the use of low concentrations of inhalation anaesthetics in combination with more 

than one injectable agent to reduce the cardiorespiratory depressant effects and to improve 

anaesthesia and anaesthetic stability. The co-administration of IV lidocaine and ketamine in 

horses was reported to produce an additive effect on the inhalant anaesthestic-sparing effects. 

This was first suggested by Enderle et al. (2008) and confirmed by Villalba et al. (2011), with 

MAC reductions of 40% and 49% respectively at different doses and rates. In a recent blinded 

clinical trial, the mean FE´ISO in anaesthetized horses undergoing elective surgery when 

receiving lidocaine and ketamine infusions was 1% (0.62-1.2%) and was further reduced to 

0.65% (0.4-1.0%) when a medetomidine CRI was added (Kempchen et al. 2012). 

With regard to antinociception, the mechanism whereby systemic lidocaine exerts an 

analgesic action has not been completely elucidated. Tanelian & MacIver (1991) suggested 

that the analgesia produced by lidocaine is the result of the suppression of tonic neural 

discharges in injured peripheral A-delta and C fibre nociceptors, although a direct action on 

spinal transmission in the spinal cord has also been proposed (Woolf & Wiessenfeld-Hallin 

1985; Nagy & Woolf 1996; Koppert et al. 2000). It may also be possible that both peripheral 

and central actions contribute to the analgesic action of systemic lidocaine and that the 

predominant mechanism varies according to the nature of pain (Wallace et al. 1996). Low 

doses of systemic lidocaine have been used with good results for the treatment of severe cases 

of laminitis in equine patients (Malone & Graham 2002). Furthermore, 
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electroencephalographic findings have demonstrated that lidocaine provides antinociception 

contributing to additional analgesia during castration in ponies (Murrell et al. 2005). 

However, much less is understood about the action of lidocaine on the visceral pain. Indeed, 

lidocaine did not have a significant effect on the response to colorectal or duodenal distension 

in horses (Robertson et al. 2005), although it did inhibit, the cardiovascular responses to 

colorectal distension in rats, in a dose dependent manner (Ness 2000). Furthermore, lidocaine 

significantly increased the thermal threshold in horses (Robertson et al. 2005), which is in 

clear contrast with the findings in human volunteers, where systemic lidocaine had no effect 

on thermal thresholds (Wallace et al. 1997). 

The molecular mechanisms involved in the anti-inflammatory effects are not well 

described, although it has been suggested that lidocaine has effects on cyclic adenosine 

monophosphate, G protein-coupled receptors, nicotinamide adenine dinucleotide, sodium-

hydrogen antiporter and protein kinase C (Hollmann & Durieux 2000), reduces inducible 

nitric oxide synthase by suppression of nuclear factor B activation (Huang et al. 2006) and 

reduces the ex vivo production of interleukins IL-1 ra and IL-6 (Yardeni et al. 2009). 

Systemic lidocaine has also been shown to provide other potential benefits in the equine, such 

as reduction in the incidence of postoperative ileus (POI) (Cohen et al. 2004), with 

desiderable effects on intestinal motility (Brianceau et al. 2002) and resulting in a shorter 

hospitalization time in horses with POI (Malone et al. 2006). Furthermore, in horses with 

ischaemia-injured jejunum, lidocaine reduced the plasma prostaglandin E2 metabolite 

concentration and mucosal cyclooxygenase-2 expression and ameliorated the flunixin-induced 

increase in neutrophil counts (Cook et al. 2009) and has been investigated for its potential 

therapeutic effects in models of endotoxemia in laboratory animals (Taniguchi et al. 1996; 

Schmidt et al. 1997). 

 Recovery from general anaesthesia is the most critical phase when anaesthetizing 

horses. No negative effects were noted by Dzikiti et al. (2003) during the recovery period in 

horses receiving a CRI of lidocaine throughout anaesthesia compared with a saline group. 

When a bolus of 1.5 mg/kg of lidocaine was administered just before surgery and the infusion 

of 30 µg/kg/min stopped when the surgeon started to close the abdomen, horses with 

lidocaine did not show worse recoveries than those of the control group (Driessen 2005). In 

contrast, Valverde et al. (2005) described in a clinical study involving fifty four horses (2 

mg/kg over fifteen minutes followed by 50 µg/kg/min) higher degrees of ataxia and lower 

recovery qualities in horses receiving lidocaine until the end of the surgery. These authors 

recommended to discontinue the CRI thirty minutes before the end of the surgery. Ringer et 
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al. (2007) reported significantly better recoveries after the continuous infusion of 

medetomidine (3.5 µg/kg/hr) compared with lidocaine where both CRIs were stopped at the 

end of surgery and sedation was given prior to recovery. Furthermore, in a clinical study 

performed in twelve horses undergoing elective surgery, the addition of a medetomidine 

infusion (5 µg/kg/hr) to an infusion of lidocaine (2 mg/kg plus infusion at a rate of 50 

µg/kg/min) improved the quality of recovery compared with lidocaine alone (Valverde et al. 

2010a). In horses undergoing field castration, a bolus of lidocaine (3 mg/kg, IV) did not affect 

the recovery quality, although the overall recovery period was longer. Its use also did not 

reduce the needs for additional injectable anaesthesia during surgery (Sinclair & Valverde 

2009). 

In the equine, lidocaine is metabolized via the hepatic cytochrome P450 (CYP450) 

system into the active metabolites monoethylglycinexylidide and glycinexylidide, both 

lidocaine and the metabolites being excreted in the urine (Doherty & Frazier 1998). As it is 

highly metabolized by the liver and has a very short half-life (Engelking et al. 1987), it may 

be used intraoperatively as a bolus followed by a CRI. Lidocaine clearance is highly 

dependent on hepatic blood flow (Engelking et al. 1987) and general anaesthesia has a 

profound effect on serum lidocaine concentrations in horses, mainly due to a decrease in the 

volume of distribution and clearance of lidocaine (Feary et al. 2005). Moreover, other 

anaesthetic drugs metabolized via the CYP450 system may compete for binding sites and 

delay clearance (Doherty & Seddighi 2010). 

 Toxicosis should be considered when lidocaine is included in balanced anaesthetic 

protocols, especially because its neurological signs (weakness or ataxia) may be masked by 

anaesthesia. In the last decade, efforts have been made to determine the toxic blood levels for 

lidocaine in the horse. Meyer et al. (2001) demonstrated that lidocaine produced muscle 

fasciculations, tremors and ataxia in healthy awake horses at plasma levels between 1.85-4.53 

µg/mL, substantially different from humans (1.56 ± 0.61 µg/mL) (Wallace et al. 1997) and 

dogs (8.21 ± 1.69 µg/mL) (Wilcke et al. 1983). Serum lidocaine concentrations ranged from 

1-2 µg/mL in awake horses after abdominal surgery, receiving a loading dose of 1.3 mg/kg, 

followed by a CRI of 50 µg/kg/min. This resulted in a reduction in the volume of gastric 

reflux in horses with proximal enteritis and ileus postoperatively, while clinical signs of 

toxicosis were not observed (Malone et al. 1999). In patients undergoing elective procedures, 

Feary et al. (2005) showed that general anaesthesia with sevoflurane has a profound effect on 

lidocaine disposition in horses, and that lidocaine plasma levels were higher during 

anaesthesia than in awake horses (3.35 ± 0.60 and 1.85 ± 0.39 µg/mL respectively) after a 
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loading dose of 1.3 mg/kg followed by a CRI of 50 µg/kg/hr. Although no clinical signs of 

toxicosis were observed, the authors speculated that general anaesthesia may mask neurologic 

manifestations of toxicosis. Lower doses compared to previous studies were recommended by 

Brianceau et al. (2002), who used a loading dose of 0.65 mg/kg during the first thirty minutes 

of general anaesthesia followed by a maintenance rate of 25 µg/kg/min in colic horses. 

Lidocaine had also favourable effects on jejunal distension and peritoneal fluid accumulation 

after abdominal surgery. The mean intraoperative lidocaine concentration was 1.06 ± 0.6 

µg/mL, although in one horse intraoperative concentrations of 2.72 µg/mL were found. The 

authors attributed this variability mainly to individual differences in cardiac output (    . 

Horses experiencing pain may have a higher    , higher clearance of the drug and lower 

lidocaine serum concentrations. More compromised patients, with impaired cardiovascular 

function, will have a reduced liver blood flow and metabolism and higher lidocaine plasma 

levels. 

 In conclusion, lidocaine can be included in balanced anaesthetic protocols at different 

doses, providing intraoperative analgesia and reducing (dose dependently) the MAC of the 

volatile agent. However, potential side effects such as toxicosis should be taken into account, 

especially in cardiovascularly impaired patients. Furthermore, the infusion should be stopped 

at least thirty minutes before the end of anaesthesia to reduce the incidence of ataxia, 

improving the quality of the recoveries. An overview of the use of lidocaine in equine 

anaesthesia is provided in Table 1. 
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Table 1: Different loading doses and infusion rates reported for the use of IV lidocaine in equine balanced anaesthesia. 

     

     

Animals Loading dose mg/kg CRI µg/kg/min Main findings Reference 

6 experimental ponies 2.5-5 over 5 mins 50-100 ↓ MACHALO dose dependently Doherty & Frazier 1998 

28 colic horses 0.65 over 30 mins 25 Desiderable intestinal effects  Brianceau et al. 2002 

12 healthy clinical horses 2.5 over 10 mins 

(15 mins after induction) 

50 ↓ MACISO by 25% 

No bad recoveries 

Dzikiti et al. 2003 

50 colic horses 1.5 before start of surgery 30 ↓ MACISO & SEVO by 20-25% 

No worse recoveries 

Driessen 2005 

54 healthy clinical horses 2 over 15 mins 50 Affects degree of ataxia 

Stop CRI 30 mins before end of surgery 

Valverde et al. 2005 

16 experimental horses 1.3 over 15 mins 50 Anaesthesia influences lidocaine disposition Feary et al. 2005 

69 healthy clinical horses 2 over 15 mins 50 Maintenance easier and lower FE´ISO with 

medetomidine 

Ringer et al. 2007 

8 experimental horses 1.3 over 15 mins 50 ↓ MACSEVO by 27% Rezende et al. 2011 

CRI = constant rate infusion, MAC = minimum alveolar concentration, HALO = halothane, ISO = isoflurane, SEVO = sevoflurane, FE´ = expired fraction.
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1.2. Ketamine 

Ketamine is a drug discovered in 1962 and was introduced into human clinical anaesthesia in 

1964 (Reich & Silvay 1989; Jansen 2000). It causes an anaesthetic trance-like state referred to 

as ‘dissociative anaesthesia’ (Domino et al. 1965), producing an electrophysiological 

dissociation between the thalamo-neocortical and limbic systems (Kohrs & Durieux 1998). 

This term has been used in humans who reported a feeling of being dissociated from their 

body and environment after administration of ketamine (Muir 2009). Although its role in 

human medicine has diminished with the introduction of newer IV anaesthetics, ketamine is 

still widely used outside the hospital for emergencies, disaster situations, and in third world 

countries as it is reliable for induction and maintenance of general anaesthesia, providing 

good surgical conditions with few side effects (Paix et al. 2005; Visser & Shug 2006). 

Moreover, its use at subanaesthetic doses is accepted in order to provide multimodal analgesia 

in patients with pain related to opioid tolerance but also for the treatment of acute severe, 

neuropathic, ischaemic, peripheral somatic, visceral, cancer or chronic post surgical pain 

(Menigaux et al. 2001; Petrenko et al. 2003; Correll et al. 2004; Visser & Schug 2006). 

Nonmedical use of ketamine has been unfortunately linked to the ‘dance culture’ (Jansen 

2000). 

Ketamine is a non-competitive antagonist of the NMDA receptor, which is a ligand 

gated calcium channel with glutamate as its major endogenous agonist (Kohrs & Durieux 

1998). The NMDA receptors are of major importance for normal brain function and have a 

central role in learning, memory and the development of central nervous system (CNS) 

hyperactive states (Petrenko et al. 2003). Blockade of NMDA receptors enhances analgesia, 

but when exaggerated may result in memory impairment, excitation, dementia, ataxia and 

motor incoordination (Muir 2010). Interaction with NMDA receptors is responsible for 

general anaesthetic effects and analgesia (Visser & Schug 2006). However, although most of 

its effects (analgesic, amnesic and neuroprotective) are mediated via NMDA receptors (Kohrs 

& Durieux 1998; Chang et al. 2002), ketamine also interacts with non-NMDA glutamate, 

opioid, nicotinic, muscarinic and GABAA receptors (Kohrs & Durieux 1998; Knobloch et al. 

2006). The clinical use of NMDA antagonists at routine doses can be restricted mainly 

because of the psychomimetic side effects, ataxia and uncoordinated motor activity (Petrenko 

et al. 2003). These side effects are dose dependent and less common when using small, 

subanaesthetic doses (Himmelseher & Durieux 2005). 
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In contrast to the other drugs used for induction of anaesthesia, ketamine produces 

indirect cardiovascular stimulation with significant increases in blood pressure and heart rate 

(HR) (Zielmann et al. 1997). Additionally, it induces only a minimal respiratory depression 

with mild hypercapnia (Werner et al. 1997) and has been shown to antagonize the 

hypoventilation induced by alfentanil in man (Persson et al. 1999). In horses, IV doses of 2.2 

mg/kg combined with xylazine provided excellent short term anaesthesia with stable 

cardiorespiratory function (Muir et al. 1977). Heart rate and mean arterial blood pressure 

(MAP) did not change when plasma ketamine concentration increased but     did significantly 

increase during ketamine infusion (Muir & Sams 1992). In contrast with these findings, 

Lankveld et al. (2006) reported significant increases in respiratory rate (RR), HR and arterial 

blood pressure during infusion of ketamine at different rates.  

In equine practice, ketamine has been used for induction and maintenance of general 

anaesthesia for many years and has become a popular drug, especially when combined with 

an 2-agonist or centrally acting muscle relaxants (Muir et al. 1977; Butera et al. 1978; Luna 

et al. 1997; Hubbell et al. 2000). Nowadays, ketamine is also administered in horses in 

combination with other drugs to achieve multimodal analgesia for acute and chronic pain 

(Muir 2010). Moreover, it produces effective epidural analgesia (Gómez de Segura et al. 

1998) and local anaesthetic effects (López-Sanromán et al. 2003a, b). 

When administered IV in the equine, ketamine produces antinociceptive (Johnson et 

al. 1999; Knobloch et al. 2006; Peterbauer et al. 2008; Levionnois et al. 2010a) and 

anaesthetic effects (Bettschart-Wolfensberger et al. 1996; Mama et al. 2005). Up to now, the 

possible role in the treatment of equine endotoxaemia, remains controversial (Lankveld et al. 

2005; Alcott et al. 2011). A 1.5 mg/kg/hr CRI of ketamine in healthy conscious horses 

showed that an infusion of ketamine can be safely administered for at least six hours 

(Lankveld et al. 2006). In contrast, Fielding et al. (2006) studied the effects of three different 

infusion rates (0.4, 0.8 and 1.6 mg/kg/hr) in adult conscious horses and clear signs of 

excitation after two hours of infusion of the the highest dose were observed. Ketamine also 

reduced the inhalant anaesthetic requirements up to 37% (related to its plasma concentration) 

in halothane anaesthetized horses (Muir & Sams 1992). Rates reported during equine 

balanced anaesthesia range between 0.5 and 3 mg/kg/hr (Muir 2010). 

Ketamine is frequently included not only in total intravenous anaesthetic protocols 

(TIVA) with other drugs for the maintenance of general anaesthesia (Greene et al. 1986; 

Watkins et al. 1987; Flaherty et al. 1997; Umar et al. 2006; Hubbell et al. 2012) but also in 

multiple PIVA protocols (Spadavecchia et al. 2002; Yamashita et al. 2002; Kushiro et al. 
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2005; Enderle et al. 2008; Villalba et al. 2011; Kempchen et al. 2012; Nannarone & 

Spadavecchia 2012). Moreover, experimental studies have been performed in ponies in order 

to achieve predictable and stable blood drug concentrations, avoiding problems such as under- 

or overdosage by means of target-controlled infusions (TCIs) of ketamine (Knobloch et al. 

2006; Levionnois et al. 2010b). Specific software allows to set a target drug concentration and 

adjusts the administration rate according to predicted drug concentrations in plasma, offering 

better control than CRIs (Hu et al. 2005; Levionnois et al. 2010b). 

Ketamine is a racemic mixture of R- and S-enantiomers, the latter having 

approximately four times greater affinity for the active site of the NMDA receptor, resulting 

in an increase of the hypnotic properties (White et al. 1985; Oye et al. 1992). Currently, S-

ketamine is only available in some European countries for veterinary use. Biotransformation 

of ketamine in the equine occurs by the hepatic and lung microsomes (Knobloch et al. 2006; 

Schmitz et al. 2008). Ketamine is extensively metabolized by the hepatic CYP450 to the 

active metabolite norketamine (S- or R-norketamine) via N-demethylation, which possesses a 

potency of one-third to one-fifth compared to the parent compound, but may be involved in 

the prolonged analgesic actions of ketamine (Kohrs & Durieux 1998). Norketamine forms 

hydroxynorketamine via hydroxylation (White et al. 1982), is later metabolized to 

dehydronorketamine (Lankveld et al. 2006) and is also eliminated by renal excretion (Sams & 

Pizzo 1987). Older studies reported that the elimination half-life of racemic mixture was 

approximately one hour (Kaka et al. 1979; Waterman et al. 1987). In contrast, S-ketamine was 

proven to have a higher clearance compared to the R-enantiomer not only during the 

administration of the racemic mixture but also when the two enantiomers were administered 

separately (Geisslinger et al. 1993; Ihmsen et al. 2001). In humans and horses, more recent 

studies suggest that ketamine pharmacokinetics are ʻcontext sensitiveʼ and differ depending 

on the dose, mode of administration (bolus or infusion) and mainly the duration of 

administration (White et al. 2006; Larenza et al. 2009a). In vitro studies described a slower 

elimination of S-ketamine in the presence of the R-enantiomer in human (Kharasch & Labroo 

1992) and equine models (Schmitz et al. 2008). Clinical studies supported this assumption as 

elimination of S-ketamine was faster when given alone than when administered as part of a 

racemic mixture in standing ponies sedated with xylazine (Larenza et al. 2008) and in 

unsedated ponies (Larenza et al. 2009a). In contrast, the pharmacokinetics of racemic or S-

ketamine in isoflurane anaesthetized ponies did not differ significantly (Larenza et al. 2007), 

mainly due to changes in hepatic and renal enzyme activities mediated by the different co-

administered drugs. 
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 As a consequence of its faster elimination, S-ketamine offers shorter recovery times 

than the racemate in humans (Engelhardt et al. 1998; Ihmsen et al. 2001). In ponies, S-

ketamine (1.1 mg/kg, IV) produced a similar degree of immobility after a single injection and 

faster recoveries compared with the racemate (2.2 mg/kg, IV) (Larenza et al. 2008). When 

administered as a CRI in standing ponies at subanaesthetic doses, S-ketamine was considered 

to be a better option because of the suggested faster elimination (Larenza et al. 2009a). In an 

experimental trial involving ten horses undergoing elective arthroscopy, the recovery from 

anaesthesia was better in horses that were premedicated with xylazine and where anaesthesia 

was induced with S-ketamine (1.1 mg/kg, IV) and maintained with isoflurane and a CRI of S-

ketamine (0.5 mg/kg/hr) compared to horses where the racemic mixture was used instead 

(Larenza et al. 2009b). Additionally, two clinical studies including horses for castration using 

TIVA, showed that horses receiving S-ketamine had quieter and more controlled recoveries 

compared to those where the classic ketamine was administered (Filzek et al. 2003; Rossetti 

et al. 2008). Moreover, Rossetti et al. (2008) reported minor excitatory effects during 

induction, with lower doses of other anaesthetic drugs for maintenance of anaesthesia when S-

ketamine was administered. Unfortunately, it has been stated that S-ketamine may lack an 

antinociceptive effect as a result of rapid metabolism and lower plasma concentrations in the 

equine (Peterbauer et al. 2008). 

 Ketamine and its metabolites may produce excitatory side effects that can turn into 

fatal events in the recovery period in horses (Schatzmann & Girard 1984; Bettschart-

Wolfensberger & Larenza 2007), mainly associated with the R-enantiomer (White et al. 1985; 

Filzek et al. 2003). When given at low doses in standing ponies, S-ketamine produced more 

ataxia and disorientation compared to the racemate, but these effects were of short duration 

(Peterbauer et al. 2008). Side effects in the recovery such as excitement or ataxia may occur 

when using ketamine as the sole agent for induction and maintenance of general anaesthesia 

(Bettschart-Wolfensberger et al. 1996). Furthermore, when infused in combination with other 

anaesthetics/analgesics, its adverse effects during the recovery phase may be prevented by 

reducing ketamine administration early enough before recovery (Knobloch et al. 2006). 

Prolonged infusions may lead to excessive norketamine formation and accumulation in fat 

and muscle (Knobloch et al. 2006), causing undesiderable side effects. Consequently, IV 

boluses higher than 2 mg/kg or CRIs exceeding 1 mg/kg/hr should not be used in anaesthetics 

longer than 90-120 minutes while ketamine CRIs should be reduced in long procedures and/or 

stopped fifteen to twenty minutes before the recovery (Bettschart-Wolfensberger & Larenza 

2007). Alternatively, an 2-agonist can be administered to reduce the incidence of 
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complications during the recovery phase (Santos et al. 2003). Furthermore, ketamine 

infusions may produce increases in gastrointestinal transit time and decreases in fecal output 

(Elfenbein et al. 2011). 

In summary, low doses of IV racemic or S-ketamine may be useful in equine balanced 

anaesthetic protocols because of the demonstrated analgesic effects, the reduction of the 

anaesthetic requirements and the improvements of the cardiovascular haemodynamics. 

However, caution should be taken to prevent its undesiderable excitatory side effects that may 

worsen the quality of the recoveries, mainly by avoiding high doses/rates and prolonged 

infusion times. 

 

1.3. Opioids 

Opium, extracted from the poppy seeds (Papaver somniferum) for thousand years, has been 

used in the treatment of cough and diarrhea and to relieve pain, while it may also produce 

euphoria (Kieffer 1999). The active ingredients of opium are alkaloid compounds, the so-

called opioids, which possess analgesic (Dickenson 1991) and addictive (Koob 1992) 

properties. Morphine was the first opioid isolated from the poppy seeds in 1803 by Seturner, 

although its structure was not elucidated until 120 years later by Gulland & Robinson (1923) 

(Janecka et al. 2004). Today, in human medicine, morphine remains the reference opioid and 

is clinically used as an analgesic, despite a considerable number of side-effects including 

respiratory depression, nausea and vomiting, sedation and drowsiness, constipation, urinary 

retention or multifocal myoclonus (Schug et al. 1992; Inturrisi 2002). Morphine has been used 

in veterinary medicine since many years in order to produce analgesia, different degrees of 

sedation and reduction of the MAC of inhalant anaesthetics in dogs, rats, pigs, monkeys and 

cats (Murphy & Hug 1982; Lake et al. 1985; Steffey et al. 1994; Ilkiw et al. 2002; Muir et al. 

2003). Apart from morphine, other synthetic opioids such as pethidine (Steffey et al. 1977), 

butorphanol (Murphy & Hug 1982; Ko et al. 2000), methadone (Credie et al. 2010; Ferreira et 

al. 2011), fentanyl (Moon et al. 1995; Hellyer et al. 2001; Reilly et al. 2013), alfentanil (Lake 

et al. 1985; Hall et al. 1987a; Ilkiw et al. 1997), remifentanil (Allweiler et al. 2007; Ferreira et 

al. 2009) or sufentanil (Hall et al. 1987b; Polis et al. 2004) have been widely employed 

systemically in veterinary medicine for the same reasons. 

Three different types of opioid receptors have been identified and cloned, the µ, δ and 

 receptors (Kieffer 1999; Janecka et al. 2004). The diversity of opioid receptors is further 

extended by the existence of several subtypes of opioid receptors (Smith & Lee 2003). It has 
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been described that µ-receptors mediate the most potent antinociceptive effects, but are also 

responsible for the development of dependence and adverse effects (Kieffer 1999; Janecka et 

al. 2004). Lower efficacy in mediating pain relief with a reduced addictive potential has been 

linked to δ-receptors (Janecka et al. 2004). The use of -receptor agonists may be restricted to 

peripheral tissues, mainly due to their potential dysphoric effects (Kieffer 1999). Moreover, 

interactions between receptors play a major role in opioid actions. Local, involving receptors 

of the same tissue, and nonlocal interactions, between receptors located in different tissues, 

have been described (Smith & Lee 2003). An ‘orphan’ (ORL) receptor has also been 

identified, which mainly mediates anti-opioid, rather than typical opioid effects (Fukuda et al. 

1994; Mollereau et al. 1994). Opioid receptors are part of a large superfamily of membrane-

bound receptors that are coupled to G-proteins (Smith & Lee 2003). Opioid receptor binding, 

via activation of different types of G-proteins, may inhibit adenylyl cyclase activity, activates 

receptor-operated potassium ion currents and suppresses voltage-gated calcium ion currents 

(Inturrisi 2002; Lamont & Mathews 2007). 

The analgesic effects of the opioids are due to the direct inhibition of the ascending 

transmission of nociceptive information from the spinal cord dorsal horn, and due to 

activation of pain-control circuits that descend from the midbrain via the rostral ventromedial 

medulla to the spinal cord (Lamont & Mathews 2007). Opioids have also been reported to 

produce peripheral analgesia and anti-inflammatory effects (Stein et al. 2001). Opioid 

receptors are located in the joints of dogs (Keates et al. 1999), horses (Sheehy et al. 2001), 

rats (Nagasaka et al. 1996) and humans (Lawrence et al. 1992) as well. Different opioids have 

been used in humans and animal species in different ways to provide analgesia, i.e. also as 

anaesthetic adjuvants for inhalation anaesthetics, with the aim to reduce their MAC values. 

The use of opioids in horses can be justified by their analgesic and sedative properties, 

but remains controversial due to their undesirable effects (Bennett & Steffey 2002; Clutton 

2010). The use of morphine for pain relief in horses was first reported in 1898 (Guinard 1898) 

and its excitatory effects were described one year later (Guinard 1899). In 1917, the sedative 

effects of a low dose of morphine in horses were described (Milks 1917). Twenty years later, 

Amadon & Craigie (1937) described a ‘minimal analgesic dose’ at 0.2 mg/kg and a ‘minimal 

excitant dose’ at 0.5 mg/kg. Opioids have been associated with ‘excitement and 

unpredictable’ reactions in horses (Tobin 1981) and it has been suggested by Kamerling et al. 

(1989) that the behavioural and cardiovascular effects of morphine are stronger than its 

analgesic effects. When morphine was administered in ‘pain-free horses’ at a dose of 0.12 

mg/kg, Muir et al. (1979) did not detect behavioural effects, although higher doses (0.66 
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mg/kg) stimulated locomotor activity for four to five hours (Kalpravidh et al. 1984). When 

fentanyl was administered by rapid IV injection, a sharp increase in locomotor activity was 

observed (Tobin et al. 1979). The different behavioural reactions to opioids compared with 

other species such as dogs may be related to the binding and distribution of opioid receptors 

in the brain, as the equine cerebral cortex is rich in µ-opioid receptors (Hellyer et al. 2003). 

More recent studies showed that the horse´s cerebral cortex possesses a high concentratrion of 

high-affinity µ-receptors and lower concentration of δ- and - receptors, which resembles that 

of other species where opioid-induced CNS stimulation occurs (Thomasy et al. 2007), and 

differs markedly from the dog (Sharif et al. 1990) and human cerebral cortex (Pfeiffer et al. 

1982). In horses, k-receptor opioids seem to promote less locomotor and sympathetic 

stimulation than µ-opioids (Bennett & Steffey 2002). 

With respect to their volatile anaesthetic sparing effects, opioids did not consistently 

alter the MAC in the equine. When morphine was administered as boluses at two different 

doses (low dose at 0.25 mg/kg and high dose 2.0 mg/kg), the change in MAC of isoflurane 

ranged from -20.2 to +28.3% and -18.9 to +56.2% after low and high doses respectively 

(Steffey et al. 2003). In contrast, when morphine was administered as an IV bolus (0.15 

mg/kg) followed by a CRI (0.1 mg/kg/hr) in halothane anaesthetized horses undergoing 

elective surgical procedures, horses tended to receive fewer and lower doses of additional 

anaesthetic drugs, although this was not of statistical significance (Clark et al. 2005). In a 

study performed in ponies, Matthews & Lindsay (1990) did not find a statistically significant 

reduction of the MAC of halothane when administering two different IV doses of 

butorphanol, and the MAC was even increased in two ponies. Moreover, Doherty et al. (1997) 

reported in seven ponies that butorphanol did not significantly change the MAC of halothane, 

with an increase in three ponies, decrease in one and no effects in the other three ponies. 

When assessing the effects of three plasma concentrations of alfentanil, no significant 

changes in the MAC of halothane were observed in five horses (Pascoe et al. 1993). When 

fentanyl was administered IV to eight isoflurane anaesthetized horses at different doses and 

rates, the results suggested that this drug might consistently decrease anaesthetic requirements 

(Thomasy et al. 2006). However, in a more recent study, Knych et al. (2009) found no 

consistent changes in the MAC of isoflurane in eight horses. When combined with other 

drugs such as xylazine, morphine did not further reduce the MAC of halothane in six healthy 

horses (Bennett et al. 2004) and the addition of a CRI of morphine to a combination of two 

CRIs of ketamine and lidocaine did not further decrease the MAC of isoflurane (Villalba et al. 
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2011). However, the MAC sparing effects of a CRI of morphine alone have been not 

determined in the equine. 

Behavioural effects associated with the use of opioids in horses may affect recovery. 

Steffey et al. (2003) noticed individuals recovering violently with signs of CNS excitement 

when high doses (2.0 mg/kg) were administered IV in a MAC study in six adult horses, 

whereas horses that received the low dose (0.25 mg/kg) recovered well, with little evidence of 

ataxia. After receiving IV fentanyl, one horse showed a violent recovery where the horse 

‘frenetically attempted to circle in both directions and fell down several times’ (Thomasy et 

al. 2006). Moreover, in the study reported by Knych et al. (2009), undesiderable and 

excitatory behaviours were observed after fentanyl administration. The authors concluded that 

the routine use of fentanyl is not supported. On the other hand, in a retrospective study 

involving eighty four healthy horses, Mircica et al. (2003) found that the recovery quality was 

better in horses receiving IV boluses of morphine (0.1 and 0.17 mg/kg) five to ten minutes 

after induction. The same findings were reported by Love et al. (2006) in horses undergoing 

anaesthesia for upper respiratory tract surgery with significantly better recoveries in horses 

receiving morphine at two different doses (0.1 and 0.2 mg/kg, IV). In another study, 

recoveries from general anaesthesia receiving morphine IV (0.15 mg/kg followed by a CRI of 

0.1 mg/kg/hr) were better, with fewer attempts to attain sternal recumbency and standing and 

shorter times from the first recovery movement to the time at standing, compared to horses 

where morphine was not administered (Clark et al. 2008). 

Other side effects should be taken into consideration when using opioids in the equine, 

such as risks of reduction of gastrointestinal motility and postoperative colic (Roger et al. 

1985; Sellon et al. 2004; Boscan et al. 2006) or respiratory depression that could lead to a 

rapid increase in arterial partial pressure of carbon dioxide during general anaesthesia (Steffey 

et al. 2003). Although Steffey et al. (2003) showed undesiderable residual CNS stimulating 

locomotor effects after administration of morphine, box-walking behaviour after general 

anaesthesia was either not observed (Love et al. 2006; Clark et al. 2008) or only present in 

one horse out of fifty one receiving morphine (Mircica et al. 2003). In an experimental study 

involving eight isoflurane anaesthetized horses testing different concentrations of fentanyl, 

two horses required active cooling by applying ethanol to the skin when their temperatures 

reached 38.2°C (Thomasy et al. 2006). Although unclear, morphine may have been involved 

in the development of postoperative pulmonary oedema in two horses (Kaartinen et al. 2010). 

The authors hypothesized that a relative fluid overloading during the prolonged anaesthetic 
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period was worsened by ‘morphine-induced reduction in urine production, further aggravated 

by potential morphine-induced changes in pulmonary permeability’. 

Clinical evidence seems to suggest that opioids enhance the sedative and analgesic 

effects of 2-agonists. Morphine, methadone and butorphanol improved the sedative effects of 

2-agonists, decreasing the responses to external stimuli, with butorphanol producing the 

most reliable response (Clarke & Paton 1988). Butorphanol (0.05 mg/kg, IV) reduced the 

response to imposed stimuli in horses sedated with romifidine, with no further cardiovascular 

changes than those induced by romifidine but an increased degree of respiratory depression 

(Clarke et al. 1991). The combination of butorphanol or levomethadone with detomidine 

increased the nociceptive threshold to somatic pain in horses, thereby prolonging the 

analgesic effect of detomidine (Schatzman et al. 2001). Butorphanol (0.05 mg/kg) and 

romifidine (0.1 mg/kg) IV provided better sedation than romifidine alone and, although the 

quality of sedation was significantly better than when romifidine was combined with 

morphine (0.1 mg/kg), the latter was concluded to be a suitable alternative (Corletto et al. 

2005). In horses undergoing exploratory laparascopy, the IV combination of medetomidine 

and morphine resulted in reliable sedation and stable cardiorespiratory function (Solano et al. 

2009). Romifidine (0.1 mg/kg) and butorphanol (0.05 mg/kg) IV resulted in a longer duration 

of sedation and analgesia than romifidine or butorphanol alone (DeRossi et al. 2009). The 

addition of both types of drugs when performing equine balanced anaesthesia may enhance 

sedation and provide multimodal analgesia while avoiding the potential excitatory side effects 

linked to the use of opioids in horses. 

In conclusion, opioids may be added when using IV balanced anaesthetic techniques 

in horses providing additional analgesia and sedation. However, their inconsistent MAC 

reduction, CNS stimulation, reduced gastrointestinal motility and other side effects may limit 

its use. Combination with other drugs such as 2-agonists may enhance their sedative and 

analgesic properties, providing a multimodal analgesic approach while reducing their 

potential excitatory effects. 
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Table 2: Effects reported after IV administration of different opioids in horses undergoing general anaesthesia. 

Drug Animals Bolus Infusion rate Effects Reference 

Mor 6 experimental horses 0.25 mg/kg - Good recoveries, MAC (-20.2 to +28.3%) Steffey et al. 2003 

Mor " 2.0 mg/kg - Bad recoveries, MAC (-18.9 to +56.2) " 

Mor 84 healthy clinical horses 0.1-0.17 mg/kg - Better recoveries with Mor Mircica et al. 2003 

Mor 6 experimental horses 0.1-0.2 mg/kg - Mor does not alter Xyl sparing effect  Bennett et al. 2004 

Mor 38 clinical horses 0.1-0.2 mg/kg - Better recoveries Love et al. 2006 

Mor 38 healthy clinical horses 0.15 mg/kg 0.1 mg/kg/hr Fewer & lower extra anaesthetics Clark et al. 2005 

Mor 22 healthy clinical horses 0.15 mg/kg 0.1 mg/kg/hr Less attempts & short times to recover Clark et al. 2008 

Butor 9 experimental ponies 0.022-0.044 mg/kg - No changes MACHALO Matthews & Lindsay 1990 

Butor 7 experimental ponies 0.05 mg/kg - No changes MACHALO Doherty et al. 1997 

Alfent 5 experimental horses 3 different targeted plasma concentrations No changes MACHALO Pascoe et al. 1993 

Fent 8 experimental horses  0.3-3.0-4.7 µg/kg 0.4-3.5-6.8 µg/kg/hr ↓ MACISO, 1 violent recovery  Thomasy et al. 2006 

Fent 8 experimental horses 4.2-6.2-8.3 µg/kg 6-9-12 µg/kg/hr No changes MACISO, bad recoveries Knych et al. 2009 

Mor = morphine, Butor = butorphanol, Alfent = alfentanil, Fent = fentanyl, MAC = minimum alveolar concentration, Xyl = xylazine, HALO = halothane, ISO = isoflurane.
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1.4. Alpha2-adrenoceptor agonists 

Clonidine, the first 2-agonist, was synthesized at the beginning of the 1960s. This drug was 

used as a nasal decongestant, further developed as an antihypertensive agent and finally used 

for alleviation of the symptoms of opiate withdrawal (Stähle 2000). Xylazine was initially 

also commercialized in 1962 as an antihypertensive. Despite, or in fact because of its potent 

sedative side effects in humans (Kästner 2006), its use in veterinary medicine became popular 

(Rosenberger et al. 1968; Clarke & Hall 1969; Müller et al. 1969; Kerr et al. 1972). In the 

1980s, different 2-agonists were developed such as detomidine (Virtanen et al. 1985; Lowe 

& Hilfiger 1986; Jöchle & Hamm 1986), medetomidine (Savola et al. 1986; Stenberg et al. 

1987; Virtanen 1988), dexmedetomidine (Kallio et al. 1989) and romifidine (Gasthuys et al. 

1990; England et al. 1992). Currently, xylazine, detomidine and romifidine are approved for 

use in horses in Europe. Medetomidine and dexmedetomidine are licensed for small animals 

only, although both drugs have been studied in horses (Bryant et al. 1991; Bettschart-

Wolfensberger et al. 1999, 2005). 

Adrenoceptors are situated on the cell membrane sites where noradrenaline and 

adrenaline act as important neurotransmitters in the peripheral and CNS. It was first observed 

by Dale (1905) that the pressor effect of adrenaline was reversed by ergotoxine, but it was not 

until 1948 that Ahlquist proposed the classification of adrenoceptors into  and  (Ahlquist 

1948). Differentiation between 1 receptors, which mediate the responses in the effector 

organs (i.e. heart, lung, liver, arteries) and 2, located presynaptically to regulate the release 

of the neurotransmitter, but also present postsynaptically, was suggested by Langer (1974) 

and later accepted by Berthelsen & Pettinger (1977). Molecular cloning technology and the 

development of more selective drugs revealed three 2-adrenoceptor subtypes (2a/d, 2b, 2c) 

(Bylund 1994; Guimarães & Moura 2001). The division between 1 and 2-adrenoceptors is 

made depending on their selectivity to specific agonist and antagonist agents (England & 

Clarke 1996). Clonidine, xylazine, romifidine, detomidine, medetomidine and 

dexmedetomidine are agonists whilst atipamezole and yohimbine are the classic antagonists 

(Scheinin & Macdonald 1989). 

The 2-adrenoceptors are transmembrane receptors coupled to the inhibitory 

heterotrimetric GTP-binding protein inhibiting the activity of adenylyl cyclase (Cotecchia et 

al. 1990; Wise et al. 1997; Khan et al. 1999) and the opening of voltage-gated calcium 

channels (Cotecchia et al. 1990) while activating potassium channels (Surprenant et al. 1992). 

Presynaptic 2-adrenoceptors in sympathetic nerve endings and noradrenergic neurons in the 
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CNS inhibit the release of noradrenaline (Langer 1980). Postsynaptic 2-adrenoceptors are 

present in the liver, pancreas, platelets, kidney, adipose tissue and the eye (Khan et al. 1999). 

The locus coeruleus of the brain contains a high density of 2-adrenoceptors (Unnerstall et al. 

1984) mediating the sedative action by 2a-adrenoceptors (Scheinin & Schwinn 1992). High 

densities of 2a-adrenoceptors are also present in the descending pathways within the spinal 

column, modulating nociceptive stimuli and interactions with opioids (Fairbanks et al. 2009). 

Furthermore, the 2-adrenoceptors are densely distributed in the dorsal motor nucleus of the 

vagus and nucleus tractus solitarius (Robertson & Leslie 1985), activating the cardiac vagal 

nerve through the action on those brainstem areas (Kawada et al. 2012), and in the superficial 

laminae and substantia gelatinosa of the dorsal horn (Nicholas et al. 1993). The dorsal horn of 

the spinal cord contains 2a-adrenoceptors, while the primary sensory neurons contain both 

2a and 2c (Murrell & Hellebrekers 2005). Centrally, the subtype 2b has been found scarcely 

in the thalamic region in rats (Scheinin et al. 1994), although these receptors have been 

involved in modulating nitrous oxide mediated nociception in mice together with the 2a-

adrenoceptors (Guo et al. 1999; Sawamura et al. 2000). In vascular smooth muscle the 2b-

subtypes mediate peripheral hypertension after 2-agonist administration (Link et al. 1996). 

The 2c-receptors influence several complex memory and behavioural functions (Björklund et 

al. 1999; Scheinin et al. 2001). 

Alpha2-agonists are potent sedatives with good analgesic properties which are used 

frequently in combination with other drugs during anaesthesia in horses. Side effects include 

bradycardia, arrhythmias, decreases in     and increases in systemic vascular resistance, 

respiratory depression, transient decreases in arterial partial pressure of oxygen and ataxia 

(England & Clarke 1996; Yamashita et al. 2000), especially after bolus administration. 

Reported sedative effects of 2-agonists in horses include decreased awareness, ptosis of the 

head, lower lip and eyelids, ataxia and a wide stance (England & Clarke 1996; Valverde 

2010b), all of which are mediated through 2a-receptors (Knaus et al. 2007). These sedative 

effects are related to their spinal and supraspinal actions, demonstrated in visceral pain 

models (Pipi & Lumb 1979; Muir & Robertson 1985; Kohn & Muir 1988; Elfenbein et al. 

2009). Intestinal motility has been shown to decrease in horses after IV administration of 

different 2-agonists (Adams et al. 1984; Freeman & England 2001). On the other hand, as 

suggested by Valverde (2010b), 2-agonists could produce beneficial effects on the stomach 

as shown in rats, mediated by 2b-receptors, inducing a gastroprotective effect by regulating 

gastric acid secretion and inhibiting chemically (non-steroidal anti-inflammatory drugs) and 
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physically (stress) induced gastric mucosal lesions (Gyires et al. 2000, 2009; Fülöp et al. 

2005). Furthermore, these drugs are known to increase urine output in awake (Thurmon et al. 

1984) and anaesthetized healthy equids (Tranquilli et al. 1984; Steffey & Pascoe 2002), 

mainly due to hyperglycaemia from hypoinsulinaemia (Gasthuys et al. 1986, 1987) mediated 

through 2a and 2c-receptors (Peterhoff et al. 2003) and additionally due to a reduced 

arginine vasopressin secretion (Alexander & Irvine 2000). In patients receiving 2-agonists 

during general anaesthesia, the placement of a urinary catheter is justified to avoid excessive 

bladder distension but also to monitor urinary output (Bettschart-Wolfensberger & Larenza 

2007; Valverde 2010b). 

The use of IV 2-agonists in balanced anaesthetic techniques has become more and 

more popular over the last years, mainly to reduce the MAC of inhalation anaesthetic agents 

and to provide sedation and analgesia perioperatively. Furthermore, their use is extended as 

their administration after inhalation anaesthesia improved the quality of recovery without 

producing significant cardiorespiratory effects (Santos et al. 2003). 

Xylazine, the least selective 2-agonist [selectivity ratio (α2/α1) 160:1], has been used 

widely and successfully as a premedicant in the horse (England & Clarke 1996). Under 

experimental conditions, isoflurane MAC was reduced by 25 and 34% after administration of 

IV xylazine at 0.5 and 1.0 mg/kg respectively (Steffey et al. 2000) and halothane MAC by 

20% after a bolus of 0.5 mg/kg (Bennett et al. 2004). Up to date, only one abstract has been 

reported using xylazine as a CRI (1 mg/kg/hr after 0.7-0.8 mg/kg) in isoflurane anaesthetized 

horses, resulting in pronounced reduction of blood pressure support and anaesthetic 

requirements compared to isoflurane alone (0.95 ± 0.07 versus 1.16 ± 0.13) (Pöppel et al. 

2012). 

A CRI of detomidine (260:1), administered with a TCI device to achieve a plasma 

level of 25 ng/mL (10.8 µg/kg/hr), reduced the MAC of halothane by 33% in horses (Dunlop 

et al. 1991). Based on these results, the effects of a CRI of detomidine were investigated in 

nine halothane anaesthetized horses undergoing neurectomy (Wagner et al. 1992). One group 

consisted of five horses receiving a detomidine CRI to accomplish a plasma concentration of 

25 ng/mL during halothane anaesthesia at an FE´ISO of 1.1%. In the remaining four horses, 

anaesthesia was maintained using 1.5 % FE´HALO. Both protocols should result in an 

equivalent depth of anaesthesia according to the previous preliminary trials by Dunlop et al. 

(1991). Apart from a significantly lower HR in the detomidine group, no other changes were 

reported in cardiovascular function and recovery parameters. A recent blinded clinical study 
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using a detomidine bolus (10 µg/kg) followed by a CRI (5 µg/kg/hr) was performed by our 

research group in twenty adult healthy horses undergoing elective surgery (Schauvliege et al. 

2011). Typical cardiovascular effects of 2-agonists were observed, with no effect on the 

isoflurane requirements, recovery duration or recovery quality. 

 Recently, the pharmacokinetic profile and pharmacodynamic effects of romifidine 

(340:1) in the horse have been described (Wojtasiak-Wypart et al. 2012). Its use as a CRI for 

balanced anaesthesia was first reported by Kuhn et al. (2004) in a double-blinded clinical 

study of twenty isoflurane-anaesthetized horses undergoing elective surgery. After IV 

premedication with 80 µg/kg of romifidine, a CRI of 18 µg/kg/hr was continued. Isoflurane 

requirements were reduced significantly, with beneficial effects on the cardiovascular and 

pulmonary parameters. Unfortunately, the effect of mechanical ventilation was not taken into 

account, two different anaesthetists were involved and a description of the recoveries was 

lacking. In contrast, Devisscher et al. (2010) failed to detect inhalation sparing effects in a 

blinded clinical study involving thirty isoflurane anaesthetized horses undergoing routine 

arthroscopy when using the same loading dose followed by a CRI at 40 µg/kg/hr. This 

protocol did not affect cardiovascular function or recovery quality. 

  Although not licensed for horses, medetomidine (1620:1) has been widely studied in 

the equine. It has been used as a sedative/analgesic for restraining horses and as 

premedication prior to general anaesthesia (Bryant et al. 1991; England & Clarke 1996), with 

cardiovascular effects of short duration (Bryant et al. 1996; Yamashita et al. 2000). The 

pharmacokinetic and pharmacodynamic properties of medetomidine have been studied in 

ponies when administering an IV bolus of 7 µg/kg followed by a CRI of 3.5 µg/kg/hr 

(Bettschart-Wolfensberger et al. 1999) and in horses after an IV bolus of 10 µg/kg (Grimsrud 

et al. 2012). Properties such as high clearance and short half-life make the drug suitable for 

continuous infusion in the horses (Bettschart-Wolfensberger et al. 1999). Identical dosages as 

described by Bettschart-Wolfensberger et al. (1999) reduced the MAC of desflurane in an 

experimental trial involving seven healthy ponies by 28% compared to previously reported 

MAC values in literature (Bettschart-Wolfensberger et al. 2001). Clinical studies performed 

by the same group of researchers using the same protocol, found a reduction in the MAC of 

isoflurane of approximately 20% (Neges et al. 2003). In a retrospective study of Kalchofner et 

al. (2006) this protocol appeared to be suitable in horses undergoing routine surgery, with 

well maintained cardiopulmonary function and an incidence of hypotension and hypoxaemia 

comparable to other anaesthetic regimes. The latter study also described the ‘lighter’ 

appearance of horses under anaesthesia when medetomidine is infused compared with 
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traditional inhalant protocols and reported good and calm recoveries. When comparing this 

protocol with a lidocaine infusion, MAP tended to be higher and the surgical plane of 

anaesthesia was better maintained in horses receiving medetomidine, with less need of 

additional ketamine and thiopental (Ringer et al. 2007). Even more, the combination of an 

intraoperative CRI of medetomidine and lidocaine did not affect the cardiovascular function 

of isoflurane anaesthetized horses but improved the quality of the recovery when compared 

with lidocaine alone (Valverde et al. 2010a). In a recent study, the addition of a CRI of 

medetomidine to horses also receiving CRIs of lidocaine and ketamine reduced the FE´ISO 

from 1 to 0.65% (Kempchen et al. 2012).  

 To summarize, the 2-agonists used in combination with volatile agents reduced the 

MAC of these agents and provided extra sedation and analgesia, with ease of maintenance of 

anaesthesia and better recovery qualities. However, their impact on cardiovascular function 

should be considered. It is worth mentioning that all the studies reporting the use of 2-

agonists were performed in healthy horses. The use of these drugs in compromised (colic) 

horses remains controversial. A list with the different studies using 2-agonists in equine 

balanced anaesthesia is provided in Table 3. 

 The cardiopulmonary effects and pharmacokinetics of the newest 2-agonist 

dexmedetomidine have been studied in ponies after IV administration (Bettschart-

Wolfensberger et al. 2005). With similar cardiopulmonary effects to those reported by other 

2-agonists, this drug was defined as a rapidly redistributed and short-acting sedative drug in 

horses, useful for CRIs protocols. Moreover, the administration of the active enantiomer of 

the racemic mixture alone may have some cardiovascular and analgesic benefits, being 

slightly more potent and predictable than medetomidine (Kuusela et al. 2001; Granholm et al. 

2007).  
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Table 3: Different loading doses and infusion rates reported for the use of IV 2-agonists in equine balanced anaesthesia. 

Drug Animals Loading doses Infusion rates Main findings Reference 

Xyl 51 healthy clinical horses 0.7-0.8 mg/kg 1.1 mg/kg/hr Pronounced ISO reduction  Pöppel et al. 2012 

Det  Plasma concentration 25 ng/mL ↓MACHALO by 33% Dunlop et al. 1991 

Det 9 healthy horses 10.8 µg/kg/hr to achieve 25 ng/mL ↓ MACHALO Wagner et al. 1992 

Det 20 healthy clinical horses 10 µg/kg 5 µg/kg/hr No sparing ISO effects Schauvliege et al. 2011 

Rom 20 healthy clinical horses 80 µg/kg 18 µg/kg/hr Significant reduction ISO Kuhn et al. 2004 

Rom 30 healthy clinical horses 80 µg/kg 40 µg/kg/hr No sparing ISO effects Devisscher et al. 2010 

Med 5 experimental ponies 7 µg/kg 3.5 µg/kg/hr Suitable for infusion Bettschart-Wolfensberger et al. 1999 

Med 7 experimental ponies 7 µg/kg 3.5 µg/kg/hr ↓ MACDESF by 28% Bettschart-Wolfensberger et al. 2001 

Med 40 healthy clinical horses 7 µg/kg 3.5 µg/kg/hr ↓ MACISO by 20% Neges et al. 2003 

Med 69 clinical horses 7 µg/kg 3.5 µg/kg/hr Maintenance easier and ↓ 

FE´ISO than lidocaine 

Ringer et al. 2007 

Xyl = xylazine, Det = detomidine, Rom = romifidine, Med = medetomidine, MAC = minimum alveolar concentration, HALO = halothane, ISO = isoflurane, DESF = 

desflurane, FE´ = expired fraction.



General introduction 

  

46 

 

Conclusions 

Several drugs and their combinations can be administered systemically in order to improve 

cardiovascular function and recovery qualities and to provide a multimodal analgesic 

approach, although their advantages and disadvantages should be evaluated. The use of the 

different protocols reviewed here requires some clinical experience in order to avoid 

intraoperative and postoperative complications, such as inadequate depth of anaesthesia and 

analgesia, toxicity, poor recovery qualities or postoperative complications. In the search for 

the ideal agent, previous results in ponies and other species pointed out dexmedetomidine as 

an attractive alternative for equine balanced anaesthetic protocols. An overview of data and 

dosages of different combination of drugs used for CRIs is provided in Table 4.
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Table 4: Different loading doses and infusion rates reported for use of IVcombinations of drugs in equine balanced anaesthesia. 

Drugs Animals Loading doses Infusion rates Main findings Reference 

Lid/Ket 40 healthy clinical horses Lid: 1.5 mg/kg (10 mins) 

Ket: 3 mg/kg  

Lid: 40 µg/kg/min 

Ket: 3.6 mg/kg/hr 

↓ MACISO by 40% Enderle et al. 2008 

Lid/Ket 6 experimental horses Lid: 2 mg/kg (10 mins) 

Ket: 3 mg/kg  

Lid: 50 µg/kg/min 

Ket: 3 mg/kg/hr 

↓ MACISO by 49% Villalba et al. 2011 

Lid/Ket/Mor " Lid/Ket as above 

Mor: 0.15 mg/kg 

Lid/Ket as above 

Mor: 0.1 mg/kg/hr 

↓ MACISO by 53% " 

Lid/Ket 40 healthy clinical horses Lid: 1.5 mg/kg (10 mins) 

Ket: 3 mg/kg  

Lid: 33 µg/kg/min 

Ket: 2 mg/kg/hr 

FE´ISO 1%  

(0.62-1.2%) 

Kempchen et al. 2012 

Lid/Ket/Med " Lid/Ket as above 

 

Lid/Ket as above 

Med: 3.6 µg/kg/hr 

FE´ISO 0.65% 

(0.4-1.0%) 

" 

Lid/Med 12 healthy clinical horses Lid: 2 mg/kg (10 mins) Lid: 50 µg/kg/min 

Med: 5 µg/kg/hr 

Better recoveries than 

lidocaine alone 

Valverde et al. 2010a 
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Drugs Animals Loading doses Infusion rates Main findings Reference 

Gu/Ket 28 healthy clinical horses Gu: 60 mg/kg 

Ket: 2.2 mg/kg 

Gu: 0.3-1 mg/kg/min 

Ket: 0.9-2.4 mg/kg/hr 

↓ FE´HALO from 1.24% to 

0.61% 

Spadavecchia et al. 2002 

 

Gu/Ket/Med 

 

40 healthy horses 

 

Ket: 2.2 mg/kg 

Gu: 0.4 mg/kg/min 

Ket: 1 mg/kg/hr 

Med: 1.2 µg/kg/hr 

↓ MACSEVO 

by  

38% 

Yamashita et al. 2002 

Gu/Ket 45 healthy clinical horses Gu: 50 mg/kg 

Ket: 2.2 mg/kg 

Gu: 1 mg/kg/min 

Ket: 2.4 mg/kg/hr 

Adequate anaesthesia at 

0.75 MACISO 

Nannarone & 

Spadavechia 2012 

Rom/Ket 45 healthy clinical horses Rom: 50 µg/kg 

Ket: 2.2 mg/kg 

Rom: 24 µg/kg/hr 

Ket: 2.4 mg/kg/hr 

Adequate anaesthesia at 

0.75 MACISO 

Nannarone & 

Spadavechia 2012 

 

Mdz/Ket/Med 

 

6 experimental horses 

 Mdz: 0.04 mg/kg 

Ket: 2.5 mg/kg 

Med: 5 µg/kg 

Mdz: 0.02 mg/kg/hr 

Ket: 1 mg/kg/hr 

Med: 1.25 µg/kg/hr 

Adeaquate anaesthesia at  

0.74 MACSEVO 

 

Kushiro et al. 2005 

Lid = lidocaine, Ket = ketamine, Mor = morphine, Med = medetomidine, Gu = guaifenesin, Rom = romifidine, Mdz = midazolam, HALO = halothane, ISO = isoflurane, 

SEVO = sevoflurane, MAC = minimum alveolar concentration, FE´ = expired fraction. 
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The use of dexmedetomidine for balanced 

anaesthesia in horses 

 

 

 

 

 

 

 

 



 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General introduction 

  

69 

 

Summary 

Dexmedetomidine, the most selective 2-agonist, is a drug with a beneficial 

pharmacological profile (short half-life and rapid redistribution) that produces 

sedation, anxiolysis and analgesia. This 2-agonist has been used in human and 

veterinary medicine for years, more specifically in ‘balanced anaesthesia’ reducing 

the use of volatile anaesthetics. In the equine, only the pharmacokinetics and 

cardiopulmonary effects after administration of an intravenous bolus in ponies 

have been described. Dexmedetomidine was proven to be safe for sedation. 

Although the kinetics suggest its use as a continuous infusion, this had not been 

investigated in depth in anaesthetized equines at the beginning of this PhD.  
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2.1. History of dexmedetomidine 

Medetomidine, a racemic mixture of two individual isomers (Vickery et al. 1988; 

Savola & Virtanen 1991) has been marketed as Domitor (Orion Corporation, Espoo, 

Finland) for use in dogs and cats since 1987. Dexmedetomidine is the 

pharmacologically active optical enantiomer (Savola & Virtanen 1991), being entirely 

responsible for the sedative, analgesic and dose dependent anaesthetic sparing effects 

(Segal et al. 1988; Ansah et al. 1998; Kuusela et al. 2000). Reports have suggested that 

at equivalent concentrations, dexmedetomidine may be less likely to cause drug 

interactions compared to the racemate (Kharasch et al. 1992). Moreover, its use may 

offer advantages over medetomidine (Ansah et al. 1998; Kuusela et al. 2000), being 

slightly more potent (Savola & Virtanen 1991; Kuusela et al. 2000). The European 

Commision granted a marketing authorization for Dexdomitor (Orion Corporation, 

Espoo, Finland) in 2002, which was renewed in 2007. It is indicated for use as a 

sedative and analgesic in dogs and cats to facilitate clinical examinations, clinical 

procedures, minor surgical procedures and as a pre-anaesthetic to general anaesthesia. 

Dexmedetomidine (Precedex


, Hospira, Inc., Lake Forest, IL) was also 

approved for use in humans in the US specifically as a continuous infusion up to one 

day for sedation and analgesia in the intensive care unit (ICU). Afterwards, Dexdor


 

(Orion Corporation, Espoo, Finland) was licensed in 2011 in all European Union 

member states for use as a constant rate infusion (CRI) for sedation of adult ICU 

patients. Recent reports showed safety outcomes in patients receiving this 2-agonist 

over a long period of time (> twenty four hours) (Abuhasna et al. 2012).  

 

2.2. Mechanism of action of dexmedetomidine 

Dexmedetomidine is a potent 2-agonist with a high 2:1 selectivity (approximately 

1600:1) (Kamibayashi & Maze 2000). By virtue of this potency, it is considered to be a 

full 2-agonist, allowing the use of relatively high doses without the unwanted vascular 

effects resulting from stimulation of 1-adrenoceptors (Ebert et al. 2000). Even more, 

activation of these receptors may induce arousal, restlessness, increased locomotor 

activity and vigilance, antagonizing hypnosis (Monti 1982; Guo et al. 1991; Puumala et 

al. 1997). The 2-agonists produce their effects after binding to the 2-adrenoceptors 
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(Figure 1). As described in Section 1, 2a-adrenoceptors in the brain are responsible for 

the antinociceptive, sedative, sympatholytic, hypothermic and behavioural responses 

(Paris & Tonner 2005). The 2b-subtype mediates vasoconstriction and the short-term 

hypertensive response (Link et al. 1996; Kamibayashi & Maze 2000), while 2c-

adrenoceptors affect memory and behaviour and induce hypothermia (Scheinin et al. 

2001). Its effects are effectively reversed by atipamezole, a selective 2-antagonist 

(Scheinin et al. 1998). 

Dexmedetomidine also combines with the imidazoline receptors I1 (brain) and 

I2 (brain, kidney and pancreas), by recognizing its imidazoline-ring structure (Hieble & 

Ruffolo 1995; Khan et al. 1999). Central hypotensive effects are suggested to be 

attributed to the I1 receptors in the ventrolateral medulla (Bousquet et al. 1984; 

Ernsberger et al. 1990; Kamisaki et al. 1990). Moreover, I1 receptors produce central 

inhibition of catecholamine-induced dysrhythmias (Kamibayashi et al. 1995; Mammoto 

et al. 1996), with a low influence on sedation (Prichard & Graham 2000). Although not 

completely understood, I1 receptors are thought to be G-protein linked (Khan et al. 

1999). The role of peripheral imidazoline receptors remains controversial. Imidazoline 1 

receptors in the carotid bodies may act with opposite effects to those of peripheral 2-

adrenoceptors (Ernsberger et al. 1998). Peripheral I2 receptors are found in 

mitochondrial membranes and their mechanism of action is not related to G-proteins 

(Regunathan et al. 1991a, b, 1993). 
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Figure 1: Possible responses mediated by 2-adrenoceptors. Adapted from 

Kamibayashi & Maze 2000. 

 

2.3. Pharmacokinetics of dexmedetomidine 

The metabolisation of medetomidine has been studied in rats. It consists of 

hydroxylation with further glucuronidation or oxidation to carboxylic acid and 

production of eight metabolites (Salonen & Eloranta 1990). Metabolism via the lungs 

and the kidneys has also been described (Salonen 1991). Dexmedetomidine may reduce 

its own clearance and elimination rate dose dependently via its haemodynamic effects 

(Salonen et al. 1995; Kuusela et al. 2000; Escobar et al. 2012; Pypendop et al. 2013), 

most likely because liver blood flow decreases after administration of this drug 

(Lawrence et al. 1996a). In humans, the effect of dexmedetomidine on cardiac output 
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(   ) influenced the pharmacokinetics of dexmedetomidine (Dutta et al. 2000). In 

contrast, studies in dogs suggested hepatic biotransformation to be the rate-limiting 

factor in the metabolic clearance rather than the degree of liver perfusion. Low rates of 

biotransformation in canine hepatocites have been described for dexmedetomidine and 

its racemate (Kaivosaari et al. 2002; Duhamel et al. 2010). 

 Kuusela et al. (2000) studied the pharmacokinetics of dexmedetomidine, 

levomedetomidine and the racemate in dogs. Equipotent doses of medetomidine and 

dexmedetomidine showed similar clearance, and a trend for the steady state volume of 

distribution (Vss) and terminal half-life (t1/2) to be lower after dexmedetomidine 

administration. Clearance and Vss were significantly higher after levomedetomidine 

administration, with tendency of the t1/2 to be lower. The authors concluded that 

dexmedetomidine may offer benefits over the racemic mixture, as the effects of the 

active enantiomer are easier to predict. While some discrepancies in the 

pharmacokinetics between both enantiomers could be explained by different rates of 

their hepatic biotransformation, equipotent doses of dexmedetomidine and its racemate 

still produced comparable plasma concentrations in dogs (Kuusela et al. 2000). 

 

2.4. Clinical effects of dexmedetomidine 

2.4.1. Sedation and analgesia 

The sedative properties of 2-agonists are mediated via the 2a-adrenoceptors, with the 

locus coeruleus (LC) as the main site of action (Correa-Sales et al. 1992; Mizobe et al. 

1996). Dexmedetomidine has been successfully used in humans for sedation in the ICU 

(Venn et al. 1999; Panzer et al. 2009). Its analgesic effects are produced at the level of 

the spinal cord and supraspinal sites. Its main central antinociceptive action is mediated 

via spinal 2-adrenoceptors in the substantia gelatinosa within the dorsal horn (Howe et 

al. 1983; Kuraishi et al. 1985; Sullivan et al. 1992). A supraspinal component via the 

LC has also been suggested (Pertovaara et al. 1991; Guo et al. 1996), but this remains 

controversial (Hämäläinen & Pertovaara 1995). Studies with medetomidine in humans 

suggested that analgesia might also be mediated by attenuation of the affective-

motivational component of pain (Kauppila et al. 1991). Intra-articular dexmedetomidine 

also provides analgesia via 2a-adrenoceptors (Al-Metwalli et al. 2008), enhancing the 

local anaesthetics´ effects (Yoshitomi et al. 2008). 
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The sedative and analgesic effects of dexmedetomidine have been studied in 

depth in rats (Bol et al. 1999; Xu et al. 2000; Franken et al. 2008), cats (Ansah et al. 

1998, 2000; Selmi et al. 2003; Granholm et al. 2006; Slingsby & Taylor 2008; Slingsby 

et al. 2009), dogs (Kuusela et al. 2000, 2001; Granholm et al. 2007; van Oostrom 2011; 

Lervik et al. 2012) and pigs (Sano et al. 2010). Its sedative effects were elicited at lower 

doses than those required for analgesia (Bol et al. 1999; Slingsby & Taylor 2008; van 

Oostrom 2011). Nevertheless, analgesia cannot be produced without sedation and 

sedation is not necessarily linked to comparative degrees of analgesia (Franken et al. 

2008). 

In dogs, the level of sedation did not differ between two different intravenous 

(IV) doses, (10-20 µg/kg) suggesting a ceiling effect, but the larger dose did have a 

longer duration of action (Kuusela et al. 2000). The sedative effects observed in cats 

were reported to be dose dependent after intramuscular (IM) administration (Ansah et 

al. 1998). However, when given IV, the dose dependent sedative effects were limited, 

and increases in serum concentrations beyond certain levels induced a reversal of 

sedation (Ansah et al. 2000). In pigs, dexmedetomidine enhanced the sedative effects of 

propofol (Sano et al. 2010). 

 Human reports conclude that the obtained degree of analgesia is not clearly dose 

dependent (Jaakola et al. 1991). The depth of sedation increases with higher doses with 

no clear advantages for analgesia (Hall et al. 2000). In dogs, a ceiling effect for both 

sedative and analgesic effects was seen when the drug was infused at two different rates 

(3-5 µg/kg/hr, IV) (van Oostrom et al. 2011). In cats, the degree of analgesia increased 

with higher drug concentrations, although the differences between analgesic scores at 

higher dose levels were narrow (Ansah et al. 2000). The analgesic effects of 

dexmedetomidine (20 µg/kg, IV) were longer than those of medetomidine in dogs 

(Kuusela et al. 2000), most likely because the levo-enantiomer competes 

with/antagonizes the dextro-form, or even acts on 1-adrenoceptors, reducing the 

sedative and analgesic effects (Kuusela et al. 2001). This suggests greater analgesic 

potency and predictability of dexmedetomidine, in agreement with the study of 

Granholm et al. (2007), where the analgesic scores were higher after IM 

dexmedetomidine, although the differences were not clinically appreciable. The use of 

low IV infusion rates was suggested to reduce the risk of post-operative chronic pain 
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development (Lervik et al. 2012). In cats, IM dexmedetomidine produced dose 

dependent analgesia (Ansah et al. 1998) comparable to that of medetomidine (Granholm 

et al. 2006). However, sedation may have influenced the reactions to stimuli (Ansah et 

al. 1998). Intramuscular dexmedetomidine at 40 µg/kg produced analgesia, whereas 

lower doses only produced dose dependent sedation (Slingsby & Taylor 2008). The oral 

transmucosal route may produce similar effects (Slingsby et al. 2009). 

 In order to provide good sedation and analgesia lasting beyond the procedure 

itself, lower doses are frequently used in combination with opioids (Selmi et al. 2003; 

Slingsby et al. 2010), mainly due to additive or synergistic effects (Ossipov et al. 1989). 

 

2.4.2. Anaesthetic sparing effects 

Sedation and analgesia probably account for the sparing effects on the minimum 

alveolar concentration (MAC) of volatile anaesthetic agents (Hall et al. 2000). In 

humans, IV dexmedetomidine decreased the MAC of isoflurane dose dependently (Aho 

et al. 1991; Aantaa et al. 1997). In dogs, IV boluses (1, 3 and 10 µg/kg) reduced clearly 

the MAC of halothane by 30, 60 and more than 90% respectively (Vickery et al. 1988). 

Furthermore, a 20 µg/kg IV bolus reduced the MAC of isoflurane in dogs by 86% 

(Weitz et al. 1991) and 89% (Bloor et al. 1992). When infused as a CRI, 

dexmedetomidine was shown to be a reliable and valuable adjunct to isoflurane 

(Uilenreef et al. 2008), while a CRI of 0.5 and 3 µg/kg/hr dexmedetomidine reduced 

isoflurane´s MAC by 18 and 59% respectively in the canine species (Pascoe et al. 

2006). Oral dexmedetomidine (15 µg/kg) reduced the MAC of halothane by 27% in cats 

(Schmeling et al. 1999) and, when given IV, the MAC of isoflurane decreased in a 

plasma concentration dependent manner (Escobar et al. 2012). The MAC of inhalants 

was also reduced when dexmedetomidine was given intraperitoneally in rats (Segal et 

al. 1988; Savola et al. 1991) or as an IV CRI (Rioja et al. 2006) and as an IV bolus in 

small ruminants (Kästner et al. 2007a). 

 Dexmedetomidine also reduced the requirements of injectable agents in humans 

(Venn et al. 1999; Scheinin et al. 1992) and animals (Salmenperä et al. 1994; Mendes et 

al. 2003). In human medicine, it improved patient comfort and postoperative analgesia 

when administered concurrently with opioids, resulting in a decreased need for 

additional pain medication (Arain et al. 2004; Unlugenc et al. 2005). 
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 Also, when administered epidurally, dexmedetomidine produces MAC 

reductions of isoflurane in dogs (Campagnol et al. 2007) and cats (combined with 

lidocaine) (Souza et al. 2010). This route of administration increases the intensity and 

duration of analgesia, with reduced haemodynamic adverse effects (Campagnol et al. 

2007). 

 

2.4.3. Cardiorespiratory effects  

The cardiovascular effects of dexmedetomidine result from both central and peripheral 

2-adrenoceptor activity. In humans, dose dependent decreases in heart rate (HR) and 

    and a biphasic effect on mean arterial pressure, pulmonary arterial pressure and 

vascular resistance have been reported. Such a biphasic response is most clearly seen 

with high dose boluses and consists of bradycardia and hypertension due to initial 

stimulation of peripheral 2b-vascular receptors, followed by central sympatholysis and 

a decline in blood pressure (Ebert et al. 2000). This has been considered to improve the 

haemodynamics of tachycardic, hypertensive patients. In contrast, these effects may be 

unwanted in compromised patients, whose     is rate dependent or with conduction 

system disease (Panzer et al. 2009). 

 In dogs, marked vasoconstriction and hypertension can be seen initially, with an 

increase in systemic vascular resistance and central venous pressure, followed by 

baroreflex-mediated bradycardia (Bloor et al. 1992) and a decrease in the cardiac index 

and oxygen delivery (Flacke et al. 1993). The following central sympatholysis and 

increase in parasympathetic tone leads to a reduction in systemic blood pressure, 

sustained bradycardia and decreases in cardiac index (Xu et al. 1998). These results can 

be explained by activation of central 2-adrenoreceptors, causing a reduction in 

sympathetic drive, with a presynaptically induced decrease of norepinephrine release at 

the sympathetic neuron terminals and activation of postsynaptic 2-receptors on 

vascular smooth muscle cells (Roekaerts et al. 1997). Dexmedetomidine does not seem 

to have a direct myocardial depressant effect (Flacke et al. 1992), although indirect 

suppression by catecholamine reduction has been suggested (Weitz et al. 1991; Flacke 

et al. 1993; Roekaerts et al. 1997). Cardiovascular changes in denervated dogs were 

reversed by atipamezole (Flacke et al. 1990). In cats, dose dependent decreases in HR 

and    , increases in total vascular resistance and transient mild changes in blood 
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pressure, are expected side effects of dexmedetomidine (Ansah et al. 1998, 2000; Selmi 

et al. 2003; Granholm et al. 2006).  

In human medicine, dexmedetomidine produces limited respiratory effects, 

leading to a wide safety margin (Ebert et al. 2000; Venn et al. 2000). Due to its 

beneficial properties, dexmedetomidine was approved in the USA for procedural 

sedation in non-intubated patients in 2008 (Panzer et al. 2009). Decreases in respiratory 

rate (RR) with mild reductions in arterial oxygen tensions were reported after IV 

administration in dogs (Kuusela et al. 2000, 2001; Granholm et al. 2007). However, 

periods of short apnoea with slight cyanosis have been reported in dogs (Kuusela et al. 

2000, 2001; Granholm et al. 2007). In cats, transient (Ansah et al. 1998; Granholm et al. 

2006) or even non-significant (Selmi et al. 2003) decreases in RR were seen after IM 

administration. On the other hand, RR was not significantly affected by the dose in cats 

receiving different CRIs (Ansah et al. 2000). In small ruminants, dexmedetomidine (2 

mg/kg, IV) produced decreases in arterial oxygenation, with goats being more sensitive 

than sheep due to the centrally mediated cardiovascular effects (Kutter et al. 2006). This 

was prevented by the use of a CRI in goats, but not in sheep, most likely due to 

individuals with high sensitivity (Kästner et al. 2007b). 

 

2.4.4. Organ protective effects  

Recently, there is increasing evidence that dexmedetomidine has organ protective 

effects against ischaemic and hypoxic injuries (Panzer et al. 2009). In human medicine, 

dexmedetomidine’s neuroprotective properties, mediated by the 2a-subtype, made its 

use popular in neuroanaesthesia (Ma et al. 2004; Bekker & Sturaitis 2005). Moreover, it 

produces vasoconstriction in cerebral vessels, decreasing cerebral blood flow (Zornow 

et al. 1993; Bekker & Sturaitis 2005) with no detrimental effects on local brain tissue 

oxygenation (Drummond & Sturaitis 2010). It also reduces the cerebrovascular dilation 

induced by isoflurane or sevoflurane in experimental dogs (Ohata et al. 1999) while 

intracranial pressure did not change in anaesthetized rabbits (Zornow et al. 1992) and 

dogs (Keegan et al. 1995) after administration of dexmedetomidine and medetomidine 

respectively. These properties make this drug a useful adjunct in inhalant anaesthesia in 

situations where increases in cerebral blood flow should be avoided (i.e. traumatic brain 

injury, large brain tumors). 
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In humans, 2-agonists decrease HR and arterial blood pressure during 

tachycardia and hypertension, suggesting their potential role in cardioprotection (Panzer 

et al. 2009). Dexmedetomidine reduced the mortality rate and the incidence of 

myocardial infarction after vascular surgery by reducing the degree of ischaemia 

(Wijeysundera et al. 2003), produced haemodynamic benefits (Talke et al. 1995) and 

decreased the incidence of ventricular arrhythmias compared to propofol (Herr et al. 

2003). Moreover, its use was associated with a trend towards improved cardiac 

outcomes in non-cardiac surgery (Biccard et al. 2008) and with better outcomes in 

cardiac surgery (Ji et al. 2013). In experimental anaesthetized dogs, dexmedetomidine 

showed beneficial effects on ischaemic myocardium, preserving coronary blood flow, 

reducing oxygen demand and deficiency (Roekaerts et al. 1996a, b), while minimizing 

emergence-related myocardial ischaemia (Willigers et al. 2003). Moreover, it prevented 

halothane/epinephrine induced dysrhythmias in dogs (Hayashi et al. 1991), via the 

imidazoline receptors (Kamibayashi et al. 1995), while medetomidine failed to produce 

a similar response (Pettifer et al. 1996). After dexmedetomidine IV, experimental goats 

showed a better balance between myocardial oxygen supply and demand than other 

species (Lawrence et al. 1997). However, rising IV doses from 1 to 10 µg/kg increased 

myocardial oxygen extraction, mediated by coronary vasoconstriction (Lawrence et al. 

1996b). Moreover, first and second degree atrioventricular blocks were reported after 

IV dexmedetomidine in dogs (Kuusela 2000, 2001; Lervik et al. 2012) although 

ventricular arrhythmias were not detected more frequently (Kuusela et al. 2002).  

With respect to other tissues, dexmedetomidine preserved flow to the most vital 

organs (brain, liver, kidneys) at the expense of less vital organs (Lawrence et al. 1996a). 

This is in agreement with reports on medetomidine which, when given IM, reduced 

intestinal and skeletal muscle blood flows, whereas renal cortical microvascular blood 

flow remained unaffected in isoflurane anaesthetized dogs (Pypendop & Verstegen 

2000). In dogs, IM medetomidine increased the central nervous system (CNS) uptake of 

a lipophilic tracer during brain perfusion imaging (Waelbers et al. 2011). The authors 

postulated that the central distribution of the tracer might have been enhanced due to a 

lower proportionate decrease in CNS perfusion compared to peripheral tissues. 
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2.4.5. Other effects  

Dexmedetomidine also induces adverse effects in animal species, such as vomiting in 

dogs and cats (Kuusela et al. 2000, 2001; Granholm et al. 2006; Slingsby & Taylor 

2008) and uncontrolled elimination of urine and faeces in cats (Slingsby & Taylor 

2008). Myoclonic twitching was seen in cats after administration of dexmedetomidine 

in combination with butorphanol, but not when given alone (Selmi et al. 2003). 

Furthermore, dexmedetomidine inhibited the transit in the small intestine in rats and 

guinea pigs (Asai et al. 1997; Herbert et al. 2002), increasing the gastrointestinal transit 

time. 

 Decreases in body temperature have been reported in dogs and cats (Ansah et al. 

1998; Selmi 2003; Granholm et al. 2006, 2007) and may be of importance during long 

lasting anaesthetic procedures. These decreases are expected consequences of decreased 

heat production and muscular activity during sedation and direct effects on 

thermoregulation (Paris & Tonner 2005).  

Diuresis is another relevant effect caused by inhibition of the antidiuretic 

hormone (Saleh et al. 2005; Villela et al. 2005). Moreover, medetomidine and 

dexmedetomidine altered blood glucose homeostasis via insulin inhibition by 2a-

adrenoceptors (Burton et al. 1997; Fagerholm et al. 2004) and modulated physiological 

stress responses (Benson et al. 2000; Kuusela et al. 2003). In humans, dexmedetomidine 

is also used to treat shivering in patients after regional and general anaesthesia (Talke et 

al. 1997; Bajwa et al. 2012). 

 

2.5. Dexmedetomidine in horses 

At the beginning of the present PhD, only the cardiopulmonary effects and 

pharmacokinetics of dexmedetomidine had been reported in ponies (Bettschart-

Wolfensberger et al. 2005). A bolus of dexmedetomidine (3.5 µg/kg, IV) induced 

similar cardiopulmonary changes as the other 2-agonists but of very short duration. 

Heart rate and central venous pressure did not differ from baseline values for sixty 

minutes and the stroke volume was significantly reduced five minutes and cardiac index 

five to ten minutes after bolus administration. Arterial blood pressures were 

significantly increased for five minutes, reduced after twenty, thirty and forty five 

minutes and became normal at sixty minutes. Mean pulmonary arterial blood pressure 
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and systemic vascular resistance index were also increased five minutes after 

administration. Respiratory rate was reduced significantly but arterial blood gas tensions 

were not different compared to presedation values. Dexmedetomidine plasma 

concentrations declined rapidly, falling beyond levels of sedation within sixty to ninety 

minutes. No more information was available about the use of dexmedetomidine in the 

equine at that time. 

The idea of using dexmedetomidine as a CRI in horses seemed attractive as it 

has been described as a short-acting sedative with rapid redistribution (Bettschart-

Wolfensberger et al. 2005). The use of medetomidine had been widely reported in 

horses with positive results (see Section 1 of the general introduction) while reports in 

dogs suggested benefits of dexmedetomidine over its racemate. In theory, the use of 

dexmedetomidine in equine balanced anaesthesia may provide sedation and analgesia, 

reducing the MAC of volatile agents and their potential side effects while improving the 

quality of recovery from general anaesthesia. However, potential side effects such as 

typical cardiopulmonary effects of 2-agonists, reduction of intestinal motility or 

increased diuresis inducing an overfilled bladder during general anaesthesia should be 

taken into consideration. 
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In order to reduce the dose dependent cardiovascular depression induced by volatile 

anaesthetics, combinations of different drugs can be used in equine anaesthetized 

patients. The objective of such combinations is to maintain a good intraoperative 

cardiopulmonary function followed by calm, smooth and coordinated recoveries. 

Dexmedetomidine is the most potent and selective 2-agonist marketed for small 

animals, and has been used intraoperatively in these species to provide sedation and 

analgesia and to reduce the amount of inhalant agents. At the beginning of the present 

PhD, only one study described the pharmacokinetics and cardiopulmonary effects after 

an intravenous bolus in ponies, favouring its use as constant rate infusion (CRI). 

 The overall aim of the present PhD was to investigate the inclusion of a CRI of 

dexmedetomidine in anaesthetized horses.  

The first objective was to study the safety of two rates of dexmedetomidine 

CRIs in experimental ponies by detailed evaluation of the cardiopulmonary parameters. 

Using the results of this study in healthy ponies, the higher rate CRI protocol was 

studied in isoflurane anaesthetized equine patients, with the focus on the 

cardiopulmonary function and recovery quality. 

The second objective was to assess to what extent the expired sevoflurane 

fraction could be reduced in the presence of a dexmedetomidine CRI. Additionally, the 

sevoflurane requirements were investigated when combined with either a morphine CRI 

or a combination of dexmedetomidine/morphine CRI. 

The third objective was to compare the effects of a dexmedetomidine CRI with 

those of a morphine infusion in a clinical study, in order to determine potential benefits 

or disadvantages. 
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Abstract 

Objective To evaluate the cardiopulmonary effects of two different constant rate 

infusions (CRI) of dexmedetomidine (1 and 1.75 µg/kg/hr) in experimental ponies. 

Study design Prospective, randomized, experimental study. 

Animals Six healthy ponies (mean 306 ± SD 71 kg, 7.0 ± 1.6 years). 

Methods After premedication with intravenous (IV) dexmedetomidine (3.5 µg/kg), 

anaesthesia was induced (T0) with ketamine (2.2 mg/kg, IV) and midazolam (0.06 

mg/kg, IV) and maintained with isoflurane (expiratory fraction of isoflurane 1.50 %) in 

55 % oxygen for 150 minutes. Normocapnia was maintained using artificial ventilation. 

Three ponies received dexmedetomidine CRIs of 1 and 1.75 µg/kg/hr from T30 to T60 

and T90 to T120 respectively. In the other three ponies, the order of the doses was 

reversed. Continuous monitoring included pulse oximetry, electrocardiography, 

anaesthetic gas monitoring, arterial and central venous pressures. Cardiac output 

(LiDCO technique) was measured and arterial and venous bloods taken every fifteen 

minutes. Cardiac index (CI), systemic vascular resistance (SVR), arterial and venous 

oxygen content (CaO2, CvO2) and oxygen delivery (DO2) were calculated. Analysis of 

variance with separate models for each CRI rate was used to detect differences between 

values obtained at the end of the CRI and their respective baseline values. A mixed 

model with these differences as response variable, pony as random effect and treatment 

and period as fixed effects was applied to find differences between the two CRIs (α = 

0.05 for all analyses). 

Results Heart rate (HR), CI, CaO2, CvO2 and DO2 decreased significantly, while 

significant increases were found in SVR, systolic arterial pressure and right atrial 

pressure with both infusion rates. No differences were found between the two 

dexmedetomidine CRI rates. 

Conclusions and clinical relevance Although significant, cardiopulmonary effects of 

the dexmedetomidine CRIs in isoflurane anaesthetized ponies were minimal, without 

differences between the two dose rates. 

 

 

 

 



Chapter 1  

  

100 

 

Introduction 

General anaesthesia carries a higher risk of mortality in horses compared to small 

animals and humans (Johnston et al. 2002). Inhalation anaesthesia is used commonly for 

long procedures. The incidence of deaths resulting directly or indirectly from 

anaesthesia may be related at least partly to the dose dependent cardiovascular 

depression induced by inhalation anaesthetics (Steffey & Howland 1980). Constant rate 

infusions (CRIs) of different drugs can provide analgesia and increase anaesthetic depth 

during surgical interventions, reducing the requirement for inhalant anaesthetics. 

Lidocaine (Doherty & Frazier 1998), ketamine (Muir & Sams 1992) and different α2-

agonists (Wagner et al. 1992; Kuhn et al. 2004; Ringer et al. 2007) have been used as 

CRIs in anaesthetized horses for this purpose. Alpha2-agonists are potent sedatives with 

good analgesic properties and reduce the minimum alveolar concentration (MAC) of 

inhalation anaesthetic agents (England & Clarke 1996; Steffey et al. 2000; Bettschart-

Wolfensberger et al. 2001, 2005). Classic side effects of α2-agonists in horses, include 

bradycardia, arrhythmias, a decrease in cardiac output and an increase in vascular 

resistance (England & Clarke 1996; Yamashita et al. 2000), but despite these effects, the 

agents have been accepted for use in balanced anaesthetic protocols. The most 

prominent side effects of the most commonly used α2-agonists occur following an 

intravenous (IV) bolus. However, under steady state conditions of medetomidine 

infusions in ponies, cardiac index (CI) and systemic vascular resistance index (SVRI) 

were reported not to be different from presedation values (Bettschart-Wolfensberger et 

al. 1999a). 

Xylazine, detomidine and romifidine have a marketing authorisation for use in 

horses in countries of the European Union. Medetomidine is a potent and selective 2-

agonist (Pertovaara 1993; Bryant & Clarke 1996; Virtanen et al. 1998) but is licensed 

specifically for small animals. However, its use as a CRI during inhalation anaesthesia 

in horses has been investigated, not only under experimental conditions (Bettschart-

Wolfensberger et al. 2001), but also in clinical circumstances (Kalchofner et al. 2006). 

A medetomidine CRI provides good intra-operative analgesia, stable cardiopulmonary 

function and a rapid, good quality recovery (Bettschart-Wolfensberger et al. 1999a, b) 

and its pharmacokinetics make it suitable for prolonged use by infusion (Bettschart-

Wolfensberger et al. 1999b). 
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Dexmedetomidine, the dextro-rotary, active enantiomer of medetomidine, 

provides more analgesia compared to an equivalent dose of the racemic mixture in dogs 

(Kuusela et al. 2000). The plasma half-life of dexmedetomidine is shorter than that of 

medetomidine, not only in dogs (Kuusela et al. 2000) but also in ponies (Bettschart-

Wolfensberger et al. 2005). In ponies, dexmedetomidine was more rapidly redistributed 

compared to humans, the cause being attributed to a larger volume of distribution 

(Bettschart-Wolfensberger et al. 2005). Additionally, studies in humans and dogs 

demonstrated that dexmedetomidine results in a significant reduction of the MAC of 

isoflurane (Aantaa et al. 1997; Pascoe et al. 2006). To the authors’ knowledge, the 

effects of a dexmedetomidine CRI under clinical circumstances have only been studied 

in dogs (Uilenreef et al. 2008) and small ruminants (Kästner et al. 2007). 

The cardiopulmonary effects and pharmacokinetics of an IV bolus of 

dexmedetomidine have been reported in experimental ponies, whereby a dose of 3.5 

µg/kg dexmedetomidine was considered to be equivalent to 7 µg/kg medetomidine. The 

observed cardiopulmonary effects were similar to those induced by other α2-agonists, 

but of shorter duration (Bettschart-Wolfensberger et al. 2005). 

The effects of dexmedetomidine as a CRI have not been documented in horses 

or ponies in conjunction with inhalation anaesthesia. The objective of the present study 

was to determine the cardiopulmonary effects of a thirty minute infusion of 

dexmedetomidine, administered at two different dose rates, in isoflurane anaesthetized 

ponies. 

 

Materials and methods 

The experiment was approved by the Ethical Committee of the Faculty of Veterinary 

Medicine of the University of Ghent (2008/005). 

 

Animals and instrumentation 

Six healthy ponies (five geldings and one mare), aged 7.0 ± 1.6 years and weighing 306 

± 71 kg, were included in this study. The left carotid artery had been transposed to a 

subcutaneous position at least two years before the experiments. Food, but not water, 

was withheld for twelve hours before general anaesthesia. 
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 Following subcutaneous administration of a local anaesthetic (2 mL 

mepivacaine, Scandicaine 2%, Astrazeneca, Belgium), a 5 Fr Swan-Ganz catheter was 

inserted into the right jugular vein, with the distal port of the catheter in the right atrium. 

Correct positioning of the catheter was confirmed using the characteristic pressure 

waveforms, visualised on a cardiovascular monitor. A venous blood sample was taken 

for determination of plasma sodium concentration. 

 The ponies were then sedated with dexmedetomidine (3.5 µg/kg, IV). A 14-

gauge catheter was placed in the left jugular vein. Fifteen minutes later, anaesthesia was 

induced with IV midazolam 0.06 mg/kg (Dormicum, Roche, Belgium) and ketamine 2.2 

mg/kg (Anesketin, Eurovet, Belgium) mixed in the same syringe. After endotracheal 

intubation (24 or 26 mm tube), the ponies were positioned in right lateral recumbency 

on a surgical table and were supported by soft foam rubber pillows (twenty cms). The 

endotracheal tube was connected to a large animal anaesthetic unit (Matrx Medical Inc., 

NY, USA mounted on a Sulla 909V, Dräger, Germany) with an out-of-circuit vaporizer 

(Drägerwerk AG) and a large animal ventilator (Smith respirator LA 2100, model 2002, 

Veterinary Technics/BDO-Medipass, The Netherlands). Anaesthesia was maintained 

with isoflurane (Isoflo, Abbott Laboratories Ltd., UK) in a mixture of oxygen (O2) and 

air [inspired oxygen fraction (FiO2) 55 %]. Isoflurane vaporizer setting was adjusted to 

maintain an expiratory fraction of isoflurane (FE´ISO) of 1.50%. Respiration mode was 

‘assisted-controlled’, with a tidal volume of 10 mL/kg, respiratory rate (RR) of 10 

breaths/min, peak inspiratory pressure of 1.96 kPa (20 cmH2O) and inspiration time of 

1.8 seconds. The settings were then adjusted to maintain arterial partial pressure of 

carbon dioxide (PaCO2) between 4.66 and 6.00 kPa (35 and 45 mmHg). 

Lactated Ringer’s solution (Ringer Lactate, Vetoflex, France) was infused 

during the anaesthetic period at a rate of 5 mL/kg/hr using two volumetric pumps 

(Colleague, Baxter Healthcare Corporation, IL, USA). A urinary catheter was placed in 

all ponies. 

The skin over the transposed left carotid artery was surgically prepared and a 22-

gauge catheter (Vasocan Braunüle Luer Lock, B. Braun Melsungen AG, Germany) was 

placed in the artery and connected to a pressure transducer (placed at the level of the 

right atrium). The distal port of the Swan Ganz catheter was connected to a second 
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pressure transducer. The pressure monitoring system was calibrated against a mercury 

manometer before each experiment and zeroed at the level of the right atrium. 

Inspiratory and expiratory CO2, O2 and isoflurane concentrations were measured 

from gas withdrawn continuously from the Y-piece of the anaesthetic circuit, using a 

calibrated, methane-insensitive, multi-gas analyzer (HP M1025B, Hewlett Packard 

Company, TX, USA). A CMS-Patient monitor (Hewlett-Packard, GmBh, Germany) 

was used to record the ECG (base-apex lead), to monitor systolic (SAP), diastolic 

(DAP), mean arterial (MAP) and right atrial pressure (RAP), to perform pulse oximetry 

(probe placed on the tongue) and to measure body temperature using an oesophageal 

probe. Cardiac output was obtained with the lithium dilution technique (LiDCOplus 

Haemodynamic Monitor, LiDCO Ltd.). A one mL bolus of lithium chloride (1.5 

mmol/mL) was injected in the central venous circulation through the proximal port of 

the thermodilution catheter for each measurement. Haemoglobin concentration was 

calculated from the packed cell volume (PCV) measured fifteen minutes after induction 

(T15) using the following formula (Linton et al. 2000): Hb (g/dL) = 34 × PCV (L/L). 

 

Experimental design 

The ponies were divided randomly into two treatment groups. Each pony was 

anaesthetized once only, for a period of 150 minutes. T0 was the time when the ponies 

were connected to the anaesthetic circuit. Ponies from treatment 1 (ponies 1, 3 and 5) 

received a CRI of 1µg/kg/hr dexmedetomidine between T30 and T60 (period A) and 

1.75 µg/kg/hr between T90 and T120 (period B). In treatment 2 (ponies 2, 4, 6), the 

order of the doses was reversed. A syringe driver was used to administer the 

dexmedetomidine CRIs. Values recorded at T30 and T90 were regarded as baseline 

values for periods A and B respectively. 

Values for inspiratory and expiratory CO2 and O2, heart rate (HR), SAP, MAP, 

DAP, RAP and body temperature were recorded at five minute intervals throughout 

anaesthesia (until T150). Cardiac output was measured and arterial and central venous 

blood samples were collected for immediate analysis at fifteen minute intervals (ABL5, 

Radiometer, Denmark). Blood gas data were corrected for body temperature. 

Cardiac index, stroke volume (SV), stroke volume index (SVI), arterial oxygen 

content (CaO2), central venous oxygen content (CvO2), degree of venous admixture, 
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oxygen delivery (DO2) and oxygen consumption were calculated using standard 

formulas (Schauvliege et al. 2008). 

After T150, all catheters were removed and the ponies were placed in right 

lateral recumbency in a padded recovery box and allowed to recover without assistance 

or additional sedation. Oxygen was insufflated (flow rate of 8 L/min) through the 

endotracheal tube and nasally after extubation. The endotracheal tube was removed 

once the ponies were able to swallow. Extubation time, time to sternal recumbency and 

time to stand were recorded. A score, on a scale of 1-5 (Table 1) was awarded for the 

quality of recovery. 

 

Table 1: Scoring system used to grade recovery of experimental ponies. 

Score Description 

1 One attempt to stand, no ataxia. 

2 One to two attempts to stand, some ataxia. 

3 More than two attempts to stand but quiet recovery. 

4 More than two attempts to stand, excitation. 

5 Severe excitation. Pony injured. 

 

Statistical analysis 

An analysis of variance with separate models for each CRI rate was used to detect 

differences between values obtained at the end of the CRI and their respective baseline 

values. These differences were used as the response variable in an analysis of variance 

with period as fixed effect, and separate models were fitted for the 1 and 1.75 µg/kg/hr 

CRIs. The significance level was set at 5%. Additionally, a mixed model with the 

difference as response variable, pony as random effect and treatment and period as fixed 

effects was applied to evaluate the difference between the two treatments. A paired t-

test was performed to compare the two baseline periods (T30 versus T90). 
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Results 

Cardiovascular system (Table 2) 

The paired t-tests performed between the two baselines demonstrated that all the 

parameters were comparable except HR (decreasing 3 ± 2 beats/min from T30 to T90) 

and RAP (increasing 4 ± 3 mmHg from T30 to T90). 

At the end of the 1 µg/kg/hr CRI, HR and CI decreased significantly [mean 

decreases of 3 ± 1 beats/min (p = 0.02) and 4.9 ± 0.3 mL/kg/min (p = 0.0001) 

respectively], while SAP increased significantly [mean increase of 8 ± 3 mmHg (p = 

0.047)] compared to the respective baseline values. Similar decreases in HR and CI 

were found following the 1.75 µg/kg/hr CRI [mean decreases of 3 ± 0 beats/min (p = 

0.0001) and 7.7 ± 2.4 mL/kg/min (p = 0.02) respectively], while RAP increased 

significantly [mean increase of 2 ± 1 mmHg (p < 0.0446)]. No significant differences 

for any of the measured variables were found between the two different CRI rates. 

At T60, after period A (T30 to T60), HR and CI decreased significantly [mean 

decrease of 4 ± 0 beats/min (p = 0.001) and 6.7 ± 1.8 mL/kg/min (p = 0.02) 

respectively] compared with the respective baseline values (T30). At T120, after period 

B (T90 to T120), HR and CI were significantly lower [mean decrease of 2 ± 0 beats/min 

(p = 0.01) and 5.9 ± 1.8 mL/kg/min (p = 0.03) respectively] while SAP, MAP and DAP 

were significantly higher [mean increases of 11 ± 2 mmHg (p = 0.01), 10 ± 3 mm Hg (p 

= 0.02) and 9 ± 3 mmHg (p = 0.03) respectively]. Significant differences between 

periods A and B were found for HR (p = 0.02), SAP (p = 0.05) and RAP (p = 0.03). 
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Table 2: Cardiovascular parameters in six isoflurane anaesthetized ponies supplemented with constant rate infusions of 

dexmedetomidine.  

Values Differences Unit Group Period A Period B 
 

    
T30 T60 T90 T120 T150 

HR *, §, # beats/min 1 43 ± 3 39 ± 3 39 ± 1 37 ± 1 39 ± 3 

   
2 42 ± 1 39 ± 1 39 ± 1 38 ± 1 38 ± 0 

SAP * mmHg 1 80 ± 5 84 ± 5 80 ± 9 91 ± 10 82 ± 13 

   
2 76 ± 5 75 ± 9 71 ± 9 82 ± 6 83 ± 10 

MAP 
 

mmHg 1 63 ± 6 67 ± 5 64 ± 10 76 ± 14 66 ± 13 

   
2 56 ± 3 57 ± 6 57 ± 6 65 ± 6 67 ± 11 

DAP 
 

mmHg 1 52 ± 5 55 ± 4 54 ± 10 65 ± 15 56 ± 14 

   
2 47 ± 3 48 ± 6 49 ± 6 55 ± 6 58 ± 12 

RAP §, # mmHg 1 13 ± 2 17 ± 3 17 ± 2 18 ± 4 17 ± 3 

   
2 18 ± 5 20 ± 4 22 ± 7 21 ± 6 21 ± 7 

SVR 
 

dyne/sec/cm
5
 1 242 ± 40 268 ± 26 250 ± 73 393 ± 190 286 ± 100 

   
2 181 ± 53 201 ± 73 173 ± 29 244 ± 63 256 ± 94 

CI *, § mL/kg/min 1 59.8 ± 7.4 54.5 ± 7.8 56.5 ± 13.6 49.1 ± 19.6 51.8 ± 12.5 

   
2 56.2 ± 15.7 48.2 ± 10.3 51.7 ± 14.0 47.2 ± 13.4 47.3 ± 13.3 

SI 
 

mL/kg 1 1.4 ± 0.3 1.4 ± 0.3 1.4 ± 0.4 1.3 ± 0.5 1.3 ± 0.4 

   
2 1.3 ± 0.4 1.2 ± 0.2 1.3 ± 0.3 1.2 ± 0.3 1.3 ± 0.3 

Heart rate (HR), systolic (SAP), diastolic (DAP), mean arterial (MAP) and right atrial (RAP) pressures, systemic vascular resistance (SVR), cardiac index (CI) and 

stroke index (SI) in six isoflurane anaesthetized ponies supplemented with constant rate infusions (CRIs) of dexmedetomidine. Ponies of Group 1 (n = 3) received 

dexmedetomidine 1 µg/kg/hr from T30 until T60 (period A) and 1.75 µg/kg/hr from T90 until T120 (period B). In ponies of Group 2 (n = 3) the order of the infusion 

rates was reversed. Data are represented as mean ± SD. 

* Value after dexmedetomidine 1 µg/kg/hr significantly different from respective baseline values (p < 0.05). § Value after dexmedetomidine 1.75 µg/kg/hr
 
significantly 

different from respective baseline values (p < 0.05). 
# 
Significant differences were found between baseline periods (T30 and T90). 
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Body temperature (Table 3) 

Body temperature decreased significantly between the two baseline measurements (0.3 

± 0.1°C from T30 to T90). Body temperature decreased significantly during all 

treatments and periods. No differences between treatments or periods were found. 

 

Blood analyses (Table 3) 

There were some statistically significant differences between the baseline periods in 

parameters from blood analyses. Arterial oxygen tension (PaO2) and PCV both 

decreased [4.3 ± 2.8 kPa (33 ± 21 mmHg); 2 ± 2% respectively] from T30 to T90. 

Packed cell volume decreased significantly [mean decrease of 2 ± 0% (p = 

0.02)] at the end of the 1 µg/kg/hr CRI compared with the respective baseline values. 

The 1 µg/kg/hr CRI had little influence on the PaO2 in both treatment groups [(16.1 ± 

6.3 versus 16.5 ± 6.3 kPa (121 ± 47 versus 124 ± 47 mmHg) in treatment 1, 7.2 ± 2.9 

versus 7.7 ± 3.7 kPa (54 ± 22 versus 58 ± 28 mmHg) in treatment 2]. In contrast, the 

1.75 µg/kg/hr CRI induced significant decreases in arterial and venous PO2 [overall 

mean decrease of 3 ± 1 kPa (26 ± 8 mmHg) (p = 0.02) and 1 ± 0 kPa (5 ± 2 mm Hg) (p 

= 0.03) respectively]. No differences between the two CRI rates were found. 

 At T60, after period A (T30 to T60), PCV was significantly lower [mean 

decrease of 2 ± 0% (p = 0.04)]. Venous pH decreased significantly [mean decrease of 

0.02 ± 0.00 (p < 0.02)] at T120, after period B (T90 to T120) compared with baseline 

values. No differences between the two periods were found. 

 

Other calculated values (Table 3) 

When comparing the two baseline periods using paired t-tests significant decreases in 

CaO2 (18 ± 10 mL/L), CvO2 (19 ± 9 mL/L) and DO2 (0.46 ± 0.31 mL/kg/min) were 

found. 

Arterial oxygen content, CvO2 and DO2 were significantly lower [mean decrease 

of 7 ± 2 mL/L (p = 0.04), 13 ± 4 mL/L
 
(p < 0.02) and 0.97 ± 0.39 mL/kg/min

 
(p < 

0.002) respectively] at the end of the 1 µg/kg/hr CRI compared with the baseline values. 

After the 1.75 µg/kg/hr CRI, only the decreases in CvO2 and DO2 were significant 

[mean decrease of 12 ± 3 mL/L (p = 0.01) and 1.21 ± 0.46 mL/kg/min (p = 0.01) 

respectively]. No differences between the two doses were found. 
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 At T60, after period A (T30 to T60), CaO2, CvO2 and DO2 were significantly 

lower [mean decrease of 12 ± 3 mL/L (p = 0.03), 14 ± 4 mL/L (p = 0.02) and 1.37 ± 

0.32 mL/kg/min (p = 0.01) respectively] compared with the respective baseline values. 

Only CvO2 and DO2 were significantly decreased at T120, after period B (T90 to T120) 

[mean decreases of 11 ± 4 mL/L (p = 0.04) and 0.86 ± 0.39 mL/kg/min
 
(p < 0.01) 

respectively]. No differences between periods were found. 
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Table 3: Other parameters in six isoflurane anaesthetized ponies supplemented with constant rate infusions of dexmedetomidine. 

Values Differences Unit Group Period A Period B   

 
      T30 T60 T90 T120 T150 

Body temperature *, §, # °C 1 36.2 ± 0.3 36.0 ± 0.2 35.8 ± 0.2 35.6 ± 0.2 35.5 ± 0.2 

   
2 36.1 ± 0.3 36.0 ± 0.3 35.9 ± 0.2 35.8 ± 0.2 35.6 ± 0.2 

Venous pH 
  

1 7.48 ± 0.06 7.47 ± 0.05 7.47 ± 0.04 7.46 ± 0.04 7.47 ± 0.05 

   
2 7.47 ± 0.06 7.46 ± 0.05 7.46 ± 0.03  7.44 ± 0.03 7.44 ± 0.02 

Venous PCO2 
 

kPa 1 5.6 ± 0.8 5.6 ± 1.2 5.7 ± 1.0 6.0 ± 1.2 5.6 ± 1.0 

   
2 6.0 ± 1.2 6.1 ± 0.9 6.1± 0.4 6.5 ± 0.8 6.7 ± 0.2 

Venous PCO2 
 

mmHg 1 42 ± 6 42 ± 9 43 ± 8 45 ± 9 42 ± 8 

   
2 45 ± 9 46 ± 7 46 ± 3 49 ± 6 50 ± 2 

Venous PO2 § kPa 1 6.1 ± 2.6  4.8 ± 1.0 5.0 ± 0.9 4.2 ± 0.5 4.5 ± 0.5 

   
2 4.3 ± 0.0 3.7 ± 0.2 3.4 ± 0.5 3.3 ± 1.1 3.5 ± 1.2 

Venous PO2 § mmHg 1 46 ± 20 36 ± 8 38 ± 7 32 ± 4 34 ± 4 

   
2 32 ± 0 28 ± 2 26 ± 4 25 ± 8 26 ± 9 

Arterial pH 
  

1 7.50 ± 0.05 7.50 ± 0.05 7.49 ± 0.04 7.49 ± 0.04 7.49 ± 0.05 

   
2 7.50 ± 0.09 7.50 ± 0.06 7.49 ± 0.03 7.48 ± 0.04 7.47 ± 0.03 

Arterial PCO2 
 

kPa 1 5.3 ± 0.8 5.3 ± 0.8 5.3 ± 0.7 5.6 ± 0.8 5.6 ± 0.8 

   
2 5.6 ± 1.3 5.3 ± 1.2 5.6 ± 0.8 5.9 ± 0.7 6.1 ± 0.3 

Arterial PCO2 
 

mmHg 1 40 ± 6 40 ± 6 40 ± 5 42 ± 6 42 ± 6 

   
2 42 ± 10 40 ± 9 42 ± 6 44 ± 5 46 ± 2 

Arterial PO2 §, # kPa 1 16.1 ± 6.3 16.5 ± 6.3 13.1 ± 4.3 10.5 ± 3.6 10.4 ± 6.1 

   
2 12.8 ± 5.9 8.5 ± 3.7 7.2 ± 2.9 7.7 ± 3.7 8.4 ± 4.1 

Arterial PO2 §, # mmHg 1 121 ± 47 124 ± 47 98 ± 32 79 ± 27 78 ± 46 

   
2 96 ± 44 64 ± 28 54 ± 22 58 ± 28 63 ± 31 

Arterial oxygen content *, # mL/L 1 133 ± 17 124 ± 13  116 ± 14 113 ± 11 112 ± 21 

   
2 122 ± 23 108 ± 11 103 ± 13 98 ± 20 100 ± 17 

Venous oxygen content *, §, # mL/L 1 109 ± 23 93 ± 22 92 ± 21 80 ± 19 61 ± 57 

   
2 85 ± 13 73 ± 18 63 ± 7 53 ± 18 54 ± 15 

Venous admixture 
 

% 1 42 ± 21 29 ± 9 38 ± 14 33 ± 13 39 ± 27 

   
2 30 ± 3 40 ± 20 40 ± 12 38 ± 5 35 ± 5 

Oxygen delivery index *, §, # mL/kg/min 1 8.03 ± 1.92 6.83 ± 1.61 6.67 ± 2.24 5.68 ± 2.71 6.00 ± 2.42 

   
2 6.65 ± 0.87 5.10 ± 0.62 5.22 ± 1.22 4.49 ± 1.13 4.62 ± 0.97 

Oxygen consumption index 
 

mL/kg/min 1 1.51 ± 1.16 1.75 ± 0.80 1.44 ± 0.87 1.57 ± 0.72 1.41 ± 0.80 

   
2 1.98 ± 0.2 1.72 ± 0.67 1.98 ± 0.22 1.88 ± 0.46 1.98 ± 0.34 

Packed cell volume *, # % 1 28 ± 4 26 ± 3 25 ± 4 24 ± 3  25 ± 4 

 
    2  26 ± 6 25 ± 6  25 ± 7  24 ± 8  24 ± 7 

* Value after dexmedetomidine 1 µg/kg/hr significantly different from respective baseline values (p < 0.05). § Value after dexmedetomidine 1.75 µg/kg/hr
 
significantly 

different from respective baseline values (p < 0.05). 
# 
Significant differences were found between baseline periods (T30 and T90). 



Chapter 1  

  

110 

 

Recovery 

Extubation times were 11.67 ± 4.16 and 11.00 ± 3.61 minutes for treatments 1 and 2 

respectively. Time to standing ranged between fifteen and thirty minutes. For ponies of 

treatment 1 mean time to standing was 20.33 ± 3.06 minutes while the recovery time in 

group 2 was 17.00 ± 3.46 minutes. All ponies had good recoveries (scores 1 or 2) with 

minimal or no ataxia. 

 

Discussion 

The present study aimed at identifying cardiopulmonary effects of two different CRI 

rates of dexmedetomidine in isoflurane anesthetized ponies. Overall, the results of the 

present study demonstrated that a CRI of dexmedetomidine can be applied without 

major side effects in isoflurane anesthetized ponies. Moreover, both infusion rates 

induced similar cardiopulmonary effects. Although statistical differences were detected 

for some parameters such as HR and CI, these differences were small and probably of 

only limited importance in healthy animals. 

The design of the present study, aimed at reducing the time period of the 

experiment and limiting the number of anaesthetic episodes per pony, imposed some 

limitations. The results obtained may have been influenced by the simultaneous 

administration of other anaesthetic drugs used for premedication and induction. 

However, the main objective of the present study was to evaluate the effects of a CRI of 

dexmedetomidine in experimental ponies under standardized conditions, using an 

anaesthetic protocol that can be routinely applied in clinical patients. Nevertheless, the 

effects of time, possible carry-over effects between the two periods and differences in 

body conformation between ponies may have had a major impact on the data.  

Theoretically, a loading dose of dexmedetomidine should be included into the 

protocol of the CRI in order to quickly achieve adequate plasma concentrations. 

However, no loading dose was given, as it is probable that the administration of a bolus 

of dexmedetomidine before each infusion would have caused major cardiopulmonary 

changes which would have overshadowed the effects of the CRI and potential 

differences between the CRI rates. Furthermore, the cardiovascular effects of a bolus of 

an 2-agonist might be dangerous during a relatively deep level of isoflurane 

anaesthesia (FE´ISO of 1.50 %) used in the present study, which would also be hard to 
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justify during clinical anaesthesia in horses. In the clinical situation, the dose 

administered for premedication is usually regarded as the loading dose. In the present 

study, dexmedetomidine was administered as premedication fifteen minutes before 

induction of anaesthesia. Although this would have had an effect on the 

cardiopulmonary system, the effects of dexmedetomidine after IV injection were 

reported to be short-lasting (Bettschart-Wolfensberger et al. 2005). Consequently, the 

effects of the dexmedetomidine administered as premedication in the present study 

should have been minimal by T30, when the first CRI was initiated. Nevertheless, with 

a loading dose administered forty five minutes before initiating the CRI, steady state 

plasma concentrations should still have been reached earlier than if no loading dose had 

been given at all. 

Cardiovascular function was only evaluated at the end of each infusion period of 

thirty minutes as during the initial stages of the infusion plasma concentrations of 

dexmedetomidine would have been low. Rough calculations using the available 

pharmacokinetic data in ponies (Bettschart-Wolfensberger et al. 2005) suggest that a 

steady state can only be reached after about eighty to hundred minutes. Although steady 

state plasma concentrations probably were not reached by the end of the infusion 

periods, most of the recorded values appeared to change mainly during the initial phase 

of the infusion and were quite stable towards the end of that time period, suggesting that 

most of the effects were maximal at that time. 

Possible carry-over effects between infusion periods may have occurred in the 

present study design. To exclude this possibility T30 and T90 were compared using 

paired t-tests for the different parameters. Cardiovascular parameters were similar at 

these points, except for minor changes in HR and RAP. Changes in arterial blood gases 

(PaO2 and PCV) and calculated values (CaO2, CvO2 and DO2) were minimal and could 

be explained by the effect of time. Although the pharmacokinetics of dexmedetomidine 

in isoflurane anaesthetized ponies have not been investigated, its cardiovascular effects 

after a bolus injection in standing ponies were short lasting (Bettschart-Wolfensberger 

et al. 2005), suggesting that a washout period of thirty minutes after the end of a first 

CRI was acceptable. This assumption was confirmed in the present study by the 

comparable baseline values recorded in the two time periods. 
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Isoflurane affects cardiovascular function and these changes are influenced by 

the duration of anaesthesia. However, in a study in horses in which, following sedation 

with romifidine, anaesthesia was induced with ketamine and maintained with isoflurane, 

systemic vascular resistance (SVR) increased gradually over time while CI decreased 

progressively (Raisis et al. 2005). Ringer et al. (2007) investigated the effects of a CRI 

of medetomidine in horses undergoing anaesthesia for clinical purposes. Over time, 

SVR and arterial blood pressures increased as did CI, albeit it from an initial low level 

which possibly resulted from the effect of the bolus of medetomidine used for initial 

sedation. In the present study, these temporal effects may also have influenced the data 

obtained, although randomization of the order of treatments should have minimized this 

effect. In a clinical setting, FE´ISO would be lower than that used in the present study 

due to considerable isoflurane-sparing effects of dexmedetomidine. This might favour 

lower CRI rates with regards to haemodynamic performance, as a higher isoflurane 

requirement will somewhat obtund the increase in SVR, resulting in decreased cardiac 

work and myocardial oxygen consumption for the same level of CI. 

The cardiovascular effects of ketamine used for induction of anaesthesia should 

also be considered, as these may again have influenced measured values, especially the 

ones recorded at T30 which were used as baseline. Although ketamine´s direct effect on 

the heart is depressant (Graf et al. 1995), it has been shown to increase the sympathetic 

efferent activity, hereby increasing HR, arterial blood pressure (Wong & Jenkins 1974) 

and myocardial oxygen consumption (Bålfors et al. 1983). Nevertheless, these 

stimulating effects may have been counteracted in the present study by the 

dexmedetomidine sedation or even the administration of midazolam. 

In equine anaesthesia, maintenance of cardiac performance is of major 

importance to guarantee a sufficient muscle blood flow and oxygenation, thereby 

reducing the potential risk of post-anaesthetic myopathy (Lee et al. 1998). Good oxygen 

delivery is also critical to prevent tissue hypoxia. After thirty minutes of anaesthesia, a 

marked decrease in PaO2 was present in all ponies. It is suggested that this was due to 

ventilation/perfusion mismatch as the ponies used in the present study were round 

bellied and relatively fat and heavy body weight ponies are prone to these problems 

(Moens 1989). 
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The sedation dose used in these experimental ponies was based on studies where 

7 µg/kg medetomidine was estimated to be equipotent to 3.5 µg/kg dexmedetomidine 

(Bettschart-Wolfensberger et al. 2005). All ponies were well sedated, with the typical 

lowering of the head, and the degree of ataxia was acceptable. Induction of anaesthesia 

with the standard drugs and subsequent endotracheal intubation were uneventful. 

No effective calculations were performed to obtain the optimal dose needed for 

CRI of dexmedetomidine. Dexmedetomidine CRI dosages have not been reported for 

equines previously. Similar studies in standing horses with, after an initial bolus dose, a 

medetomidine infusion rate of 3.5 µg/kg/hr gave good sedation and resulted in stable 

blood levels of the drug with acceptable cardiopulmonary effects and reduced the MAC 

of desflurane (Bettschart-Wolfensberger et al. 1999a, b; 2001). Based on the above 

mentioned equipotent doses of medetomidine and dexmedetomidine, we chose two 

different infusion rates: 1.75 µg/kg/hr dexmedetomidine was estimated as being 

equivalent to 3.5 µg/kg/hr medetomidine, while a lower infusion rate of 1 µg/kg/hr was 

also studied. Future pharmacokinetic studies are justified to determine whether constant 

and effective plasma levels can be achieved with both doses. 

In this present study no clear differences between the two CRI rates were found. 

This might be due to a ‘ceiling’ of both the positive and negative effects of the 

dexmedetomidine CRIs. Indeed, the analgesic and sedative effects have their upper 

limits, whereby increasing the dose only extends the duration of sedation and analgesia. 

Such an effect has been described also for the cardiovascular side effects of different 

doses of romifidine (Pypendop & Verstegen 2001). Consequently, cardiovascular 

effects may already occur at a low CRI dose, without further dose related increases. 

Cardiovascular function was well maintained in both treatments of ponies 

receiving a CRI of dexmedetomidine. Overall, HR significantly decreased with both 

infusion rates, as a typical effect of the α2-agonists. Activation of 2b-receptors has been 

reported to induce an initial surge in vascular resistance followed by a reflex 

bradycardia (Maze & Tranquili 1991; Maze & Fujinaga 2000; Guimarães & Moura 

2001). More recently, it has been shown that 2-agonists additionally induce 

bradycardia by central mechanisms (Enouri et al. 2008; Honkavaara et al. 2008). 

However, the observed decrease in HR was minimal and no periods of severe 

bradycardia or atrio-ventricular blocks were observed in the ponies. The decrease in HR 
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was significantly more pronounced by the end of period A (from T30 to T60) compared 

to the end of period B (from T90 to T120) in both treatments but this difference was not 

of clinical relevance (2 beats/min). 

Baseline MAP values were low in the present study compared to those 

considered acceptable during clinical anaesthesia. This was presumed to be due to the 

deep level of isoflurane anaesthesia (FE´ISO 1.50%) and resultant decrease in SVR 

(Rödig et al. 1996). No surgical stimulation was performed which may have 

counteracted this decrease. Decreased cardiac compensation could also explain the low 

arterial pressures observed in the present study. Indeed, inhibitory effects of 

dexmedetomidine on release of norepinephrine (Ebert et al. 2000) may potentiate 

depressive influences induced by the volatile agents (vasodilation and myocardial 

depression). 

Arterial pressure increased after infusion of dexmedetomidine, the most 

probable cause being vasoconstriction induced by the activation of 2b-adrenoceptors on 

endothelial smooth muscle, resulting in an increase in SVR (Maze & Tranquili 1991; 

Maze & Fujinaga 2000; Guimarães & Moura 2001). Mean arterial pressure and SVR 

increased significantly in period B compared with baseline values. Differences between 

both infusion rates and periods were not observed. However, the increases in MAP and 

SVR were only significant for period B and not for period A and so this is most likely 

explained by the accumulation of dexmedetomidine over the two infusion periods of 

thirty minutes and by time related changes. Compared to the respective baseline values, 

CI decreased in both treatment groups of ponies receiving dexmedetomidine CRIs, 

mainly attributable to a decrease in HR. Both 1 and 1.75 µg/kg/hr CRIs induced a 

decrease in CI, which returned to baseline values during the ‘washout’ period when no 

dexmedetomidine was administered. 

In the present study significant decreases in CI and DO2 occurred after the 

dexmedetomidine CRIs, but these decreases were approximately 10% of baseline 

values. Such decreases are usually well tolerated in healthy anaesthetized horses under 

clinical conditions. Also under clinical circumstances, the concentrations of isoflurane 

would have been reduced once dexmedetomidine infusion commenced. Nevertheless, 

caution should be taken in compromised horses. Even more, the observed decrease in 

arterial and venous PO2 throughout the anaesthesia in the present study might also have 
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an influence on the other parameters. The purpose of using an FiO2 of 55% was to 

reduce the degree of atelectasis which might occur (Marntell et al. 2005) but in this case 

it was not successful in avoiding substantial pulmonary right to left shunting. In a 

clinical case the FiO2 would have been increased. 

 In both treatments, core temperature decreased significantly over time. This is as 

expected under anaesthesia. However, the average decrease was about 1°C over 150 

minutes in all ponies, which was clinically acceptable. 

Recovery remains a critical phase in equine anaesthesia. In the present study all 

ponies had good recoveries with minimal or no ataxia, despite the fact the animals did 

not receive additional sedation before the recovery period. Oxygen was supplemented 

during the recovery period at a flow rate of 8 L/min via the endotracheal tube and 

nasally after extubation. Although switching from oxygen to room air is normally well 

tolerated by most horses, it was deemed prudent in these ponies to supplement oxygen 

during recovery because of the low PaO2 values measured during anaesthesia (Hubbell 

2005). 

In conclusion, the results of this study demonstrated that dexmedetomidine CRIs 

administered during isoflurane anaesthesia caused statistically significant 

cardiopulmonary effects typical of 2-agonists. However, at the doses used, changes 

were small and within acceptable clinical range, despite isoflurane administration being 

at > one MAC. Further studies are justified to evaluate the analgesic properties and 

anaesthetic-sparing effects of both doses of a dexmedetomidine CRI, and also the 

cardiopulmonary status of horses when such CRIs are administered together with the 

minimal dose of isoflurane necessary to allow surgery. 
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Abstract 

Objective To investigate the influence of a dexmedetomidine constant rate infusion 

(CRI) in horses anaesthetized with isoflurane. 

Study design Prospective, randomized, blinded, clinical study. 

Animals Forty adult healthy horses (weight mean 491 ± SD 102 kg) undergoing 

elective surgery. 

Methods After sedation [dexmedetomidine, 3.5 μg/kg intravenously (IV)] and 

induction IV (midazolam 0.06 mg/kg, ketamine 2.2 mg/kg), anaesthesia was maintained 

with isoflurane in 55-60% oxygen. Horses were ventilated and dobutamine was 

administered when hypoventilation [arterial partial pressure of CO2 > 8.00 kPa (60 

mmHg)] and hypotension (mean arterial pressure < 70 mmHg) occurred respectively. 

During anaesthesia, horses were randomly allocated to receive a CRI of 

dexmedetomidine (1.75 μg/kg/hour) (D) or saline (S). Monitoring included end-tidal 

isoflurane concentration, cardiopulmonary parameters, and need for dobutamine and 

additional ketamine. All horses received 0.875 μg/kg dexmedetomidine IV for the 

recovery period. Age and weight of the horses, duration of anaesthesia, additional 

ketamine and dobutamine, cardiopulmonary data (ANOVA), recovery scores (Wilcoxon 

Rank Sum Test), duration of recovery (t-test) and attempts to stand (Mann-Whitney 

test) were compared between groups. Significance was set at p < 0.05. 

Results Heart rate (HR) and arterial partial pressure of oxygen were significantly lower 

in group D compared to group S. An interaction between treatment and time was 

present for cardiac index, oxygen delivery index and systemic vascular resistance 

(SVR). End-tidal isoflurane concentration and HR significantly increased over time. 

Packed cell volume, systolic, diastolic and mean arterial pressure, arterial oxygen 

content, stroke volume index and SVR significantly decreased over time. Recovery 

scores were significantly better in group D, with fewer attempts to stand and 

significantly longer times to sternal position and first attempt to stand. 

Conclusions and clinical relevance A dexmedetomidine CRI produced limited 

cardiopulmonary effects, but significantly improved recovery quality. 
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Introduction 

Inhalation anaesthesia is frequently used in long surgical procedures in horses and 

carries a higher risk of mortality compared with humans and small domestic animals 

(Johnston et al. 2002). Since many causes of peri-anaesthetic death can be a 

consequence of cardiovascular depression, combination anaesthetic protocols are often 

used to reduce the required amount of inhalants and the associated cardiovascular 

effects (Steffey & Howland 1978) in an attempt to achieve ʻbalanced anaesthesiaʼ. 

Currently, balanced anaesthesia has reached new dimensions with the use of inhalation 

anaesthetics in combination with short-acting anaesthetic adjuvants. The theory is that 

the combination of different anaesthetics will act synergistically regarding to desired 

effects, but not with respect to side-effects (Tonner 2005). 

 Combination anaesthesia in horses aims at maintaining good intraoperative 

cardiopulmonary function and minimizing the pain associated with surgery, both of 

which should result in calmer and more coordinated recoveries (Bettschart-

Wolfensberger & Larenza 2007). The use of lidocaine (Doherty & Frazier 1998), 

ketamine (Muir & Sams 1992) and various 2-agonists (Wagner et al. 1992; Neges et al. 

2003; Kuhn et al. 2004; Devisscher et al. 2010; Schauvliege et al. 2011) as constant rate 

infusions (CRIs) have been described in clinical and in experimental equine anaesthetic 

procedures. These CRIs were reported to provide a sufficient level of analgesia, an 

increase in anaesthetic depth and a reduction of the minimum alveolar concentration 

(MAC) of the inhalation agents (Steffey & Pascoe 1991; England & Clarke 1996; 

Bettschart-Wolfensberger et al. 2001). 

Alpha2-agonists are used frequently in combination anaesthetic protocols in 

horses, although when these agents are used for sedation, especially after bolus 

administration, classic side effects including bradycardia, arrhythmias, decreases in 

cardiac output (   ) and increases in systemic vascular resistance (SVR) have been 

documented extensively (England & Clarke 1996; Yamashita et al. 2000). In contrast, 

cardiac output indexed to weight (CI) and systemic vascular resistance indexed to 

weight (SVRI) did not differ from presedation values under steady state conditions 

when medetomidine was used as a CRI in ponies (Bettschart-Wolfensberger et al. 

1999). Furthermore, recovery quality was significantly better when horses undergoing 
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elective surgery received a medetomidine CRI during isoflurane anaesthesia compared 

to a lidocaine CRI (Ringer et al. 2007). 

Dexmedetomidine, the dextro-rotary and active enantiomer of the racemic 

mixture medetomidine (Vickery & Maze 1989), has marketing authorisation in small 

animal practice and is one of the most potent and selective 2-agonist commercially 

available. Results of previous studies showed that dexmedetomidine offers some 

sedative and analgesic benefits over racemic medetomidine in dogs (Kuusela et al. 

2000, 2001). Furthermore, dexmedetomidine was reported to have a shorter half-life 

compared to medetomidine in both dogs (Kuusela et al. 2000) and ponies (Bettschart-

Wolfensberger et al. 2005). Dexmedetomidine also significantly reduces the MAC of 

isoflurane in humans (Aantaa et al. 1997) and dogs (Pascoe et al. 2006). 

In ponies, dexmedetomidine was shown to be redistributed more rapidly than in 

humans due to a larger volume of distribution (Bettschart-Wolfensberger et al. 2005). 

Consequently, dexmedetomidine has been suggested to be an ideal agent for CRIs in 

equine anaesthesia. Preliminary studies in experimental ponies in our clinic (Marcilla et 

al. 2010) showed that two different CRI rates, 1 and 1.75 μg/kg/hr, after sedation with 

dexmedetomidine (3.5 μg/kg), caused statistically significant cardiopulmonary effects 

typical of 2-agonists, although cardiovascular function remained within clinically 

acceptable limits. However, the arterial partial pressure of oxygen (PaO2) recorded in 

those anaesthetized ponies, had a tendency to be low. To date, dexmedetomidine has 

been used under clinical conditions as a CRI in dogs (Uilenreef et al. 2008) and in small 

ruminants (Kästner et al. 2007), but not in horses. 

In our clinic, we have investigated the effects of a CRI of romifidine (Devisscher 

et al. 2010) and of detomidine (Schauvliege et al. 2011) when given to anaesthetized 

horses. The aim of this current study was to evaluate the cardiopulmonary and possible 

isoflurane sparing effects and the influence on recovery quality of a dexmedetomidine 

CRI of 1.75 μg/kg/hr in healthy anaesthetized horses undergoing elective surgery in 

which anaesthesia is being maintained with isoflurane. 

 

Materials and methods 

The experiment was approved by the Ethical Committee of the Faculty of Veterinary 

Medicine of the University of Ghent (2009/22). 
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Animals and instrumentation 

Forty adult client-owned horses [American Society of Anesthesiologists (ASA) 

category I or II] aged between seven months and sixteen years old, weighing 491 ± 102 

kg (mean ± SD), which had been referred for elective surgery (soft tissue or orthopaedic 

procedures) lasting more than one hour, were included in the study. Horses undergoing 

head or neck surgery were excluded because of difficulty in evaluation of clinical 

parameters related to anaesthetic depth. 

 The horses were assigned randomly to group D (dexmedetomidine) or group S 

(saline). Food but not water was withheld for twelve hours before general anaesthesia. 

Pre-anaesthetic examinations were performed the evening before the surgical procedure. 

All the anaesthetic procedures were performed by the same investigator (MGM) who 

was unaware of the treatment given. 

Dexmedetomidine (3.5 μg/kg, IV) (Dexdomitor, Pfizer Animal Health, Belgium) 

was given for sedation, after a 12-gauge × 80mm (Intraflon 2, Ecouen, France) or a 14-

gauge × 55 mm (Vasocan Braunüle Luerlock, B. Braun Melsungen AG, Germany) 

catheter was placed in the jugular vein. If the horse was not adequately sedated, an 

additional dose of dexmedetomidine (between 1/4 or 1/2 of the initial dose) was given 

before induction of anaesthesia. Seven to ten minutes following administration of the 

sedative dose of dexmedetomidine, anaesthesia was induced with midazolam (0.06 

mg/kg, IV) (Dormicum, Roche, Belgium) and ketamine (2.2 mg/kg, IV) (Anesketin, 

Eurovet, Belgium) together in the same syringe. 

After tracheal intubation (24-30 mm OD tracheal tube, Willy Rusch AG, 

Germany), the horses were hoisted onto a surgical table covered with soft foam rubber 

pillows (twenty cms), and positioned as required for the planned surgical procedure. 

The endotracheal tube was connected to a large animal anaesthetic unit (Matrx medical 

Inc., NY, USA mounted on a Sulla 909V, Dräger, Germany) with an out-of-circuit 

vaporizer (Drägerwerk AG, Germany) and a large animal ventilator (Smith respirator 

LA 2100, model 2002, Veterinary Technics/BDO-Medipass, The Netherlands). 

Connection to the anaesthetic circuit was considered as time 0 (T0). Anaesthesia was 

maintained with isoflurane (Isoflo, Abbott Laboratories Ltd, UK) in a mixture of 

oxygen (O2) and air, so as to maintain the inspired O2 fraction (FiO2) between 55 and 

60%. Horses placed in lateral recumbency were allowed to breathe spontaneously. If the 
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arterial partial pressure of carbon dioxide (PaCO2) was higher than 8 kPa (60 mmHg), 

PaO2 lower than 13.3 kPa (100 mmHg) or respiratory rate (RR) lower than 4 

breaths/min for more than three minutes in laterally recumbent animals intermittent 

positive pressure ventilation (IPPV) was applied, using an ʻassisted-controlledʼ 

respiration mode with a tidal volume of 10 mL/kg, peak inspiratory pressure close to 

1.96 kPa (20 cmH2O), inspiratory time of 2.2 seconds and RR close to 8 breaths/min. 

All parameters were adapted to maintain PaCO2 between 4.66 and 6.00 kPa (35 and 45 

mmHg). Horses placed in dorsal recumbency were ventilated immediately after 

positioning on the table as previously described. During anaesthesia, anaesthetic depth 

was adjusted by altering the inspired isoflurane concentration according to assessment 

of clinical parameters (respiration, cardiovascular parameters and ocular signs). A 

ketamine bolus was administered to deepen anaesthesia if the horses showed nystagmus 

or moved. 

Arterial access was achieved by catherization of the facial artery (22-gauge 

Vasocan Braunüle Luer Lock, B. Braun Melsungen AG, Germany). This was used to 

obtain arterial blood for analysis, for withdrawal of blood for the lithium dilution     

measurements, and for invasive measurement of arterial blood pressures. The pressure 

monitoring system was zeroed at the level of the right atrium. 

Inspiratory and expiratory CO2, O2 and isoflurane concentrations were measured 

using a calibrated, methane-insensitive, multi-gas analyser (Datex Ohmeda, S/5, D-

LCC15-03, OR, USA). This monitor was also used to record the ECG (base-apex lead), 

systolic (SAP), diastolic (DAP), mean arterial pressures (MAP), peripheral arterial 

saturation by pulse oximetry (probe placed on the tongue) and body temperature using 

an oesophageal probe. 

Cardiac output was measured with the lithium dilution technique (LiDCOplus 

Haemodynamic Monitor, LiDCO Ltd., UK). A bolus of lithium chloride (4.5 μmol/kg) 

was injected through the jugular venous catheter for each measurement. Haemoglobin 

concentration was estimated from the packed cell volume (PCV) [Hb (g/dL) = 34 × 

PCV (L/L); Linton et al. 2000] measured at T15. Intraoperatively, all horses received 

flunixin meglumine (1.1 mg/kg, IV) (Endofluxin 50, Ecuphar, Belgium) and 

intramuscular procaine benzylpenicillin (15000 IU/kg) (Pen-30, V.M.D., Belgium). 

 



Chapter 2  

  

126 

 

Experimental design 

As soon as the endotracheal tube was connected to the anaesthetic circuit (T0), group D 

received a CRI of dexmedetomidine (1.75 μg/kg/hr) while group S received a saline 

CRI of equivalent volume and rate. The syringes were prepared by one of the co-

authors, while the main anaesthetist (MGM) was unaware of the treatment. Constant 

rate infusions were administered using a syringe driver (Ohmeda 9000, BOC Health 

care, UK) and were maintained until the end of anaesthesia. Lactated Ringer’s solution 

(Ringer Lactate, Vetoflex, Bioluz, France) was administered IV for the duration of 

anaesthesia at a rate of 10 mL/kg/hr. A urinary catheter was placed in all the horses. 

Values for inspiratory and expiratory CO2, O2, isoflurane, heart rate (HR), SAP, 

MAP, DAP, and body temperature were recorded at five minute intervals throughout 

anaesthesia. Cardiac output was measured and arterial blood samples were collected for 

immediate analysis at fifteen minute intervals (ABL5, Radiometer, Denmark). 

Cardiac output, CI, stroke volume (SV), stroke volume indexed to weight (SVI), 

arterial content of oxygen (CaO2) and oxygen delivery index to weight (DO2I) were 

calculated using standard formulae as listed in previous work from our laboratory 

(Schauvliege et al. 2008). 

Total doses of additional boluses of ketamine and dobutamine infusion rates 

were recorded. Dobutamine (Dobutamine EG, NV Eurogenerics, Belgium) was infused 

to maintain MAP above 70 mmHg, starting at a rate of 0.5 μg/kg/min and then adjusting 

the rate as required. The administration rate of dobutamine over time was calculated for 

each horse according to the individual body weight and the duration of anaesthesia. 

At the end of the surgical procedure, all horses received 0.875 μg/kg
 

dexmedetomidine, before they were transported to a padded recovery box where they 

were allowed to recover without assistance. Oxygen was administered (from 8 to 15 

L/min depending on the size of the horse) initially through the endotracheal tube and, 

after extubation, nasally. The endotracheal tube was removed once the horses were able 

to swallow. Following extubation, the doors of the recovery box were closed, and 

recoveries were observed from outside via the continuous images sent by a video 

camera. Extubation time, time to sternal recumbency, time to stand were recorded, and 

recovery quality scored on a scale of 1-5 (Table 1). All the recoveries were observed 

continuously and scored by the same blinded anaesthesist (MGM). 
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Table 1: Scoring system used to grade recoveries. 

Score Description 

1 One attempt to stand, no ataxia. 

2 One to two attempts to stand, some ataxia. 

3 More than two attempts to stand but quiet recovery. 

4 More than two attempts to stand, excitation. 

5 Severe excitation. Horse injured. 

 

Statistical analysis 

Data was tested for normality of distribution by the Kolmogorov-Smirnov test. The age 

and weight of the horses, duration of anaesthesia and total doses of additional ketamine 

and required dobutamine were compared between treatment groups using ANOVA. 

The duration of anaesthesia did not exceed sixty minutes in several horses, and 

therefore only the cardiopulmonary data for sixty minutes after anaesthetic induction 

were analyzed. This analysis used a mixed model analysis of variance with treatment, 

time and their interaction as fixed effects and horse as random effect. Recovery scores 

and duration were compared between treatments using a Wilcoxon rank sum test and t-

test respectively. A Mann-Whitney test was used to compare the number of attempts to 

stand in the recovery. For all analyses the significance level was set at 5%. Results are 

presented as mean ± SD unless otherwise stated. 

 

Results 

Age (for group S and D respectively, 4 ± 4 and 6 ± 4 years) and weight (469 ± 95 and 

513 ± 107 kg) of the horses and duration of anaesthesia (97 ± 28 and 105 ± 44 minutes) 

did not differ statistically between groups. In group S and D, respectively sixteen and 

thirteen horses were placed in dorsal recumbency while four and seven were positioned 

in lateral recumbency. All four horses placed in lateral recumbency in group S were 

able to breathe spontaneously, maintaining PaCO2 lower than 8 kPa (60 mmHg) during 

anaesthesia. In contrast, only one of seven horses in group D was able to breathe 

spontaneously. All other horses were mechanically ventilated. No significant 

differences between groups in FiO2 were found. 

Eleven horses (three in group S and eight in group D) (27.5%) received an 

additional dose of dexmedetomidine to obtain an acceptable level of sedation prior to 

anaesthesia. 
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Details of surgical interventions are shown in Table 2. 

 

Table 2: Types of surgeries performed in group S (n = 20) and group D (n = 20). 

Group D received a constant rate infusion of dexmedetomidine (1.75 μg/kg/hr), 

group S an equivalent volume and rate of saline.  

Type of surgery Group S Group D 

Arthroscopy 11 10 

Cryptorchid 3 3 

Sarcoid excision 1 2 

Umbilical hernia 1 1 

Wound 1 1 

Sarcoid cryosurgery 0 1 

Arthrodesis 0 1 

Funiculitis 1 0 

Street nail 0 1 

Penis amputation 1 0 

Varus deformation 1 0 

 

Isoflurane concentrations, ketamine and dobutamine administration (Figure 1) 

Overall, the end-tidal isoflurane concentration (FE´ISO) increased over time from (p = 

0.0001). No significant differences between groups were found (Fig. 1). Twelve horses 

in group S and eight horses in group D received additional doses of ketamine. The total 

dose in these horses was 0.82 ± 0.41 and 0.57 ± 0.3 mg/kg for horses in group S and D, 

respectively (p = 0.16). In both groups, seven horses needed one dose of extra ketamine; 

doses ranging from 0.3 to 1 mg/kg in group S and from 0.3 to 0.9 mg/kg in group D. 

Two horses in group S needed two doses (0.5 mg/kg), two needed three doses (0.4-0.6 

mg/kg) and one horse four extra doses (0.2-0.4 mg/kg). In group D only one horse 

required a second dose (0.5 mg/kg). Extra doses of ketamine were administered when 

horses showed nystagmus or moved. Only one horse in each group moved during 

anaesthesia. 

Nine horses in group S (mean dose 0.11 ± 0.06 μg/kg/min) and five horses in 

group D (mean dose 0.13 ± 0.15 μg/kg/min) received a dobutamine CRI during the 

anaesthetic period. These mean doses did not differ significantly between groups (p = 

0.6). 
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§ Changes over time (p < 0.05) were present. 

 

Figure 1: End-tidal isoflurane concentration (FE´ISO) (in percentage) in forty 

horses anaesthetized with a standard isoflurane protocol for elective surgery. 

Horses in group S (n = 20) received a constant rate infusion of saline and horses in 

group D (n = 20) received dexmedetomidine 1.75 μg/kg/hr. 

 

Cardiopulmonary system (Tables 3-4 & Figures 2-5) 

Overall, HR in beats/min was significantly lower (p = 0.02) in group D (33 ± 4) 

compared with group S (37 ± 6 ) (Fig. 2). An interaction between treatment and time 

was found for CI (p = 0.02) (Fig. 3), DO2I (p = 0.02) (Fig. 4) and SVR (p = 0.04). 

Statistical analysis also showed an increase in HR (p < 0.0001) and a decrease in SAP, 

DAP and MAP (p < 0.0001), SVI (p = 0.003) and SVR (p = 0.005) over time. 

Overall, PaO2 was significantly lower in group D (20 ± 7 kPa; 150 ± 53 mmHg) 

than in group S (25 ± 9 kPa; 188 ± 68 mmHg) (p = 0.02) (Fig. 5). Packed cell volume 

decreased over time (p < 0.0001). 

Hypoxaemia (PaO2 < 8 kPa; < 60 mmHg) occurred only in four horses (three in 

group S and one in group D), and for short periods of time, mostly after the first hour of 

anaesthesia. 

An interaction between treatment and time was found for DO2I (p = 0.02) (Fig. 

4). Arterial oxygen content decreased significantly over time (p = 0.03).  
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Table 3: Cardiovascular parameters (mean ± SD) in forty anaesthetized horses 

undergoing elective surgery.  

Values Differences Unit Group T15 T30 T45 T60 

SAP 
§
 mmHg S 119 ± 12 107 ± 10 105 ± 16 107 ± 15 

   
D 122 ± 17 114 ± 20 107 ± 22 106 ± 20 

MAP 
§
 mmHg S 95 ± 13 84 ± 11 82 ± 16 86 ± 15 

   
D 98 ± 17 91 ± 19 86 ± 20 83 ± 19 

DAP 
§
 mmHg S 81 ± 12 70 ± 11 69 ± 17 72 ± 15 

   
D 83 ± 15 78 ± 18 73 ± 20 71 ± 18 

SVR 
§, #

 dyne/sec/cm
5
 S 260 ± 45 209 ± 43 223 ± 86 244 ± 103 

   
D 263 ± 82 252 ± 76 233 ± 89 223 ± 81 

SI 
§
 mL/kg S 1.8 ± 0.4 1.9 ± 0.4 1.7 ± 0.4 1.7 ± 0.4 

   
D 1.9 ± 0.5 1.7 ± 0.5 1.7 ± 0.5 1.7 ± 0.5 

Systolic (SAP), mean (MAP) and diastolic (DAP) pressures, systemic vascular resistance (SVR) and stroke index (SI) 

in forty anaesthetized horses undergoing elective surgeries. Horses in group S (n = 20) received a CRI of saline and 

horses in group D (n = 20) received dexmedetomidine 1.75 μg/kg/hr. 

§ Changes over time (p < 0.05); 
#
Interaction treatment*time (p < 0.05). 

 

 

Table 4: Other cardiopulmonary and systemic parameters in forty anaesthetized 

horses for elective surgery (mean ± SD values). 

Values Differences Unit Group T15 T30 T45 T60 

Body temperature  
§, #

 °C S 37.1 ± 0.5 37.0 ± 0.6 36.8 ± 0.6 36.8 ± 0.7 

   
D 37.0 ± 0.4 36.9 ± 0.4 36.8 ± 0.4 36.7 ± 0.4 

Arterial pH 
  

S 7.43 ± 0.05 7.43 ± 0.05 7.42 ± 0.06 7.42 ± 0.05 

   
D 7.41 ± 0.05 7.42 ± 0.05 7.42 ± 0.05 7.41 ± 0.03 

Arterial PCO2  
kPa S 5.9 ± 0.8 5.9 ± 0.9 6 ± 0.9 6 ± 0.7 

   
D 6 ± 0.8 6 ± 0.8 6 ± 0.9 6 ± 0.7 

Arterial PCO2  
mmHg S 44 ± 6 44 ± 7 45 ± 7 45 ± 5 

   
D 45 ± 6 45 ± 6 45 ± 7 45 ± 5 

CaO2 
§
 ml/L S 143 ± 13 140 ± 11 140 ± 11 140 ± 14 

   
D 142 ± 17 139 ± 15 137 ± 18 134 ± 17 

PCV 
§
 % S 30 ± 3 29 ± 3 29 ± 2 29 ± 3 

      D 30 ± 3 29 ± 3 29 ± 4 28 ± 3 

Body temperature, arterial blood gas results, arterial oxygen content (CaO2) and packed cell volume (PCV) in 40 

anaesthetized horses undergoing elective surgeries.  

Horses in group S (n = 20) received a constant rate infusion of saline and horses in group D (n = 20) received 

dexmedetomidine 1.75 μg/kg/hr. 

§ Changes over time (p < 0.05); 
#
Interaction treatment*time (p < 0.05). 
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* Significant differences between treatments (p < 0.05). A significant increase over time was present in 

both groups (p < 0.05). 

 

Figure 2: Heart rate in forty horses anaesthetized with a standard isoflurane 

protocol for elective surgery. Horses in group S (n = 20) received a constant rate 

infusion of saline and horses in group D (n = 20) received dexmedetomidine 1.75 

μg/kg/hr. 

 

Interaction treatment*time was present (p < 0.05). 

 

Figure 3: Cardiac index in forty horses anaesthetized with a standard isoflurane 

protocol for elective surgery. Horses in group S (n = 20) received a constant rate 

infusion of saline and horses in group D (n = 20) received dexmedetomidine 1.75 

μg/kg/hr. 
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Interaction treatment*time was present (p < 0.05). 

 

Figure 4: Oxygen delivery index in forty horses anaesthetized with a standard 

isoflurane protocol for elective surgery. Horses in group S (n = 20) received a 

constant rate infusion of saline and horses in group D (n = 20) received 

dexmedetomidine 1.75 μg/kg/hr. 

 

 

 

*Significant differences between treatments (p < 0.05). 

 

Figure 5: Arterial partial pressure of oxygen in forty horses anaesthetized with a 

standard isoflurane protocol for elective surgery. Horses in group S (n = 20) 

received a CRI of saline and horses in group D (n = 20) received dexmedetomidine 

1.75 μg/kg/hr. 
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Recovery scores and times (Tables 5 & 6) 

Recovery scores were significantly better in group D (p = 0.03) than in group S. Horses 

in group D needed fewer attempts to stand (p = 0.04). Times to sternal recumbency (p = 

0.03) and first attempt to stand (p = 0.04) were significantly longer in group D 

compared with group S. 

 

Table 5: Recovery scores in forty horses anaesthetized for elective surgery. Horses 

in group S (n = 20) received a constant rate infusion of saline and horses in group 

D (n = 20) received dexmedetomidine 1.75 μg/kg/hr. 

 
Group S Group D 

Score 1 9 15 

Score 2 9 6 

Score 3 3 0 

Significant differences between groups (p < 0.05) were found. 

 

Table 6: Recovery times (in minutes) in forty horses anaesthetized for elective 

surgery. Horses in group S (n = 20) received a constant rate infusion of saline and 

horses in group D (n = 20) received dexmdetomidine (1.75 µg/kg/hr). 

 
Differences Group S Group D 

Extubation time 
 

19 ± 7 21 ± 5 

Time to sternal recumbency * 25 ± 8 31 ± 8 

First attempt to stand * 29 ± 11 36 ± 10 

Standing time 
 

32 ± 10 37 ± 11 

Extubation to sternal recumbency 
 

6 ± 6 10 ± 7 

Sternal to standing time 
 

7 ± 7 6 ± 5 
*
 Significant differences between groups (p < 0.05). 

 

Discussion 

In the present study, a CRI of dexmedetomidine given to horses during isoflurane 

anaesthesia had limited cardiopulmonary effects, but failed to reduce the dose of 

isoflurane required for maintenance. Recovery from anaesthesia was statistically (but 

not clinically) significantly longer after the dexmedetomidine CRI, but was of better 

quality. 

The design of the present study had limitations, especially to detect anaesthetic-

sparing effects of dexmedetomidine. This may have been due to difficulty in correct 

assessment of depth of anaesthesia. Ringer et al. (2007) reported that, on the basis of the 
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classical parameters and ocular signs usually used to judge depth of anaesthesia, horses 

at the ʻideal depthʼ appear more lightly anaesthetized when a CRI of medetomidine is 

used. They suggested that horses anaesthetized with medetomidine and assessed as 

ʻlightʼ by the anaesthetist, did not respond to noxious stimuli. In previous studies carried 

out in our clinic using methods similar to those used here, we failed to demonstrate an 

isoflurane sparing effect of CRIs of romifidine or detomidine in horses undergoing 

routine surgical procedures (Devisscher et al. 2010; Schauvliege et al. 2011). An 

experimental ‘MAC reduction study’ is required to determine if there are isoflurane 

sparing effects of dexmedetomidine in horses. 

The dose of dexmedetomidine used for pre-anaesthetic sedation of the horses 

was based on previous studies where 7 μg/kg medetomidine was estimated to be 

equipotent to 3.5 μg/kg dexmedetomidine (Bettschart-Wolfensberger et al. 2005). In our 

previous experimental study (Marcilla et al. 2010), this dose produced an adequate level 

of sedation. However, in the present study, with clinical cases involving different types 

of horses of varying temperaments, the level of sedation was insufficient in eleven of 

forty horses and an additional dose of dexmedetomidine was required. Thus slightly 

higher doses than those used in this study might be preferable in order to obtain 

acceptable sedation in individual patients, as adequate sedation is essential prior to 

induction with ketamine. Induction of anaesthesia and subsequent endotracheal 

intubation were uneventful. 

In our previous study, the cardiopulmonary effects of two different CRIs of 

dexmedetomidine were compared (1 and 1.75 μg/kg/hr) in experimental ponies 

(Marcilla et al. 2010). The protocol involved a total of 150 minutes of anaesthesia with 

isoflurane, during which there were periods of infusion of dexmedetomidine at one of 

the dose rates tested, and periods of ‘control’ with no dexmedetomidine CRI. Thus the 

results are not strictly comparable with this current study, which examined only sixty 

minutes of anaesthesia, involved lower FE´ISO and included surgical stimulation. In the 

experimental study, with both administration rates, typical 2-agonist associated 

cardiovascular effects were recorded, but cardiovascular function remained within 

clinically acceptable limits in all the ponies. However, arterial hypoxaemia was present 

in four of six ponies. It was considered that this was because of the conformation of the 

ponies, resulting in alveolar collapse during anaesthesia, causing right-to-left shunting 
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in the pulmonary circulation (Nyman & Hedenstierna 1989), which has been shown to 

be more pronounced in fat, round bellied horses (Moens 1989). Cardiovascular function 

was comparable with both dexmedetomidine administration rates in ponies, possibly 

due to the occurrence of a ‘ceiling effect’. On this basis, the higher of the doses tested 

was used in the present study, as it was hypothesized that it would provide more 

sedation, analgesia, and isoflurane sparing effects compared to the lower dose, without 

causing more pronounced cardiovascular depression. 

In this present study, cardiovascular function was well maintained in group D. 

Overall, HR was significantly lower compared with group S, a typical side effect of 2-

agonists. The observed decrease in HR was minimal and no periods of severe 

bradycardia were observed. Only two out of forty horses showed second degree atrio-

ventricular blocks, and there was no need for treatment. Heart rate increased over time 

in both groups, probably due to a gradual waning of the effects of the dexmedetomidine 

administered for premedication. The cardiopulmonary effects of dexmedetomidine have 

been shown to be short lasting and should be minimal after thirty minutes, while the 

plasma concentration should be below the minimal level of detection (0.05 ng/mL) 

within sixty to ninety minutes (Bettschart-Wolfensberger et al. 2005). Arterial blood 

pressures (ABPs) decreased over time in both groups, again probably due to a gradually 

diminishing effect of the dose of dexmedetomidine used for premedication, but also 

possibly partly due to the increase in FE´ISO that occurred over time, although this 

increase was small and unlikely to be clinically significant. Although ABP tended to be 

higher in group D, the difference with group S was not statistically significant. In part, 

this may be explained by the use of dobutamine to maintain MAP above 70 mmHg in 

both groups, although the difference in dobutamine used between groups was not 

statistically significant. 

An interaction between treatment and time was found for CI. A peak at T30 

occurred in group S, compared to the values at T15 and T45, while CI remained stable 

for group D. A possible explanation is that surgical intervention usually started close to 

thirty minutes after anaesthesia induction, and it is possible that the sedation and 

analgesia provided by the infusion of dexmedetomidine blunted the autonomic response 

to noxious stimulation. An interaction between treatment and time was also observed 

for DO2I (Fig. 4), which changed over time in a similar way as CI, demonstrating the 
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clear relationship between both variables. In agreement with these findings, the need for 

additional doses of ketamine tended to be lower and less frequent in horses in group D. 

It is also interesting to note that although FE´ISO was similar in both groups, CI was not 

significantly different between treatments, so was not adversely affected by the 

dexmedetomidine infusion despite the decrease in HR. This contrasts with the results of 

the experimental studies (Marcilla et al. 2010) in which dexmedetomidine CRI resulted 

in a significant decrease in CI. 

Arterial partial pressure of oxygen was statistically significantly lower in group 

D compared with group S (Fig. 5), but always in the range to fully saturate 

haemoglobin, and therefore there was no clinical significance and CaO2 was comparable 

in both groups. In conscious horses, 2-agonists do cause a small, but usually 

significant, fall in PaO2 (England & Clarke 1996), but the cause has not been 

definitively proven. In the present study most horses were ventilated, so inadequate 

ventilation was not the cause. Interestingly, all four horses in group S positioned in 

lateral recumbency were able to maintain PaCO2 below 8 kPa (60 mmHg) and PaO2 

above 13.3 kPa (100 mmHg) without the use of mechanical ventilation. In contrast, in 

group D, six out of seven laterally recumbent horses needed mechanical ventilation, 

suggesting that an infusion of dexmedetomidine may reduce respiratory drive in 

isoflurane anaesthetized horses. A previous study with medetomidine in isoflurane 

anaesthetized horses (Kalchofner et al. 2006) reported that only three out 300 horses 

needed mechanical ventilation. However, in that study mechanical ventilation was only 

initiated when apnea longer than one minute occurred.  

Recovery remains a critical phase in equine anaesthesia. The experimental 

ponies in our previous study received CRI of dexmedetomidine during anaesthesia, but 

no additional sedation at the end of anaesthesia. They recovered well with minimal or 

no ataxia (Marcilla et al. 2010). However, it is possible that there was a ʻlearning 

effectʼ, as the ponies had been already anaesthetized for different trials. In the present 

study, all horses in both groups received dexmedetomidine IV (0.875 μg/kg) prior the 

recovery period, this dose being comparable to the 2 μg/kg of IV medetomidine that has 

been previously described for use under clinical circumstances (Ringer et al. 2007). 

For the evaluation of the recovery scores, the same experienced anaesthesist, 

unaware of the group, evaluated the recoveries from the video images. Although the 
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scale used was simple, studies comparing such as scale with more complex scales 

appeared to have demonstrated that all are equally reliable in assessing recovery quality 

after general anaesthesia in horses (Vettorato et al. 2010). In the present study recovery 

was of good quality in both groups, but both had received extra sedation at this time. 

However, the recovery was scored to be better in group D, the horses having fewer 

attempts to stand and taking significantly longer times to sternal recumbency and to 

their first attempt to stand than did horses in group S. Moreover, after extubation horses 

in group D tended to stay in lateral recumbency for a longer period before going to the 

sternal position, suggesting that they had recovered from anaesthesia but were more 

sedated than horses in group S.  

In conclusion, the results of the present study demonstrated that a 

dexmedetomidine CRI at 1.75 μg/kg/hr, given to healthy isoflurane anaesthetized horses 

undergoing surgery, failed to reduce the FE´ISO required to maintain anaesthesia under 

the conditions of this clinical trial, but had no clinically relevant effects on the 

cardiovascular system. Although PaO2 was significantly lower in group D, DO2I did not 

differ between groups. The horses receiving dexmedetomidine CRI took longer to 

recover but the recovery quality was better than that of group S. Experimental studies 

are required to find if, and at what dose, a dexmedetomidine CRI can reduce the MAC 

of isoflurane in horses. 
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Summary 

Reasons for performing study Dexmedetomidine has been administered in the equine 

as a constant rate infusion (CRI) during inhalation anaesthesia preserving optimal 

cardiopulmonary function with calm and coordinated recoveries. Inhalant anaesthetic 

sparing effects have been demonstrated in other species but not in horses. 

Objectives To determine the effects of a CRI of dexmedetomidine on the minimum 

alveolar concentration (MAC) of sevoflurane in ponies. 

Methods Six healthy adult ponies were involved in this prospective, randomized, 

crossover, blinded, experimental study. Each pony was anaesthetized twice (three-

weeks washout period). After induction with sevoflurane in oxygen (via nasotracheal 

tube), the ponies were positioned on a surgical table (T0) and anaesthesia was 

maintained with sevoflurane (expired sevoflurane fraction 2.5%) in 55% oxygen. The 

ponies were randomly allocated to treatment D [intravenous (IV) dexmedetomidine 3.5 

µg/kg (T10-T15) followed by a CRI of dexmededomidine at 1.75 µg/kg/hr] or treatment 

S (bolus and CRI of saline at the same volume and rate as treatment D). After T60, 

MAC determination, using a classic bracketing technique, was initiated. Stimuli 

consisted of constant-current electrical stimuli at the skin of the lateral pastern region. 

Triplicate MAC estimations were obtained and averaged in each pony. Monitoring 

included pulse oximetry, electrocardiography, anaesthetic gas monitoring, arterial blood 

pressure measurement and arterial blood gases. Normocapnia was maintained by 

mechanical ventilation. Analysis of variance (treatment and period as fixed factors) was 

used to detect differences between treatments (α = 0.05). 

Results An IV dexmedetomidine CRI decreased mean ± SD sevoflurane MAC from 

2.42 ± 0.55% to 1.07 ± 0.21% (mean MAC reduction 53 ± 15%).  

Conclusions and clinical relevance A dexmedetomidine CRI at the reported dose 

significantly reduces the MAC of sevoflurane. 
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Introduction 

Balanced anaesthetic techniques are often used to reduce the required amount of 

inhalants and their associated cardiovascular effects (Steffey & Howland 1978). Alpha2-

agonists produce sedation and analgesia in all species and have been shown to reduce 

inhalational anaesthetic requirements when administered as a bolus (Steffey et al. 2000) 

or as a constant rate infusion (CRI) in horses (Wagner et al. 1992; Bettschart-

Wolfensberger et al. 2001; Neges et al. 2003; Kuhn et al. 2004), although clear 

minimum alveolar concentration (MAC) reductions were not always reported 

(Devisscher et al. 2010; Schauvliege et al. 2011; Marcilla et al. 2012). However, their 

classic side effects in horses (bradycardia, arrhythmias, a decrease in cardiac output and 

an increase in vascular resistance (England & Clarke 1996; Yamashita et al. 2000) 

should be considered.  

The use of dexmedetomidine, currently the most selective 2-agonist agent, has 

been reported in ponies at the dose of 3.5 µg/kg (Bettschart-Wolfensberger et al. 2005). 

Its use as a CRI experimentally in ponies (at rates of 1 and 1.75 µg/kg/hr) (Marcilla et 

al. 2010) and clinically in horses (1.75 µg/kg/hr) (Marcilla et al. 2012) after a sedative 

dose of 3.5 µg/kg has also been studied. In ponies, dexmedetomidine has been shown to 

be a rapidly redistributed and short-acting sedative drug, with a rapid initial decline of 

the drug concentration, which indicates that plasma levels can be rapidly adjusted to the 

needs of the patients (Bettschart-Wolfensberger et al. 2005). These characteristics 

encourage the use of dexmedetomidine as a CRI in equine balanced anaesthetic 

techniques. 

In the present MAC study, sevoflurane was chosen because of its low blood 

solubility, which facilitates a quick induction and recovery, as well as more rapid 

changes in anaesthetic depth compared with other volatile agents (Brown 1995). 

Additionally, sevoflurane has an acceptable smell and induces a smooth induction of 

anaesthesia without breath holding or signs of airway irritation (Aida et al. 1994). The 

MAC of sevoflurane in horses has been reported to be 2.31 ± 0.11% (Aida et al. 1994), 

2.42 ± 0.24% (Rezende et al. 2011) and 2.84 ± 0.16% (Steffey et al. 2005) in different 

studies. This volatile agent is presently used in the equine (Matthews et al. 1999; 

Rezende et al. 2011) although its use is not licensed. 
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The objective of the present study was to determine the MAC of sevoflurane in 

anaesthetized ponies when receiving a CRI of dexmedetomidine or a CRI of saline by 

using a constant-current (CC) noxious stimulation (Levionnois et al. 2009). 

 

Materials and methods 

The experiment was approved by the Ethical Committee of the Faculty of Veterinary 

Medicine of the University of Ghent (2011/059). 

 

Animals and instrumentation 

Six healthy ponies (five geldings and one mare) aged 12.7 ± 2.8 years and weighing 294 

± 51 kg were included in this study. The left carotid artery had been transposed to a 

subcutaneous (SC) position at least seven years before the experiments. Food (not 

water) was withheld for twelve hours before anaesthesia. 

 A 14-gauge intravenous (IV) catheter (Venocan, Kruuse, Denmark)
 
was placed 

in the left jugular vein following SC administration of 0.5 mL mepivacaine 2% 

(Scandicaine, Astrazeneca, Belgium). A nasotracheal silicone tube (Endo-Tracheaal Sil 

V-PET-14/16, Vtrade, Belgium) was inserted into the trachea, via the nose, using 

lidocaine gel (Xylocaine, Astrazeneca, Belgium) and silicone spray (Silikonspray, 

Kirchner & Wilhelm GmbH & Co. KG, Germany) to facilitate placement. 

Preanaesthetic medication was not administered. A rope twitch was placed on the nose 

during nasotracheal intubation of the less cooperative ponies. 

 The ponies were manually restrained against the wall of the recovery box by two 

anaesthetists, while head and tail ropes were used for additional support (another two 

persons). Cotton was placed inside the ears to reduce auditory stimuli. The nasotracheal 

tube was connected to a circle system (Large Animal Ventilator Dräger AV, North 

American Dräger, PA, USA) with a 30 L reservoir bag, using plastic breathing hoses of 

3.5 m length and 55 mm internal diameter. Anaesthesia was induced with 5% 

sevoflurane (Sevorane, Abbott, Belgium) in 8 L/min
 
oxygen. The induction time (time 

from connection to the anaesthetic machine to lateral recumbency) and expired 

sevoflurane fraction (FE´SEVO) at the moment of induction were recorded. 

 After induction of anaesthesia, the ponies remained in lateral recumbency while 

inhaling sevoflurane to deepen the plane of anaesthesia, for three to five minutes. They 
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were then hoisted onto a surgical table covered with soft foam rubber pillows, and 

positioned in right lateral recumbency. The nasotracheal tube was then connected to a 

large animal anaesthetic unit (Matrx, Matrx Medical Inc., NY, USA mounted on a Sulla 

909V, Dräger, Germany) and a large animal ventilator (Smith respirator LA 2100 model 

2002, Veterinary Technics/BDO-Medipass, The Netherlands). Anaesthesia was 

maintained with sevoflurane in oxygen/air with an inspired oxygen fraction (FiO2) of 

55%. The sevoflurane vaporizer setting was adjusted to maintain an FE´SEVO of 2.5% 

for the first hour of anaesthesia. Respiration mode was ‘assisted-controlled’, with a tidal 

volume of 10 ml/kg, respiratory rate of 10 breaths/min, peak inspiratory pressure of 

1.96 kPa (20 cmH2O) and inspiration time of 1.8 seconds. Positive end expiratory 

pressure (PEEP) of 0.49 kPa (5 cmH2O) was applied by means of a home-made, plastic, 

water-filled cylinder, in which the distal end of the expiratory limb was positioned five 

cm below the water surface. The settings were adjusted to maintain arterial partial 

pressure of carbon dioxide (PaCO2) between 6.67 and 8.00 kPa (50 and 60 mmHg) . 

 Lactated Ringer´s solution (Hemofiltratie BH 504, Dirinco, The Netherlands) 

was infused during the whole anaesthetic (3 ml/kg/hr). A urinary catheter was placed. 

 A 22-gauge catheter (Venocan, Kruuse, Denmark) was placed in the left carotid 

artery and connected to a pressure transducer (at the level of the right atrium and zeroed 

to atmospheric pressure) to record arterial blood pressures. Two additional catheters 

were placed (left facial and metatarsal arteries), and non-invasive blood pressure cuffs 

on the tail, both metacarpal and right metatarsal arteries for the performance of a 

parallel study. Blood samples were withdrawn every twenty to thirty minutes from the 

facial arterial catheter for blood gas analysis [pH, standard base excess (SBE) and 

arterial partial pressures of oxygen (PaO2) and carbon dioxide] (ABL5, Radiometer, 

Denmark). Packed cell volume was determined by centrifugation. 

 Inspiratory and expiratory carbon dioxide, oxygen and sevoflurane 

concentrations were continuously measured using a methane-insensitive, 

multiparameter monitoring device (Datex Ohmeda, S/5, D-LCC15-03, OR, USA), 

which was calibrated before every procedure (QUICK CAL
TM

 Calibration gas 

Desflurane, GE Healthcare Finland Oy, Finland) and also used to record the 

electrocardiogram, systolic, diastolic and mean arterial pressures, peripheral arterial 

saturation by pulse oximetry (probe on the tongue) and body temperature by a nasal 
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probe. A warm-water blanket was placed under the ponies (Aquamatic K Thermia 

Model RK-625, Gorman-Rupp Industries Div., OH, USA) and the room temperature 

maintained at 23 °C in order to reduce heat loss. 

 According to our protocol, dobutamine would be infused to maintain the mean 

arterial pressure > 65 mmHg in case of hypotension (mean arterial pressure < 60 

mmHg) and the FiO2 would be increased if hypoxaemia occurred (PaO2 < 60 mmHg), 

but these measures were not needed in any of the ponies. 

 

Experimental design 

Each pony was anaesthetized twice and was administered treatment S (saline) or D 

(dexmedetomidine), with a three weeks washout period. The order of the treatments was 

randomized.  

Once the ponies were positioned on the table (T0), anaesthesia was maintained 

for sixty minutes (T60) with sevoflurane at an FE´SEVO of 2.5%. At T10, the ponies 

received an IV bolus of dexmedetomidine (3.5 µg/kg) (Dexdomitor, Orion Corporation, 

Finland) (treatment D) or a bolus of saline at the same volume (treatment S) over a 

period of five minutes (T10-T15). From T15 onwards, a CRI of dexmedetomidine was 

administered (1.75 µg/kg/hr) (treatment D) or a saline CRI at the same volume and rate 

(treatment S), until the end of the anaesthesia. 

 

Determination of MAC 

A CC electrical stimulation was used for MAC determination (Levionnois et al. 2009). 

Two electrodes (Neuroline 70005-J/12, Ambu GmbH, Germany) were placed on the 

shaved and degreased skin of the lateral aspect of the distal pastern region of the left 

forelimb with an interelectrode distance of one cm. Both electrodes were connected to 

an electrical stimulator (Grass S88, Grass Medical Instruments, MA, USA) equipped 

with a CC unit (Grass Constant Current Unit, Grass Technologies, RI, USA) to ensure 

delivery of CC stimuli despite possible variations in interelectrode resistance. The 

stimuli consisted of a twenty five millisecond train of five one millisecond CC (forty 

milliampere) square-wave pulses. The trains of five were delivered at a frequency of 5 

hertz. The resistance between the electrodes was measured before each stimulation 

using a multimeter (Digital multimeter, VC260, Voltcraft, Conrad Electronic SE, 
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Germany). If it increased above three kiloohms, the electrodes were replaced to ensure 

discharge of a current of forty milliampere. Further details of the equipment used have 

been previously reported (Spadavecchia et al. 2003). 

After sixty minutes of anaesthesia using 2.5% FE´SEVO, the first CC noxious 

stimulus was applied. The response to electrical stimulation was evaluated by the main 

anaesthetist (MGM), who was unaware of the treatment and was not allowed to observe 

the monitored variables (only clinical assessment of anaesthetic depth). The response to 

the electrical stimuli was considered positive when a gross purposeful movement of 

head, limbs or tail occurred and/or swallowing or generalized muscle tremors were 

observed following a CC noxious stimulus. Gross purposeful movement without CC 

stimulation was also considered a positive response. A negative response was where 

none of the described movements occurred, whereas nystagmus and changes to 

physiological parameters were considered as negative responses as well. If the reaction 

was negative, the FE´SEVO was decreased by 0.2% and maintained for twenty minutes 

before a further stimulation. If the response was positive, the FE´SEVO was increased 

by 0.2% and maintained for twenty minutes prior to further stimulation. The MAC was 

determined as the average of the lowest concentration preventing a positive response 

and the highest concentration allowing a positive response. After the first MAC 

estimation the FE´SEVO was again increased or decreased in steps of 0.2% (second 

estimation of MAC value). For the third estimation of MAC, increases or decreases of 

FE´SEVO were made in steps of 0.1%. 

Each MAC determination was corrected to standard atmospheric pressure. The 

final MAC value was determined as the mean of the three estimations. Local 

tetracycline spray (Chlortetra Spray, Eurovet, Belgium) was applied to the stimulated 

area at the end of the experiment. No skin lacerations or wounds were noticed. 

 

Recording of cardiopulmonary variables and arterial blood gases 

Cardiopulmonary values were recorded every ten minutes, while arterial blood gases 

were determined every twenty-thirty minutes. The mean of the three values recorded 

before each MAC estimation (i.e. recorded immediately before each electrical 

stimulation for first, second and third MAC estimations) was additionally calculated. 
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Recovery period 

After determination of the third MAC value and once the ponies were breathing 

spontaneously, they received a bolus of dexmedetomidine (0.875 µg/kg) and were 

transported to a padded recovery box. Oxygen was insufflated (8 L/min) through the 

nasotracheal tube and nasally after extubation. Intranasal phenylephrine (Phenylephrine 

10%, Théa Pharma, Belgium) was administered into both nostrils whilst still intubated 

to reduce post-anaesthetic upper airway obstruction. After swallowing, the nasotracheal 

tube was removed. The ponies were allowed to recover with manual support of the tail. 

Extubation time, time to sternal recumbency and time to stand were recorded. 

Recoveries were scored as previously described (Marcilla et al. 2010) by the main 

anaesthesist, who was unaware of the administered treatment. 

 

Data analysis 

Analysis of variance with treatment and period as fixed factors was used to detect 

differences between treatments (α = 0.05). Correctness of the model was confirmed by 

analysis of the residuals: the Kolmogorov-Smirnov test indicated a normal distribution 

of the standardized residuals, while equality of variances and absence of outliers in the 

data set were confirmed using a scatterplot of the studentized residuals versus the 

predicted values. 

 

Results 

Placement of the nasotracheal tube was possible in all ponies without sedation within 

two to three minutes with minimal resistance, although a nose twitch was needed in 

some of them. Inflation of the cuff, lubricated with lidocaine gel, initially resulted in a 

few (1-3) attempts to cough, but was well tolerated afterwards.  

Induction of anaesthesia was smooth with minimal struggling in five of the six 

ponies. Mean induction time in those ponies was 8.8 ± 2.3 minutes after connection to 

the anaesthetic machine, while mean ± SD FE´SEVO values of 2.12 ± 0.14% were 

required to achieve lateral recumbency.  

Pony number 3, a relatively nervous female, panicked and struggled when signs 

of ataxia occurred. For safety reasons, 1 mg/kg xylazine (Xyl-M, VMD, Belgium) was 

administered IV. After this, induction of anaesthesia was uneventful. The bolus of the 
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test drug was administered forty minutes after xylazine in order to avoid possible 

interferences with MAC determination. The remainder of the anaesthesia was the same 

as in the other ponies, with a first stimulus forty five minutes after administration of the 

drug bolus. The same sedative protocol was used for the second treatment in that pony. 

 

Determination of MAC (Table 1)  

Table 1 includes the individual MAC values for treatment S and D. The sevoflurane 

MAC values (mean ± SD) of treatment D (1.07 ± 0.21%) were significantly lower 

compared to treatment S (2.42 ± 0.55%). The sevoflurane MAC reduction induced by 

the dexmedetomidine CRI ranged between 34 and 79%, with a mean value of 53 ± 15%. 

 From the thirty six MAC estimations (three per pony), fourteen were negative 

responses to stimuli and twenty two were positive responses (fifteen were clear, 

purposeful movements in response to the electrical stimuli or the inflation of a non-

invasive blood pressure cuff and the remaining seven positive reactions were considered 

spontaneous movements).  

 

Table 1: Individual (mean and range) and overall mean (± SD) sevoflurane 

minimum alveolar concentration (MAC) values (%) and percentage reduction of 

sevoflurane MAC.  

 
Pony 

 
Treatment S 

 
Treatment D 

Percentage 
MAC Reduction 

1 3.52  (3.48-3.53) 0.74  (0.71-0.76) 79 
2 2.21  (1.8-2.44) 0.99  (0.96-1.01) 55 
3* 2.34  (2.17-2.62) 1.02  (1-1.05) 56 
4 2.21  (2.2-2.25) 1.06  (0.96-1.11) 52 
5 2.23  (2.22-2.27) 1.28  (1-1.45) 43 
6 1.99  (1.96-2.01) 1.32  (1.15-1.4) 34 

    
Mean ± SD 2.42 ± 0.55 1.07 ± 0.21 53 ± 15 

Ponies received either a bolus of saline followed by a constant rate infusion (CRI;  

treatment S) or a bolus of dexmedetomidine followed by a CRI (treatment D).  

*Pony 3 received 1 mg/kg bwt xylazine (IV) prior to induction. 
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Cardiopulmonary system and body temperature (Table 2) 

Throughout anaesthesia, cardiopulmonary function was well maintained within 

acceptable limits in all the ponies receiving both treatments. 

 

Table 2: Cardiopulmonary parameters, body temperature and duration of 

anaesthesia in six sevoflurane anaesthetized ponies.  

Variable Unit  Treatment S Treatment D 

Heart rate beats/min 42 ± 5 36 ± 3 

Systolic arterial pressure mmHg 141 ± 15 104 ± 7 
Mean arterial pressure mmHg 114 ± 8 83 ± 4 
Diastolic arterial pressure mmHg 94 ± 6 69 ± 4 
Arterial pH   - 7.36 ± 0.04 7.42 ± 0.02 
Standard base excess mmol/L

 
5 ± 3 9 ± 1 

 PaCO2 kPa 7.2 ± 1 7 ± 1 

 mmHg 54 ± 4 52 ± 4 
 PaO2 kPa 14.3 ± 6.1 15.9 ± 5.7 

 mmHg 107 ± 46 119 ± 43 

Body temperature °C 37.0 ± 0.7 36.4 ± 0.6 
Duration of anaesthesia min 178 ± 32 330 ± 32 

Ponies received either a bolus of saline followed by a CRI (treatment S) or a bolus of 

dexmedetomidine followed by a CRI (treatment D). Values were obtained at the time of 

MAC determination (mean±SD). 

 

Duration of anaesthesia (Table 2) and recovery (Table 3) 

Total anaesthesia times (mean ± SD) were significantly shorter for treatment S (178 ± 

32 minutes) compared with treatment D (330 ± 32 minutes). 

Recovery qualities for all twelve anaesthetic procedures were graded as score 1 

(1 attempt to stand, no ataxia). Mean (± SD) extubation time (treatment S 8 ± 4 versus 

treatment D 9 ± 4 minutes), time to sternal recumbency (treatment S 22 ± 5 versus 

treatment D 23 ± 10 minutes) and time to stand (treatment S 29 ± 4 versus treatment D 

27 ± 9 minutes) were comparable between treatments. 
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Table 3: Extubation, sternal and standing times (in minutes) and number of 

attempts to stand in six anaesthetized ponies.  

Pony Treatment Extubation Time Time to sternal Time to stand Attemps to stand 

1 S 5 20 30 1 
1 D 7 13 23 1 
2 S 15 27 32 1 
2 D 8 33 38 1 
3* S 7 29 30 1 
3* D 15 30 30 1 
4 S 2 17 32 1 
4 D 7 10 15 1 
5 S 10 20 22 1 
5 D 5 19 20 1 

6 S 7 20 25 1 
6 D 12 30 35 1 

Ponies received either a bolus of saline followed by a constant rate infusion (CRI; treatment S) or a bolus 

of dexmedetomidine followed by a CRI (treatment D).
*
Pony 3 received 1 mg/kg bwt xylazine (IV) prior 

induction. 

 

Discussion 

The results of this study show that a dexmedetomidine bolus followed by a CRI of 

dexmedetomidine at the reported doses significantly reduces the MAC of sevoflurane 

(mean ± SD reduction of 53 ± 15%), although individual differences were found.  

Induction of anaesthesia by halothane (Bennett et al. 2004), isoflurane (Steffey 

et al. 2000), sevoflurane (Aida et al. 1994) and desflurane (Tendillo et al. 1997) via face 

mask has been used in MAC studies in the equine in order to avoid the possible impact 

of other drugs. To avoid pollution of the working place and to minimize struggling with 

the ponies, nasotracheal intubation was preferred over the mask induction technique. To 

the authors´ knowledge this technique has never been described for MAC studies in the 

equine. 

In the present study, stepwise (0.2%) increases or decreases in FE´SEVO were 

quickly obtained, minimizing the duration of anaesthesia. The new level of FE´SEVO 

was maintained for twenty minutes before the next stimulus was applied. This period 

was shorter than in most similar studies, so it might be hypothesized that the interval 

was too short to assure a good agreement between the end-tidal and arterial sevoflurane 

concentration. However, the difference between the inspiratory and expiratory 

sevoflurane concentrations was never higher than 10%, suggesting that the difference 
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between the end-tidal and arterial sevoflurane concentration was minimal. Indeed, 

factors which produce errors in the estimation of arterial anaesthetic partial pressure 

from end-tidal pressure analysis usually also contribute to large inspired to end tidal 

differences (Eger & Bahlman 1971). 

Five of the six ponies tolerated the assisted induction technique quite well. One 

relatively nervous female pony panicked severely once she became ataxic during the 

induction of anesthesia. In order to reduce the risk for both the pony and the 

investigators, xylazine was administered. Once a good level of sedation was achieved, 

induction with sevoflurane by the nasotracheal tube was performed without problems. 

Xylazine was chosen due to its short duration of action (Yamashita et al. 2000), 

although dexmedetomidine would also have been a viable alternative (Bettschart-

Wolfensberger et al. 2005). To further reduce any influence of the administered sedative 

drug in that pony, the application of the first stimulus was delayed ninety minutes after 

the xylazine administration, a time sufficient to allow the MAC sparing effect of 

xylazine to have worn off (Steffey et al. 2000).  

The MAC of an inhaled anaesthetic has been defined as the concentration 

required to prevent gross movement in response to a defined supramaximal noxious 

stimulus and has been used to compare the potencies of volatile anaesthetic agents (Eger 

et al. 1965). The MAC is affected by multiple factors (Eger et al. 1965; Regan & Eger 

1976; Yamashita et al. 2009), such as differences in MAC determination methodology 

[type of stimulus (Steffey et al. 2000; Levionnois et al. 2009), place of stimulation 

(Doherty & Frazier 1998; Steffey et al. 2000; Bettschart-Wolfensberger et al. 2001) or 

definition of responses (Aida et al. 1994)], which may be responsible for the collection 

of different MAC values in different studies. To avoid influences in the present study, 

the ponies of the same bodyweight and age were used in a crossover study design and 

premedication was avoided (only one pony required sedation). Normocapnia was 

maintained by using mechanical ventilation, while PEEP and a warm-water blanket 

were used in order to reduce the risk of hypoxaemia (Wilson & McFeely 1991; Moens 

& Böhm 2011) and hypothermia respectively. Although the experiment was performed 

near sea level, a correction to standard atmospheric pressure was made to compensate 

for possible differences in ambient pressure. 
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The most common stimulus in equines is an electrical stimulation of the oral 

mucosal membranes (Aida et al. 1994; Tendillo et al. 1997; Steffey et al. 2000; Rezende 

et al. 2011). A similar stimulus has also been described over the palmar digital nerve 

using subcutaneous electrodes (Doherty & Frazier 1998) and at the coronary band by 

acupuncture needles (Bettschart-Wolfensberger et al. 2001). Quite recently, CC surface-

electrode stimulation was shown to result in more repeatable MAC estimations and 

clearer reactions compared with two constant-voltage stimuli (Levionnois et al. 2009). 

In the present study, the surface electrodes were placed on the shaved and degreased 

skin over the lateral aspect of the distal pastern region of the left forelimb. All MAC 

determinations per pony and per session were close together, confirming the reportedly 

high repeatability of MAC determinations using the CC stimulation technique. 

In most studies, only gross, purposeful movements induced by a stimulus are 

accepted as positive responses (Doherty & Frazier 1998; Bennett et al. 2004). In the 

present experiment, nystagmus and physiological parameter modifications, such as 

increases in heart rate and arterial blood pressure, were not considered as positive 

reactions, but in contrast with most MAC studies, swallowing, muscle tremors and any 

movements of head, limbs, ears or tail were all considered as positive responses. No 

attempts were made to distinguish between purposeful movements and a classic 

withdrawal reflex, because the distinction between them can be subtle and is often 

subjective. Moreover, withdrawal reflexes, swallowing, etc. were considered as positive 

responses because they are not tolerated under clinical circumstances either. The 

objective of the present study was to determine the MAC at which a surgical depth of 

anaesthesia is reached. This classification of the responses to electrical stimuli was 

similar to the one used by Aida et al. (1994), who rated the responses on a two-point 

scale, positive or negative.  

 The MAC value of sevoflurane during treatment S was 2.42 ± 0.55%, which is 

similar to that reported in horses (Aida et al. 1994; Steffey et al. 2005; Rezende et al. 

2011), despite the use of a different definition of MAC. In order to reduce the amount of 

volatile anaesthetics used and to minimize their cardiovascular depressant effects, 

several MAC studies with different 2-agonists have been performed in horses. Single 

boluses of xylazine reduced the MAC of isoflurane (Steffey et al. 2000) and halothane 

(Bennett et al. 2004). A romifidine CRI significantly reduced the expiratory isoflurane 
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concentration in one clinical study (Kuhn et al. 2004), whereas another failed to find a 

clear reduction of the anaesthetic requirement (Devisscher et al. 2010). Detomidine 

reduced the MAC of halothane by 33% when infused continuously (Wagner et al. 

1992), although no reduction was found in isoflurane anaesthetized horses (Schauvliege 

et al. 2011). A medetomidine CRI reduced the MAC of desflurane by 28% in 

experimental ponies (Bettschart-Wolfensberger et al. 2001) and about 20% in isoflurane 

anaesthetized clinical horses (Neges et al. 2003). 

A bolus of dexmedetomidine followed by a CRI failed to reduce the isoflurane 

requirements in our previous clinical study (Marcilla et al. 2012). In contrast, a very 

clear and significant MAC reduction was found here. It is interesting to note that all of 

the studies in which no difference in the end-tidal anaesthetic agent concentration could 

be demonstrated, were blinded clinical trials (Devisscher et al. 2010; Schauvliege et al. 

2011; Marcilla et al. 2012). A possible reason might be that horses receiving infusions 

of 2-agonists at the ʻideal depthʼ appeared to be more lightly anaesthetized on the basis 

of the classical parameters and ocular signs used to judge depth of anaesthesia (Ringer 

et al. 2007). Consequently, it becomes difficult to detect reductions in volatile 

anaesthetic requirements if the anaesthetist is unaware of the treatment and evaluates 

anaesthetic depth based on clinical parameters (Marcilla et al. 2012). 

Throughout anaesthesia, cardiopulmonary function and arterial blood gases were 

clinically acceptable. Further studies are necessary to evaluate the effects of 

dexmedetomidine in addition to sevoflurane in comparison with pure sevoflurane 

anaesthesia at the respective MAC levels, with detailed cardiopulmonary assessment. 

Values before MAC estimation, as shown in table 2, are not compared statistically 

between both treatments as duration of anaesthesia was significantly longer during 

treatment D and cardiopulmonary function may change over time (Gasthuys et al. 1990; 

Steffey et al. 1990).  

In order to avoid potential hypoxaemia, mechanical ventilation combined with 

PEEP was applied (Wilson & McFeely 1991; Moens & Böhm 2011), while an FiO2 of 

55% was maintained to avoid atelectasis (Marntell et al. 2005). Although the PaO2 

values were still lower than theoretically expected, the mean arterial PaO2 was higher 

than 13.3 kPa (100 mmHg) in both treatments, and individual PaO2 values were never 

below 8 kPa (60 mmHg).  
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 All the ponies received a low dose of dexmedetomidine before the recovery and, 

despite a rather long duration of anaesthesia, all recoveries were very good and 

uneventful. Differences in recovery times and qualities were not found in this study, 

probably because these ponies had been anaesthetized previously and were used to 

recover from anaesthesia. 

 In conclusion, dexmedetomidine administered as a bolus followed by a CRI at 

the dose and rate reported here significantly decreased the MAC of sevoflurane by 53 ± 

15% (mean ± SD). 
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Abstract 

Objective To compare the effects of a constant rate infusion (CRI) of dexmedetomidine 

and morphine to those of morphine alone on the minimum end-tidal sevoflurane 

concentration necessary to prevent movement (MACNM) in ponies.  

Study design Prospective, randomized, crossover, blinded, experimental study. 

Animals Five healthy adult gelding ponies were anaesthetised twice with a three weeks 

washout period.  

Methods After induction of anaesthesia with sevoflurane in oxygen (via nasotracheal 

tube), the ponies were positioned on a surgical table (T0), and anaesthesia was 

maintained with sevoflurane (FE´SEVO 2.5%) in 55% oxygen. Monitoring included 

pulse oximetry, electrocardiography and measurement of anaesthetic gases, arterial 

blood pressure and body temperature. The ponies were mechanically ventilated and 

randomly allocated to receive IV treatment M [morphine 0.15 mg/kg (T10-T15) 

followed by a CRI (0.1 mg/kg/hr)] or treatment DM [dexmedetomidine 3.5 µg/kg plus 

morphine 0.15 mg/kg (T10-T15) followed by a CRI of dexmedetomidine 1.75 µg/kg/hr 

and morphine 0.1 mg/kg/hr]. At T60, a stepwise MACNM determination was initiated 

using constant current electrical stimuli at the skin of the lateral pastern region. 

Triplicate MACNM estimations were obtained and then averaged in each pony. Analysis 

of variance was used to detect differences between treatments ( = 0.05). 

Results Sevoflurane-morphine MACNM was 2.79 ± 0.73%. The addition of a continuous 

infusion of dexmedetomidine significantly reduced sevoflurane MACNM to 0.89 ± 

0.22% (mean MACNM reduction 67 ± 11%).  

Conclusion and clinical relevance Co-administration of dexmedetomidine and 

morphine CRIs significantly reduced the MACNM of sevoflurane compared with a CRI 

of morphine alone at the reported doses. 
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Introduction 

Morphine is a µ-opioid receptor agonist that has been used during equine anaesthesia 

mainly to provide analgesia. Its use has been considered controversial due to the 

potential occurrence of dangerous behaviour, cardiopulmonary disturbances, respiratory 

depression in anaesthetised horses (Steffey et al. 2003) and a reduction of 

gastrointestinal motility (Roger et al. 1985). However, clinical studies reported minimal 

haemodynamic and ventilatory changes (Mircica et al. 2003; Clark et al. 2005), 

improvement of the recovery qualities (Mircica et al. 2003; Love et al. 2006; Clark et al. 

2008) and no increased incidence of post surgical colic (Mircica et al. 2003).  

With regard to the effects of morphine on anaesthetic agent requirements, horses 

undergoing elective surgical procedures receiving a morphine constant rate infusion 

(CRI) tended to receive fewer and lower doses of additional anaesthetic drugs (Clark et 

al. 2005). In contrast, IV boluses of morphine at two different doses increased, 

decreased or did not change the minimum alveolar concentration (MAC) of isoflurane 

in anaesthetized horses (Steffey et al. 2003). The influence of a morphine infusion on 

the MAC of volatile agents has not been reported in horses. 

Alpha2-agonists are often combined with opioids in standing horses to achieve 

neuroleptoanalgesia, producing synergistic analgesic effects (Clarke & Paton 1988), 

resulting in reliable sedation and stable cardiorespiratory function (Solano et al. 2009). 

However, under general anaesthesia, the concurrent IV bolus administration of two 

doses of morphine failed to further reduce the MAC of halothane compared to xylazine 

alone in adult horses (Bennett et al. 2004). An IV dexmedetomidine CRI decreased the 

mean ± SD MAC of sevoflurane in ponies from 2.42 ± 0.55 to 1.07 ± 0.21% (Gozalo-

Marcilla et al. 2013) but, to date, the effect on MAC of adding a dexmedetomidine CRI 

to a morphine infusion has not been studied.  

Traditionally, the concept of the MAC is defined as the alveolar concentration of 

volatile anaesthetic agent at which 50% of the patients do not respond with purposeful 

movement to a supramaximal noxious stimulus (Merkel & Eger 1963). Differentiation 

between purposeful versus nonpurposeful movement is sometimes difficult and 

subjective. Derivatives of the traditional MAC such as the minimum end-tidal 

concentration of sevoflurane necessary to prevent movement (MACNM), have therefore 
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been described in the literature. From a clinical standpoint, MACNM may be more 

relevant than the traditional MAC (Seddighi et al. 2011, 2012). 

The main objectives of this study were to determine and compare the MACNM 

values of sevoflurane in experimental ponies receiving a CRI of morphine alone or 

combined with dexmedetomidine. 

 

Materials and methods 

The experiment was approved by the Local Ethical Committee of the Faculty of 

Veterinary Medicine of the University of Ghent (2011/168). 

 

Animals and instrumentation 

Five healthy gelding ponies, aged 13 ± 3 years, weighing 294 ± 57 kg with body 

condition scores of four out of five (Carroll & Huntington 1988) were included in this 

trial. 

Food, but not water, was withheld for twelve hours. Induction and maintenance 

of anaesthesia, fluid therapy and monitoring was performed as described by Gozalo-

Marcilla et al. (2013). Briefly, anaesthesia was induced in the recovery box with 

sevoflurane (Sevorane, Abbott, Belgium) in oxygen via a nasotracheal tube. After 

induction, the ponies were positioned on a surgical table in right lateral recumbency. 

General anaesthesia was maintained with sevoflurane in oxygen/air [inspired oxygen 

fraction (FiO2) of 55%]. The ponies were mechanically ventilated [intermittent positive 

pressure ventilation (IPPV) with tidal volume of 10 mL/kg and positive end-expiratory 

pressure (PEEP) of 0.49 kPa (5 cmH20)] to maintain the arterial partial pressure of 

carbon dioxide (PaCO2) between 6.67-8.00 kPa (50-60 mmHg). Lactated Ringer´s 

solution (Hemofiltratie BH 504, Dirinco, The Netherlands) was infused IV (3 mL/kg/hr) 

and a urinary catheter was placed. 

 Monitoring included electrocardiography, pulse oximetry, anaesthetic gas 

monitoring, invasive (transposed carotid artery) and non-invasive (right metacarpal 

artery) blood pressure (S/5 D-LCC15-03, Datex Ohmeda, OR, USA) and body 

temperature by a nasal probe. Arterial blood samples were withdrawn for blood gas 

analysis [pH, standard base excess and arterial partial pressures of oxygen (PaO2) and 

PaCO2 (ABL5, Radiometer, Denmark)]. A warm-water blanket was placed under the 
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ponies, bubble wrap was used to cover the ponies and the room temperature was 

maintained at 23°C. 

 According to our protocol, dobutamine would be infused to maintain the mean 

arterial pressure (MAP) over 65 mmHg in case MAP decreased below 60 mmHg and 

the FiO2 would be increased if severe hypoxaemia was present (PaO2 below 60 mmHg). 

 

Experimental design 

Each pony was anaesthetised twice for treatment M (morphine) or DM 

(dexmedetomidine plus morphine), in a randomized order with a three weeks washout 

period. The main anaesthetist (MGM) was unaware of the treatment. 

 Once on the table (T0), anaesthesia was maintained for sixty minutes (T60) with 

sevoflurane at an expired fraction (FE´SEVO) of 2.5%. At T10, the ponies received an 

IV bolus of morphine (0.15 mg/kg) (Morphine.HCl, Sterop, Belgium), combined with 

either a bolus of dexmedetomidine (3.5 µg/kg) (Dexdomitor, Orion Corporation, 

Finland) (treatment DM) or an equivalent volume of saline (treatment M), over five 

minutes (T10-T15). The different boluses were administered slowly by hand. From T15 

onwards, a morphine CRI was administered (0.1 mg/kg/hr), combined with 

dexmedetomidine (1.75 µg/kg/hr) (treatment DM), or saline, at the same volume and 

rate (treatment M) until the end of the anaesthesia.  

 

MACNM determination 

The MACNM of sevoflurane was determined applying constant current (CC) electrical 

stimuli to the skin of the lateral pastern region by means of an electrical stimulator 

(Grass S88, Grass medical instruments, MA, USA) equipped with a CC unit (Grass 

Constant Current Unit, Grass Technologies, RI, USA).  

At T60, the first CC stimulus was applied as previously described by Gozalo-

Marcilla et al. (2013). The response to electrical stimulation was assessed by the blinded 

anaesthetist who was allowed only to monitor reflex suppression, muscle tone and gross 

response to noxious stimulation. Positive reactions were considered gross purposeful 

movements, swallowing, generalized muscle tremors, movement of the head, limbs, 

ears or tail, or spontaneous movements without electrical stimulation. Nystagmus and 

physiological parameter modifications were considered negative responses. If the 
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reaction was negative, the FE´SEVO was decreased by 0.2%. Once this level was 

reached, it was maintained for twenty minutes before the next stimulation. This process 

was repeated until a positive response was obtained. If the first stimulus elicited a 

positive response, FE´SEVO was increased in 0.2% steps until a negative response was 

obtained. The MACNM was determined as the average of the lowest concentration 

preventing a positive response and the highest allowing a positive response. Triplicate 

MACNM estimations were obtained, corrected to standard atmospheric pressure and 

averaged in each pony. The correction to standard atmospheric pressure (MAC x PB / 

101.325 kPa; where PB was the ambient barometric pressure at the moment of each 

MAC estimation) was performed as reported by Mama et al. (1999), and using the data 

available from the Royal Meteorological Institute (RMI) of Belgium, which monitors 

hourly the exact PB at a location close to our institution. 

 

Recording of cardiopulmonary variables and arterial blood gases 

Cardiopulmonary values were recorded every ten minutes and arterial blood gas 

samples collected every twenty to thirty minutes. Cardiovascular data was recorded 

immediately before and arterial blood gases immediately after each electrical 

stimulation. For both cardiopulmonary variables and arterial blood gases, the mean of 

the 3 values recorded respectively before and after each MACNM estimation was 

calculated. 

 

Recovery period 

After the determination of the third MACNM value, CRIs and sevoflurane were 

discontinued and once breathing spontaneously, the ponies received dexmedetomidine 

(0.875 µg/kg, IV) and were transported to the recovery box. Oxygen was insufflated (8 

L/min) and intranasal phenylephrine (Phenylephrine 10%, Théa Pharma, Belgium) was 

administered into both nostrils to reduce post anaesthetic upper airway obstruction, with 

the nasotracheal tube in place. After swallowing, the nasotracheal tube was removed. 

Recoveries were manually assisted and scored by the same blinded anaesthetist using a 

scale of 1-5 (Table 1). Furthermore, recovery times including times to extubation and 

times to regain sternal recumbency and standing position were recorded.  
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Table 1: Scoring system used to grade recovery after sevoflurane anaesthesia in 

five adult ponies. 

 

Score Description 

1 One attempt to stand, no ataxia. 
2 One to two attempts to stand, some ataxia. 
3 More than two attempts to stand but quiet recovery. 
4 More than two attempts to stand, excitation. 
5 Severe excitation. Pony injured. 

 

Statistical analysis  

For the sevoflurane MACNM values, analysis of variance with treatment and period as 

fixed factors was used to detect differences between treatments ( = 0.05). As 

correctness of the model could not be confirmed by analysis of the residuals 

(Kolmogorov-Smirnov test) a non-parametric test for paired samples (Wilcoxon signed-

rank test) was performed. Analyses of variance were used to compare duration of 

anaesthesias and total amount of morphine administered. 
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Results 

MACNM determination 

Sevoflurane MACNM values (mean ± SD) for treatments M and DM were 2.79 ± 0.73% 

and 0.89 ± 0.22% respectively, indicating a mean MACNM reduction of 67 ± 11% 

(ranging from 53 to 78%) as shown in Table 2. 

 The responses were clear in all the ponies after electric stimulation, except for 

ponies 1 and 3 during treatment M, in which maintenance of anaesthesia was more 

difficult, with frequent spontaneous movements and fighting against the ventilator.  

 

Table 2: Individual mean MACNM values (%) for sevoflurane with a morphine 

infusion (treatment M) and for sevoflurane with morphine and dexmedetomidine 

infusions (treatment DM) in five adult ponies. 

Pony Treatment M Treatment DM % MACNM reduction 

1 4.07  0.89  78 
2 2.48  0.74  70 
3 2.56  0.62  76 
4 2.21  1.04  53 
5 2.65  1.15  57 

    
Mean±SD 2.79 ± 0.73 0.89 ± 0.22 67 ± 11 

Values corrected to one atmosphere at sea level (760 mmHg). 

 

Cardiopulmonary system  

Heart rate and arterial blood pressures were maintained within acceptable limits. No 

dobutamine was required in any of the ponies receiving either treatment. During 

treatment M, PaO2 in pony 1 decreased below 60 mm Hg (down to 48 mmHg at T150). 

In this case, the FiO2 was increased to 100%, but no change in PaO2 was observed (50 

mmHg at the end of the anaesthetic, at T240). Moreover, moderate hypoxaemia (PaO2 

60-80 mmHg) occurred in ponies 3 and 4 receiving treatment M. When receiving 

treatment DM moderate hypoxaemia was present in pony 1 while pony 4 showed a mild 

degree of hypoxaemia (80-90 mmHg). No significant differences in PaO2 were observed 

between treatments. Cardiopulmonary data are shown in Table 3.  
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Table 3: Cardiopulmonary parameters, body temperature and duration of 

anaesthesia in five sevoflurane anaesthetized ponies (mean ± SD) that received a 

morphine infusion (treatment M) or a morphine and dexmedetomidine infusion 

(treatment DM). 

Variable Unit  Treatment M Treatment DM 

Heart rate beats/min 45 ± 2 37 ± 5 

Systolic arterial pressure mmHg 139 ± 23 132 ± 23 
Mean arterial pressure mmHg 118 ± 20 106 ± 17 
Diastolic arterial pressure mmHg 101 ± 16 90 ± 16 
Arterial pH  7.42 ± 0.03 7.42 ± 0.02 
Standard base excess mmol/L

 
7 ± 2 9 ± 1 

 PaCO2 kPa 6.7 ± 0.7 7.1 ± 0.1 

 mmHg 50 ± 5 53 ± 1 
 PaO2 kPa 12.4 ± 7.2 16.5 ± 7.6 

 mmHg 93 ± 54 124 ± 57 
Body temperature °C 37.3 ± 0.4 37.1 ± 0.5 
Duration of anaesthesia min 168 ± 56 333 ± 35 

Partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2). 

Values were obtained from three data collection periods before minimal alveolar concentration no 

movement (MACNM) determination (mean ± SD).  

 

Duration of anaesthesia, total amount of morphine administered, and recovery 

times and quality 

Duration of anaesthesia (mean ± SD) was shorter for treatment M than treatment DM 

(168 ± 56 versus 333 ± 35 min) (Table 3). The total amount (mean ± SD) of morphine 

received per pony per anaesthesia was 0.43 ± 0.09 and 0.71 ± 0.06 mg/kg for treatments 

M and DM respectively (p < 0.001). 

 No significant differences were found in the recovery times (Table 4). All 

recoveries were scored as 1 (one attempt to stand, no ataxia) except for pony 1 after 

treatment M, where the recovery was scored as 2 (two attempts, slight ataxia) and signs 

of excitement and over-reactions to stimuli were observed until two hours after the end 

of the anaesthesia. After standing, pony 3, which had received treatment M (morphine 

only), walked in circles in the recovery box until two hours after anaesthesia. 
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Table 4: Time (mean ± SD) to extubation, sternal and standing and recovery scores 

in five sevoflurane anaesthetized ponies that received a morphine infusion 

(treatment M) or a morphine and dexmedetomidine infusion (treatment DM). 

Pony Treatment Extubation time 
(minutes) 

Time to sternal 
(minutes) 

Time to stand 
(minutes) 

Recovery scores 

1 M 12 13 16 2 
2 M 7 20 21 1 
3 M 7 14 17 1 
4 M 9 11 14 1 
5 M 8 8 9 1 

Mean ± SD M 9 ± 2 13 ± 4 15 ± 4  
      
1 DM 9 9 14 1 
2 DM 5 16 16 1 

3 DM 10 10 21 1 
4 DM 4 10 11 1 
5 DM 1 2 7 1 
Mean ± SD DM 6 ± 4 9 ± 5 14 ± 5  

 

 

Discussion 

The results of this study show that co-administration of dexmedetomidine and morphine 

CRIs significantly reduces the MACNM of sevoflurane compared with a CRI of 

morphine alone at the reported doses (mean ± SD reduction of 67 ± 11%).  

When determining the MACNM values in the present study, not all the responses 

were clear movements after electrical stimulation, and in ponies 1 and 3 during 

treatment M, maintenance of anaesthesia was more difficult, with the occurrence of 

generalized muscle tremors and fighting against the ventilator. These differences may 

be explained by a combined analgesic, excitatory and locomotor stimulant effect of 

morphine in horses (Kamerling et al. 1989), with possible inter-individual differences. 

Furthermore, the findings of two research papers studying the effects of opioids in 

horses (Pascoe et al. 1993; Steffey et al. 2003) suggested that the MAC technique may 

not be able to differentiate between arousal of the central nervous system (CNS) or 

stimulation and suppression of response to noxious stimulation (i.e. analgesia). Co-

administration of dexmedetomidine seems to avoid these reactions, most probably due 

to its sedative properties. 
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One of the limitations of this study is that it was performed under experimental 

conditions in healthy animals. It cannot be excluded that the effects of morphine might 

be different in clinical patients undergoing surgery with pre-existing pain and caution 

should be taken when interpreting these results. However, it is generally accepted that 

the results of MAC studies are useful in predicting the required end-tidal anaesthetic 

agent concentration that will result in a surgical depth of anaesthesia in patients (Quasha 

et al. 1980). Another important limitation is the absence of a control (saline) group. 

Ideally, four different treatments (treatments M and DM, as well as treatments S and D) 

would have been included, all administered in a randomized order, to describe the 

effects of a morphine CRI on the MACNM, either when administered alone or combined 

with dexmedetomidine. However, since MACNM with treatments S and D had already 

been determined in a previous experiment in the same ponies, under identical 

circumstances and less than five months before the present experiment (Gozalo-Marcilla 

et al. 2013), it was considered unethical to repeat treatments S and D. Although a 

statistical comparison was therefore only made between treatments M and DM, in the 

authors’ opinion it still remains interesting to compare the present results to those of our 

previous report. 

The MACNM value (mean ± SD) for treatment M obtained in this study was 2.79 

± 0.73%, which is somewhat higher than the value obtain under the same conditions 

when receiving saline (2.42 ± 0.55) (Gozalo-Marcilla et al. 2013). Individually, the 

MAC of four out of five ponies was higher when receiving morphine compared to 

saline and did not change in the remaining pony (pony 4). Administration of boluses at 

low and high doses of morphine (0.25 mg/kg and 2.0 mg/kg, respectively) increased, 

decreased or did not influence the MAC of isoflurane in horses, which does not support 

the routine use of morphine as an anaesthetic adjuvant in horses (Steffey et al. 2003). 

The influence of morphine on MAC thus appears to be less consistent in the equine than 

in other species (Steffey et al. 1994), and Steffey et al. (2003) were unable to identify 

any specific characteristic that would allow them to predict each horse´s individual 

MAC response to morphine administration. 

Compared to the use of morphine alone, the co-administration of 

dexmedetomidine and morphine CRIs produced a significant reduction of the 

sevoflurane MACNM by 67 ± 11%. A reduction was found in all the ponies, which 
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ranged between 53 and 78%. Moreover, during treatment DM the MACNM was even 

lower (0.89 ± 0.22 %) than during treatment D in our previous report (1.07 ± 0.21 %). 

Therefore, it appears likely that dexmedetomidine reduces the excitatory CNS effects of 

a morphine CRI in anaesthesized horses, but perhaps preserves, or even enhances, 

morphine’s analgesic effects. In standing horses, the administration of 2-agonists and 

opioids produces synergistic analgesic effects, with reduced adverse side effects (Clarke 

& Paton 1988; Solano et al. 2009). Intraoperatively, the addition of dexmedetomidine to 

morphine in human patients resulted in superior analgesia, significant morphine sparing 

and less morphine-induced nausea, without additional sedation and untoward 

haemodynamic changes (Lin et al. 2009).  

With regard to the recovery times, no significant differences were found 

between treatments. Possibly, administration of dexmedetomidine (0.875 µg/kg, IV) 

prior to recovery in both treatment groups masked potential differences. However, the 

times to sternal recumbency and to standing in both groups were shorter when 

compared to the values of our previous study with saline and dexmedetomidine CRIs 

(Gozalo-Marcilla et al. 2013). This may be related to the use of morphine, since, Clark 

et al. (2008) reported shorter times from the first recovery movement to the time at 

standing in horses receiving a bolus and an infusion of morphine at the dose and rates 

reported here. Surprisingly, the addition of dexmedetomidine to morphine did not 

increase but shortened the recovery times in all but one pony, despite the considerably 

longer duration of anaesthesia. Possibly, this finding can be attributed to the effects of 

morphine accumulation. Although the morphine plasma concentration was not 

determined in the present study, the duration of general anaesthesias, and consequently 

the cumulative doses of morphine, were significantly higher in ponies during treatment 

DM. It may be hypothesized that the sedative effects of dexmedetomidine were 

overcome by the larger accumulated dose of morphine, leading to CNS stimulation, 

accelerating return from anaesthesia with recovery times becoming shorter.  

In addition to the difficulties for maintenance of general anaesthesia, pony 1 

required two attempts to stand after treatment M and showed excitement and ataxia with 

over-reaction to stimuli for up to two hours after anaesthesia. Although pony 3 after 

treatment M needed only one attempt to stand with no ataxia (score 1), he later showed 

clear signs of box-walking for up to two hours after treatment M. The simultaneous 
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infusion of dexmedetomidine during treatment DM seemed to avoid these reactions, as 

all the ponies recovered well (all score 1) and did not show any sign of excitation or 

box-walking during the recovery period. In the study reported by Steffey et al. (2003), 

IV morphine at 2.0 mg/kg produced dangerous recoveries but not at low doses. Good 

recoveries were described in horses receiving lower doses (0.1-0.2 mg/kg, IV) (Mircica 

et al. 2003; Love et al. 2006) and after a bolus and a CRI at the dose and rates reported 

here (Clark et al. 2008). No box-walking was observed during the post-operative 

periods after saline or dexmedetomidine infusions (Gozalo-Marcilla et al. 2013) and 

after single morphine boluses (Mircica et al. 2003; Love et al. 2006) or infusions (Clark 

et al. 2008).  

 Although comparison of cardiopulmonary function between both CRIs, 

including cardiac output, mixed venous blood gases, etc., would have been interesting, 

this was not the primary aim of the study and this comparison would have been difficult 

due to the large difference in duration of anaesthesia. Heart rate and arterial blood 

pressures were maintained within clinically acceptable limits (Table 3). However, 

despite IPPV and PEEP, severe hypoxaemia (PaO2 = 48 mmHg) was present in pony 1 

receiving treatment M. Consequently, 100% oxygen was administered, but PaO2 

remained low. Presence of severe hypoxaemia could have an influence on MACNM 

values, but this only has been reported with PaO2 values lower than 40 mmHg (Steffey 

& Mama 2007). Moreover, although mean (± SD) values of PaO2 were lower in ponies 

receiving morphine, no statistically significant difference was found between 

treatments. In previous studies, horses receiving morphine had lower PaO2 values 

(Steffey et al. 2003; Love et al. 2006), mainly related to hypoventilation, although no 

differences were found when morphine was administered as a CRI (Clark et al. 2005). 

Furthermore, ventilation/perfusion mismatch related to the high body condition score of 

the ponies (Moens 1989) may have been a contributing factor, exacerbating hypoxaemia 

in the present study, as all five ponies were classified as fat according to the body 

condition scoring reported by Carroll & Huntington (1988).  

In conclusion, co-administration of dexmedetomidine and morphine CRIs 

significantly reduced the MACNM of sevoflurane compared with a CRI of morphine 

alone. Furthermore, the combination of both drugs could be used in equine anaesthesia, 

thus reducing the needs of inhalant agents and possibly enhancing analgesia. Potential 
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CNS stimulation should be considered when using a morphine CRI alone, since 

generalized and uncontrolled spontaneous movements in the intraoperative period and 

excitation, overreaction to stimuli and box-walking during the recovery period could be 

present after prolonged infusions.  
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Abstract 

Twenty adult healthy horses undergoing elective surgery were involved in this 

prospective, blinded, clinical study. Horses were randomly allocated to receive a 

constant rate infusion (CRI) of morphine or dexmedetomidine. After induction, 

anaesthesia was maintained with isoflurane in oxygen/air and mechanical ventilation 

applied. The end-tidal isoflurane concentration (FE´ISO) was initially set at 0.9% and 

adjusted by the anaesthetist, to maintain a light surgical plane of anaesthesia, according 

to an objective flow-chart. Cardiopulmonary function was well maintained with both 

treatments. Less ketamine was required, FE´ISO was lower after one hour and more time 

was spent in an ‘ideal’ plane of anaesthesia in horses receiving dexmedetomidine, with 

better recoveries. One horse receiving morphine developed post-operative colic and 

pulmonary oedema and two showed box-walking behaviour. This study showed that a 

dexmedetomidine CRI produced a more stable anaesthetic depth, reduced isoflurane 

requirements and better recoveries, without post-operative complications compared with 

a morphine CRI. 
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Introduction 

The use of intravenous (IV) constant-rate infusions (CRIs) of 2-agonists has been 

widely studied in horses (Bettschart-Wolfensberger et al. 2001; Devisscher et al. 2010; 

Schauvliege et al. 2011; Pöppel et al. 2012). Dexmedetomidine, the dextro-rotary and 

active enantiomer of the racemic mixture medetomidine, is currently the most potent 

and selective 2-agonist which is commercially available for use in humans and small 

animals. Experimental studies in isoflurane anaesthetized ponies showed that 

dexmedetomidine at two different rates maintained cardiovascular function within 

clinically acceptable limits and produced the typical cardiopulmonary effects of 2-

agonists, while the arterial partial pressure of oxygen (PaO2) tended to be low (Marcilla 

et al. 2010). In a blinded clinical study involving forty healthy isoflurane anaesthetized 

horses undergoing elective surgery, dexmedetomidine (3.5 µg/kg followed by a CRI 

1.75 µg/kg/hr) produced no clinically relevant effects on the cardiovascular system 

compared with a placebo group. Although PaO2 was significantly lower in horses 

receiving dexmedetomidine, oxygen delivery indexed to weight (DO2I) was comparable 

between groups (Marcilla et al. 2012). Moreover, a dexmedetomidine infusion 

improved the quality of the recovery. Although no reduction in expiratory fraction of 

isoflurane (FE´ISO) was demonstrated, a minimal alveolar concentration (MAC) study 

performed in six ponies showed that the same protocol reduced the MAC of sevoflurane 

by 53 ± 15% (mean ± SD) (Gozalo-Marcilla et al. 2013a). As a dexmedetomidine CRI 

causes minor cardiopulmonary effects, improves recovery quality and reduces the MAC 

of inhalant agents, the proposed protocol could be useful for clinical equine balanced 

anaesthesia (Bettschart-Wolfensberger & Larenza 2007).  

 The use of systemically administered opioids in horses to provide analgesia 

remains controversial (Bennett & Steffey 2002; Clutton 2010). Some authors reported 

that morphine administered IV can induce dangerous behaviour in conscious (Combie et 

al. 1979) and anaesthetized horses (Steffey et al. 2003), causing post-operative colic 

(Roger et al. 1985) and respiratory depression (Steffey et al. 2003). In contrast, other 

investigators reported minimal haemodynamic and ventilatory changes (Mircica et al. 

2003; Clark et al. 2005) without an increased incidence of post-operative colic (Mircica 

et al. 2003). Even more, improved recovery qualities were observed (Mircica et al. 

2003; Love et al. 2006; Clark et al. 2008) after boluses and CRIs of morphine in horses 
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undergoing elective surgical procedures. With regard to anaesthetic sparing effects, the 

IV administration of boluses of morphine at two different doses (Steffey et al. 2003) 

failed to reduce the MAC of isoflurane. Moreover, the mimimum end-tidal 

concentration to prevent movement (MACNM) value of sevoflurane obtained in 

experimental ponies receiving a morphine CRI (0.15 mg/kg/hr after loading dose 0.1 

mg/kg) was higher than the one obtained under the same conditions when receiving 

saline (Gozalo-Marcilla et al. 2013b). Both studies were performed in healthy, pain-free 

horses under experimental conditions, where the applied electrical stimulation was 

qualitatively different from classic surgical nociception (Clutton 2010). In contrast, 

clinical equine patients under a morphine CRI tended to receive fewer and lower doses 

of additional anaesthetic drugs, although this was not of statistical significance (Clark et 

al. 2005). 

 The aim of the present study was to evaluate and compare the cardiopulmonary 

function and recovery quality of clinically healthy horses undergoing elective surgery 

either receiving a morphine or a dexmedetomidine CRI at the doses reported by Clark et 

al. (2005) and Marcilla et al. (2012) respectively. Additionally, the hypothesis that 

maintenance of stable anaesthetic depth in horses receiving a CRI of dexmedetomidine 

would be easier compared with horses receiving a morphine CRI, requiring a lower 

FE´ISO and less additional ketamine was investigated. 

 

Materials and methods 

The study was approved by the Ethical Committee of the Faculty of Veterinary 

Medicine of Ghent University (2010/177). 

 

Animals and instrumentation 

After obtaining written owner consent, data from twenty adult healthy horses [American 

Society of Anesthesiologists (ASA) category I or II] undergoing elective surgery (soft 

tissue and orthopaedic procedures) lasting more than one hour were included in this 

clinical study. The horses were aged between ten months and fifteen years old, 

weighing 466 ± 117 kg (mean ± SD). Head or neck surgeries were excluded due to the 

difficulty of assessment of the clinical parameters related to anaesthetic depth. 

Respecting the current EU laws of medication in animals, horses classified as ‘food 
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producing animals’ were excluded as dexmedetomidine is not licensed for use in the 

horse. 

 The horses were randomly allocated to receive treatment M (morphine) or 

treatment D (dexmedetomidine). Food, but not water, was withheld for twelve hours 

before anaesthesia and pre-anaesthetic examinations were performed the evening before 

the surgical procedure. All the anaesthetic procedures were performed by the same 

anaesthetist (MGM), who was unaware of the treatment. All medication syringes were 

prepared by one of the co-authors. Sedation scores, depth of anaesthesia and recovery 

scores were evaluated by the same blinded anaesthetist. 

 The horses in treatment M received for sedation dexmedetomidine (3.5 µg/kg, 

IV) (Dexdomitor, Orion Corporation, Finland) plus morphine (0.15 mg/kg, IV) 

(Morphine.HCl, Sterop, Belgium) and those in treatment D received dexmedetomidine 

(3.5 µg/kg, IV) plus a bolus of saline of equivalent volume as morphine in treatment M. 

Depth of sedation was scored as 0 (no sedation), 1 (slight sedation), 2 (good sedation) or 

3 (deep sedation). After sedation, a 12-gauge x 80 mm catheter (Intraflon 2, Ecouen, 

France) was placed in the jugular vein. If required, additional doses of 

dexmedetomidine (1/4 to 1/2 of the initial dose) were given to achieve an adequate level 

of sedation prior to anaesthetic induction. Anaesthesia was induced seven to ten minutes 

after sedation, with midazolam (0.06 mg/kg) (Dormicum, Roche, Belgium) and 

ketamine (2.2 mg/kg) (Anesketin, Eurovet, Belgium) IV mixed in the same syringe. 

After orotracheal intubation (24-30 mm OD tracheal tube, Willy Rusch AG, 

Germany) the horses were hoisted on a surgical table covered with soft foam rubber 

pillows (twenty cms) and positioned according to the planned surgical procedure. The 

endotracheal tube was connected to a large animal anaesthetic unit (Matrx Medical Inc., 

NY, USA mounted on a Sulla 909V; Dräger, Germany) with an out-of-circuit vaporizer 

(Drägerwerk AG, Germany) and a large animal ventilator (Smith respirator LA 2100, 

model 2002, Veterinary Technics/BDO-Medipass, The Netherlands). Connection to the 

anaesthetic circuit was considered as the beginning of anaesthesia (T0). Anaesthesia 

was maintained with isoflurane (Isoflo, Abbott Laboratories Ltd, UK) in a mixture of 

oxygen (O2) and air to maintain the inspired O2 fraction (FiO2) between 55 and 60%. 

All the horses were mechanically ventilated immediately after positioning on the table. 

Intermittent positive pressure ventilation (IPPV) was applied, using an assisted-
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controlled respiration mode, with a tidal volume of 10 mL/kg, peak inspiratory pressure 

close to 1.96 kPa (20 cm H2O), inspiratory time of around 2.2 seconds and respiratory 

rate near to 8 breaths/min. All parameters were adapted to maintain arterial partial 

pressure of carbon dioxide (PaCO2) between 4.66 and 6.00 kPa (35-45 mmHg).  

Inspiratory and expiratory CO2, O2 and isoflurane concentrations were measured 

using a calibrated, methane-insensitive, multiparameter monitoring device (S/5, D-

LCC15-03, Datex Ohmeda, OR, USA). This monitor was also used to record the 

electrocardiogram (base-apex lead), systolic (SAP), diastolic (DAP) and mean arterial 

pressures (MAP), peripheral arterial saturation by pulse oximetry (probe on the tongue) 

and body temperature by a nasal probe. 

 Catheterization of the facial artery was performed in all horses (22-gauge 

Vasocan Braunüle Luer Lock; B. Braun Melsungen AG, Germany) to obtain arterial 

blood for analysis, for withdrawal of blood for lithium dilution cardiac output 

measurements and for continuous invasive measurement of arterial blood pressures. The 

pressure monitoring system was zeroed at the level of the right atrium. 

 Cardiac output (   ) was determined using the lithium dilution technique 

(LiDCOplus Haemodynamic Monitor, LiDCO Ltd., UK). A bolus of lithium chloride 

(4.5 µmol/kg) was injected through the jugular catheter, while arterial blood for 

detection of lithium chloride by the LiDCO sensor (CM10 LiDCO sensor, LiDCO Ltd., 

UK) was withdrawn from the facial artery by the LiDCO Flow Regulator (CM 33 

LiDCO flow regulator, LiDCO Ltd., UK). Plasma sodium values were determined 

(AVL 9180 Electrolyte Analyzer, AVL Scientific Corporation, GA, USA) on a blood 

sample withdrawn from the right jugular vein before sedation and were entered into the 

LiDCOplus monitor to allow correct LiDCO measurements. Haemoglobin (Hb) 

concentration was estimated for each measurement from the packed cell volume (PCV) 

[Hb (g/dL) = 34 x PCV (L/L) (Linton et al. 2000)]. 

 Intraoperatively, all the horses received flunixin meglumine (1.1 mg/kg, IV) 

(Endofluxin 50, Ecuphar, Belgium) and intramuscular procaine benzylpenicillin (15000 

IU/kg) (Pen-30, V.M.D., Belgium). 
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Experimental design 

The vaporizer was adjusted to obtain an FE´ISO of 0.9% during the first ten minutes of 

general anaesthesia. Horses allocated to treatments M and D received at T0 a CRI of 

morphine (0.1 mg/kg/hr) and dexmedetomidine (1.75 µg/kg/hr) respectively. Constant 

rate infusions were administered by a syringe driver (Ohmeda 9000, BOC Health Care, 

UK) until the end of anaesthesia. Lactated Ringer´s solution (Hamofiltratie, Dirinco, 

The Netherlands) was administered IV (10 mL/kg/hr). A urinary catheter was placed in 

all the horses. 

 Instrumentation was completed by T10. Values for inspiratory CO2, O2, 

isoflurane, heart rate (HR), SAP, MAP, DAP and body temperature were recorded every 

five minutes. Cardiac output was measured and arterial blood samples collected at 

fifteen minutes intervals (ABL5, Radiometer, Denmark). 

 Cardiac output indexed to bodyweight (CI), stroke volume (SV), stroke volume 

indexed to bodyweight (SVI), systemic vascular resistance (SVR), arterial oxygen 

content (CaO2), oxygen delivery (DO2) and DO2I were calculated using standard 

formulae (Schauvliege et al. 2008).  

 

Maintenance of anaesthesia 

Dobutamine (Dobutamine EG, NV Eurogenics, Belgium) was infused to maintain MAP 

above 70 mmHg, starting at a rate of 0.5 µg/kg/min and adjusted as required. The 

FE´ISO was adjusted to maintain a light surgical plane of anaesthesia by the blinded 

anaesthetist, according to a scoring flow-chart adapted from Enderle et al. (2008) 

(Figure 1) in order to assess the depth of anaesthesia more objectively. After T10 

(FE´ISO = 0.9%), a scoring evaluation was performed every five minutes. For each 

scoring, the reference value was the previous score. The flow-chart ranges from scores -

2 (deep anaesthesia) to 4 (very light anaesthesia, limb movement present), where score 

0 was considered as the ‘ideal’ surgical plane of anaesthesia. The vaporizer setting was 

adjusted to provide a higher or lower FE´ISO according to occurrence of movement 

(scores 3 and 4), nystagmus (score 2), presence of palpebral reflex (scores -2 to 1) and 

absence of palpebral reflex (score -2). If a palpebral reflex was present, with no 

movement neither nystagmus (scores -2 to 1), scoring was mainly based on MAP values 

and the administration (or no administration) of dobutamine. If MAP was lower than 70 
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mmHg, the FE´ISO was reduced by 0.1% (score -1). If MAP was higher than 70 mmHg, 

the decision was based on changes in MAP compared to the previous value, while 

taking possible changes in the administration rate of dobutamine into account: if MAP 

was reduced by more than 15% compared with the previous scoring, a score of -2 was 

given and the FE´ISO was reduced by 0.2%. If MAP was reduced by 15% or less and a 

dobutamine infusion had been started or its rate increased during the last 5 minutes, a 

score -1 was given and the FE´ISO was reduced by 0.1%; if the administration rate of 

dobutamine had not changed in the last 5 minutes, the anaesthetic depth was considered 

ideal (score 0) and the FE´ISO was maintained constant. A score 0 was also given when 

MAP increased by less than 20% or when it increased by more than 20% when the 

dobutamine administration rate had been increased in the last 5 minutes. Increases in 

MAP by more than 20% without changes in the out changes in the dobutamine 

administration rate indicated too light anaesthesia (score 1) and FE´ISO was increased 

by 0.1%. If movement or nystagmus were present (scores 2 to 4), ketamine was 

administered IV as indicated in the flow-chart. Ketamine doses and dobutamine rates 

were calculated for each horse and corrected according to the individual body weight 

and anaesthesia duration. Percentages of the time of anaesthesia spent in each score 

were calculated for every horse from each treatment. 
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↑ by <20%

Yes

No

 

Figure 1: Flow-chart representing the scoring system used to adjust anaesthetic 

requirement in order to maintain a light surgical level of anaesthesia in twenty 

isoflurane anaesthetized hores undergoing elective surgery. Different questions are 

answered to obtain the score and the modification of the expiratory fraction of 

isoflurane (FE´ISO) every five minutes, with the value obtained five minutes earlier 

being the reference value, and MAP the mean arterial pressure. Adapted from 

Enderle et al. (2008). 

 

 

End of anaesthesia and recovery phase 

At the end of the surgery, the CRIs and mechanical ventilation were stopped. Once 

breathing spontaneously, dexmedetomidine (0.875 µg/kg, IV) was administered in all 

horses which were transported to a padded recovery box and allowed to recover without 

assistance. Oxygen was administered initially through the endotracheal tube and nasally 

after extubation. The endotracheal tube was removed once the horses were able to 
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swallow. The rest of the recovery was monitored from outside the recovery box using 

an infrared camera system. Recovery times (extubation time, time to sternal 

recumbency and time to stand) were recorded and recovery qualities scored on a scale 

of 1-6 (Table 1) by the same blinded anaesthetist. 

 

Table 1: Scoring system used to grade recoveries. 

Score Description 

1 One attempt to stand, no ataxia. 
2 One to two attempts to stand, some ataxia.  
3 More than two attempts to stand, calm recovery. 
4 More than two attempts to stand, not calm recovery. 
5 Several attempts to stand, excitation. 
6 Very bad recovery. 

 

 

Statistical analysis 

Data were tested for normality of distribution (Kolgomorov-Smirnov test). The age and 

weight of the horses, duration of anaesthesia, total doses of additional ketamine and 

dobutamine, sedation, depth of anaesthesia and recovery scores and recovery times were 

compared between treatments using a Wilcoxon rank sum test.  

  The duration of anaesthesia did not exceed sixty minutes in some horses. 

Consequently, only the data until T60 were analyzed. Differences between treatments 

were analyzed, overall and at T60 using a mixed model analysis of variance with horse 

as random effect and treatment, time and their interaction as categorical fixed effects. 

For all analyses the significance level was set at 5%.  

 

Results 

Age (5 ± 5 and 7 ± 5 years old, for treatment M and D respectively) and weight 

(treatment M 440 ± 125 kg and treatment D 491 ± 110 kg) did not differ statistically 

between groups. Nine horses were placed in dorsal recumbency and one in lateral 

recumbency in treatment M. Five horses receiving treatment D were placed in dorsal 

recumbency and the remaining five in lateral recumbency. Details of the surgical 

interventions are represented in Table 2.  

 



Chapter 5  

  

190 

 

Table 2: Types of surgeries performed in horses receiving treatment M (n = 10) 

and treatment D (n = 10). Horses allocated in treatment M received a bolus of 

dexmedetomidine (3.5 µg/kg) plus morphine (0.15 mg/kg) IV followed by a CRI of 

morphine (0.1 mg/kg/hr). Horses allocated in treatment D received a bolus of 

dexmedetomidine (3.5 µg/kg) plus an equivalent volume of saline instead of 

morphine IV followed by a CRI of dexmedetomidine (1.75 µg/kg/hr). 

 

Type of surgery Treatment M  Treatment D 

Arthroscopy 4 6 
Cryptorchid 2 0 
Umbilical hernia 2 0 
Tenoscopy 1 0 
Sarcoid excision 1 0 
Street nail 0 2 
Castration 0 1 
Sarcoid cryosurgery 0 1 

 

 

Level of sedation and sedation scores 

Sedation scores were significantly lower (less sedation) in treatment M compared with 

treatment D (p = 0.042). Eight horses (six receiving treatment M and two treatment D) 

required an additional dose of dexmedetomidine to assure an acceptable level of 

sedation. 

 

Isoflurane concentrations (Figure 2), anaesthetic depth scores (Figure 3) and 

requirements of ketamine and dobutamine  

Although there was a significant influence of time on the FE´ISO (p = 0.009), no 

significant overall differences in FE´ISO were found between treatments. However, at 

T60, FE´ISO values were significantly (p = 0.012) lower in horses receiving treatment D 

compared to treatment M. Because the difference was gradually increasing over time, an 

additional statistical comparison was performed at T90 for the seven horses that were 

anaesthetized for ninety minutes or more (four treatment M versus three treatment D). 

At this time point, FE´ISO values tended to be lower in horses receiving treatment D, 

but the difference was not significant (p = 0.069). 
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 Horses receiving treatment D spent significantly more time (in percentage) at 

score 0 compared to horses of treatment M (97.4% versus 79.7% respectively) (p < 

0.001). Moreover, horses receiving treatment M spent significantly more time at score -

1 than those receiving treatment D (7% versus 1.7% respectively) (p = 0.043).  

Nine horses receiving treatment M required additional doses of ketamine, 

whereas only two in treatment D received ketamine. The mean amount of ketamine 

administered (in µg/kg/min) was significantly higher in treatment M (8.71 ± 5.72) 

(mean ± SD) versus treatment D (0.71 ± 1.58) (p = 0.001). 

Six horses receiving treatment M and three horses receiving treatment D 

required dobutamine. The mean dose of dobutamine administered in horses receiving 

treatment M and D was 0.04 ± 0.04 and 0.01 ± 0.02 µg/kg/min (mean±SD) respectively. 

This difference was not statistically significant (p = 0.116).  
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*
Significant differences between treatments at T60 (p < 0.05). Changes over time were present (p < 0.05). 

Statistical analysis was not performed after T60. 

 

Figure 2: End-tidal isoflurane concentration (FE´ISO) (in percentage) (mean ± SD) 

in twenty horses anaesthetized with a standard isoflurane protocol for elective 

surgery. Horses in treatment M (n = 10) received a CRI of morphine (0.1 

mg/kg/hr) and horses in treatment D (n = 10) received dexmedetomidine at 1.75 

µg/kg/hr. 
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*Significant differences between treatments (p < 0.05). 

 

Figure 3: Distribution of the anaesthetic time (in percentage) (mean values) spent 

at the different anaesthetic depth scores in twenty horses anaesthetized with a 

standard isoflurane protocol for elective surgery. Horses in treatment M (n = 10) 

received a CRI of morphine (0.1 mg/kg/hr) and horses in treatment D (n = 10) 

received dexmedetomidine at 1.75 µg/kg/hr. 

 

 

Cardiopulmonary system (Tables 3 & 4) 

Overall, MAP (p = 0.031) and DAP (p = 0.025) were significantly higher whereas CI 

and SVI were significantly lower (p = 0.009 and p = 0.028, respectively) in horses 

receiving treatment D. 

 Statistical analysis also demonstrated gradual decreases over time of SAP, MAP, 

DAP, SVR and CaO2 (p < 0.0001) in both treatments. 

 

 

 

 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

-2 *-1  *0 1 2 3 4 

1.2 
7 

79.7 

3.5 3.5 2.3 2.5 0 1.7 

97.4 

0 0.4 0.5 0 

%
 o

f 
an

ae
st

h
e

si
a 

ti
m

e
 

Anaesthesia depth score 

Treatment M 

Treatment D 



Chapter 5  

  

194 

 

Table 3: Cardiovascular parameters (mean ± SD) in twenty anaesthetized horses 

undergoing elective surgery using two different protocols. 

Value Differences Unit Treatment T15 T30 T45 T60 

HR 
 

beats/min M 34 ± 5 34 ± 4 34 ± 5 34 ± 4 

   
D 34 ± 5 32 ± 3 33 ± 5 34 ± 5 

SAP # mmHg M 122 ± 12 103 ± 9 102 ± 13 105 ± 21 

   
D 126 ± 14 118 ± 12 115 ± 13 114 ± 16 

MAP *, # mmHg M 99 ± 9 80 ± 9 79 ± 13 82 ± 20 

   
D 104 ±15 97 ± 14 92 ± 15 93 ± 17 

DAP *, # mmHg M 85 ± 9 65 ± 9 66 ± 15 68 ± 20 

   
D 89 ± 14 82 ± 14 79 ± 15 79 ± 14 

SVR # dyne/sec/cm5 M 334 ± 79 241 ± 66 251 ± 79 275 ± 109 

   
D 394 ± 159 344 ± 105 313 ± 117 294 ± 102 

CI * mL/kg/min M 53.9 ± 9.8 60.7 ± 9.4 56.8 ± 11.0 54.7 ± 10.2 

   
D 45.0 ± 9.3 45.8 ± 9.3 48.0 ± 4.9 48.5 ± 6.1 

SVI * mL/kg M 1.6 ± 0.2 1.8 ± 0.3 1.7 ± 0.3 1.6 ± 0.3 

      D 1.4 ± 0.3 1.4 ± 0.2 1.5 ± 0.2 1.5 ± 0.3 
Heart rate (HR), systolic (SAP), mean (MAP) and diastolic arterial pressures (DAP), systemic vascular 

resistance (SVR), cardiac output indexed to weight (CI) and stroke volume indexed to weight (SVI) in twenty 

horses undergoing elective surgery. Horses receiving treatment M were infused a CRI of morphine (0.1 

mg/kg/hr) and horses receiving treatment D a CRI of dexmedetomidine (1.75 µg/kg/hr). 

*Overall significant differences between treatments (p < 0.05). # Changes over time (p < 0.05). 
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Table 4: Other cardiopulmonary and systemic parameters in twenty anaesthetized horses for elective surgery (mean±SD). 

 

Values Differences Unit Treatment T15 T30 T45 T60 
Body tª # °C M 37 ± 0.6 37 ± 0.4 36.9 ± 0.4 36.8 ± 0.4 

   D 37 ± 0.5 37 ± 0.5 36.9 ± 0.4 36.9 ± 0.4 

Arterial pH   M 7.42 ± 0.05 7.42 ± 0.05 7.42 ± 0.06 7.41 ± 0.06 

   D 7.46 ± 0.11 7.43 ± 0.03 7.43 ± 0.03 7.43 ± 0.04 

Arterial PCO2  mmHg M 45 ± 6 46 ± 7 47 ± 8 49 ± 9 

   D 44 ± 6 45 ± 4 45 ± 4 47 ± 4 

Arterial PCO2  kPa M 6 ± 0.9 6 ± 0.9 6.2 ± 1.1 6.5 ± 1.2 

   D 5.9 ± 0.8 6 ± 0.5 6 ± 0.5 6.2 ± 0.6 

Arterial PO2  mmHg M 201 ± 78 193 ± 69 185 ± 63 163 ± 53 

   D 180 ± 79 171 ± 79 177 ± 76 177 ± 67 

Arterial PO2  kPa M 26.8 ± 10.4 25.7 ± 9.2 24.6 ± 8.4 21.8 ± 7 

   D 24 ± 10.5 22.8 ± 10.5 23.9 ± 10.1 23.6 ± 8.9 

CaO2 # mL/L M 143 ± 15 136 ± 16 131 ± 14 128 ± 16 

   D 141 ± 15 137 ± 17 133 ± 15 129 ± 12 

DO2I  mL/kg/min M 7.7 ± 1.8 8.3 ± 1.6 7.5 ± 1.8 7.1 ± 1.9 

   D 6.3 ± 1.3 6.3 ± 1.7 6.4 ± 1 6.2 ± 1.1 

PCV # % M 29 ± 3 28 ± 3 27 ± 3 26 ± 3 

   D 29 ± 3 28 ± 3 27 ± 3 27 ± 2 

Body temperature (body tª), arterial blood gas results, arterial oxygen content (CaO2), oxygen delivery indexed to weight (DO2I), and packed cell volume (PCV) in twenty 

anaesthetized horses undergoing elective surgery. Horses receiving treatment M were infused a CRI of morphine (0.1 mg/kg/hr) and horses receiving treatment D a CRI of 

dexmedetomidine (1.75µg/kg/hr). # Changes over time (p < 0.05).
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Recovery scores (Table 5) and times 

Recovery scores were significantly better in horses receiving treatment D (p = 0.015), 

with less attempts to stand (p = 0.015). No differences in recovery times were found 

between treatments. 

  

Table 5: Recovery scores in twenty horses anaesthetized for elective surgery. 

Horses receiving treatment M (n = 10) were infused a CRI of morphine (0.1 

mg/kg/hr) and horses in group D (n = 10) a CRI of dexmedetomidine (1.75 

µg/kg/hr) during anaesthesia. 

Score Treatment M Treatment D 

1 1 6 
2 5 3 
3 0 1 
4 2 0 
5 2 0 
6 0 0 

*
Significant differences between treatments were found (p = 0.015). 

 

Post-anaesthetic period 

One horse of treatment M developed signs of colic and pulmonary oedema (foamy nasal 

discharge and tachypnoea, confirmed by ultrasound) three hours after the surgical 

procedure. No episodes of airway obstruction were noticed during recovery. Urine 

production during anaesthesia was approximately eight litres. The horse was 

successfully treated [furosemide (Dimazon, Intervet, Belgium) (0.6 mg/kg, IV, TID); 

hyoscine butylbromide (Buscopan, Boehringer Ingelheim, Belgium) (0.2 mg/kg, IV, 

SID) and ipratropium bromide (Atrovent, Boehringer Ingelheim, Belgium) (0.7 µg/kg, 

via aerosol, QID] and returned to normal condition two days after anaesthesia.  

Moreover, two horses showed box-walking behaviour after receiving treatment 

M for up to two hours. 
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Discussion 

In the present study, the cardiopulmonary function was maintained at clinically 

acceptable levels with both morphine and dexmedetominde CRIs. A reduction of the 

required maintenance dose of isoflurane was demonstrated after one hour of anaesthesia 

in horses receiving treatment D compared to treatment M. Ketamine was needed less 

often and recovery qualities were better in horses in treatment D, with less attempts to 

stand. One horse receiving treatment M developed post-operative colic and pulmonary 

oedema and two more horses showed box-walking. 

 A first limitation of the present study was the number of horses involved. Due to 

differences in recovery quality between the two groups and also because of the 

difficulty to maintain anaesthesia in some horses receiving morphine, it was decided to 

discontinue the trial after the first twenty horses. Although no overall differences were 

found in FE´ISO between the two protocols, significant differences could be 

demonstrated in different important parameters including the cardiopulmonary function, 

recovery quality, additional ketamine used and the isoflurane requirements at T60, 

suggesting that the number of horses, and the power of the study, were sufficient to 

make clear end conclusions. Another limitation was the duration of anaesthesia, which 

was only sixty minutes in several horses. Due to the effects of premedication and 

induction drugs and because the initial FE´ISO was the same in both groups, differences 

in cardiopulmonary function and parameters such as FE´ISO may only become clear 

after a longer anaesthetic period. Finally, the inclusion of a placebo group would have 

been of interest to compare the effects of both drugs on the cardiopulmonary and 

FE´ISO values, duration of recovery and recovery scores, but this was not the primary 

aim of the study since a comparison of the effects of both morphine (Clark et al. 2005) 

and dexmedetomidine (Marcilla et al. 2012) CRIs with those of saline had already been 

reported in clinically healthy horses. 

 Dexmedetomidine (3.5 µg/kg, IV) was used for sedation. This dose was based 

on the study by Bettschart-Wolfensberger et al. (2005) where 7 µg/kg of medetomidine 

was estimated to be equipotent to 3.5 µg/kg dexmedetomidine. However, in a clinical 

study using the same dose, additional dexmedetomidine doses were required to obtain a 

good sedative level before induction of anaesthesia in eleven out forty horses (27.5%) 

(Marcilla et al. 2012). In the results presented here, a similar pattern was observed, but a 
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larger proportion of the horses receiving dexmedetomidine plus morphine required an 

extra dose of dexmedetomidine compared to horses receiving dexmedetomidine alone 

(60% versus 20%). Although it is difficult to draw conclusions because of the limited 

number of horses in the present study, these results are nevertheless surprising and in 

disagreement with those of Clarke & Paton (1988), who reported that the use of an 

opiate together with an 2-agonist greatly reduced the response to stimulation and 

improved sedation in standing horses compared to the 2-agonist alone. It may be 

hypothesized that a stimulation of the central nervous system by morphine occurred, but 

signs of excitement were not observed in any of the horses receiving the morphine 

protocol. According to these findings and to those of our previous work (Marcilla et al. 

2012), an increase in the dosage of dexmedetomidine should be considered in order to 

obtain better level of sedation before induction of general anaesthesia. 

 One of the main reasons to start this clinical study was to have a comparison of 

the isoflurane requirements between both protocols. However, demonstrating a clear 

reduction in isoflurane requirements with 2-agonist CRIs in blinded clinical studies has 

shown to be difficult (Devisscher et al. 2010; Schauvliege et al. 2011; Marcilla et al. 

2012). The most logical explanation for this might be that 2-agonists have little effect 

on classical parameters that are used to assess anaesthetic depth, including ocular 

reflexes and position of the eye. A plane of anaesthesia that would normally appear light 

and possibly inadequate should be tolerated during these infusions. It therefore becomes 

less likely that a difference in isoflurane requirements will be demonstrated in blinded 

clinical studies. Consequently, an adaptation of the flow-chart from Enderle et al. 

(2008) was used in the present study, which has been described as ‘a relatively objective 

tool to titrate the concentration of isoflurane delivered to the patient for the anaesthetist, 

unaware of the combination being administered to the horse’.  

Although overall differences between treatments in FE´ISO were not present 

during the first sixty minutes of anaesthesia, the difference between both groups 

gradually became larger and was significant after sixty minutes. As explained earlier, 

this observation might be related to a gradual reduction of the effects of the 

premedication and induction drugs. After ninety minutes of anaesthesia, the difference 

was indeed even larger, but not significant, mainly due to the low number of horses 

exceeding one hour of anaesthesia. Nevertheless, the FE´ISO values of both treatments 
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were lower than the reported isoflurane MAC values for horses (Steffey et al. 1977, 

2003), supporting the idea that analgesia and/or additional central nervous system 

depression was provided by both CRIs. Dexmedetomidine infusions provide sedation 

and/or analgesia in other species (Franken et al. 2008; van Oostrom et al. 2011) and 

reduced the MAC of isoflurane in ponies under experimental conditions (Gozalo-

Marcilla et al., 2013a). In contrast, the demonstration of analgesia in horses receiving 

morphine is not so straightforward (Bennett & Steffey 2002; Clutton 2010), especially 

when performed in pain-free horses or ponies. Non-painful horses used in experimental 

studies where an electrical stimulation was applied and morphine was administered had 

a surprising increase of the MAC of the inhalant agent (Steffey et al. 2003), mainly due 

to central arousal overwhelming any analgesic action of the opioid (Bennett & Steffey, 

2002). In agreement with these reports, the results of the present study confirm that, at 

the doses used, the isoflurane requirements are lower during a dexmedetomidine CRI 

than during a morphine CRI in horses. 

 Horses of the dexmedetomidine group spent more time at anaesthetic score 0, 

which was considered as the ‘ideal’ depth of anaesthesia. When treatment M was 

infused, more adjustments according to the flow-chart had to be performed. Moreover, 

more ketamine was needed and an optimal level of anaesthesia was more difficult to 

achieve since nystagmus and/or movement occurred more often. In contrast, Clark et al. 

(2005) concluded that horses receiving morphine tended to receive fewer and lower 

doses of ketamine. In the study of Clark et al. (2005), halothane was administered at one 

MAC whereas in this study all the horses at T10 were anaesthetized with a 0.63 to 0.69 

MAC of isoflurane, according to the isoflurane MAC values of Steffey et al. (1977, 

2003).  

It may be argued that 0.9% isoflurane was not enough for an adequate 

anaesthetic maintenance when morphine was administered as a CRI, leading to a more 

unstable anaesthesia accompanied with intra-operative movements and additional doses 

of ketamine compared with treatment D. However, as soon as an FE´ISO of 0.9% was 

reached after induction of anaesthesia, the flow-chart was used, which allowed increases 

in FE´ISO when anaesthetic depth was deemed inadequate and which was primarily 

based on the usual signs to assess anaesthetic depth, such as palpebral reflexes, 

nystagmus, movement, etc. Our flow-chart was adapted from Enderle et al. (2008). 
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According to the latter, anaesthetic depth was never decreased in horses where a 

palpebral reflex was present. In our flow-chart, anaesthetic depth in such horses was 

decreased when arterial blood pressure decreased considerably compared to the 

reference value or when mean arterial pressure decreased below 70 mm Hg (despite the 

prescribed use of dobutamine in these cases). It may be argued that dexmedetomidine 

increases arterial blood pressure and therefore influenced the decision making in the 

flow-chart. However, higher blood pressures would rather lead to positive scores and 

thus prescribe an increase in anaesthetic depth, but in contrast, FE´ISO was lower during 

treatment D. 

 Cardiovascular function was maintained within physiological limits in all horses. 

Although arterial blood pressures were stable during both treatments, MAP and DAP 

were significantly lower in horses receiving morphine. Six horses from treatment M, but 

only three horses from treatment D required dobutamine to maintain MAP over 70 

mmHg. Cardiac index and SVI were lower in horses receiving only dexmedetomidine, 

although these differences were of limited relevance in clinically healthy horses. Since 

HR was comparable between groups, the decrease in CI was mainly due to a decrease in 

SVI. Although direct effects of 2-agonists on myocardial contractility are not common 

(Flacke et al. 1990), a decrease in SVI might be due to a combination of an increase in 

SVR, which leads to an increase in afterload together with decreased sympathetic tone 

(Bloor et al. 1992). Moreover, this increase in SVR, although not of statistical 

significance, led to the higher arterial blood pressures in horses receiving 

dexmedetomidine, mainly due to the activation of 2b-adrenoceptors on endothelial 

smooth muscle (Guimarães & Moura 2001). These increases in arterial blood pressures 

when administering dexmedetomidine are consistent with the findings of our previous 

clinical study (Marcilla et al. 2012). 

No significant differences were found in arterial blood gases. All the horses were 

mechanically ventilated from the beginning of the anaesthesia in order to more easily 

reach the different FE´ISO values required, which could have masked potential 

differences in pulmonary parameters. Previous reports showed that horses receiving 

dexmedetomidine had significantly lower PaO2 values compared to a control group, 

although DO2I and CaO2 were comparable in both groups (Marcilla et al. 2012). A 

morphine infusion had no effect on either PaCO2 or PaO2 (Clark et al. 2005), although 
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two out of six experimental ponies showed clear signs of hypoxaemia (Gozalo-Marcilla 

et al. 2013b).  

 Recovery remains a critical phase in equine anaesthesia. Better recoveries were 

seen in horses receiving treatment D, with less attempts to stand compared with those 

receiving treatment M, without significant differences in recovery times. Compared to 

saline, recovery qualities following a dexmedetomidine CRI were better (Marcilla et al. 

2012). After a morphine infusion, recoveries were characterized by fewer attempts to 

attain sternal recumbency and standing, with a shorter time from the first recovery 

movement to the time of standing (Clark et al. 2008). The authors of that study 

attributed the presence of ‘quieter’ recoveries to the analgesic effects of morphine. 

Again, the presence of a placebo group would have allowed us to find differences in 

recovery quality between dexmedetomidine and morphine compared to saline. As 

previously stated, it could be argued that horses in treatment M received an insufficient 

dose of isoflurane to maintain an adequate surgical plane of anaesthesia, therefore 

requiring higher amounts of ketamine, which could have led to worse recoveries 

(Bettschart-Wolfensberger et al. 1996; Bettschart-Wolfensberger & Larenza 2007). The 

administration of a small dose of dexmedetomidine in order to prevent complications 

during the recovery period (Santos et al. 2003) might explain the absence of differences 

in recovery times between groups.  

 No post-operative complications were observed in any of the horses receiving 

treatment D, as previously reported (Marcilla et al. 2012). One horse showed signs of 

colic and pulmonary oedema after treatment M. Although it is impossible to draw 

appropriate conclusions from one single case, opioids have previously been shown to 

produce constipation in the gastrointestinal tract, causing a prolonged depression of the 

intestinal propulsion (Roger et al. 1985). Nevertheless, no increase in the incidence of 

colic was reported after IV administration of boluses (Mircica et al. 2003) or infusions 

of morphine (Clark et al. 2005, 2008). Alpha2-agonists can also decrease intestinal 

motility, predisposing to ileus (Valverde 2010), but none of the horses of the present 

study, all receiving dexmedetomidine, or the twenty horses of our previous clinical 

study (Marcilla et al. 2012), showed any sign of intestinal discomfort. Interestingly, the 

horse showing signs of colic also developed clinical signs of pulmonary oedema, 

confirmed via ultrasound, returning to normal status in two days. Up to now, two cases 
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with postoperative pulmonary oedema in horses have been mentioned in literature 

where morphine was suggested to be a potential cause (Kaartinen et al. 2010). Although 

the reasons remain unclear, the authors concluded that fluid overload during anaesthesia 

could have been worsened by morphine-induced reduction in urine production and by 

potential morphine-induced changes in pulmonary permeability. In that study, the two 

horses produced only three and two litres of urine after total anaesthesia times of 5.3 

and four hours respectively, whereas the horse affected here produced eight litres after 

three hours of anaesthesia, suggesting that other factors could have been involved in the 

development of pulmonary oedema (Senior 2005). Furthermore, two other horses 

receiving treatment M showed clear signs of box walking after the recovery for up to 

two hours. This excitatory behaviour was also present in two of six experimental ponies 

receiving morphine infusions (Gozalo-Marcilla et al. 2013b) and after doses as high as 2 

mg/kg in experimental studies by Steffey et al. (2003), but not at lower doses (0.25 

mg/kg). No box-walking behaviour was reported after morphine administration after 

single boluses (Mircica et al. 2003; Love et al. 2006) or as a bolus followed by a CRI 

(Clark et al. 2005, 2008).  

 In conclusion, at the doses reported here and at the starting isoflurane value of 

0.9%, a dexmedetomidine CRI appeared to maintain a more stable light surgical depth 

of anaesthesia, with fewer and lower doses of additional ketamine and lower isoflurane 

requirements, especially at sixty minutes after induction of anaesthesia, compared with 

a morphine CRI. Furthermore, recovery qualities were significantly better with a lower 

number of attempts to stand in horses receiving treatment D. Post-operative 

complications such as pulmonary oedema, colic and box-walking were occasionally 

observed in morphine horses.  
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As mentioned in the introduction of this PhD, general anaesthesia in equines carries a 

higher risk of mortality compared with other species, volatile anaesthetic agents making 

the most significant contribution (Johnston et al. 2002). Consequently, the concept of 

equine balanced anaesthesia has been introduced. In summary, balanced anaesthesia in 

horses includes the combination of volatile anaesthetics with intravenous (IV) 

anaesthetics and/or locoregional anaesthetic techniques, in order to maintain a good 

intraoperative cardiopulmonary function followed by calm, smooth and coordinated 

recovery (Bettschart-Wolfensberger & Larenza 2007). The use of different drugs as IV 

constant rate infusions (CRIs) in order to reduce the amount of inhalant anaesthetic 

agent, and to provide additional sedation and analgesia has been reviewed in depth in 

the Section 1 of the general introduction. Although encouraging results have already 

been obtained, most commonly used drugs are accompanied with side effects. Lidocaine 

may produce ataxia in the recovery period and toxicosis may also occur. Excitatory side 

effects that can worsen the quality of the recoveries after ketamine infusions have been 

reported. Finally, the use of opioids in horses remains controversial and may be limited, 

mainly due to their inconsistent minimum alveolar concentration (MAC) reduction, 

central nervous system stimulation and reduced gastrointestinal motility. The search for 

the ideal drug combination for balanced anaesthesia in horses therefore continues. 

 Alpha2-agonists are potent sedatives and analgesics and their use as CRIs during 

equine general anaesthesia may reduce the MAC of inhalant agents and improve the 

recovery qualities. Although these agonists are not free of cardiovascular side effects, 

which can be of major importance in compromised patients, it seems possible that the 

impact on cardiovascular function would be limited due to their associated MAC 

reducing effects. Intraoperative infusions of different 2-agonists have become popular 

and, although not licensed for use in food producing horses, medetomidine has been 

widely studied in anaesthetized horses. Medetomidine is an equal mixture of two optical 

enantiomers, with dexmetomidine being entirely responsible for the sedative, analgesic 

and dose dependent anaesthetic sparing effects (Segal et al. 1988; Ansah et al. 1998; 

Kuusela et al. 2000). As reviewed in Section 2 of the general introduction, 

dexmedetomidine has been used in different species with promising results. 

Unfortunately, only one study described the cardiopulmonary effects and 

pharmacokinetics of dexmedetomidine after IV administration in experimental ponies 
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(Bettschart-Wolfensberger et al. 2005). In that study, it was stated that preliminary trials 

showed that 7 µg/kg medetomidine was equisedative to 3.5 µg/kg dexmedetomidine. 

Using this dose, dexmedetomidine induced similar cardiopulmonary changes compared 

to other 2-agonists, but of very short duration. The authors concluded that it is a 

rapidly redistributed and short-acting sedative drug with a rapid initial decline of drug 

concentration. Consequently, the inclusion of dexmedetomidine as part of balanced 

anaesthetic regimes was suggested by these investigators. 

Based on the above mentioned equipotencies between medetomidine and 

dexmedetomidine, we examined the cardiopulmonary effects of two different CRI rates 

of dexmedetomidine in isoflurane anaesthetized healthy ponies in our first 

experimental study. After sedation with dexmedetomidine (3.5 µg/kg, IV) and 

induction, the cardiopulmonary effects of two different CRI rates (1 and 1.75 µg/kg/hr) 

were evaluated in each pony to test their safety during isoflurane anaesthesia. Both rates 

produced statistically significant cardiovascular effects, typical for 2-agonists (i.e. 

decreases in heart rate, cardiac index and oxygen delivery index). The observed side 

effects were of limited clinical relevance despite maintenance of anaesthesia with an 

end-tidal isoflurane concentration higher than one MAC. 

However, there was a tendency for a lower arterial partial pressure of oxygen 

(PaO2). This observation may be due to either the occurrence of hypoventilation, 

diffusion impairment or ventilation/perfusion (     ) mismatch and shunting or a 

combination of these factors. In awake horses, 2-agonists were demonstrated to 

decrease respiratory rate (Daunt & Steffey 2002), but with an increase in tidal volume 

(Lavoie et al. 1992), keeping the alveolar ventilation and arterial blood gas values 

relatively constant (Lemke 2007). Hypoventilation may still occur in anaesthetized 

patients, mainly due to an increase in anaesthetic depth induced by the combination of 

an 2-agonist with the volatile anaesthetic agent (Steffey et al. 2000). However, since 

all the ponies were mechanically ventilated, hypoventilation can be excluded as a major 

cause of hypoxaemia. Diffusion impairment is very unlikely since it rarely occurs in 

healthy animals. Consequently, the hypoxaemia noticed in these experimental ponies 

was most likely due to       mismatch and shunting. It may be hypothesized that 

dexmedetomidine influenced pulmonary perfusion, but to the authors’ knowledge, 

deterioration of       matching and/or shunting have not been reported after 
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administration of 2-agonists. It is however well known that pulmonary function and 

oxygenation are often impaired in anaesthetized horses (Hall et al. 1968; Nyman & 

Hedenstierna 1989). This might be aggravated by the conformation of the ponies 

(Moens 1989), as they were ‘round bellied’ and relatively fat and heavy. Overall, no 

significant differences in the cardiopulmonary function were present between both CRI 

dexmedetomidine rates. Moreover, recoveries from general anaesthesia were good, with 

minimal ataxia. These findings might have been masked by a ‘learning effect’ as the 

ponies had been previously enrolled in other experimental studies. 

Unfortunately, the study design did have some important limitations. Potential 

carry-over effects of the dexmedetomidine CRI infused during the first period of the 

study may have influenced the cardiopulmonary parameters of the second period, 

despite the washout period of thirty minutes between both periods. Although not ideal, 

the study design and the relatively short washout period were included to limit the 

number of anaesthetic procedures per pony but also to reduce the total anaesthetic time 

in each individual pony. Ideally, each pony would have been anaesthetized twice 

receiving randomly each dexmedetomidine CRI rate. As described by Bettschart-

Wolfensberger et al. (2005), the cardiopulmonary effects of dexmedetomidine are short 

lasting, suggesting that a ‘washout period’ of thirty minutes after the end of the first 

CRI would have been justified. Furthermore, this assumption was confirmed by the 

comparable baseline values recorded at the beginning of both periods, suggesting that 

carry-over effects did not or minimally influenced our results. 

Moreover, it can be argued that the simultaneous administration of other 

anaesthetic drugs might also have influenced our results and it would have been better 

to induce anaesthesia with only a volatile agent, as described for the determination of 

the MAC in most species. However, ketamine and midazolam (or other 

benzodiazepines) are routinely used for induction of anaesthesia in horses and their 

cardiovascular influences are always present under clinical situations. Moreover, 

although the sympathetic stimulation characteristics of ketamine can have an effect on 

all the values but mainly the baseline values recorded after thirty minutes of anaesthesia, 

these stimulating effects may have been counteracted by the dexmedetomidine’s 

sedative effects or even the administration of midazolam. 
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The results of our first study suggested that both protocols produced 

cardiopulmonary effects typical of 2-agonists, although limited and within an 

acceptable clinical range. In conclusion, both infusion rates are suggested to be useful in 

healthy, anaesthetized clinical horses. 

The second study was a blinded clinical trial in healthy equine patients 

undergoing elective surgeries in which we showed that a dexmedetomidine CRI can be 

safely used as an adjunct during isoflurane anaesthesia. The results of the first study 

were indicative that both rates produced similar cardiopulmonary effects, mainly due to 

the reported ceiling effect of the 2-agonists (Pypendop & Verstegen 2001). Indeed, 2-

agonists produce a dose related sedation and analgesia (Ansah et al. 1998; Slingsby & 

Taylor 1998), but beyond a certain dose only minimal changes on cardiopulmonary 

function can be expected. It was hypothesized that 1.75 µg/kg/hr dexmedetomidine 

would possibly provide more sedation and analgesia. Reports in rats (Bol et al. 1999), 

cats (Slingsby & Taylor 2008) and dogs (van Oostrom 2011) showed that the sedative 

effects of dexmedetomidine were reached at lower doses than those required for an 

adequate level of analgesia. Moreover, it has been stated that analgesia cannot be 

produced without sedation and sedation is not necessarily linked to comparative degrees 

of analgesia (Franken et al. 2008). In contrast, it may be argued that comparable degrees 

of sedation and analgesia were obtained with both rates of dexmedetomidine in our 

experimental first set up. Indeed, it remains unclear whether a ceiling effect for the 

sedation and analgesia did occur in our experimental ponies. Although this ceiling effect 

has been reported in dogs (van Oostrom 2011), and suggested in cats (Ansah et al. 

2000), up to now insufficient data are available to support this effect in horses and 

further studies are certainly justified. We preferred the higher dose as its equipotent 

dose of medetomidine was successfully used in horses. Medetomidine (7 µg/kg/hr) was 

suitable for prolonged use, providing a constant level of sedation (Bettschart-

Wolfensberger et al. 1999), together with clear MAC-sparing effects (Bettschart-

Wolfensberger et al. 2001; Neges et al. 2003). Additionally, a subjectively easier 

maintenance of a stable anaesthetic depth was reported when compared to horses 

receiving isoflurane alone (Neges et al. 2003). 

The results of our second study demonstrated that dexmedetomidine at a dose of 

1.75 µg/kg/hr can be safely used in isoflurane anaesthetized healthy equine patients. No 
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clinically relevant effects on the cardiovascular system were present compared to a 

control group. Although PaO2 was significantly lower in horses receiving 

dexmedetomidine, the mean values were over 100 mmHg and the oxygen delivery 

index did not differ between groups.  

An important finding concerning the clinical application of dexmedetomidine 

was the significantly improved recovery qualities. This observation might have been 

related to the significantly longer times these patients remained in the sternal recumbent 

position and the first attempt to stand, resulting in less residual effects of the 

anaesthetics on the motor function and coordination. This was not seen after romifidine 

(Devisscher et al. 2010) or detomidine CRIs (Schauvliege et al. 2011), most likely due 

to the extra inclusion of a small amount of the 2-agonist at the end of anaesthesia, 

masking potential differences (Schauvliege et al. 2011). However, better recoveries 

were observed in our clinical study, even when a small dose of dexmedetomidine was 

added, just prior to recovery, in both the saline and dexmedetomidine groups. 

Furthermore, the number of horses may have had an influence on the obtained results as 

well, since the clinical dexmedetomidine study had more statistical power compared to 

the other two studies (Devisscher et al. 2010, Schauvliege et al. 2011). To the authors´ 

knowledge, none of the other studies did compare the recovery qualities after a CRI 

medetomidine versus saline in anaesthetized horses. Horses receiving medetomidine did 

show better recoveries than those receiving lidocaine (Ringer et al. 2007), while 

medetomidine added to a lidocaine CRI improved the recovery qualities (Valverde et al. 

2010). 

The clinical protocol of the second study failed to show a reduction of 

isoflurane, which was in agreement with previous blinded studies using different 2-

agonist CRIs (Devisscher et al. 2010; Schauvliege et al. 2011). Horses receiving a 

medetomidine CRI were reported to be much ‘lighter’ compared to sole inhalational 

anaesthesia (Kalchofner et al. 2006) while equine patients were clinically assessed as 

‘light’ by the anaesthetist did not respond to noxious stimuli when medetomidine was 

being infused (Ringer et al. 2007). All these properties render it relatively difficult to 

find clear differences in the volatile requirements in a blinded study.  

Due to the limitations of blinded clinical studies, an experimental MAC study 

was performed in experimental ponies as third study in order to possibly detect MAC 
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reductions induced by a dexmedetomidine CRI. The six ponies used in the first trial 

were anaesthetized twice with sevoflurane and recieved randomly a saline placebo or a 

3.5 µg/kg dexmedetomidine bolus followed by a 1.75 µg/kg/hr CRI. The MAC of 

sevoflurane in our experimental ponies was 2.42 ± 0.55% which was similar to values 

reported in horses (Aida et al. 1999; Rezende et al. 2011). In this trial, we demonstrated 

that the inclusion of a dexmedetomidine CRI did significantly reduce the MAC of 

sevoflurane to 1.07 ± 0.21% (mean MAC reduction 53 ± 15%). 

In order to avoid possible interactions with other drugs, most of the equine MAC 

studies use a face mask delivering the volatile agent to induce anaesthesia (Aida et al. 

1994; Tendillo et al. 1997; Steffey et al. 2000). In order to avoid pollution of the 

working area and to minimize adverse reactions of the animals during inhalation of the 

gas mixture, the ponies were nasotracheally intubated as described in foals (Webb 

1984). To our knowledge, this is the first time that this method has been reported for 

MAC studies in adult ponies. However, one relatively nervous pony did panic when she 

became ataxic. Sedation with xylazine was needed to allow a smooth induction in this 

pony. It may be argued that this pony should have been excluded from the study since 

xylazine might have influenced MAC determinations. However, in that individual case, 

the first MAC determination was achieved after 120 and 300 minutes when receiving a 

saline or a dexmedetomidine CRI, respectively. Even though xylazine is accepted as a 

short acting 2-agonist, the sedative dose might influence the volatile anaesthetic 

requirements for at least three hours after injection (Steffey et al. 2000, Bennett et al. 

2004). Nevertheless, exclusion of that pony did not significantly alter the overall MAC 

values, which were 2.43 ± 0.62% and 1.08 ± 0.24% during the placebo and 

dexmedetomidine CRIs respectively (mean MAC reduction 53 ± 17%). 

Another remark that may arise is the non-traditional use of the term MAC. We 

stated that ‘the response to the electrical stimuli was considered positive when a gross 

purposeful movement of head, limbs or tail occurred and/or swallowing or generalized 

muscle tremors were observed following a constant-current (CC) noxious stimulus. 

Gross purposeful movement without CC stimulation was also considered a positive 

response’. Traditionally, MAC is defined as the alveolar concentration at which 50% of 

the patients do not respond with purposeful movement to a supramaximal noxious 

stimulus (Merkel & Eger 1963). According to this, non-purposeful movement is 
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permissible during MAC determinations. In our study, we used a different definition 

because non purposeful movement would not be allowed under clinical circumstances 

but also because differentiation between purposeful and non-purposeful movements 

remains confusing, making this process somewhat subjective (Seddighi et al. 2011). In 

fact, the definition applied in the present PhD fits better with the definition of the more 

recently proposed term ‘MAC-no movement’ (MACNM) which has been formulated as 

the lowest alveolar concentration of an anaesthetic that abolishes all movement 

(Seddighi et al. 2011, 2012). Indeed, the determination of MACNM instead of MAC was 

suggested to reduce the subjectivity of classic MAC studies and is more clinically 

relevant. In retrospect and taking the recent literature into account, the use of the term 

MACNM in both of our MAC studies would have been more appropriate. 

It is well known that the use of morphine remains controversial in equine 

anaesthesia (Bennett & Steffey 2002; Clutton 2010), and administration of IV boluses 

produced inconsistent changes in the MAC requirements of isoflurane (Steffey et al. 

2003). Although there was a tendency in clinical anaesthetized equine patients receiving 

a morphine CRI to require fewer and lower doses of additional anaesthetic drugs (Clark 

et al. 2005), the effects of a morphine CRI on the MACNM of volatile agents had not 

been reported. Due to the positive findings of our previous study and because the 

protocol was deemed suitable for use in further studies, we aimed to determine the 

effects of a morphine CRI on the MACNM of sevoflurane. Moreover, we hypothesized 

that the co-administration of a dexmedetomidine CRI may influence the MACNM 

values, probably reducing them. 

In the fourth study, five experimental ponies were anaesthetized with 

sevoflurane, as described in the third study, and they received randomly the morphine 

protocol described by Clark et al. (2005) (IV bolus 0.15 mg/kg followed by CRI at 0.1 

mg/kg/hr), alone or combined with our dexmedetomidine protocol. When receiving a 

CRI of morphine, the MACNM sevoflurane value was determined to be 2.79 ± 0.73%, 

whereas co-infusion of dexmedetomidine significantly reduced that value to 0.89 ± 

0.22% (mean MACNM reduction 67 ± 11%). The pony which needed sedation before 

induction of anaesthesia in the third study was excluded due to potential influences in 

the MACNM determination. 
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The most important limitation of the fourth study was the absence of a control, 

placebo group. Ideally, one larger MACNM study should have been performed, with 

each pony receiving the four treatments in a randomized order. Although both 

experiments were performed in the same ponies and within a period of five months, a 

direct statistical comparison between all four treatments was not made since the order of 

the treatments was not randomized, and the main anaesthetist was not fully blinded. In 

the author’s opinion, it was however deemed unethical to repeat the MACNM 

determinations for the dexmedetomidine and saline treatments in these ponies. Although 

the MACNM values obtained in the two studies are of value for further research, the only 

conclusion that can be made from our independent studies is that a CRI of 

dexmedetomidine significantly reduces sevoflurane´s MACNM values in ponies when 

added to saline or morphine infusions. 

A study including the four treatments might also have determined if a morphine 

infusion increases MACNM values of sevoflurane and/or if the addition of both 

dexmedetomidine and morphine further reduces the MACNM values compared to 

dexmedetomidine alone. However, although a direct statistical comparison between the 

four groups was not possible, it still remains of scientific interest to note that the MAC 

tended to increase when a CRI of morphine was infused, increasing the MAC of 

sevoflurane from 2.42 ± 0.55% to 2.79 ± 0.73%. At the same time, combination of both 

morphine and dexmedetomidine infusions further reduced the sevoflurane´s MAC 

compared to dexmedetomidine alone from 1.07 ± 0.21% to 0.89 ± 0.22%. Under 

clinical circumstances, co-administration of both CRIs would be of interest in order to 

reduce the MAC and potential side effects of the volatile anaesthetic, as 

dexmedetomidine seemed to alter the effect of morphine on MAC requirements. 

Interesting observations were made when morphine was administered as CRI 

compared to saline or dexmedetomidine alone. It is worth mentioning that the responses 

to the stimuli were different compared with the findings of the third study. Maintenance 

of anaesthesia was judged to be more difficult in two out of five ponies when receiving 

the morphine treatment, with the occurrence of generalized, almost uncontrollable 

muscle tremors, and ‘fighting’ against the ventilator. These differences were explained 

in the discussion by a combined analgesic, excitatory and locomotor stimulant effects 

attributed to the use of morphine in horses (Kamerling et al. 1989). Moreover, two 
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ponies showed after the morphine CRI a typical ‘box-walking’ behaviour for up to two 

hours after the end of anaesthesia, one of them with clear over-reactions to external 

stimuli. In both circumstances, co-infusion of dexmedetomidine seemed to avoid such 

reactions, most likely due to its sedative properties. Moreover, prolonged infusions of 

morphine with dexmedetomidine shortened the recovery times, which can possibly be 

attributed to the effects of morphine accumulation after prolonged CRIs. 

Finally, it has to be stated that the data obtained from the second MAC study 

should be interpreted carefully as stimulation of the central nervous system may result 

in MAC increases (Miller et al. 1968; Johnston et al. 1972). In the case of morphine, 

increases in MACNM can be induced by the central arousal overwhelming analgesic 

actions, which do not confirm the absence of analgesic effects (Bennett & Steffey 

2002). Moreover, electrical stimulation is probably qualitatively different from classic 

surgical nociception (Clutton et al. 2010). Although the demonstration of analgesia in 

horses receiving morphine is not so straightforward (Bennett & Steffey 2002; Clutton, 

2010), we hypothesized that in presence of surgical pain, morphine would exert more 

analgesic effects rather than producing central arousal, even producing MAC 

reductions. This assumption was based on previous encouraging reports with morphine 

infusions under clinical circumstances in horses (Mircica 2003; Clark et al. 2005, 2008; 

Love et al. 2006) and was the original idea to perform the following study. 

In order to compare both dexmedetomidine and morphine CRIs under clinical 

circumstances, we performed our fifth clinical trial to evaluate the influence on 

cardiopulmonary function, intraoperative anaesthetic stability and recovery quality in 

equine patients. With a dexmedetomidine CRI it was possible to maintain a more stable 

light surgical depth of anaesthesia, requiring less isoflurane or additional drugs. 

Furthermore, recovery qualities were significantly better, with a lower number of 

attempts to stand in horses receiving dexmedetomidine. Post-operative complications 

such as pulmonary oedema, colic and box-walking were only observed in horses 

receiving a morphine CRI. 

In this blinded, clinical trial not only a comparison between treatments with 

regard to the cardiopulmonary function and the recovery qualities was made. Moreover, 

the authors aimed to determine which protocol required less isoflurane and produced a 

more stable plane of anaesthesia. Although the MACNM of sevoflurane was higher in 
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our ponies when receiving a morphine CRI compared to dexmedetomidine, clinical 

studies showed that horses receiving the same protocol tended to receive fewer and 

lower doses of additional anaesthetics compared to a control group (Clark et al. 2005). 

As stated earlier, it remains difficult to detect potential MAC reductions when infusions 

of 2-agonists are used in blinded clinical studies. 

In order to overcome these drawbacks, we designed a flow-chart adapted from 

Enderle et al. (2008) described as ‘a relatively objective tool to titrate the concentration 

of isoflurane delivered to the patient for the anaesthetist, unaware of the combination 

being administered to the horse’. The application of this flow-chart was successfully 

performed by the main blinded anaesthetist. However, anaesthesia was easier to 

maintain at an ‘ideal’ plane, with less intraoperative movements in horses receiving a 

dexmedetomidine infusion. Moreover, less isoflurane and extra anaesthetic drugs were 

required. These results seem to support strongly the use of a dexmedetomidine versus a 

morphine infusion. Nevertheless, the results of this clinical study should be interpreted 

carefully. It may be discussed that the study design was not ideal, mainly because of the 

commencing maintenance of anaesthesia at an expiratory fraction of isoflurane (FE´ISO) 

of 0.9%. This value may have been sufficient when dexmedetomidine but not when 

morphine was infused, resulting in early arousal and a subsequently unstable plane of 

anaesthesia in the morphine group. Moreover, it cannot be excluded that central arousal 

effects might have been present on top of morphine´s analgesic properties, leading to 

intraoperative movements. Nevertheless, the flow-chart, did allow to increase the 

FE´ISO when the classical parameters used to evaluate anaesthetic depth in horses 

indicated a superficial plane of anaesthesia. In the authors’ opinion, this protocol 

therefore mimicked a clinical situation. In any case, when applying this relatively 

objective flow-chart we concluded that, when a dexmedetomidine CRI was 

administered, lower amounts of volatile agents are required to maintain a more stable 

and reliable plane of anaesthesia compared to a morphine CRI under clinical 

circumstances. 

Only twenty equine patients were included in this last clinical trial. Although the 

inclusion of forty horses was initially planned, the authors decided to stop the study 

after twenty animals as the overall maintenance of anaesthesia in horses receiving 

morphine was difficult, creating problems to the surgical team. Moreover, recovery 
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qualities were far from ideal with one horse developing colic and even pulmonary 

oedema after morphine infusion. However, it remains difficult to determine whether 

morphine was responsible for these symptoms. Although no overall differences were 

found in FE´ISO between the two protocols, significant differences could be 

demonstrated in important parameters including cardiopulmonary function, recovery 

quality, additional ketamine and the isoflurane requirements at T60, suggesting that the 

number of horses was sufficient to make clear end conclusions. Co-administration of 

both dexmedetomidine and morphine infusions may have led to better outcomes, 

providing the analgesic effects of morphine while avoiding the morphine side effects by 

the sedative properties of dexmedetomidine. 

An interesting finding of several of these studies is that the PaO2 values often 

tended to be lower when administering a dexmedetomidine CRI. Up to date, there is not 

a clear explanation for this. Differences in minute ventilation seem less likely, 

especially since mechanical ventilation was used in most horses and PaCO2 values were 

comparable between groups. It may be hypothesized that dexmedetomidine influences 

the hypoxic pulmonary vasoconstriction (HPV) reflex, a highly efficient mechanism in 

the pony that distributes blood flow from hypoxic regions in the lung to ventilated areas 

(Elliott et al. 1991). To the author´s knowledge, no studies are available on the effects of 

2-agonists on the HPV reflex. However, it seems possible that administration of 

dexmedetomidine elevated pulmonary arterial pressure, disturbing the HPV mechanism. 

This would contribute to impared arterial oxygenation, which was reported in horses 

after detomidine sedation (Nyman et al. 2009). In the latter study, significant reductions 

in blood flow and an increase in       mismatch were the major contributors to the 

alveolar-arterial oxygen tension difference. In contrast, studies in humans showed that a 

bolus of dexmedetomidine followed by a CRI did not adversely affect oxygenation 

during one-lung ventilation (Kernan et al. 2011). In fact, the authors concluded that its 

use as part of a balanced anaesthetic technique may improve oxygenation by allowing 

the use of lower concentrations of the inhaled agent, thereby limiting its effects on 

oxygenation (Marshall et al. 1984; Eisenkraft 1990). In our clinical study (Chapter 2), 

the FE´ISO was comparable between treatments (± 1.1 %). After determining that a 

dexmedetomidine CRI reduces the MACNM of inhalants (Chapter 3) and that general 

anaesthesia can be well maintained at FE´ISO values close to 0.9% (Chapter 5), it seems 



General discussion 

  

220 

 

of interest to examine the hypothesis of Kernan et al. (2011), comparing oxygenation in 

horses anaesthetized with different concentrations of inhaled agents while using a 

dexmedetomidine CRI. Furthermore, research investigating the effects of 

dexmedetomidine on the HPV reflex may be of value.  

Another timely point is the reliability of the method used to measure cardiac 

output (   ). In Chapters 1, 2 and 5     was measured by means of the lithium dilution 

method (LiDCO), a minimally invasive and accurate technique (Kurita et al. 1997; 

Linton et al. 1997) suitable for use in horses (Linton et al. 2000). However, a recent 

study showed that different drugs may influence the accuracy of the LiDCO sensor in 

vitro (Ambrisko et al. 2013). Therefore, although the LiDCO dilution technique was 

considered a valid method at the time of designing/performing these studies, the results 

should be interpreted carefully as potential interactions may occur. From the drugs used 

in our studies, ketamine may have interacted with the LiDCO sensor in vivo, 

dexmedetomidine seemed unlikely to cause bias and midazolam probably did have 

minimal or no interaction. However, although the results of Ambrisko et al. (2013) may 

be of clinical relevance, further research is required to confirm this hypothesis in vivo. 

 Based on the general results of this PhD thesis, it can be concluded that a 

dexmedetomidine CRI (1.75 µg/kg/hr) can be safely used in healthy anaesthetized 

horses, with minimal cardiopulmonary effects. Moreover, it improves the recovery 

quality and reduces the MACNM of inhalant agents. Dexmedetomidine can also be 

combined with a morphine CRI, reducing the MACNM of the volatile agent and 

theoretically preventing unwanted phenomena linked to the infusion of morphine. 

Finally, a dexmedetomidine CRI produced, under clinical circumstances using the 

design of our last study, a more stable anaesthetic depth, with less isoflurane 

requirements and better recoveries compared to a morphine CRI. Post-operative 

complications were more frequently seen in horses receiving morphine. Based on these 

results, the use of an infusion of dexmedetomidine seems to be promising from a 

clinical point of view, especially during surgical procedures requiring the use of a short-

acting sedative, with MAC-sparing effects and better recoveries (i.e. long orthopaedic 

procedures such as limb fracture repair). Limiting factors include the absence of a 

license for this drug in horses, which reduces its use to ‘non food producing animals’ 

and the higher economic costs compared with other registered 2-agonists. 
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Apart from these limitations, the results presented here are encouraging for 

further research. Dexmedetomidine and morphine CRIs may be combined in clinically 

healthy equine patients, providing analgesia by two different receptors, while the 

sedative effects of dexmedetomidine may reduce the potential side effects of morphine. 

Another direction for further investigation is the use of our protocol in compromised 

patients such as colic horses. As previously discussed, 2-agonists produce an important 

impact on cardiovascular function. However, combination with drugs such as 

phosphodiesterases III inhibitors may be beneficial, as they reduce the systemic vascular 

resistance and increase the cardiac output. The use of milrinone (Muir 1995) and 

enoximone (Schauvliege et al. 2007, 2008, 2009) has been already studied in horses and 

the simultaneous infusion with dexmedetomidine seems to be attractive and may be of 

benefit in colic horses. 
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It is well known that anaesthesia in horses carries a higher risk of mortality compared to 

other species. The different mortality rates reported in literature have been included in 

the general introduction. Overall, maintenance of general anaesthesia with volatile 

agents anaesthetics carries a higher risk of death compared with total intravenous 

anaesthetic protocols, mainly due to the cardiovascular depressant effects of the volatile 

agents. The different principles to treat cardiovascular depression during general 

anaesthesia in horses were also highlighted, introducing the concept of ‘balanced 

anaesthesia’. 

 The Section 1 of the general introduction includes a review of the different 

intravenous (IV) drugs that are commonly used as constant rate infusions (CRIs) in 

combination with volatile agents in anaesthetized horses. Lidocaine, ketamine and 

opioids can be administered in order to provide analgesia or to reduce the minimum 

alveolar concentration (MAC) of volatile anaesthetics, although their use is not free of 

side effects. Alpha2-agonists are potent sedatives and analgesics reducing the MAC of 

inhalant anaesthetics; the main concern is their impact on cardiovascular function. The 

pharmacokinetics of the most selective 2-agonists, medetomidine and 

dexmedetomidine, seem to favour their use in CRIs, mainly because of their very short 

lasting induced cardiopulmonary changes. 

An in depth review of the characteristics and use of dexmedetomidine was 

included in the Section 2 of the general introduction. This drug has been used not only 

in human but also in different veterinary species during inhalational anaesthesia, with 

promising results. Unfortunately, only one study investigated the use of 

dexmedetomidine in ponies, suggesting its use as a CRI for equine anaesthesia. 

The objectives of the PhD were defined in the scientific aims. In summary, we 

aimed to determine a safe dexmedetomidine dose(s) which was administered as sedative 

before induction of anaesthesia and as a CRI in combination with volatile agents during 

anaesthesia. A second aim was to determine the influence of dexmedetomidine on the 

MAC of sevoflurane when given alone or in combination with a morphine CRI. Finally, 

the third goal was to compare our proposed dexmedetomidine protocol with a morphine 

CRI under clinical circumstances in equine patients. 

The cardiopulmonary effects of two different CRIs of dexmedetomidine (1 and 

1.75 µg/kg/hr) were evaluated in six ponies in a prospective, randomized, experimental 
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study and incorporated in Chapter 1. After sedation with dexmedetomidine (3.5 µg/kg, 

IV) and induction with IV ketamine and midazolam (T0), anaesthesia was maintained 

with isoflurane [expiratory fraction of isoflurane (FE´ISO) 1.50 %] in an oxygen/air 

mixture (55% O2) for 150 minutes. Three ponies received dexmedetomidine CRIs of 1 

and 1.75 µg/kg/hr from T30 to T60 and T90 to T120 respectively. In the other three 

ponies, the order was reversed. 

Heart rate (HR), cardiac index (CI), arterial oxygen content (CaO2), venous 

oxygen content and oxygen delivery decreased significantly, whereas systemic vascular 

resistance, systolic arterial pressure and right arterial pressure significantly increased 

with both rates. No major differences were found between the two rates. It was 

concluded that although significant, the changes produced by both CRI rates of 

dexmedetomidine were small and within an acceptable clinical range. 

Since dexmedetomidine was found to be useful with minimal cardiopulmonary 

effects in healthy anaesthetized ponies, the use of the highest CRI rate (1.75 µg/kg/hr) 

was further investigated in equine patients under clinical circumstances and included in 

Chapter 2. The inclusion of this rate was justified not only because of the ‘ceiling 

effect’ of dexmedetomidine with regard to the cardiopulmonary function, but also due 

to a dose dependent increase in sedative and analgesic effects. A prospective, 

randomized, blinded, clinical study was performed to investigate the influence of a CRI 

of dexmedetomidine (1.75 µg/kg/hr) on the cardiopulmonary function and recovery 

quality in forty healthy, isoflurane anaesthetized horses undergoing elective surgery. All 

the horses were sedated with dexmedetomidine (3.5 µg/kg, IV) while anaesthesia was 

induced with IV ketamine and midazolam and maintained with isoflurane in 55-60% 

oxygen. The horses were randomly allocated to receive either a CRI of 

dexmedetomidine (1.75 µg/kg/hr) or saline. The main anaesthetist was unaware of the 

treatment. All the horses received a small dose of dexmedetomidine (0.875 µg/kg, IV) 

at the end of anaesthesia before the recovery period. 

Statistically significant decreases in HR and arterial partial pressure of oxygen 

(PaO2) were found in horses receiving a dexmedetomidine CRI. However, the decrease 

in HR was minimal, and no periods of severe bradycardia were observed. Despite this 

decrease, CI was not affected and was not significantly different between treatments. 

Although PaO2 was lower in horses receiving dexmedetomidine, it remained in the 
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range to fully saturate heamoglobin, with a comparable CaO2 between groups. Apart 

from the influence on the cardiopulmonary function, a dexmedetomidine CRI did not 

reduce the FE´ISO required to maintain anaesthesia but improved the recovery quality, 

with fewer attempts to stand and significantly longer times to sternal position and first 

attempt to stand. 

In order to prove a possible inhalant anaesthetic-sparing effects of the proposed 

dexmedetomidine protocol, a classic MAC study was performed (Chapter 3) using six 

healthy ponies in a prospective, randomized, crossover, blinded experimental study. 

Each pony was anaesthetized twice within a washout period of three weeks for either 

the dexmedetomidine protocol (3.5 µg/kg IV followed by a CRI at 1.75 µg/kg/hr) or the 

treatment saline. Induction of anaesthesia was performed with sevoflurane in oxygen by 

a nasotracheal tube and maintained with sevoflurane in 55% oxygen. Afterwards (T0, 

positioning on surgical table), the ponies received the appointed treatment and the MAC 

of isoflurane was determined after sixty minutes using a classic bracketing technique 

including constant-current electrical stimuli applied at the skin of the lateral pastern 

region. Triplicate estimations of the ‘MAC-no movement’ (MACNM) were obtained and 

averaged in each pony. The results obtained from this study showed that a 

dexmedetomidine CRI (1.75 µg/kg/hr) significantly reduces the mean ± SD sevoflurane 

MACNM from 2.42 ± 0.55 to 1.07 ± 0.21% (mean MACNM reduction 53 ± 15%). 

In view of the successful outcome and positive results obtained from the first 

MAC study, a second MAC study was additionally performed. The study included in 

Chapter 4 aimed to determine the MACNM of sevoflurane during a morphine CRI or a 

combination of both morphine and dexmedetomidine CRIs. The sevoflurane MACNM in 

five experimental ponies using a morphine CRI was 2.79 ± 0.73% while simultaneous 

infusion of dexmedetomidine significantly reduced sevoflurane MACNM to 0.89 ± 

0.22% (mean MACNM reduction 67 ± 11%). 

 Finally, a prospective, blinded, clinical study involving twenty horses 

undergoing elective surgeries was performed and reported in Chapter 5. Two different 

balanced anaesthetic protocols, dexmedetomidine and morphine CRIs, were studied 

with regard to cardiopulmonary function, isoflurane requirements and recovery 

qualities. Horses were randomly allocated to receive dexmedetomidine (3.5 µg/kg IV 

followed by a CRI at 1.75 µg/kg/hr) or morphine (dexmedetomidine 3.5 µg/kg plus 0.15 
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mg/kg morphine IV followed by a CRI of morphine 0.1 mg/kg/hr). Anaesthesia was 

induced in both groups with ketamine and midazolam and maintained with isoflurane in 

55-60% oxygen. In order to determine the isoflurane requirements during both 

protocols, a minimal FE´ISO of 0.9% was used after induction of anaesthesia, and then 

adjusted by the anaesthetist to maintain a light surgical plane of anaesthesia, according 

to an objective flow-chart. 

  Cardiopulmonary function remained stable in both groups. When the 

anaesthetized horses received a CRI of dexmedetomidine, less additonal ketamine was 

required, FE´ISO was lower after one hour and more time was spent in an ‘ideal plane’ 

of anaesthesia, together with better recoveries. Some complications were observed after 

infusion of morphine (one post-operative colic and pulmonary oedema and two box-

walking behaviours). In summary, a dexmedetomidine CRI in equine patients under 

clinical circumstances produced a more stable anaesthetic depth, with reduced 

isoflurane requirements and better recoveries, but also without post-operative 

complications compared with a morphine CRI. 

As an overall conclusion it can be stated that a dexmedetomidine CRI (1.75 

µg/kg/hr) can be safely used in healthy anaesthetized horses with minimal 

cardiopulmonary effects, producing a reduction of the isoflurane requirements, an easier 

maintenance of a stable plane of anaesthesia and longer but better recoveries. This 

dexmedetomidine protocol was also proven to be better compared to a morphine CRI in 

equine anaesthetized patients. 
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Het risico van algemene anesthesie is beduidend hoger bij paarden dan bij andere 

diersoorten. Verschillende mortaliteitspercentages werden in de literatuur reeds 

gerapporteerd, zoals beschreven in de algemene inleiding. Onderhoud van algemene 

anesthesie met volatiele anesthetica houdt bovendien een hoger risico in vergeleken met 

totaal intraveneuze anesthesie, vooral omwille van de meer uitgesproken 

cardiovasculaire depressie die optreedt. De verschillende principes die belangrijk zijn 

bij de behandeling van cardiovasculaire depressie werden bijkomend besproken, waarbij 

ook aandacht werd gegeven aan het concept van ‘balanced anaesthesia’. 

 Sectie 1 van de algemene inleiding geeft een overzicht van de verschillende 

intraveneuze (IV) farmaca die gebruikt worden als continu infuus (CRI) in combinatie 

met volatiele anesthetica tijdens algemene anesthesie bij paarden. Lidocaïne, ketamine 

en opioïden kunnen toegediend worden om analgesie te bekomen en tevens om de 

minimum alveolaire concentratie (MAC) van inhalatie-anesthetica te verlagen, alhoewel 

ze niet vrij zijn van neveneffecten. Alfa2-agonisten zijn krachtige analgetica en verlagen 

de MAC van inhalatie-anesthetica, maar hebben zelf ook een duidelijke impact op het 

cardiovasculair systeem. De farmacokinetische eigenschappen van de meest selectieve 

2-agonisten, medetomidine en dexmedetomidine, lijken gunstig voor gebruik in CRIs, 

vooral ook omdat de cardiopulmonaire effecten van zeer korte duur zijn.  

Een overzicht van de karakteristieken en de toepassingen van dexmedetomidine 

wordt gegeven in de Sectie 2 van de algemene inleiding 2. Dit product werd reeds 

gebruikt bij zowel mens als dier tijdens inhalatie-anesthesie, met veelbelovende 

resultaten. Tot heden is slechts één wetenschappelijke publicatie voorhanden die het 

gebruik van dexmedetomidine bij paarden onderzocht. De auteurs suggereerden het 

gebruik van dexmedetomidine als een CRI bij paarden. 

Dit leidde tot het formuleren van de wetenschappelijke doelstellingen van dit 

doctoraat. Allereerst werd er gezocht naar dosissen waaraan dexmedetomidine veilig 

gebruikt kan worden als sedativum voor de premedicatie en als CRI tijdens het 

onderhoud van een algemene anesthesie met volatiele anesthetica. Daarnaast werd 

bepaald of dexmedetomidine de MAC van sevofluraan beïnvloedt, zowel alleen als in 

combinatie met een morfine-infuus. Tenslotte werd het protocol met dexmedetomidine 

vergeleken met een morfine-infuus tijdens anesthesie bij paarden onder 

kliniekomstandigheden.  



Samenvatting 

  

236 

 

In Hoofdstuk 1 werden de cardiopulmonaire effecten van twee verschillende 

dexmedetomidine CRIs (1 en 1.75 µg/kg/hr) onderzocht in zes pony’s in een 

prospectieve, gerandomiseerde, experimentele studie. Na sedatie met dexmedetomidine 

(3.5 µg/kg, IV) en inductie met ketamine en midazolam (T0), werd de anesthesie 

onderhouden met isofluraan [expiratoire fractie (FE´ISO) 1.50 %] in een zuurstof/lucht 

mengsel (55% O2) gedurende 150 minuten. Drie pony’s kregen dexmedetomidine CRI’s 

aan 1 en 1.75 µg/kg/hr van T30 tot T60 en T90 tot T120 respectievelijk. Bij de drie 

andere pony’s werd de volgorde van beide infusiesnelheden omgewisseld. De 

hartfrequentie (HR), het hartdebiet (CI), de arteriële (CaO2) en veneuze zuurstofgehaltes 

en de zuurstofvoorziening (DO2) daalden significant, terwijl de systemisch vasculaire 

weerstand, systolische arteriële druk en rechter atriale druk significant stegen met beide 

infusiesnelheden. Geen verschillen werden echter gevonden tussen de beide 

infusiesnelheden. Er werd besloten dat hoewel significant, de effecten van beide CRIs 

klein en klinisch aanvaardbaar waren.  

Eens er vastgesteld was dat dexmedetomidine bij gezonde pony’s kan gebruikt 

worden tijdens de anesthesie, met slechts minimale cardiopulmonaire effecten, werd in 

Hoofdstuk 2 de hogere infusiesnelheid (1.75 µg/kg/hr) onder kliniekomstandigheden 

onderzocht bij paarden. De keuze voor deze snelheid was voornamelijk omwille van het 

zogenoemde ‘ceiling effect’ i.v.m. de cardiopulmonaire functie, terwijl de sedatieve en 

analgetische effecten mogelijks toch dosisgerelateerd zijn. Een prospectieve, 

gerandomiseerde, blinde, klinische studie werd uitgevoerd bij veertig volwassen en 

gezonde paarden aangeboden voor electieve chrirugie, met als doel de invloed van een 

dexmedetomidine CRI (1.75 µg/kg/hr) op de cardiopulmonaire functie en 

recoverykwaliteit na te gaan tijdens isofluraan anesthesie. Alle paarden werden 

gesedeerd met dexmedetomdine (3.5 µg/kg, IV) en de anesthesie werd geïnduceerd met 

ketamine en midazolam en onderhouden met isofluraan in 55-60% zuurstof. De paarden 

kregen at random een CRI van dexmedetomidine (1.75 µg/kg/hr) of fysiologische 

zoutoplossing als placebo. Voor de recovery werd aan alle paarden een kleine dosis 

dexmedetomidine (0.875 µg/kg, IV) toegediend. Statistisch significante dalingen in de 

HR en arteriële zuurstofspanning (PaO2) werden gevonden bij paarden die een 

dexmedetomidine CRI kregen. De daling in HR was echter minimaal en er waren bij 

geen enkel paard periodes van ernstige bradycardie. Ondanks deze daling verschilde de 
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CI ook niet tussen de twee groepen. Alhoewel de PaO2 lager was bij paarden die 

dexmedetomidine kregen, bleef deze steeds hoog genoeg om een volledige saturatie van 

haemoglobine met zuurstof te bekomen en was de CaO2 vergelijkbaar tussen de twee 

groepen. Er werd geen daling gevonden in de FE´ISO, maar dexmedetomidine 

verbeterde wel de recoverykwaliteit, met minder pogingen om recht te staan en 

significant langere tijden tot sternale decubitus en de eerste poging tot rechtstaan.  

Om aan te tonen dat dexmedetomidine de behoefte aan inhalatie-anesthetica bij 

paarden vermindert, werd een klassieke MAC studie uitgevoerd (Hoofdstuk 3). Zes 

gezonde pony’s werden opgenomen in een prospectieve, gerandomiseerde, blinde, 

experimentele crossover-studie. Elke pony werd 2 keer onder anesthesie gebracht met 

een tussentijd van drie weken en kreeg een infuus van ofwel dexmedetomidine (3.5 

µg/kg IV gevolgd door een CRI aan 1.75 µg/kg/hr) ofwel fysiologische zoutoplossing. 

Inductie en onderhoud van de anaesthesie gebeurde met sevofluraan in een zuurstofrijk 

gasmengsel, toegediend via een nasotracheale tube. Na het plaatsen op de chirurgietafel 

(T0) werd het respectievelijke infuus gestart en vanaf T60 werd de MAC-bepaling 

begonnen met een klassieke ‘bracketing’ benadering, d.m.v. elektrische stimuli van een 

constante stroomsterkte toegediend t.h.v. de laterale kootregio. Drievoudige bepalingen 

van de ‘MAC-no movement’ (MACNM) werden bekomen en het gemiddelde per pony 

berekend. De resultaten van deze studie toonden aan dat een dexmedetomidine CRI 

(1.75 µg/kg/hr) significant de MACNM van sevofluraan doet dalen van 2.42 ± 0.55 naar 

1.07 ± 0.21% (gemiddelde MACNM reductie 53 ± 15%).  

Gezien het succesvol uitvoeren van en de positieve resultaten bekomen met de 

voorafgaande studie, werd een tweede MAC studie uitgevoerd (Hoofdstuk 4), met als 

doel de MACNM van sevofluraan te bepalen tijdens toediening van een morfine-infuus, 

al dan niet gecombineerd met dexmedetomidine. Vijf pony’s werden gebruikt bij deze 

studie, die uitgevoerd werd zoals in Hoofdstuk 6. De MACNM van sevofluraan was 2.79 

± 0.73% tijdens een morfine-infuus, maar deze daalde tot 0.89 ± 0.22% wanneer ook 

dexmedetomidine als infuus werd gegeven (gemiddelde MACNM reductie 67 ± 11%).  

 Tot slot werd in Hoofdstuk 5 een prospectieve, blinde, klinische studie 

uitgevoerd op twintig paarden tijdens electieve chirurgie, met als doel twee protocols 

voor ‘balanced anaesthesia’ met elkaar te vergelijken, i.e. dexmedetomidine en morfine 

CRIs, m.b.t de cardiopulmonaire functie, isofluraan behoefte en recovery kwaliteit. De 
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paarden werden at random toegewezen aan behandeling dexmedetomidine (3.5 µg/kg 

IV + CRI aan 1.75 µg/kg/hr) of morfine (dexmedetomidine 3.5 µg/kg plus 0.15 mg/kg 

morfine IV, gevolgd door een morfine CRI 0.1 mg/kg/hr). In beide groepen werd de 

anesthesie geïnduceerd met ketamine en midazolam en onderhouden met isofluraan in 

55-60% zuurstof. Om na te gaan of de isofluraanbehoefte met deze behandelingen 

beïnvloed wordt, werd na inductie van de anesthesie een minimale FE´ISO van 0.9% 

gebruikt, die verder aangepast werd aan de hand van een objectieve flow-chart om een 

zo licht mogelijke maar toch chirurgische diepte van de anesthesie te bereiken. 

Met beide infusen werd een goede cardiopulmonaire functie bekomen. Bij de paarden 

die dexmedetomidine kregen was er echter minder ketamine nodig, was de FE´ISO na 

één uur anesthesie lager en werd een groter percentage van de tijd in een ‘ideale’ diepte 

van anesthesie doorgebracht, met finaal een betere recovery. Een aantal complicaties 

traden op bij de groep waar morfine toegediend werd (één koliek en longoedeem, twee 

andere ‘box-walking’). De conclusie van deze studie was dat een dexmedetomidine CRI 

een stabielere diepte van de anesthesie geeft, met lagere isofluraanbehoeftes en een 

betere recovery, zonder postoperatieve complicaties. 

Als een algemene conclusie kan gesteld worden dat een dexmedetomidine CRI 

(1.75 µg/kg/hr) veilig gebruikt kan worden, met minimale cardiopulmonaire effecten bij 

gezonde paarden tijdens algemene anesthesie en een lagere behoefte aan isofluraan, 

waarbij makkelijker een stabiele diepte van de anesthesie kan aangehouden worden. De 

recovery is langer maar wel beduidend beter. Dit protocol blijkt ook gunstiger ten 

opzichte van de combinatie isofluraan en een morfine-infuus. 
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PhD student (Dehousse grant), combining research with clinical and educational tasks. 

Miguel Gozalo Marcilla is author and co-author of several papers published in 

international peer reviewed journals. His work has also been presented at different 

international congresses. 
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It is very hard to leave the country and the people you love in order to improve your 

career. However, I will never regret my decision. In the last six years I grew 

professionally and personally and, with these lines, I would like to thank everyone that 

helped me in both ways. 

 My first thanks go to Professor Gasthuys. Frank, you gave me the opportunity to 

start a residency programme in veterinary anaesthesia. I hope you were happy with my 

work and, although I still need to pass the oral part of the exams, you know that I did all 

my best every single day. Moreover, I would like to thank you for all the support you 

gave me to perform the research I am presenting today. Since the first day you 

encouraged me with this project, providing the facilities, your ideas and of course, 

useful and quick remarks during the writing processes. Lastly, I also would like to thank 

you for all the good times in the congresses we went together, not only for your support 

in my presentations, but also when meeting people or having a drink in places such as 

Barcelona or Santorini. 

 It sounds a bit strange to me to say Doctor Schauvliege. Stijn, I do not have 

words to thank you for all your help during these years. Since the first day you helped 

me every single day: at the beginning with the clinical work and later with the research 

we performed together. I will never forget the extra effort you made when preparing the 

written exam and the proud you felt when we knew the result. I hope you will feel the 

same at the end of November again! And of course, thank you very much for your 

patience, your trust and for being always there when somebody needs you. Finally, I 

cannot forget the good times we also had after work. Department dinners, assistant 

parties and of course, anaesthetists meetings. I will be proud to say that we are the 

‘Franky boys’, always staying longer than the ‘Regula girls’! 

 Who is happy doing statistics? Professor Duchateau is the answer. Thank you 

very much for the time you spent analizing our data. Although I followed some statistic 

courses, it was always great to have your back up and knowledge to confirm the 

interpretation of our results. Furthermore, I would like to thank you for accepting being 

a member of the Guidance Committee and for your critical reading of the first version 

of the present PhD. 

 I would like to be grateful to the members of the Reading and Exam Committees 

as well. First of all I would like to thank Professor Polis and Doctor Waelbers, not only 
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by their work reviewing this manuscript, but also by supporting me when I was a 

resident rotating in their department. Ingeborgh, Tim: although you knew that I was 

more interested in equine anaesthesia, you always trusted on my work and made my life 

easier. It was a pleasure to work with you and also to spend some time together in 

several meetings. Professor Yves Moens: thanks for participating in my PhD defense. I 

know you love to be back in your country and meet old friends. I hope we will see each 

other (and I will have to be able to guess if you are talking serious or just making a joke 

). Doctors Bouchez and Foubert: it is an honour that you are members of the Reading 

Committee. The opinion and comments of 2 recognized human anaesthetists make our 

work of more value. Thanks also to Edwin Claerebout, Chairman of the Exam and 

Reading Committees for the organization of this PhD defense. Thank you all for being 

present on this important day. 

Going back in time, I would like to remember the people who helped me to be 

here today. I would not be the anaesthetist I am without Pepe Antón. Driving along 

Castilla for hours and hours I met not only a tireless equine vet, but also a good friend. 

Thanks for guiding me in my first steps Pepe! The time spent as an equine intern and 

clinician in the Hospital Veterinario Sierra de Madrid was a very intense period, full of 

good and bad moments. First of all I would like to thank Miguel Bajón and Luis de la 

Ossa for choosing me to work in their hospital. From this period I really appreciated the 

time I worked with Jorge de la Calle. He showed me that he is not only a very good 

surgeon but also a humble professional and a better person, supporting me in difficult 

moments. I also would like to thank all of the people who I worked with and from who I 

learnt a lot: Gustavo, Raquel Vicario, Víctor, Juanfran, Juan (blacksmith), Jero, Paco 

Tendillo and Martín. Also to the interns and people from small animals or 

administration: Mar, Jose Enrique, Israel, Laura, Moisés, Raquel Mena, Yolanda, María 

(and her good food), Mónica… I would like to include here David Argüelles. He was 

only a visitor for several weeks but he encouraged me to search for a residency 

programme. When you leave a place you leave friends as well. I left Amaia, a great 

housemate and a better person. I will always remember those ‘chuletitas’, our life in 

Pedrezuela and that sofa I could never use! Good luck with your baby and hope to see 

you soon. I also left Lucía in a difficult moment, but that made you stronger, still being 

a very kind and positive person. Finally, a special mention to one of my best friends that 
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I will never see again, my colleague of internship Gonzalo Lazo Martín. We started this 

together but you could not finish it. I am sure that wherever you are, you must be proud 

of me. 

 The Dierenkliniek de Bosdreef was the place where I came to complete an 

anaesthesia training and was the connection with Ghent University. I would like to 

thank Tresemiek Picavet for her time and trust when I was just a visitor (with a bad 

English, by the way). Also to the people working there: Hans, Bernard, Paul, Eduardo 

Félix,… and to Tim Samoy, who offered himself to send my CV to the ‘big boss’ in 

Merelbeke.  

 When I started to work in our department, I realized that running a busy equine 

clinic is not an easy matter, and a good ‘team work’ is mandatory. Since the first day, I 

felt very comfortable working with good and very professional colleagues. First, I 

would like to thank my colleagues from anaesthesia: Hannah and Lindsey by helping 

and teaching me a lot during the first months of my stay (and of course for their 

patience), Stefanie by her positive attitude and the good moments after work and Sofie, 

a hard worker and a good person (I am glad to see that you enjoy your new position). 

And of course, the anaesthesia residents. Caroline, I wish you all the best in life. 

Barbara and Sanne, good luck with the end of your residency and for the exams that are 

coming. Diego, you are just starting but with a lot of work and sacrifice I am sure you 

will be able to make it. I will be there if you need any help. 

 When visiting other places you can see that sometimes the relationship between 

surgeon and anaesthetist is not great. I cannot say the same in our department. I would 

like to thank Professors Ann Martens, Lieven Vlaminck and Frederik Pille for their trust 

on my work. As an anaesthetist it is really important to feel that the surgeon appreciates 

your job and relies on your decisions. Working with all of you I felt very confident. 

Moreover, I would like to mention to all the surgery residents I have worked with: 

Jeroen (all the best in your job), Tamara (imposible to forget ), Mireia (good luck with 

your PhD), Helga (my best wishes for your near future and in your next steps) and 

Thomas (all the best in your residency). Caroline, take care of all the calves with 

‘spastiche parese’ as well as Marteen does it with the sarcoids. Maarten and Michèle, 

thanks for your help at the beginning of my residency during your anaesthesia duties. 

The same for Geert and Annelies, now with other positions. Kelly, I met you when you 
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were an intern and now you are an orthopaedic expert. If someone touches your 

shoulder when you are checking your e-mails it will be probably me . Together with 

Jan, enjoy with Jade! Lore, good luck with your PhD. Eva and Daphné, continue with 

the good job in hospitalization (also Daphné with your enthusiasm in anaesthesia). By 

the way, next year we should fight for a department DINNER, not lunch, and then we 

can continue with the party in Ghent. 

 The work we performed everyday would not be possible without the help of the 

people of sterilization. Caroline, Cindy: it is very nice to work with people like you, 

making jokes and bringing chocolates to the anaesthetists when the surgeons are 

working . Valerie, I really appreciate your friendship, our talks and your support. 

Keep on taking care of all the animals at home! Also, I would like to mention the people 

from administration: Heidi (100% efficacy), Johan (a strange connection was made 

beween us, still wondering why), Veerle and Cindy. It was also nice to work with the 

blacksmiths (Jan and Didier), Remi (a good option when you need to fix something) and 

the stable people (Didier, Bart, Nadine,…). I would like to mention the effort of the the 

interns and students. It is nice to see them grow professionally in the period of one year. 

I would like to include in these lines Stephanie, Evelien, Babette, Jan, Veronica, 

Maxim, Kimry, Evelyne, Anais, Emmanuelle, Arianne and, of course Aurélie. 

Obviously, I cannot remember the names of all the students I worked with. However, I 

hope they could learn something during the time they spent with me in an easy, friendly 

way. 

  I also would like to mention the people from other departments. Thanks to 

everyone from Internal Medicine (Piet, Gunther, Dominique, Laurence, Sara, Kirsten, 

Barbara, Wendelien, Tiago, Nicky, Thomas and Hans) and from Medical Imaging 

(Ingrid, Annemie, Kaatje, Eva, Kim, Marnix and Casper). Finally, to the people from 

small animals that treat me well and who with I had good times during my residency 

(Koen, Inge, Geert, Pascale, Miguel Campos, Alejandro, Sabine, Hilde, Alessandra,…). 

A special place for my good friend Tim Bosmans: maybe you can be a better 

anaesthetist (I think you are a very good one) but you cannot be a better person. My 

regards to Christine, Noah and Finn. 

 One of the aims of the residency and PhD is to be able to perform research, to 

obtain results and present them to other colleagues in international meetings. These 
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events are good opportunities to meet people working in the same or different fields, the 

so-called ‘networking’ and even to make friends. Miguel and Fernando Martínez, thank 

you very much for your advices and help when studying for the exam. I am sure that the 

PAVA (Peña Atlética de Veterinarios Anestesistas) will survive for a very long time. To 

Simone Ringer, Regula Bettschart-Wolfensberger, Lea Hatz, Andrea Schwarz and all 

the ‘Regula girls’, not only for the good fun in the congresses but also for your 

enthusiastic cooperation in the MACNM studies together with the people from Hannover 

(Sabine Kästner, Klaus Hopster and Anna Elisabeth Krajewski). I also have to be 

thankful to the people that allowed me to go to their institutions to perform my 

externships, Jackie Brearley, Tim Bouts, Hatim Alibhai and Eric Mortier. Special 

thanks to Chris Seymour, who helped me with my credentials and took good care of me 

when I was visiting Cambridge and London. Chris, thank you very much for your 

knowledge, the stories about the WWII and for your friendship. Also, to Alan Taylor 

and Sarah Thomson by helping me correcting my English. Finally, I would like to 

mention to all the Spanish anaesthetists I met in the SEAAV (or in other congresses) 

who are ready to dance the ‘takatá’: Eliseo, Maite, Eva y Luis, Paco Laredo, Gaspar, 

Clara, Viscasillas, Sandra, Alejandra, Carolina, María del Mar, Amaya, Cristina, Miki, 

Nacho´s…See you on Thursday in Zaragoza! 

 But after work, there is always life. I am already missing those Friday evenings 

in the ‘Boerderijte’ with people from other departments, where we could share not only 

our scientific knowledge but also our life experiences. It will be always a pleasure to 

remember people like Sebastiaan, Stijn Hauspie, Peter de Schutter, Bart Pardon, Johnny 

Vlaminck, Tao, Cyrile, Myl or João discussing about several topics with a pintje in our 

hands. And, definitely, I will miss the assistant parties, dressing as romans, rappers, 

angels or devils. They were fun! 

 During my stay in Belgium I met lots of people, some of them are now my 

friends. In a special place are those I met during my first year (in their Erasmus), when 

they were only little “polluelos” that had to learn to fly. We spent great moments 

together, Gentse Feesten, the trips to Normandy, Valladolid, Bérriz, Cantabria, 

Nijmegen, and other places to make the “gañán”. We will meet again for sure (several 

times, chacho). Thanks Kike, Celia, Inés, Adri, Dani-Agorer, Kachenka and Peñu for 

making my first year in Ghent easier. 
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 But some other people stayed to work and we made a big group. I will remember 

these years as good years with you Príncipe, Juliana (thanks for giving me the excuse to 

be the godfather in your wedding and visit Pernambuco), Conchi, Amparo, Follonero, 

Celine, Lobo, Ali, Imagine, Luis, Laurinha, Pili, Joana, Nuria, Paco I (el portero), Paco 

XVI, Yiyus, Fernando, David, Wilson, Glenn, Kenny, CF7, María Castellón, Yara, ‘Il 

Dottore’ Valozzi, Maria, Viviana, Ivone (Mozambique), Ana, Michèlle, Silke, María 

Teresa, Manolo, Eva…and the kids (que nos dan la vida y a veces nos la quitan, Celine, 

Kevin, Jacqueline, Sofie and Yaiza). Organizing parties, visits to the Cabraliego (Ángel, 

Julio and Ramón) and other social events with you no tiene precio. 

 Not everything was partying in our after-work hours. I will miss the football 

matches against the students, organized (or disorganized) by Sebastiaan and Stijn 

Samoy. Moreover, I will remember the origins of Steaua Mineral, how I became the 

coach and the MAP of the season 2010-2011 and all the ‘pachangas’ we played against 

several communities in Ghent: the ‘Latinos’, the Vietnamese, the Chinese… 

 When you are in another country it is good to confirm that your friends in Spain 

are still there whenever you need them. I would like to mention my friends of the 

childhood from ‘Las Flores’, Isaac, Sandra, Terrenos, Marquitos, Oscarín, Mai, Nacho, 

Lorena, Luismi, Inma, Orni, Valles, España, Vane, Picas, Eva, Malabares, Noe, Vane, 

Amalia, Merce…Thanks for making me remember the good years every time I go back 

home. Of course, I cannot forget Sonia and Isma in this important day for me. Other 

people from Valladolid that always have time to make a phone call are Alicia and Javi 

Cano, Sebas, Marta, Mario… and the people from Madrona ‘Los del Corral’. 

 My love for horses started in Arbejal when I was only a child. I would not be 

here today if my parents would not have met ‘Casa Simón’. It is nice to remember the 

routes around the ‘Montaña Palentina’ with Niño, Tordo, Wanda and Salvaje. Thanks to 

Simón, Antonia, Felipe, Ermitas, Rubén, Yovana, Andrés, Miguel Ángel and Carmen 

(and for being here today), Manolo, Carmen, Chema, Pilar, Elena, Chemari, Blanca, 

Fernando, Ceci… Also to Alberto Colino that spent good times there with my parents 

(and Gresca).  

 The way that Simón loved his horses made me love them as well. He was 

(together with Pepe Antón) the person that influenced me more to start my studies in 

veterinary medicine in León. There, in the CMU San Isidoro I spent the best years of 



Acknowledgements 

  

256 

 

my life. When I arrived there we were young, innocent, crazy ‘novatos’, but there I 

learnt to appreciate important values for life: respect, friendship and loyalty. I can say 

that many of my best friends are ‘Isidoros’: Penebé, Pelayo, los Ulibarri, el Abuelo, 

Penkas, Leandro, Proyect, Nachín, Cabrero, Potes, Colibrí, Lomillos, Puma, Choni, 

Bigotes and many others. I am already waiting for the next meeting in the ‘Húmedo’!  

 I never felt alone in Belgium. Here, I met a second family, the Vervaet in 

Eksaarde (Luc, Els, Nathalie, Matthias, Gilda, Boy and Maestro). Thanks for your 

hospitality and for treating me as one more inviting me to the Lokeren matches, fietsen, 

the Paris-Roubaix, your wedding anniversary, fishing in the Netherlands,… I also 

would like to mention the students I was living with for the first two years. Nicholas, 

Thomas and Inne: good luck in your career!  

 I thought that all the people from Andalucía were very funny, making good 

jokes. I met two exceptions in Belgium. In Liége I met the most successful veterinary 

surgeon perfoming ‘spinal disc herniations’, un gitanillo de Málaga. Juanmi, disfruta del 

buen tiempo del sur y suerte con el examen! Here, in Merelbeke, I met my good friend 

Alfonso. Foske, try to follow as usual, giving ‘negative’ comments to the people and 

trying to defend that Sevilla FC is the best team ever. Take care of Evelyne, Mireille 

and your ‘cachorros’. Alfonso made possible that Rubén came to work here. Trompi, 

you are my best friend and I cannot say anything you do not know. These years living 

with you (in León and in here) were good years! Regards also to your colleagues 

Annelies and Luca. A PhD student from Brazil came to their department in January 

2011. Silvana, muchas gracias por todos los momentos que vivimos juntos estos años y 

por hacerme muy feliz. También por tu apoyo mientras preparaba mis exámenes. Espero 

que disfrutaras de nuestros días y viajes por Europa. Estoy seguro de que pronto nos 

volveremos a ver y, como tú dijiste, recuerda que es SIEMPRE! 

 The family is always there. Best regards to Israel, Eva, Patro, Chuchi (and the 

nights in the ‘Peeters’), Puri, Javi y las niñas, Cristina, Beni, Rubén (and his help with 

my English), Miriam, Jano, tía Pilar, Ismael y tío Javi. Also to my grandparents and 

others that are not with me anymore. Virgilio, you are like one more of one family. 

Thanks for your friendship and the good work you do with my father at ‘Pinedo y 

Gozalo’. Last thoughts to our ‘family’ in Lires. I hope those summers with you will 
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come back in the future. Big kisses to Antonio, Marisa, Placeres, Rocío, Mario, Jose 

María, Manolo, Blanca, Delia, Pablo… 

 Finally, to my parents. Muchas gracias por estos 32 años a mi lado. Por dejarme 

crecer como un niño feliz, descubriendo las cosas bellas de la vida (la naturaleza, el 

respeto a los demás, el ser feliz y el valorar lo que tienes). También por la educación 

recibida y los valores que me transmitisteis (lo más importante en esta vida es ser una 

buena persona). Soy consciente que todo ello lo habéis conseguido con un gran esfuerzo 

diario. Muchas gracias también por darme la oportunidad de estudiar la carrera que 

elegí, aunque supusiera el irme a estudiar a otra ciudad. Cada día me levanto feliz y voy 

a trabajar en algo que me fascina. Sólo os pido que no cambiéis nunca y que disfrutéis 

de la vida como más os gusta, viajando, en el campo y en compañía de vuestros amigos. 

Espero que estéis orgullosos de mi. 

 

  Muchas gracias a todos! Bedankt allemaal! 

 

 Miguelito 

   

 

 



  

 

 


