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Abstract

We determine all homogeneous pseudo-embeddings of the affine space AG(n, 4)
and the projective space PG(n, 4). We give a classification of all pseudo-hyperplanes
of AG(n, 4). We also prove that the two homogeneous pseudo-embeddings of the
generalized quadrangle Q(4, 3) are induced by the two homogeneous pseudo-embed-
dings of AG(4, 4) into which Q(4, 3) is fully embeddable.
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1 Basic definitions and main results

The aim of this section is to state the main results of this paper and to define the basic
notions which are necessary to understand these results. Throughout this section, S =
(P ,L, I) is a point-line geometry with the property that the number of points on each line
is finite and at least three.

Suppose V is a vector space over the field F2 of order 2. A pseudo-embedding of S into
the projective space Σ = PG(V ) is a mapping e from P to the point set of Σ satisfying:
(1) < e(P) >Σ= Σ; (2) if L is a line of S with points x1, x2, . . . , xk, then the points
e(x1), e(x2), . . . , e(xk−1) of Σ are linearly independent and e(xk) =< v̄1 + v̄2 + · · ·+ v̄k−1 >
where v̄i, i ∈ {1, 2, . . . , k − 1}, is the unique vector of V for which e(xi) =< v̄i >Σ. Two
pseudo-embeddings e1 : S → Σ1 and e2 : S → Σ2 of S are called isomorphic (e1

∼= e2)
if there exists an isomorphism φ : Σ1 → Σ2 such that e2 = φ ◦ e1. The notion pseudo-
embedding was introduced in De Bruyn [1].

Suppose e : S → PG(V ) is a pseudo-embedding of S and G is a group of automor-
phisms of S. We say that e is G-homogeneous if for every θ ∈ G, there exists a (necessarily
unique) projectivity ηθ of PG(V ) such that e(xθ) = e(x)ηθ for every point x of S. If G is
the full automorphism group of S, then e is also called a homogeneous pseudo-embedding.

Suppose e : S → Σ is a pseudo-embedding of S and α is a subspace of Σ satisfying
the following two properties:

1



(Q1) if x is a point of S, then e(x) 6∈ α;

(Q2) if L is a line of S with points x1, x2, . . . , xk, then α ∩ < e(x1), e(x2), . . . , e(xk) >Σ= ∅.

Then a new pseudo-embedding e/α : S → Σ/α can be defined which maps each point x
of S to the point < α, e(x) > of the quotient projective space Σ/α. This new pseudo-
embedding e/α is called a quotient of e. If e1 : S → Σ1 and e2 : S → Σ2 are two
pseudo-embeddings of S, then we say that e1 ≥ e2 if e2 is isomorphic to a quotient of e1.
A pseudo-embedding ẽ : S → Σ̃ is called universal if ẽ ≥ e for any pseudo-embedding e
of S. By [1, Theorem 1.2(1)], we know that if S has a pseudo-embedding, then S also
has a universal pseudo-embedding. This universal pseudo-embedding is unique, up to
isomorphism, and is also homogeneous (De Bruyn [2, Theorem 2.4]). If ẽ : S → PG(Ṽ )

is the universal pseudo-embedding of S, where Ṽ is some vector space over F2, then the
dimension of Ṽ is called the pseudo-embedding rank of S.

A pseudo-hyperplane of S is a proper subset H of P such that every line contains an
even number of points of P \ H. If e : S → Σ is a pseudo-embedding of S and Π is a
hyperplane of Σ, then by De Bruyn [1, Theorem 1.1], e−1(e(P)∩Π) is a pseudo-hyperplane
of S. Any pseudo-hyperplane of S which arises from a pseudo-embedding e in the above-
described way is said to arise from e. If S has a pseudo-embedding, then by De Bruyn
[1, Theorem 1.3], all pseudo-hyperplanes of S arise from the universal pseudo-embedding

ẽ : S → Σ̃ of S. More precisely, if H is a pseudo-hyperplane of S, then there exists a
unique hyperplane Π of Σ̃ such that H = ẽ−1(ẽ(P) ∩ Π).

Let δ be an arbitrary element of F4 \ {0, 1} and n ≥ 0. The map e1 which maps every
point (X0, X1, . . . , Xn) of PG(n, 4) to the point (X3

0 , X
3
1 , . . . , X

3
n, XiX

2
j +XjX

2
i , δXiX

2
j +

δ2XjX
2
i | 0 ≤ i < j ≤ n) of PG(n2 + 2n, 2) is called a Hermitian Veronese embedding of

PG(n, 4). Observe that the map e1 depends on the chosen reference systems in PG(n, 4)
and PG(n2 + 2n, 2). If e1 and e′1 are two Hermitian Veronese embeddings of PG(n, 4) into
PG(n2 + 2n, 2), then there exists a projectivity η of PG(n2 + 2n, 2) such that e′1 = η ◦ e1.
So, up to isomorphism, there exists a unique Hermitian Veronese embedding of PG(n, 4)
into PG(n2 + 2n, 2). If α is an m-dimensional subspace (m ∈ {0, 1, . . . , n}) of PG(n, 4),
then the Hermitian Veronese embedding of PG(n, 4) will induce “an embedding” of α into
a subspace of PG(n2 +2n, 2) which is isomorphic to the Hermitian Veronese embedding of
α ∼= PG(m, 4). By De Bruyn [1, Proposition 4.2], the Hermitian Veronese embedding e1

of PG(n, 4) is a pseudo-embedding and the pseudo-hyperplanes of PG(n, 4) arising from
e1 are precisely the (possibly degenerate) Hermitian varieties of PG(n, 4), distinct from
the whole point-set.

Let δ be an arbitrary element of F4 \ {0, 1} and n ≥ 0. The map e2 which maps every
point (X1, X2, . . . , Xn) of AG(n, 4) to the point (1, Xi + X2

i , δXi + δ2X2
i | 1 ≤ i ≤ n) of

PG(2n, 2) is called a quadratic embedding of AG(n, 4) into PG(2n, 2). Observe that the
map e2 depends on the chosen reference systems in AG(n, 4) and PG(2n, 2). If e2 and e′2
are two quadratic embeddings of AG(n, 4) into PG(2n, 2), then there exists a projectivity
η of PG(2n, 2) such that e′2 = η ◦ e2. So, up to isomorphism, there exists a unique
quadratic embedding of AG(n, 4) into PG(2n, 2). If α is an m-dimensional subspace
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(m ∈ {0, 1, . . . , n}) of AG(n, 4), then the quadratic embedding of AG(n, 4) will induce
“an embedding” of α into a subspace of PG(2n, 2) which is isomorphic to the quadratic
embedding of α ∼= AG(m, 4). We will prove later (Proposition 3.10(1)) that the quadratic
embedding of AG(n, 4) is a homogeneous pseudo-embedding.

In De Bruyn [1, Proposition 3.3(1)], we proved that the projective space PG(n, 4), n ≥ 0,
has pseudo-embeddings. We used Sherman’s classification [10] of the pseudo-hyperplanes
of PG(n, 4) to prove that the pseudo-embedding rank of PG(n, 4) is equal to 1

3
(n+1)(n2 +

2n + 3) (see [1, Proposition 4.1]). In [1, Proposition 3.3(2) and Corollary 4.4], we also
proved that the affine space AG(n, 4), n ≥ 0, has pseudo-embeddings and that its pseudo-
embedding rank is equal to n2 + n + 1. In the present paper, we will invoke Sherman’s
classification of the pseudo-hyperplanes of PG(n, 4) to give explicit descriptions for the
universal pseudo-embeddings of PG(n, 4) and AG(n, 4).

Theorem 1.1 Let δ be an arbitrary element of F4 \ {0, 1} and n ≥ 0. Let ẽ1 be a map
from PG(n, 4) to PG(k, 2), k = n3+3n2+5n

3
, mapping the point p = (X0, X1, . . . , Xn) of

PG(n, 4) to the point ẽ1(p) = (Y0, Y1, . . . , Yk) of PG(k, 2), where
• n+ 1 coordinates of ẽ1(p) are of the form X3

i , where i ∈ {0, 1, . . . , n};
•
(
n+1

2

)
coordinates of ẽ1(p) are of the form XiX

2
j + X2

iXj, where i, j ∈ {0, 1, . . . , n}
and i < j;
•
(
n+1

2

)
coordinates of ẽ1(p) are of the form δXiX

2
j +δ2X2

iXj, where i, j ∈ {0, 1, . . . , n}
and i < j;
•
(
n+1

3

)
coordinates of ẽ1(p) are of the form XiXjXk + X2

iX
2
jX

2
k , where i, j, k ∈

{0, 1, . . . , n} and i < j < k;
•
(
n+1

3

)
coordinates of ẽ1(p) are of the form δXiXjXk + δ2X2

iX
2
jX

2
k , where i, j, k ∈

{0, 1, . . . , n} and i < j < k.

Then ẽ1 is a pseudo-embedding of PG(n, 4) which is isomorphic to the universal pseudo-
embedding of PG(n, 4).

Theorem 1.2 Let δ be an arbitrary element of F4 \ {0, 1} and n ≥ 0. Let ẽ2 be the map
from AG(n, 4) to PG(n2 + n, 2) mapping the point p = (X1, X2, . . . , Xn) of AG(n, 4) to
the point ẽ2(p) = (Y0, Y1, . . . , Yn2+n) of PG(n2 + n, 2), where
• one coordinate of ẽ2(p) is equal to 1;
• n coordinates of ẽ2(p) are of the form Xi +X2

i , where i ∈ {1, 2, . . . , n};
• n coordinates of ẽ2(p) are of the form δXi + δ2X2

i , where i ∈ {1, 2, . . . , n};
•
(
n
2

)
coordinates of ẽ2(p) are of the form XiXj +X2

iX
2
j , where i, j ∈ {1, 2, . . . , n} and

i < j;
•
(
n
2

)
coordinates of ẽ2(p) are of the form δXiXj + δ2X2

iX
2
j , where i, j ∈ {1, 2, . . . , n}

and i < j.

Then ẽ2 is a pseudo-embedding of AG(n, 4) which is isomorphic to the universal pseudo-
embedding of AG(n, 4).

The following is an immediate consequence of Theorems 1.1 and 1.2 (choose suitable
reference systems).
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Corollary 1.3 (1) Suppose ẽ1 is the universal pseudo-embedding of PG(n, 4), n ≥ 0, and
π is a nonempty subspace of PG(n, 4). Then the pseudo-embedding of π induced by ẽ1 is
isomorphic to the universal pseudo-embedding of π.

(2) Suppose ẽ2 is the universal pseudo-embedding of AG(n, 4), n ≥ 0, and π is a
nonempty subspace of AG(n, 4). Then the pseudo-embedding of π induced by ẽ2 is iso-
morphic to the universal pseudo-embedding of π.

In the next two theorems, we determine all homogeneous pseudo-embeddings of PG(n, 4)
and AG(n, 4). In fact, we do a little more. We determine all G-homogeneous pseudo-
embeddings where G ∈ {PGL(n + 1, 4), AGL(n, 4)} is the group of collineations of
PG(n, 4) or AG(n, 4) whose companion automorphism of F4 is the identity.

Theorem 1.4 Up to isomorphism, the projective space PG(n, 4), n ≥ 2, has two PGL(n
+1, 4)-homogeneous pseudo-embeddings, the universal pseudo-embedding in PG(1

3
(n3 +

3n2 + 5n), 2) and the Hermitian Veronese embedding in PG(n2 + 2n, 2).

Theorem 1.5 Up to isomorphism, the affine space AG(n, 4), n ≥ 2, has two AGL(n, 4)-
homogeneous pseudo-embeddings, the universal pseudo-embedding in PG(n2 + n, 2) and
the quadratic pseudo-embedding in PG(2n, 2). There are two types of pseudo-hyperplanes
arising from the quadratic pseudo-embedding of AG(n, 4), n ≥ 1, namely the empty set
and those pseudo-hyperplanes which are the union of two distinct parallel hyperplanes.

In Theorem 1.6 below, we give a list of all pseudo-hyperplanes of AG(n, 4), n ≥ 2. In
order to understand that theorem, we need to give some definitions.

Suppose the affine space AG(n, 4), n ≥ 2, is obtained by removing a hyperplane Π∞
from the projective space PG(n, 4). Suppose D is a subspace1 of Π∞ and X is a nonempty
set of points of AG(n, 4) in a subspace of PG(n, 4) which is disjoint from D. If D = ∅,
then we define C(D,X) := X. If D 6= ∅, then C(D,X) denotes the set of all points of
AG(n, 4) which lie on a line joining a point of D to a point of X. So, if C ′(D,X) denotes
the cone of PG(n, 4) with top D and basis X, then C(D,X) = C ′(D,X) \ Π∞. If Π is a
subspace of AG(n, 4), then DΠ denotes the set of points of Π∞ such that Π ∪DΠ is the
subspace of PG(n, 4) generated by Π.

Let Q be a nonsingular parabolic quadric2 in PG(n, 4), n ≥ 4 even, let k be the kernel
of Q, let p 6= k be a point of PG(n, 4) not contained in Q and let Π be a hyperplane
of PG(n, 4) not containing p. The line kp intersects Q in a point p′ and the tangent
hyperplane Tp′ at the point p′ to the quadric Q intersects Π in a hyperplane Π∞ of Π.
We denote by AG(n− 1, 4) the affine space obtained from Π ∼= PG(n− 1, 4) by removing
the hyperplane Π∞ of Π. Now, the projection of Q from the point p onto Π is a set Y
of points of Π containing Π∞. By Hirschfeld and Thas [6, Theorem 13], every line of

1The elements of D correspond to certain directions in the affine space AG(n, 4).
2For the basic notions of properties regarding quadrics of finite projective spaces which we will use in

this paper, see Hirschfeld and Thas [8, Chapter 22].
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Π intersects Y in either 1, 3 or 5 points. This implies that the set X := Y \ Π∞ is a
pseudo-hyperplane of AG(n− 1, 4). We call X a set of parabolic type of AG(n− 1, 4).

Let Q be a nonsingular hyperbolic or elliptic quadric in PG(n, 4), n ≥ 3 odd, let p be a
point of PG(n, 4) not contained in Q and let Π be a hyperplane of PG(n, 4) not containing
p. Let ζ be the symplectic polarity of PG(n, 4) associated with Q. Then the hyperplane
pζ of PG(n, 4) intersects Π in a hyperplane Π∞ of Π. We denote by AG(n − 1, 4) the
affine space obtained from Π ∼= PG(n − 1, 4) by removing the hyperplane Π∞ from Π.
Now, the projection of Q from the point p onto Π is a set Y of points of Π containing Π∞.
By Hirschfeld and Thas [6, Theorem 13], every line of Π intersects Y in either 1, 3 or 5
points. This implies that the set X := Y \ Π∞ is a pseudo-hyperplane of AG(n − 1, 4).
We call X a set of hyperbolic or elliptic type of AG(n − 1, 4) depending on whether Q is
a hyperbolic or elliptic quadric of PG(n, 4).

Theorem 1.6 Let AG(n, 4), n ≥ 2, be the affine space obtained from PG(n, 4) by remov-
ing a hyperplane Π∞. A pseudo-hyperplane of AG(n, 4) is one of the following sets of
points:

(1) the empty set;
(2) the union of two disjoint parallel hyperplanes;
(3) a set C(D,X), where D is a subspace of dimension (n− 2m), m ∈ {2, . . . , bn+1

2
c},

of Π∞ and X is a set of parabolic type of a (2m− 1)-dimensional subspace Π of AG(n, 4)
for which D ∩DΠ = ∅;

(4) a set C(D,X), where D is a subspace of dimension (n−2m−1), m ∈ {1, . . . , bn
2
c},

of Π∞ and X is set of hyperbolic type of a 2m-dimensional subspace Π of AG(n, 4) for
which D ∩DΠ = ∅;

(5) a set C(D,X), where D is a subspace of dimension (n−2m−1), m ∈ {1, . . . , bn
2
c},

of Π∞ and X is set of elliptic type of a 2m-dimensional subspace Π of AG(n, 4) for which
D ∩DΠ = ∅.

In Table 1, we list a few basic properties of the five classes of pseudo-hyperplanes of
AG(n, 4), n ≥ 2, as they occur in Theorem 1.6. We list how many pseudo-hyperplanes
there are of each type, the total number of points in each pseudo-hyperplane and the type
of the complement of the pseudo-hyperplane. Notice here that for each of the pseudo-
hyperplanes of Type (3), (4) and (5), the pseudo-hyperplane which arises as complement
has the same value for the parameter m. Observe also the occurrence of Gaussian binomial
coefficients in the formulas for the total number of pseudo-hyperplanes.

The points and lines of the projective space PG(4, 3) that are contained in a given
nonsingular quadric of PG(4, 3) are the points and lines of a generalized quadrangle which
we denote by Q(4, 3). In De Bruyn [2], we used the computer algebra system GAP [3]
to show that Q(4, 3) has, up to isomorphism, two homogeneous pseudo-embeddings, the
universal pseudo-embedding in PG(14, 2) and a certain homogeneous pseudo-embedding
in PG(8, 2). No direct constructions for these two homogeneous embeddings were however
given in [2]. Theorem 1.7 below gives direct constructions for these pseudo-embeddings.
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Type # pseudo-hyperplanes # points Complement

(1) 1 0 AG(n, 4)
(2) 22n+1 − 2 22n−1 (2)

(3) 6 · 4m(m−1) ·
[

n
2m−1

]
4
·
∏m−1

i=1 (42i+1 − 1) 22n−1 (3)

(4) 3 · 4m(m+1) ·
[
n

2m

]
4
·
∏m−1

i=1 (42i+1 − 1) 22n−1 + 22n−2m−1 (5)

(5) 3 · 4m(m+1) ·
[
n

2m

]
4
·
∏m−1

i=1 (42i+1 − 1) 22n−1 − 22n−2m−1 (4)

Table 1: The pseudo-hyperplanes of AG(n, 4), n ≥ 2

Thas [15, Section 5.2] (see also Payne and Thas [9, Theorem 7.4.1]) proved that
the generalized quadrangle Q(4, 3) is fully embeddable into AG(4, 4). From Thas and
Van Maldeghem [16, Theorem 5.1], we know that every full embedding e of Q(4, 3) into
AG(4, 4) is homogeneous, i.e. for every automorphism θ of Q(4, 3), there exists a (nec-
essarily unique) collineation ηθ of AG(4, 4) such that e(xθ) = e(x)ηθ for every point x of
Q(4, 3).

The fact that every full embedding of Q(4, 3) into AG(4, 4) is homogeneous implies
that if the generalized quadrangle Q(4, 3) is a full subgeometry of AG(4, 4), then every ho-
mogeneous pseudo-embedding of AG(4, 4) will induce a homogeneous pseudo-embedding
of Q(4, 3). We will prove the following.

Theorem 1.7 Regard Q(4, 3) as a full subgeometry of AG(4, 4). Then the following holds.
(1) The universal pseudo-embedding of AG(4, 4) will induce a pseudo-embedding of

Q(4, 3) which is isomorphic to the universal pseudo-embedding of Q(4, 3).
(2) The quadratic embedding of AG(4, 4) will induce a pseudo-embedding of Q(4, 3)

which is isomorphic to the homogeneous pseudo-embedding of Q(4, 3) into PG(8, 2).

2 The recognition of G-homogeneous pseudo-embed-

dings

Let S be a point-line geometry with the property that the number of points on each line
is finite and at least three, and let G be a group of automorphisms of S. In this section,
we give a criterion, proved in De Bruyn [2], to decide whether a given pseudo-embedding
of S is G-homogeneous. This criterion was used in [2] to determine all homogeneous
pseudo-embeddings of all generalized quadrangles of order (3, t). In the present paper, we
will use this criterion to determine all homogeneous pseudo-embeddings of PG(n, 4) and
AG(n, 4). While the classification of the homogeneous pseudo-embeddings in [2] needed
the use of a computer (GAP), the classification of the homogeneous pseudo-embeddings
in the present paper will be computer free.
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Proposition 2.1 ([2, Corollary 2.7]) Let S = (P ,L, I) be a point-line geometry with
the property that the number of points on each line is finite and at least three. Let G be a
group of automorphisms of S.

• If e : S → Σ is a G-homogeneous pseudo-embedding of S, then the set Ae of all
pseudo-hyperplanes of S arising from e satisfies the following properties:

(a) Ae can be written as a disjoint union
⋃
i∈I Hi, where each Hi, i ∈ I, is a G-orbit

of pseudo-hyperplanes of S;
(b) if H1 and H2 are two distinct elements of Ae, then also the complement of the

symmetric difference of H1 and H2 belongs to Ae;
(c) if L is a line of S containing an odd number of points, then for every point x of L

there exists a pseudo-hyperplane of Ae which has only the point x in common with L;
(d) if L is a line of S containing an even number of points, then for any two distinct

points x1 and x2 of L, there exists a pseudo-hyperplane of Ae having only the points x1

and x2 in common with L;
(e) for every point x of S, there exists a pseudo-hyperplane of Ae not containing x.

• Conversely, suppose that A is a finite set of pseudo-hyperplanes of S satisfying the
conditions (a), (b), (c), (d) and (e) above. Then there exists a pseudo-embedding e of S
such that the pseudo-hyperplanes of S arising from e are precisely the elements of A. This
pseudo-embedding e is uniquely determined, up to isomorphism, and is G-homogeneous.

Observe that condition (e) in Proposition 2.1 follows from conditions (c) and (d) if there
is at least one line incident with x.

3 The homogeneous pseudo-embeddings of PG(n, 4)

and AG(n, 4)

3.1 The universal pseudo-embeddings of PG(n, 4) and AG(n, 4)

Let S = (P ,L, I) be a point-line geometry with the property that the number of points
on each line is finite and at least three, and let e be a map from P to the point set of a
projective space. The following theorem can be useful to decide whether the map e is a
pseudo-embedding of S.

Theorem 3.1 Let S = (P ,L, I) be a point-line geometry with the property that the num-
ber of points on each line is finite and at least three. Let V1 and V2 be two vector spaces
over F2. For every i ∈ {1, 2}, let ei be a map from the point set P of S to the point set
of PG(Vi) and let Hi be the set of all sets of the form e−1

i (ei(P) ∩ Π), where Π is some
hyperplane of PG(Vi). If e1 is a pseudo-embedding of S and H1 = H2, then also e2 is a
pseudo-embedding of S. Moreover, e2 is isomorphic to e1.

Proof. (1) By definition, the set H1 is the set of pseudo-hyperplanes of S arising from
e1. By De Bruyn [1, Lemma 2.2], we know that H1 satisfies the following property:
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(∗) For every line L of S and every set X of points of L for which |L|−|X| 6= 0
is even, there exists a pseudo-hyperplane of H1 intersecting L in X.

(2) Suppose < e2(P) > is a proper subspace of PG(V2). Then there exists a hyperplane
Π of PG(V2) through < e2(P) > and we have P = e−1

2 (e2(P) ∩ Π) ∈ H2 = H1. This is
however impossible since P is not a pseudo-hyperplane of S. Hence, < e2(P) >= PG(V2).

(3) Let L be an arbitrary line of S with points x1, x2, . . . , xk. If the points e2(x1), e2(x2),
. . . , e2(xk) are linearly independent, then there is a hyperplane Π of PG(V2) containing
e2(x1), e2(x2), . . . , e2(xk−1), but not e2(xk). Then H = e−1

2 (e2(P)∩Π) contains the points
x1, x2, . . . , xk−1 but not the point xk and hence cannot be a pseudo-hyperplane of S.
But this is impossible. The set H belongs to H2 and hence also to the set H1 = H2 of
pseudo-hyperplanes of S.

Now, let I = {i1, i2, . . . , il} be a subset of {1, 2, . . . , k} of smallest size l such that
e2(xi1), e2(xi2), . . . , e2(xil) is a linearly dependent collection of points. Without loss of
generality, we may suppose that I = {1, 2, . . . , l}. We prove that l = k. Suppose to
the contrary that l < k. Every subspace of PG(V2) containing e2(x1), e2(x2), . . . , e2(xl−1)
also contains e2(xl). As a consequence, every pseudo-hyperplane of H1 = H2 containing
x1, x2, . . . , xl−1 also contains xl. But this is impossible. By Property (∗), there exists a
pseudo-hyperplane ofH1 which intersects L in either {x1, x2, . . . , xl−1} or {x1, x2, . . . , xl−1,
xl+1}.

(4) By (2) and (3) above, e2 is a pseudo-embedding of S. Now, let ẽ : S → Σ̃ denote the

universal pseudo-embedding of S and let α1 and α2 be subspaces of Σ̃ such that ẽ/α1
∼= e1

and ẽ/α2
∼= e2. If α1 6= α2, then there exists a hyperplane Π of Σ̃ containing precisely one

of α1, α2. This implies that the pseudo-hyperplane ẽ−1(ẽ(P)∩Π) belongs to precisely one
of H1,H2, clearly impossible since H1 = H2. So, α1 = α2 and e1

∼= e2. �

A set X of points of a point-line geometry S is called a set of even [resp. odd] type if
it intersects every line of S in an even [resp. odd] number of points. In [10], Sherman
classified all sets of odd type of PG(n, 4), n ≥ 0. The following two propositions summarize
his classification.

Proposition 3.2 ([10]) Let (X0, X1, . . . , Xn) denote the homogeneous coordinates of the
points of PG(n, 4), n ≥ 0, with respect to a certain reference system of PG(n, 4). Then
the sets of odd type of PG(n, 4) are precisely those sets whose equation3 with respect to
the reference system of PG(n, 4) has the form H + E + E2 = 0, where

(1) H =
∑n

i=0 aiX
3
i +

∑
0≤i<j≤n bijXiX

2
j + b2

ijXjX
2
i ,

(2) E =
∑

0≤i<j<k≤n cijkXiXjXk,
(3) ai ∈ {0, 1} for every i ∈ {0, 1, . . . , n},
(4) bij ∈ F4 for all i, j ∈ {0, 1, . . . , n} satisfying i < j,
(5) cijk ∈ F4 for all i, j, k ∈ {0, 1, . . . , n} satisfying i < j < k.

3The homogeneous coordinates of a point are only determined up to a nonzero factor. However, since
λ3 = 1 for every λ ∈ F4 \ {0}, these equations are well-defined.
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Proposition 3.3 ([10]) Let A1 and A2 be two sets of odd type of PG(n, 4), n ≥ 0, with
respective equations H1 +E1 +E2

1 = 0 and H2 +E2 +E2
2 = 0, where H1, E1, H2 and E2

satisfy the conditions (1), (2), (3), (4) and (5) of Proposition 3.2. Then A1 = A2 if and
only if (H1, E1) = (H2, E2).

The pseudo-hyperplanes of PG(n, 4), n ≥ 0, arising from the universal pseudo-embedding
of PG(n, 4) are all the sets of odd type of PG(n, 4), distinct from the whole point-set.
Theorem 1.1 therefore immediately follows from Theorem 3.1 and Propositions 3.2 and
3.3.

The following theorem easily follows from Propositions 3.2 and 3.3.

Theorem 3.4 Let (X1, X2, . . . , Xn) denote the coordinates of the points of AG(n, 4), n ≥
0, with respect to a certain coordinate system of AG(n, 4). Then the sets of even type of
AG(n, 4) are precisely those sets whose equation with respect to the coordinate system of
AG(n, 4) has the form H + E + E2 = 0, where

(1) H = a+
∑

1≤i≤n biXi + b2
iX

2
i ,

(2) E =
∑

1≤i<j≤n cijXiXj,
(3) a ∈ {0, 1},
(4) bi ∈ F4 for every i ∈ {1, 2, . . . , n},
(5) cij ∈ F4 for all i, j ∈ {1, 2, . . . , n} satisfying i < j.

If A1 and A2 are two sets of even type of AG(n, 4) with respective equations H1+E1+E2
1 =

0 and H2 + E2 + E2
2 = 0, where H1, E1, H2 and E2 satisfy the conditions (1), (2), (3),

(4) and (5) above, then A1 = A2 if and only if (H1, E1) = (H2, E2).

Proof. Suppose AG(n, 4) is obtained from PG(n, 4) by removing a hyperplane Π∞ from
PG(n, 4). Choose a reference system in PG(n, 4) with coordinates (X0, X1, . . . , Xn) such
that Π∞ has equation X0 = 0. We denote the point (1, X1, X2, . . . , Xn) of PG(n, 4) also
by (X1, X2, . . . , Xn).

Now, a set A of points of AG(n, 4) is a set of even type of AG(n, 4) if and only if
A ∪ Π∞ is a set of odd type of PG(n, 4). If H + E + E2 = 0 is the equation of A ∪ Π∞,
where H and E are as in Proposition 3.2, then the fact that Π∞ ⊆ A ∪ Π∞ implies by
Proposition 3.3 that ai = 0 for all i ∈ {1, 2, . . . , n}, bij = 0 for all i, j ∈ {1, 2, . . . , n} with
i < j and cijk = 0 for all i, j, k ∈ {1, 2, . . . , n} satisfying i < j < k.

So, if we put a := a0, bi := b2
0i for every i ∈ {1, 2, . . . , n} and cij = c0ij for all

i, j ∈ {1, 2, . . . , n} satisfying i < j, we readily see that the theorem holds. �

The pseudo-hyperplanes of AG(n, 4), n ≥ 0, arising from the universal pseudo-embedding
of AG(n, 4) are all the sets of even type of AG(n, 4) distinct from the whole set of points.
Theorem 1.2 therefore immediately follows from Theorems 3.1 and 3.4.
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3.2 The homogeneous pseudo-embeddings of PG(n, 4), n ≥ 2

Consider the projective space PG(n, 4), n ≥ 2. The universal pseudo-embedding of
PG(n, 4) is homogeneous. The pseudo-hyperplanes of PG(n, 4) arising from the Her-
mitian Veronese embedding of PG(n, 4) are precisely the (possibly degenerate) Hermitian
varieties distinct from the whole point set. So, by Proposition 2.1, also the Hermitian
Veronese embedding of PG(n, 4) is a homogeneous pseudo-embedding (off course, one
can also verify this in a more direct way). We now prove that the universal pseudo-
embedding of PG(n, 4) and the Hermitian Veronese embedding of PG(n, 4) are the only
PGL(n + 1, 4)-homogeneous pseudo-embeddings of PG(n, 4), n ≥ 2 (and hence also the
only homogeneous pseudo-embeddings of PG(n, 4), n ≥ 2).

Fix a certain reference system in PG(n, 4) and let (X0, X1, . . . , Xn) denote the coordi-
nates of a general point of PG(n, 4) with respect to that reference system. We denote by
H the set of all polynomials of the form

∑n
i=0 aiX

3
i +
∑

0≤i<j≤n bijXiX
2
j + b2

ijXjX
2
i , where

ai ∈ {0, 1} for every i ∈ {0, 1, . . . , n} and bij ∈ F4 for all i, j ∈ {0, 1, . . . , n} satisfying
i < j. We denote by E the set of all polynomials of the form

∑
0≤i<j<k≤n cijkXiXjXk,

where cijk ∈ F4 for all i, j, k ∈ {0, 1, . . . , n} satisfying i < j < k. If H ∈ H and E ∈ E , then
Ω(H,E) denotes the set of odd type of PG(n, 4) whose equation with respect to the fixed
reference system is given by H+E+E2 = 0. We denote by I the ideal of the polynomial
ring F4[X0, X1, . . . , Xn] generated by the polynomials X4

0 −X0, X
4
1 −X1, . . . , X

4
n −Xn.

Suppose e is a PGL(n + 1, 4)-homogeneous pseudo-embedding of PG(n, 4) and let
Ae denote the set of all pseudo-hyperplanes of PG(n, 4) arising from e. The condition
mentioned in Proposition 2.1(b) translates to:

(P1) Let H1, H2 ∈ H and E1, E2 ∈ E such that (H1, E1) 6= (H2, E2). If Ω(H1, E1) and
Ω(H2, E2) belong to Ae, then also Ω(H1 +H2, E1 + E2) belongs to Ae.

The condition mentioned in Proposition 2.1(a) and the fact that e is PGL(n + 1, 4)-
homogeneous implies that the properties (P2), (P3) and (P4) below hold.

(P2) Let σ be a permutation of {0, 1, . . . , n} and let (H1, E1) ∈ H × E . Let H2 and E2

be derived from H1 and E1, respectively, by applying the following substitutions:
Xi 7→ Xσ(i), ∀i ∈ {0, 1, . . . , n}. Then Ω(H1, E1) ∈ Ae if and only if Ω(H2, E2) ∈ Ae.

(P3) Let i ∈ {0, 1, . . . , n}, λ ∈ F4 \ {0} and (H1, E1) ∈ H×E . Let H2 and E2 be derived
from H1 and E1, respectively, by applying the following substitutions: Xj 7→ Xj,
∀j ∈ {0, 1, . . . , n} \ {i}, and Xi 7→ λ · Xi. Then Ω(H1, E1) ∈ Ae if and only if
Ω(H2, E2) ∈ Ae.

(P4) Let i1, i2 ∈ {0, 1, . . . , n} with i1 6= i2 and let (H1, E1) ∈ H×E . Let H2, H
′
2 ∈ H, E2 ∈

E and I ∈ I such that H2 and H ′2 +E2 +E2
2 +I are derived from respectively H1 and

E1 +E2
1 by applying the following substitutions: Xj 7→ Xj, ∀j ∈ {0, 1, . . . , n}\{i1},

and Xi1 7→ Xi1 +Xi2 . Then Ω(H1, E1) ∈ Ae if and only if Ω(H2 +H ′2, E2) ∈ Ae.

Lemma 3.5 If Ω(X0X
2
1 +X1X

2
0 , 0) ∈ Ae, then Ω(H, 0) ∈ Ae for all H ∈ H \ {0}.
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Proof. • By Properties (P2) and (P3), we have Ω(bijXiX
2
j + b2

ijXjX
2
i , 0) ∈ Ae for all

i, j ∈ {0, 1, . . . , n} with i < j and all bij ∈ F4 \ {0}.
• Let δ be an arbitrary element of F4 \ {0, 1} and consider the substitutions X0 7→

X0 + δX1, Xi 7→ Xi, ∀i ∈ {1, 2, . . . , n}. By Properties (P3) and (P4), Ω(X0X
2
1 +X1X

2
0 +

X3
1 , 0) ∈ Ae. Hence, also Ω(X3

1 , 0) = Ω(X0X
2
1 +X1X

2
0 +X3

1 +X0X
2
1 +X1X

2
0 , 0) ∈ Ae by

Property (P1). Property (P2) then implies that Ω(X3
i , 0) ∈ Ae for all i ∈ {0, 1, . . . , n}.

• The two previous paragraphs and Property (P1) imply that Ω(H, 0) ∈ Ae for all
H ∈ H \ {0}. �

Lemma 3.6 If Ω(X3
0 , 0) ∈ Ae, then Ω(H, 0) ∈ Ae for all H ∈ H \ {0}.

Proof. By Property (P2), we also have Ω(X3
1 , 0) ∈ Ae. Now, consider the substitution

X0 7→ X0 + X1, Xi 7→ Xi, ∀i ∈ {1, 2, . . . , n}. Then Property (P4) implies that Ω(X3
0 +

X3
1 +X0X

2
1 +X1X

2
0 , 0) ∈ Ae. By Property (P1), we have Ω(X0X

2
1 +X1X

2
0 , 0) = Ω(X3

0 +
X3

1 +X3
0 +X3

1 +X0X
2
1 +X1X

2
0 , 0) ∈ Ae. By Lemma 3.5, Ω(H, 0) ∈ Ae for all H ∈ H\{0}.

�

Lemma 3.7 If Ω(0, X0X1X2) ∈ Ae, then Ω(H,E) ∈ Ae for all (H,E) ∈ H×E \{(0, 0)}.

Proof. • By Properties (P2) and (P3), we have Ω(0, cijkXiXjXk) ∈ Ae for all i, j, k ∈
{0, 1, . . . , n} with i < j < k and all cijk ∈ F4 \{0}. By Property (P1), it then follows that
Ω(0, E) ∈ Ae for all E ∈ E \ {0}.
• Consider the substitution X0 7→ X0 +X1, Xi 7→ Xi, ∀i ∈ {1, 2, . . . , n}. By Property

(P4), Ω(X1X
2
2 +X2X

2
1 , X0X1X2) ∈ Ae. Hence, by Property (P1), Ω(X1X

2
2 +X2X

2
1 , 0) =

Ω(X1X
2
2 + X2X

2
1 + 0, X0X1X2 + X0X1X2) ∈ Ae. By Lemma 3.5 and Property (P2), we

have Ω(H, 0) ∈ Ae for all H ∈ H \ {0}.
• By the previous two paragraphs and Property (P1), we have Ω(H,E) ∈ Ae for all

(H,E) ∈ H × E \ {(0, 0)}. �

Proposition 3.8 If each element of Ae is a (possibly degenerate) Hermitian variety of
PG(n, 4), then e is isomorphic to the Hermitian Veronese embedding of PG(n, 4).

Proof. In this case, there exists an H ∈ H \ {0} such that Ω(H, 0) ∈ Ae.
Suppose first that there exist i, j ∈ {0, 1, . . . , n} with i < j and a bij ∈ F4 \ {0}

such that the sum bijXiX
2
j + b2

ijXjX
2
i occurs in H. Let δ be an arbitrary element of

F4 \ {0, 1}. Let H1 ∈ H be derived from H by applying the following substitutions:
Xi 7→ δ · Xi, Xk 7→ Xk, ∀k ∈ {0, 1, . . . , n} \ {i}. Then Ω(H1, 0) ∈ Ae and hence also
Ω(H2, 0) ∈ Ae where H2 = H + H1. Observe that H2 only contains terms which involve
Xi. Let H3 ∈ H be derived from H2 by applying the following substitutions: Xj 7→ δ ·Xj,
Xk 7→ Xk, ∀k ∈ {0, 1, . . . , n} \ {j}. Then Ω(H3, 0) ∈ Ae and hence Ω(H4, 0) ∈ Ae where
H4 = H2 +H3. Observe that H4 only contains terms which involve Xi and Xj. We have
H4 = bijXiX

2
j + b2

ijXjX
2
i . By Properties (P2) and (P3), also Ω(X0X

2
1 + X1X

2
0 , 0) ∈ Ae.

Lemma 3.5 now implies that Ae consists of all (possibly degenerate) Hermitian varieties of
PG(n, 4). By Theorem 3.1 it then follows that e is isomorphic to the Hermitian Veronese
embedding of PG(n, 4).
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Suppose next that H has the form
∑n

i=0 aiX
3
i where ai ∈ {0, 1} for every i ∈ {0, 1, . . . ,

n}. Without loss of generality, we may suppose that a0 = 1. Let H1 be derived from
H by applying the following substitutions: X0 7→ X0 + X1, Xi 7→ Xi, ∀i ∈ {1, 2, . . . , n}.
Then Ω(H1, 0) ∈ Ae. Since H1 contains X0X

2
1 +X1X

2
0 , we know by the the discussion in

the previous paragraph that e must be isomorphic to the Hermitian Veronese embedding
of PG(n, 4). �

Proposition 3.9 If there exists an element of Ae which is not a Hermitian variety of
PG(n, 4), then e is isomorphic to the universal pseudo-embedding of PG(n, 4).

Proof. In this case, there exists an H ∈ H and an E ∈ E \ {0} such that Ω(H,E) ∈ Ae.
Then there exist i, j, k ∈ {0, 1, . . . , n} with i < j < k and cijk ∈ F4 \ {0} such that
cijkXiXjXk is a term of E. Let δ be an arbitrary element of F4 \ {0, 1}. Let H1 ∈ H and
E1 ∈ E be derived from respectively H and E by applying the following substitutions:
Xi 7→ δ · Xi, Xl 7→ Xl, ∀l ∈ {0, 1, . . . , n} \ {i}. Then Ω(H1, E1) ∈ Ae and hence
also Ω(H2, E2) ∈ Ae where H2 = H + H1 and E2 = E + E1. Observe that H2 and
E2 only contains terms which involve Xi. Let H3 ∈ H and E3 ∈ E be derived from
respectively H2 and E2 by applying the following substitutions: Xj 7→ δXj, Xl 7→ Xl,
∀l ∈ {0, 1, . . . , n} \ {j}. Then Ω(H3, E3) ∈ Ae and hence Ω(H4, E4) ∈ Ae where H4 =
H2 + H3 and E4 = E2 + E3. Observe that H4 and E4 only contains terms which involve
Xi and Xj. Let H5 ∈ H and E5 ∈ E be derived from respectively H4 and E4 by applying
the following substitutions: Xk 7→ λ · Xk, Xl 7→ Xl, ∀l ∈ {0, 1, , . . . , n} \ {k}. Then
Ω(H5, E5) ∈ Ae and hence also Ω(H6, E6) ∈ Ae where H6 = H4 +H5 and E6 = E4 + E5.
Observe that H6 and E6 only contains terms which involve Xi, Xj and Xk. Now, H6 = 0
and E6 = cijkXiXjXk. By Properties (P2) and (P3), also Ω(0, X0X1X2) ∈ Ae. Lemma
3.7 then implies that all pseudo-hyperplanes of PG(n, 4), distinct from the whole point
set, arise from e. This implies by Theorem 3.1, that e is isomorphic to the universal
pseudo-embedding of PG(n, 4). �

Theorem 1.4 is a consequence of Propositions 3.8 and 3.9.

3.3 The homogeneous pseudo-embeddings of AG(n, 4)

Consider the affine space AG(n, 4), n ≥ 2. The universal pseudo-embedding of AG(n, 4)
is universal. There is at least one other homogeneous pseudo-embedding.

Proposition 3.10 (1) The quadratic embedding of AG(n, 4), n ≥ 0, is a homogeneous
pseudo-embedding.

(2) There are two types of pseudo-hyperplanes arising from the quadratic pseudo-
embedding of AG(n, 4), n ≥ 1, namely the empty set and those pseudo-hyperplanes which
can be written as the union of two distinct parallel hyperplanes of AG(n, 4).

Proof. We may suppose that n ≥ 2.
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(1) Let δ be an arbitrary element of F4 \ {0, 1}. Choose reference systems in AG(n, 4)
and PG(2n, 2) and let e2 be the map which maps the point (X1, X2, . . . , Xn) of AG(n, 4)
to the point (1, Xi +X2

i , δXi + δ2X2
i | 1 ≤ i ≤ n) of PG(2n, 2).

• By considering the points (0, 0, 0, . . . , 0), (1, 0, 0, . . . , 0), (δ, 0, 0, . . . , 0), (0, 1, 0, . . . , 0),
(0, δ, 0, . . . , 0), . . ., (0, 0, . . . , 0, 1), (0, 0, . . . , 0, δ) of AG(n, 4), we see that the image of e2

generates PG(2n, 2).
• The group of affine collineations of AG(n, 4) is generated by the following maps: (i)

(X1, X2, . . . , Xn) 7→ (Xσ(1), Xσ(2), . . . , Xσ(n)) for some permutation σ of {1, 2, . . . , n}; (ii)
(X1, X2, . . . , Xn) 7→ (X1 + a,X2, . . . , Xn) for some a ∈ F4; (iii) (X1, X2, . . . , Xn) 7→ (λ ·
X1, X2, . . . , Xn) for some λ ∈ F4 \ {0}; (iv) (X1, X2, X3, . . . , Xn) 7→ (X1 +X2, X2, X3, . . . ,
Xn); (v) (X1, X2, . . . , Xn) 7→ (X2

1 , X
2
2 , . . . , X

2
n). We need to prove that for every colline-

ation θ of AG(n, 4), there exists a projectivity ηθ of PG(2n, 2) such that e(pθ) = e(p)ηθ

for every point p of AG(n, 4). One can easily verify that this property holds for each of
the above generators. Hence, it also holds for any collineation of AG(n, 4).
• Let L = {p1, p2, p3, p4} be an arbitrary line of AG(n, 4). We need to prove that

e2(p1), e2(p2), e2(p3) are linearly independent and e2(p1) + e2(p2) + e2(p3) + e2(p4) = 0.
This is easily verified. Observe that by the previous paragraph, we may suppose that
L = {(λ, 0, 0, . . . , 0) |λ ∈ F4}.

(2) If Π0 is the hyperplane Y0 = 0 of PG(2n, 2), then e−1
2 (e2(AG(n, 4))∩Π0) = ∅. If Π1

is the hyperplane Y1 = 0 of PG(2n, 2), then e−1
2 (e2(AG(n, 4))∩Π1) is the union of the two

distinct parallel hyperplanes X1 = 0 and X1 = 1 of AG(n, 4). Since e2 is homogeneous,
all 22n+1 − 2 pseudo-hyperplanes of AG(n, 4) which are the union of two distinct parallel
hyperplanes arise from e2. (Off course, it is also possible to prove this directly.) So, we
have localized all 22n+1 − 1 pseudo-hyperplanes of AG(n, 4) which arise from e2. �

Now, fix a certain reference system in AG(n, 4), n ≥ 2, and let (X1, X2, . . . , Xn) denote
the coordinates of a general point of AG(n, 4) with respect to that reference system.
We denote by H the set of all polynomials of the form a +

∑
1≤i≤n(biXi + b2

iX
2
i ), where

a ∈ {0, 1} and bi ∈ F4 for all i ∈ {1, 2, . . . , n}. We denote by E the set of all polynomials
of the form

∑
1≤i<j≤n cijXiXj, where cij ∈ F4 for all i, j ∈ {1, 2, . . . , n} with i < j. If

H ∈ H and E ∈ E , then Ω(H,E) denotes the set of even type of AG(n, 4) whose equation
with respect to the fixed reference system is given by H + E + E2 = 0. We denote
by I the ideal of the polynomial ring F4[X1, X2, . . . , Xn] generated by the polynomials
X4

1 −X1, X
4
2 −X2, . . . , X

4
n −Xn.

Suppose e is an AGL(n, 4)-homogeneous pseudo-embedding of AG(n, 4) and let Ae
denote the set of all pseudo-hyperplanes of AG(n, 4) arising from e. The condition men-
tioned in Proposition 2.1(b) translates to

(P1) Let H1, H2 ∈ H and E1, E2 ∈ E such that (H1, E1) 6= (H2, E2). If Ω(H1, E1) and
Ω(H2, E2) belong to Ae, then also Ω(H1 +H2, E1 + E2) belongs to Ae.

The condition mentioned in Proposition 2.1(a) and the fact that e is AGL(n, 4)-homoge-
neous implies that the properties (P2), (P3), (P4) and (P5) below hold.
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(P2) Let σ be a permutation of {1, 2, . . . , n} and let (H1, E1) ∈ H × E . Let H2 and E2

be derived from H1 and E1, respectively, by applying the following substitutions:
Xi 7→ Xσ(i), ∀i ∈ {1, 2, . . . , n}. Then Ω(H1, E1) ∈ Ae if and only if Ω(H2, E2) ∈ Ae.

(P3) Let i ∈ {1, 2, . . . , n}, λ ∈ F4 \ {0} and (H1, E1) ∈ H×E . Let H2 and E2 be derived
from H1 and E1, respectively, by applying the following substitutions: Xj 7→ Xj,
∀j ∈ {1, 2, . . . , n} \ {i} and Xi 7→ λ · Xi. Then Ω(H1, E1) ∈ Ae if and only if
Ω(H2, E2) ∈ Ae.

(P4) Let i ∈ {1, 2, . . . , n}, λ ∈ F4 and let (H1, E1) ∈ H × E . Let H2, H
′
2 ∈ H such that

H2 and H ′2 +E1 +E2
1 are derived from respectively H1 and E1 +E2

1 by applying the
following substitutions: Xj 7→ Xj, ∀j ∈ {1, 2, . . . , n} \ {i}, and Xi 7→ Xi + λ. Then
Ω(H1, E1) ∈ Ae if and only if Ω(H2 +H ′2, E1) ∈ Ae.

(P5) Let i1, i2 ∈ {1, 2, . . . , n} with i1 6= i2 and let (H1, E1) ∈ H×E . Let H2, H
′
2 ∈ H, E2 ∈

E and I ∈ I such that H2 and H ′2 +E2 +E2
2 +I are derived from respectively H1 and

E1 +E2
1 by applying the following substitutions: Xj 7→ Xj, ∀j ∈ {1, 2, . . . , n}\{i1},

and Xi1 7→ Xi1 +Xi2 . Then Ω(H1, E1) ∈ Ae if and only if Ω(H2 +H ′2, E2) ∈ Ae.

Lemma 3.11 If Ω(X1 +X2
1 , 0) ∈ Ae, then Ω(H, 0) ∈ Ae for all H ∈ H \ {0}.

Proof. • By Properties (P2) and (P3), we have Ω(biXi + b2
iX

2
i , 0) ∈ Ae for all i ∈

{1, 2, . . . , n} and all bi ∈ F4 \ {0}.
• Let δ be an arbitrary element of F4 \ {0, 1} and consider the substitutions X1 7→

X1 + δ, Xi 7→ Xi, ∀i ∈ {2, 3, . . . , n}. By Property (P4), Ω(X1 + X2
1 + 1, 0) ∈ Ae. By

Property (P1), Ω(1, 0) = Ω(X1 +X2
1 +X1 +X2

1 + 1, 0) ∈ Ae.
• By Property (P1) and the previous two paragraphs, we have Ω(H, 0) ∈ Ae for all

H ∈ H \ {0}. �

Lemma 3.12 If Ω(0, X1X2) ∈ Ae, then Ω(H,E) ∈ Ae for all (H,E) ∈ H × E \ {(0, 0)}.

Proof. • By Properties (P2) and (P3), we have Ω(0, cijXiXj) ∈ Ae for all i, j ∈
{1, 2, . . . , n} with i < j and all cij ∈ F4 \ {0}. By Property (P1), it then follows that
Ω(0, E) ∈ Ae for all E ∈ E \ {0}.
• Consider the substitution X1 7→ X1 +X2, Xi 7→ Xi, ∀i ∈ {2, 3, . . . , n}. By Property

(P5), Ω(X2 + X2
2 , X1X2) ∈ Ae. Hence, by Property (P1), we also have Ω(X2 + X2

2 , 0) =
Ω(X2 + X2

2 + 0, X1X2 + X1X2) ∈ Ae. By Lemma 3.11 and Property (P2), we have
Ω(H, 0) ∈ Ae for all H ∈ H \ {0}.
• By the previous two paragraphs and Property (P1), we have Ω(H,E) ∈ Ae for all

(H,E) ∈ H × E \ {(0, 0)}. �

Observe that |Ae| ≥ 2. So, there exists an element in Ae \ {∅}.

Proposition 3.13 If each element of Ae \{∅} is the union of two distinct parallel hyper-
planes, then e is isomorphic to the quadratic embedding of AG(n, 4).
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Proof. In this case, there exists an H ∈ H \ {0, 1} such that Ω(H, 0) ∈ Ae. So, there
exists an i ∈ {1, 2, . . . , n} and a bi ∈ F4 \ {0} such that biXi + b2

iX
2
i occurs in H. As

before, let δ be an arbitrary element of F4 \ {0, 1} and let H1 ∈ H be derived from H
by applying the following substitutions: Xi 7→ δ ·Xi, Xj 7→ Xj, ∀j ∈ {1, 2, . . . , n} \ {i}.
Then Ω(H1, 0) ∈ Ae and hence also Ω(H2, 0) ∈ Ae where H2 = H + H1. We have
H2 = δ2biXi + δb2

iX
2
i . By Properties (P2) and (P3), we have Ω(X1 + X2

1 , 0) ∈ Ae. By
Lemma 3.11, we now readily see that Ae consists of the following pseudo-hyperplanes: (i)
the empty set; (ii) the union of two distinct parallel hyperplanes. By Theorem 3.1, e is
isomorphic to the quadratic embedding of AG(n, 4). �

Proposition 3.14 If Ae has a pseudo-hyperplane which is neither empty, nor the union
of two distinct parallel hyperplanes, then e is isomorphic to the universal pseudo-embedding
of AG(n, 4).

Proof. There exists an H ∈ H and an E ∈ E \ {0} such that Ω(H,E) ∈ Ae. Then
there exist i, j ∈ {1, 2, . . . , n} with i < j and a cij ∈ F4 \ {0} such that cijXiXj is a
term of E. With a similar reasoning as in the proof of Proposition 3.9, one can prove
that Ω(0, X1X2) ∈ Ae. Lemma 3.12 then implies that all pseudo-hyperplanes of AG(n, 4)
distinct from the whole set of points arise from e. This implies by Theorem 3.1 that e is
isomorphic to the universal pseudo-embedding of AG(n, 4). �

Theorem 1.4 is an immediate consequence of Propositions 3.10, 3.13 and 3.14.

4 The pseudo-hyperplanes of AG(n, 4)

In this section, we classify all pseudo-hyperplanes of AG(n, 4), n ≥ 2. The proof highly
depends on some results of Hirschfeld and Thas [7], who characterized those sets of points
of finite projective spaces which arise as projections of nonsingular quadrics. Supposing
the affine space AG(n, 4) arises from PG(n, 4) by removing a hyperplane Π∞, then for
every pseudo-hyperplane X of AG(n, 4), the set Π∞ ∪X is a set of odd type of PG(n, 4).
Before we discuss the actual classification of the pseudo-hyperplanes of AG(n, 4), we have
to do some preparatory work by discussing and proving some properties of sets of odd
type of PG(n, 4).

The sets of odd type of PG(2, 4) can easily be determined by hand and are listed in
the following proposition.

Proposition 4.1 Let X be a set of odd type of PG(2, 4), then X is one of the following:
(I) a unital of PG(2, 4);
(II) a Baer subplane of PG(2, 4);
(III) a hyperoval of PG(2, 4), plus an external line;
(IV ) the complement of a hyperoval of PG(2, 4);
(V ) the union of three distinct lines through a given point;
(V I) a line;
(V II) the whole set of points of PG(2, 4).
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The result stated in Proposition 4.1 can be found at several places in the literature, like
Hirschfeld [4, Theorem 19.6.2] and Hirschfeld & Hubaut [5, Theorem 4]. The discussion
in [4] and [5] is based on results of Tallini Scafati who studied more general problems in
her papers [11, 12, 13].

If X is a set of odd type of PG(n, 4), n ≥ 2, and α is a plane of PG(n, 4), then α ∩X
is a set of odd type of α ∼= PG(2, 4) and hence one of the seven possibilities of Proposition
4.1 occurs. If case (Y) of Proposition 4.1 occurs, then we say that α∩X is a plane section
of Type (Y).

Suppose Π is a hyperplane of the projective space PG(n, 4), n ≥ 2, p is a point of
PG(n, 4) not contained in Π and X is a set of odd type of Π. Then the cone pX with top
p and basis X is a set of odd type of PG(n, 4). Any set of odd type of PG(n, 4) which
arises in this way is called singular; otherwise it is called non-singular.

We now define two classes of nonsingular sets of odd type of PG(n, 4), n ≥ 2, which
will play a crucial role later.

Construction 1. Consider in PG(2n+ 1, 4), n ≥ 1, a nonsingular quadric Q and a point
p 6∈ Q. Let ζ be the symplectic polarity of PG(2n+1, 4) associated with Q. There are two
possibilities for Q. Either Q is a hyperbolic quadric Q+(2n + 1, 4) or an elliptic quadric
Q−(2n + 1, 4). The number of points of Q is equal to 42n+1−1

3
+ ε · 4n, where ε = +1 in

case Q is a hyperbolic quadric and ε = −1 in case Q is an elliptic quadric.
There are three types of lines through p: lines which are disjoint from Q (exterior

lines), lines which meet Q in precisely one point (tangent lines) and lines which meet Q
in precisely two points (secant lines). The tangent lines through p are precisely the lines
through p contained in pζ . There are 42n−1

3
such lines. As a consequence, there are

1

2

(42n+1 − 1

3
+ ε · 4n − 42n − 1

3

)
= 22n−1(4n + ε)

secant lines.
Now, consider a hyperplane PG(2n, 4) of PG(2n+ 1, 4) not containing p and let X be

the projection of Q from the point p onto PG(2n, 4). By the above, we know that the
total number of points in X is equal to

42n − 1

3
+ 22n−1(4n + ε). (1)

By Hirschfeld and Thas [6, Theorem 13], we know that X is a nonsingular set of odd type
of PG(2n, 4). Since X contains the hyperplane pζ ∩ PG(2n, 4) of PG(2n, 4), there are no
plane sections of Type (I), nor of type (II).

Now, consider the case n = 1. If Q is a hyperbolic quadric Q+(3, 4) of PG(3, 4),
then we have |X| = 15 and hence, after consulting Proposition 4.1, we see that X is the
complement of a hyperoval of PG(2, 4). If Q is an elliptic quadric Q−(3, 4) of PG(3, 4),
then we have |X| = 11 and hence, after consulting Proposition 4.1, we see that X is a
hyperoval of PG(2, 4), plus a line disjoint from that hyperoval. These observations can
be used to prove the following lemma.
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Lemma 4.2 If n ≥ 2, then X has plane sections of Type (III) and plane sections of Type
(IV).

Proof. The hyperplane pζ of PG(2n+1, 4) intersects Q in a nonsingular quadric of Type
Q(2n, 4) and p is the kernel of this quadric. Let p1 and p2 be two points of pζ ∩ Q such
that p1p2 is not contained in Q. Then the plane < p, p1, p2 > intersects Q in a nonsingular
conic of < p, p1, p2 >. Through < p, p1, p2 >, there exists a 3-space α1 which intersects Q
in a nonsingular elliptic quadric of α1 and a 3-space α2 which intersects Q in a nonsingular
hyperbolic quadric of α2. If we project α1 ∩Q from the point p onto PG(2n, 4), then we
get a plane section of Type (III) and if we project α2∩Q from the point p onto PG(2n, 4),
then we get a plane section of Type (IV). �

The following proposition is a special case of Hirschfeld and Thas [7, Theorem 6].

Proposition 4.3 ([7]) Let X be a nonsingular set of odd type of PG(2n, 4), n ≥ 2, such
that there exist plane sections of Type (IV), but no plane sections of Type (I), nor of type
(II). Then X is a projection of a nonsingular hyperbolic or elliptic quadric of a projective
space PG(2n+ 1, 4) which contains PG(2n, 4) as a hyperplane. The point from which one
projects does not belong to the quadric, nor to the hyperplane PG(2n, 4).

Construction 2. Consider in PG(2n, 4), n ≥ 2, a nonsingular parabolic quadric Q and
a point p 6∈ Q ∪ {k}, where k is the kernel of Q. The number of points of Q is equal to
42n−1

3
. Every line through k is a tangent line. We denote by p′ the unique point of Q on

the line kp and by Tp′ the hyperplane of PG(2n, 4) which is tangent to Q at the point p′.
The tangent hyperplane Tp′ contains the line kp and intersects Q in a cone p′Q(2n−2, 4),
where Q(2n−2, 4) is a nonsingular parabolic quadric of a hyperplane of Tp′ which contains
p, but not p′. Observe that p is the kernel of Q(2n − 2, 4). The tangent lines through
p are precisely the lines through p contained in Tp′ . There are 42n−1−1

3
such lines. As a

consequence, there are
1

2

(42n − 1

3
− 42n−1 − 1

3

)
= 24n−3

secant lines.
Now, consider a hyperplane PG(2n− 1, 4) of PG(2n, 4) not containing p and let X be

the projection of Q from the point p onto PG(2n− 1, 4). By the above, we know that the
total number of points in X is equal to

42n−1 − 1

3
+ 24n−3. (2)

By Hirschfeld and Thas [6, Theorem 13], we know that X is a nonsingular set of odd type
of PG(2n− 1, 4). Since X contains the hyperplane Tp′ ∩ PG(2n− 1, 4) of PG(2n− 1, 4),
there are no plane sections of Type (I), nor of Type (II).

Lemma 4.4 The set X of odd type has plane sections of Type (III) and plane sections
of Type (IV).
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Proof. Let p1 and p2 be two points of Q(2n − 2, 4) such that p1p2 is not contained in
Q(2n− 2, 4). Then the plane < p, p1, p2 > intersects Q(2n− 2, 4) in a nonsingular conic
of < p, p1, p2 >. Through < p, p1, p2 >, there exists a 3-space α1 which intersects Q in
a nonsingular elliptic quadric of α1 and a 3-space α2 which intersects Q in a nonsingular
hyperbolic quadric of α2. If we project α1 ∩ Q from the point p onto PG(2n − 1, 4),
then we get a plane section of Type (III) and if we project α2 ∩Q from the point p onto
PG(2n− 1, 4), then we get a plane section of Type (IV). �

The following proposition is a special case of Hirschfeld and Thas [7, Theorem 5].

Proposition 4.5 ([7]) Let X be a nonsingular set of odd type of PG(2n− 1, 4), n ≥ 2,
such that there exist plane sections of Type (IV), but no plane sections of Type (I), nor
of Type (II). Then X is a projection of a nonsingular parabolic quadric Q of a projective
space PG(2n, 4) which contains PG(2n− 1, 4) as a hyperplane. The point from which one
projects does not belong to PG(2n− 1, 4) nor to Q and is distinct from the kernel of Q.

In the following three lemmas, we prove some properties regarding the sets of odd type
constructed above.

Lemma 4.6 Let X be a set of odd type of PG(2n, 4), n ≥ 2, which is the projection of a
nonsingular hyperbolic or elliptic quadric Q (see construction 1). Then there are precisely
42n − 1 hyperplanes Π of PG(2n, 4) which intersect X in a set Y which is the projection
of a nonsingular parabolic quadric (see construction 2).

Proof. The quadric Q belongs to a projective space PG(2n + 1, 4) which contains
PG(2n, 4) as a hyperplane. Suppose X is the projection of Q from the point p of
PG(2n + 1, 4) onto the hyperplane PG(2n, 4) of PG(2n + 1, 4). Let ζ be the symplectic
polarity of PG(2n+1, 4) associated with Q. There are three possibilities for a hyperplane
Π of PG(2n, 4).

(1) < p,Π > is a hyperplane of PG(2n + 1, 4) tangent to Q at some point p′. Then
Π ∩X is a singular set of odd type of Π. If this case occurs, then p′ necessarily belongs
to the nonsingular parabolic quadric pζ ∩ Q of pζ . Conversely, if p′ ∈ pζ ∩ Q then the
tangent hyperplane Tp′ at the point p′ is of the form < p,Π > for some hyperplane Π of

PG(2n, 4). So, there are |pζ ∩Q| = 42n−1
3

hyperplanes Π of PG(2n, 4) for which this case
occurs.

(2) < p,Π > is a hyperplane of PG(2n+ 1, 4) which is not tangent to Q such that the
point p is the kernel of the parabolic quadric < p,Π > ∩ Q of < p,Π >. Then Π ⊆ X.
This case occurs precisely when < p,Π >= pζ , i.e. when Π = pζ ∩ PG(2n, 4).

(3) < p,Π > is a hyperplane of PG(2n+ 1, 4) which is not tangent to Q such that the
point p is not the kernel of the parabolic quadric < p,Π > ∩ Q of < p,Π >. If this case
occurs, then Π ∩X is the projection of the nonsingular parabolic quadric < p,Π > ∩ Q
of the subspace < p,Π >.

Since the total number of hyperplanes of PG(2n, 4) is equal to 42n+1−1
3

, the required

number of hyperplanes is equal to 42n+1−1
3
− 42n−1

3
− 1 = 42n − 1. �
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Lemma 4.7 Let X be a set of odd type of PG(2n− 1, 4), n ≥ 2, which is the projection
of a nonsingular parabolic quadric Q. Then there are precisely 42n−1 hyperplanes Π of
PG(2n − 1, 4) which intersect X in a set Y which is the projection of a nonsingular
hyperbolic or elliptic quadric.

Proof. The quadric Q belongs to a projective space PG(2n, 4) which contains PG(2n−
1, 4) as a hyperplane. Suppose X is the projection of Q from the point p onto the
hyperplane PG(2n − 1, 4) of PG(2n, 4). The point p is distinct from the kernel k of Q
and the line kp intersects Q in a point p′. There are two possibilities for a hyperplane Π
of PG(2n− 1, 4).

(1) < p,Π > is a hyperplane of PG(2n, 4) tangent to Q at some point p′′. Then
Π∩X is a singular set of odd type of Π. The point p′′ necessarily belongs to the tangent
hyperplane Tp′ at the point p′. Conversely, if p′′ ∈ Tp′ , then the tangent hyperplane Tp′′
at the point p′′ is of the form < p,Π > for some hyperplane Π of PG(2n− 1, 4). So, there
are |Tp′ ∩Q| = 42n−1−1

3
hyperplanes Π of PG(2n− 1, 4) for which this case occurs.

(2) < p,Π > is a hyperplane of PG(2n, 4) which is not tangent to Q. If this case
occurs, then Π ∩ X is the projection of the nonsingular (hyperbolic or elliptic) quadric
< p,Π > ∩ Q of the subspace < p,Π > .

Since the total number of hyperplanes of PG(2n− 1, 4) is equal to 42n−1
3

, the required

number of hyperplanes is equal to 42n−1
3
− 42n−1−1

3
= 42n−1. �

Lemma 4.8 Let Π be a hyperplane of PG(n, 4), n ≥ 3. Let p be a point of PG(n, 4) not
contained in Π and let X be a set of odd type of Π which is the projection of a nonsingular
quadric. Then there are precisely 4n hyperplanes Π′ of PG(n, 4) which intersect the cone
pX in a set Y which is the projection of a nonsingular quadric.

Proof. If Π′ contains p, then Π′ ∩ pX is a singular set of odd type of Π′ (with top p) and
hence cannot be the projection of a nonsingular quadric. If Π′ is one of the 4n hyperplanes
of PG(n, 4) not containing p, then Π′ ∩ pX is a set of odd type of Π′ which is isomorphic
to the set X of odd type of Π. �

Lemma 4.9 Let X be a set of odd type of PG(n, 4), n ≥ 2, such that there are no plane
sections of Type (I), (II), (III), nor (IV). Then X is either a hyperplane, the union of
three distinct hyperplanes through a given (n−2)-dimensional subspace of PG(n, 4) or the
whole point set of PG(n, 4).

Proof. If every line of PG(n, 4) intersects X in either 1 or 5 points, then X is either
a hyperplane of PG(n, 4) or the whole set of points of PG(n, 4). In the sequel, we will
suppose that there exists a line L which intersects X in three points x1, x2 and x3. By
Proposition 4.1, every plane α through L intersects X in the union of three lines through
a given point kα. Let K denote the set of all points kα where α is some plane through L.

We prove that K is a subspace. Suppose α1 and α2 are two distinct planes through
L. Put M = kα1kα2 . We prove that every k ∈ M ∩ X is of the form kα for some
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plane α through L. We may suppose that k 6∈ {kα1 , kα2}. The plane < xikα1 , xikα2 >,
i ∈ {1, 2, 3}, contains the two lines xikα1 , xikα2 through xi which are contained in X, plus
the extra point k which is also contained in X. It follows that the line kxi is contained
in X. So, k = kα where α =< k,L >. Now, since the line M contains two points of
X, namely kα1 and kα2 , it contains a third point of X. This point is equal to kα3 for
some plane α3 through L. Now, the plane < x1kα1 , x1kα2 > contains at least three lines
through x1 which are contained in X, namely the lines x1kα1 , x1kα2 and x1kα3 . Let α′ be
a plane of < L,M > through L distinct from α1, α2 and α3. The unique line through x3

contained in α′ ∩ X intersects < x1kα1 , x1kα2 > in a point of X which is not contained
in x1kα1 ∪ x1kα2 ∪ x1kα3 . This implies that the plane < x1kα1 , x1kα2 > is completely
contained in X. In particular, M ⊆ X. By the above, we then know that each point of M
is of the form kα for some plane α through L. This indeed proves that K is a subspace.

Now, since K is disjoint from L, we have dim(K) ≤ n − 2. Since every plane α
through L meets K, we have dim(K) = n − 2. By considering all planes through L, we
immediately see that X must be a cone with top K and basis {x1, x2, x3}, i.e. X is the
union of the three hyperplanes < K, x1 >, < K, x2 > and < K, x3 >. �

Lemma 4.10 Let X be a set of odd type of PG(n, 4), n ≥ 2, containing a hyperplane Π∞
of PG(n, 4). Put X ′ = Π∞ ∪ (PG(n, 4) \ X). Then X ′ is a set of odd type of PG(n, 4).
The set X ′ is singular if and only if X is singular.

Proof. Let L be a line of PG(n, 4). If L ⊆ Π∞, then L ⊆ X ′. If L is a line of PG(n, 4)
not contained in Π∞ which intersects X in i ∈ {1, 3, 5} points, then L intersects X ′ in
6− i ∈ {1, 3, 5} points. So, X ′ is a set of odd type of PG(n, 4).

Suppose X is singular. Then X is a cone pY where p is some point of PG(n, 4) and
Y is a set of odd type of a hyperplane Π of PG(n, 4) not containing p. If p 6∈ Π∞, then
since Π∞ ⊆ X, we have X = PG(n, 4) and hence X ′ = Π∞ is singular. We may therefore
suppose that p ∈ Π∞. Put Y ′ = (Π∞ ∩ Π) ∪ (Π \ Y ). By the first paragraph, Y ′ is a set
of odd type of Π. We clearly have X ′ = pY ′. So, X ′ is also singular.

By symmetry, if X ′ is singular then also X is singular. �

Proposition 4.11 Let X be a set of odd type of PG(n, 4), n ≥ 2, containing a hyper-
plane Π∞ of PG(n, 4). Then X is either a singular set of odd type or the projection of
a nonsingular quadric of a projective space PG(n + 1, 4) which contains PG(n, 4) as a
hyperplane.

Proof. By Proposition 4.1, the result holds if n = 2. So, we may suppose that n ≥ 3.
Since X contains a hyperplane, every plane section contains a line. So, there are no

plane sections of Type (I) nor of Type (II). If there are no plane sections of Type (III),
nor of Type (IV), then X is a singular set of odd type by Lemma 4.9. So, in the sequel, we
may suppose that there exist plane sections of Type (III) or (IV). We may also suppose
that X is not singular.

Suppose there are plane sections of Type (IV). Then Propositions 4.3 and 4.5 imply
that X is the projection of a nonsingular quadric of a projective space PG(n+ 1, 4) which
contains PG(n, 4) as a hyperplane.
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Suppose there are plane sections of Type (III), i.e. there exists a plane α of PG(n, 4)
which intersects X in a hyperoval of α, plus a line of α which is disjoint from that
hyperoval. Put X ′ = Π∞ ∪ (PG(n, 4) \X). Then by Lemma 4.10, X ′ is a nonsingular set
of odd type of PG(n, 4). Moreover, since Π∞ ⊆ X ′ there are no plane sections of Type
(I), nor of Type (II). Now, the plane α intersects X ′ in the complement of a hyperoval
of α. So, X ′ has plane sections of Type (IV). By Propositions 4.3 and 4.5, X ′ is the
projection of a nonsingular quadric of a projective space PG(n + 1, 4) which contains
PG(n, 4) as a hyperplane. By Lemmas 4.2 and 4.4, X ′ also has plane sections of Type
(III), or equivalently, X has plane sections of Type (IV). So, we are again in the situation
of the previous paragraph. By Propositions 4.3 and 4.5, we conclude again that X is
the projection of a nonsingular quadric of a projective space PG(n+ 1, 4) which contains
PG(n, 4) as a hyperplane. �

Corollary 4.12 Let X be a set of odd type of PG(n, 4), n ≥ 2, containing a hyperplane
Π of PG(n, 4). Then X is one of the following:

(1) the hyperplane Π;
(2) the union of three mutually distinct hyperplanes Π, Π′, Π′ through a hyperplane of

Π;
(3) the whole point set of PG(n, 4);
(4) a cone π1Y , where: (i) π1 is an m-dimensional subspace4 of Π for some m ∈

{−1, 0, . . . , n − 3}; (ii) π2 is an (n − m − 1)-dimensional subspace of PG(n, 4) which
is complementary to π1; (iii) Y ⊆ π2 is the projection of a nonsingular quadric of a
projective space which contains π2 as a hyperplane.

Proof. The corollary follows by induction from Proposition 4.11. Notice that the corol-
lary is valid for n = 2 by Proposition 4.1. �

Theorem 1.6 is now an immediate consequence of Corollary 4.12. Indeed, suppose that
the affine space AG(n, 4) is obtained from PG(n, 4) by removing a hyperplane Π∞ from
PG(n, 4). If X is a pseudo-hyperplane of AG(n, 4), then X ∪ Π∞ is a set of odd type of
PG(n, 4) which contains Π∞, and hence must correspond to one of the cases (1), (2) or
(4) of Corollary 4.12.

Proposition 4.13 Let X be a set of odd type of PG(n, 4), n ≥ 2, containing a hyperplane
Π∞ of PG(n, 4). Put X ′ = Π∞ ∪ (PG(n, 4) \X). Then the following holds.

(1) If n is odd and X is the projection of a nonsingular parabolic quadric Q, then also
X ′ is the projection of a nonsingular parabolic quadric.

(2) If n is even and X is the projection of a nonsingular hyperbolic [resp. elliptic]
quadric Q, then X ′ is the projection of a nonsingular elliptic [resp. hyperbolic] quadric.

Proof. By Lemma 4.10 and Proposition 4.11, X ′ is the projection of a nonsingular quadric
Q′. This proves already (1). Suppose now that n is even. Then |X| = 4n−1

3
+ 2n−1(2n + ε)

4If m = −1, then π1Y = Y .
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with ε = 1 if Q is a hyperbolic quadric and ε = −1 if Q is an elliptic quadric. It is
straightforward to calculate |X ′|. We find

|X ′| = 4n − 1

3
+ 4n − 2n−1(2n + ε) =

4n − 1

3
+ 2n−1(2n − ε).

So, Q′ is an elliptic quadric if Q is a hyperbolic quadric and Q′ is a hyperbolic quadric if
Q is an elliptic quadric. �

The following is a rephrasing of Proposition 4.13.

Corollary 4.14 (1) Let X be a set of parabolic type of AG(n− 1, 4), n ≥ 4 even. Then
the complement of X is also a set of parabolic type of AG(n− 1, 4).

(2) Let X be a set of hyperbolic [resp. elliptic] type of AG(n− 1, 4), n ≥ 3 odd. Then
the complement of X is a set of elliptic [resp. hyperbolic] type of AG(n− 1, 4).

Definition. An set X of even type of the affine space AG(n− 1, 4) is said to be reduced
if one of the following cases occurs.

(1) n ≥ 4 is even and X is a set of parabolic type of AG(n− 1, 4);
(2) n ≥ 3 is odd and X is a set of hyperbolic or elliptic type of AG(n− 1, 4).

Lemma 4.15 Suppose AG(n, 4), n ≥ 3, denotes the affine space which is obtained from
PG(n, 4) by removing a hyperplane Π∞. Let X be a set of even type of AG(n, 4) and Π a
hyperplane of AG(n, 4) intersecting X in a reduced set of even type of Π. Then precisely
one of the following two cases occurs:

(1) X is a reduced set of even type of AG(n, 4);
(2) X = C(D, Y ) where D is some singleton of Π∞ and Y is a reduced set of even type

of a hyperplane Π1 of AG(n, 4) for which D ∩DΠ1 = ∅.

Proof. Suppose that this is not the case. Then by Theorem 1.6, X = C(D, Y ) where
D is some subspace of dimension at least 1 of Π∞ and Y is a set of even type of an
(n − 1 − dim(D))-dimensional subspace Π1 of AG(n, 4) for which D ∩ DΠ1 = ∅. Since
dim(D) ≥ 1, we have D ∩ DΠ 6= ∅. Then X ∩ Π = C(D ∩ DΠ, Y

′) where Y ′ is a
set of even type of an (n − 2 − dim(D ∩ DΠ))-dimensional subspace Π2 of Π for which
(D∩DΠ)∩DΠ2 = ∅. So, X∩Π cannot be a reduced set of even type of Π, a contradiction.
�

For every n ≥ 2, let N(n) denote the total number of reduced sets of AG(n, 4). From
Proposition 4.1, one easily deduces that N(2) = 96.

Lemma 4.16 We have N(2n + 1) = (42n+1 − 1) · N(2n) for every n ≥ 1 and N(2n) =
42n ·N(2n− 1) for every n ≥ 2.
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Proof. Consider the affine space AG(m, 4), m ≥ 3, obtained from PG(m, 4) by removing
a hyperplane Π∞. We count in two different ways the number of triples (Π, X, Y ), where
Y is a pseudo-hyperplane of AG(m, 4), Π is a hyperplane of AG(m, 4) and X is a reduced
pseudo-hyperplane of Π such that X = Y ∩ Π.
• There are 4m+1−4

3
possibilities for Π, and for given Π there are N(m−1) possibilities

for X. Now, fix Π and X. Denote by ẽ2 : AG(m, 4)→ Σ̃ the universal pseudo-embedding

of AG(m, 4). Then dim(Σ̃) = m2 + m. By Corollary 1.3(2), the pseudo-embedding
of Π induced by ẽ2 is isomorphic to the universal pseudo-embedding of Π. So, dim(<
ẽ2(Π) >) = m2 − m. There exists a unique hyperplane U of < e2(Π) > such that
X = ẽ2

−1(ẽ2(Π)∩U). Since every pseudo-hyperplane of AG(m, 4) arises from ẽ2 (and the

corresponding hyperplane of Σ̃ is unique), the number of possibilities for Y is equal to the

number of hyperplanes of Σ̃ which intersects < e2(Π) > in U . The set of such subspaces
is equal to 22m+1 − 22m = 4m.
• By Lemma 4.15, there are two possibilities for Y . Either, the set Y is a reduced set

of AG(m, 4), or Y = C(D, Y ′) where D is some singleton of Π∞ and Y ′ is a reduced set of
a hyperplane Π1 of AG(m, 4) for which D ∩DΠ1 = ∅. In the former case, there are N(m)
possibilities for Y . In the latter case, there are 4m−1

3
·N(m− 1) possibilities for Y .

Suppose m = 2n+ 1 for some n ≥ 1. Then by Lemmas 4.7 and 4.8, we have

42n+1 · 42n+2 − 4

3
·N(2n) = N(2n+ 1) · 42n+1 +

42n+1 − 1

3
·N(2n) · 42n+1,

i.e. N(2n+ 1) = (42n+1 − 1) ·N(2n).

Suppose m = 2n for some n ≥ 2. Then by Lemmas 4.6 and 4.8, we have

42n · 42n+1 − 4

3
·N(2n− 1) = N(2n) · (42n − 1) +

42n − 1

3
·N(2n− 1) · 42n,

i.e. N(2n) = 42n ·N(2n− 1). �

Corollary 4.17 (1) The number of sets of parabolic type in AG(2n − 1, 4), n ≥ 2, is
equal to 6 · 4n(n−1) ·

∏n−1
i=1 (42i+1 − 1).

(2) The number of sets of hyperbolic type in AG(2n, 4), n ≥ 1, is equal to 3 · 4n(n+1) ·∏n−1
i=1 (42i+1 − 1).
(3) The number of sets of elliptic type in AG(2n, 4), n ≥ 1, is equal to 3 · 4n(n+1) ·∏n−1

i=1 (42i+1 − 1).

Proof. By Proposition 4.13(2), the number of sets of hyperbolic type of AG(2n, 4),
n ≥ 1, is equal to the number of sets of elliptic type of AG(2n, 4). Taking this fact into
account, the corollary is now an immediate consequence of Lemma 4.16 and the fact that
N(2) = 96. �

The basic properties of the five classes of pseudo-hyperplanes of AG(n, 4), n ≥ 2, as they
occur in Theorem 1.6 have been listed in Table 1 of Section 1. These properties are easily
derived from equations (1), (2) and Corollaries 4.14, 4.17.
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5 The pseudo-embeddings of Q(4, 3) induced by ho-

mogeneous pseudo-embeddings of AG(4, 4)

5.1 The generalized quadrangle W (3)

A point-line geometry Q is called a generalized quadrangle if it satisfies the following three
properties.

(1) Every two distinct points are incident with at most one line.
(2) There exist two disjoint lines.
(3) For every line L and every point x not incident with L, there exists a unique point

on L collinear with x.
The points and lines of PG(3, 3) which are totally isotropic with respect to a given sym-
plectic polarity of PG(3, 3) are the points and lines of a (symplectic) generalized quad-
rangle which we denote by W (3). The generalized quadrangle Q(4, 3), defined in Section
1, is isomorphic to the point-line dual of W (3), see e.g. Payne and Thas [9, Theorem
3.2.1]. The following proposition, which we take from Taylor [14, Theorem 10.18], gives
an alternative construction of the generalized quadrangle W (3) which will be useful later.

Proposition 5.1 ([14]) Let H(3, 4) be a nonsingular Hermitian variety of PG(3, 4) and
let ζ be the Hermitian polarity of PG(3, 4) associated with H(3, 4). Put P := PG(3, 4) \
H(3, 4) and let L denote the set of all subsets {x1, x2, x3, x4} of size 4 of P such that
xi ∈ xζj for all i, j ∈ {1, 2, 3, 4} with i 6= j. Then the point-line geometry (P ,L, I) with
point set P, line set L and natural incidence relation I is isomorphic to W (3).

Let G ∼= PΓU(4, 2) denote the group of collineations of PG(3, 4) fixing H(3, 4) setwise.

Then every θ ∈ G induces an automorphism θ̃ of (P ,L, I) ∼= W (3). Put G̃ := {θ̃ | θ ∈
G}. Then G̃ ∼= PΓU(4, 2). Since PΓU(4, 2) and the automorphism group of W (3)

(∼= PSp(4, 3).2) have the same order, namely 51840, G̃ is the full group of automorphisms
of (P ,L, I) ∼= W (3). (Observe also that PSU(4, 2) ∼= PSp(4, 3), see e.g. Taylor [14,
Corollary 10.19].)

5.2 Construction and properties of the full embeddings of Q(4, 3)
into AG(4, 4)

In this subsection, we discuss the classification of the full embeddings of the generalized
quadrangle Q(4, 3) into the affine space AG(4, 4). This classification is essentially due to
Thas [15, Section 5.2], see also Payne and Thas [9, Theorem 7.4.1]. Another approach to
the classification can be found in Section 5 of Thas and Van Maldeghem [16]. We follow
here the original approach of Thas [15].

Consider in the projective space PG(4, 4) a hyperplane Π∞ and let AG(4, 4) denote
the affine space obtained from PG(4, 4) by removing Π∞.

Let ω∞ be a plane of Π∞, let U be a unital of ω∞ and let m be a point of Π∞\ω∞. If LU
is the set of twelve secant lines of ω∞ (i.e. lines intersecting U in precisely three points),
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then (U ,LU) defines an affine plane AU of order 3. In ω∞ there are exactly four triangles
mi

1m
i
2m

i
3, i ∈ {1, 2, 3, 4}, whose vertices are exterior points of U and whose sides are

secants of U . The three secants lines corresponding to any such triangle define a parallel
class of lines of the affine plane AU . Any line m1

am
2
b , a, b ∈ {1, 2, 3}, is tangent to U and

contains exactly one vertex m3
c(a,b) ∈ {m3

1,m
3
2,m

3
3} and one vertex m4

d(a,b) ∈ {m4
1,m

4
2,m

4
3}.

We show that the cross-ratio (m1
a,m

2
b ;m

3
c(a,b),m

4
d(a,b)) is independent of the choice of

a, b ∈ {1, 2, 3}. Suppose K and K ′ are two arbitrary lines of ω∞ which are tangent to
U , and denote by k and k′ the respective tangent points. Then K = {k,m1

a,m
2
b ,m

3
c(a,b),

m4
d(a,b)} and K ′ = {k′,m1

a′ ,m
2
b′ ,m

3
c(a′,b′),m

4
d(a′,b′)} for certain a, b, a′, b′ ∈ {1, 2, 3}. Let k′′

be the third point of U on the line kk′. Now, there exist a projectivity η of ω∞ (induced
by a unitary transvection) which interchanges the two points of U \ {k′′} on each secant
line of ω∞ through k′′, and interchanges the two points off U on each secant line of ω∞
through k′′. In particular, η interchanges5 the points m1

a and m1
a′ , the points m2

b and
m2
b′ , the points m3

c(a,b) and m3
c(a′,b′) and the points m4

d(a,b) and m4
d(a′,b′). This implies that

(m1
a,m

2
b ;m

3
c(a,b),m

4
d(a,b)) = (m1

a′ ,m
2
b′ ;m

3
c(a′,b′),m

4
d(a′,b′)).

Any three mutually disjoint lines of a projective space PG(3, 4) are contained in a
unique nonsingular hyperbolic quadric of PG(3, 4). Such a hyperbolic quadric has the
structure of a (5 × 5)-grid. If Q is a nonsingular hyperbolic quadric of PG(4, 4) with
points xij and lines Li := {xij′ | 1 ≤ j′ ≤ 5}, Mj := {xi′j | 1 ≤ i′ ≤ 5} (i, j ∈ {1, 2, . . . , 5}),
then after giving explicit coordinates to the points of Q, one can readily verify that
(x11, x12;x13, x14) = (x21, x22;x23, x24).

Now, let L be a line of AG(4, 4) which has m as point at infinity and let p1, p2, p3, p4

be the affine points of L, where notation is chosen in such a way that (p1, p2; p3, p4) =
(m1

a,m
2
b ;m

3
c(a,b),m

4
d(a,b)) for all a, b ∈ {1, 2, 3}. For all a, b ∈ {1, 2, 3}, let Qab be the

nonsingular hyperbolic quadric in the hyperplane < L,m1
am

2
b > of PG(4, 4) which con-

tains the three mutually disjoint lines p1m
1
a, p2m

2
b and p3m

3
c(a,b). Since (p1, p2; p3, p4) =

(m1
a,m

2
b ;m

3
c(a,b),m

4
d(a,b)), Qab also contains the line p4m

4
d(a,b) by the previous paragraph.

Let (P ,L, I) be the following point-line geometry. The elements of P are the 40 affine
points on the lines pim

i
j, i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}, the elements of L are the affine

lines which are contained in one of the nine hyperbolic quadrics Qab, a, b ∈ {1, 2, 3}, and
the incidence relation I is containment.

In Thas [15, Section 5.2] (see also Payne and Thas [9, Theorem 7.4.1]), the following
was proved.

Proposition 5.2 ([15]) If (P ′,L′, I′) ∼= Q(4, 3) is a full subgeometry of AG(4, 4), then
there exists an affine collineation of AG(4, 4) (whose companion automorphism of F4 is
the identity) which maps P ′ to P and L′ to L.

In Thas [15], it was also mentioned (without proof) that the point-line geometry (P ,L, I) is
a generalized quadrangle isomorphic to Q(4, 3). This fact in combination with Proposition

5Observe that the two points coincide for exactly one of the four pairs. In this case, η just fixes the
point.
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5.2 then implies that in some sense there is a unique full embedding of Q(4, 3) into
AG(4, 4).

We are now going to establish an explicit isomorphism between (P ,L, I) and the dual
of the generalized quadrangle W (3) (which is known to be isomorphic to Q(4, 3)).

Lemma 5.3 The complement (in Π∞) of the set (ω∞ \U)∪
(⋃

p∈U(mp \ {p})
)

is a non-

singular Hermitian variety H(3, 4) of Π∞. If ζ is the Hermitian variety of Π∞ associated
with H(3, 4), then ω∞ = mζ.

Proof. Let H ′(3, 4) denote an arbitrary nonsingular Hermitian variety of Π∞, let m′ be
a point of Π∞ \H ′(3, 4), let ζ ′ be the Hermitian polarity of Π∞ associated with H ′(3, 4)
and put ω′ := (m′)ζ

′
. Then ω′ intersects H ′(3, 4) in a unital U ′ of ω′. Every line of Π∞

through m′ intersects H ′(3, 4) in either one point (tangent line) or three points (secant
line). The tangent lines through m′ are precisely the lines through m′ meeting U ′. It
follows that the complement of H ′(3, 4) in Π∞ is equal to (ω′ \ U ′) ∪

⋃
p∈U ′(m

′p \ {p}).
The lemma now follows from the fact that there exists a collineation of Π∞ mapping m′

to m, ω′ to ω∞ and U ′ to U . �

Let H(3, 4) be the Hermitian variety of Π∞ occurring in the statement of Lemma 5.3
and let ζ be the Hermitian polarity of Π∞ associated with H(3, 4). Let W ′(3) denote the
symplectic generalized quadrangle on the point set Π∞ \H(3, 4) as defined in Proposition
5.1.

For every L ∈ L, let pL denote its point at infinity i.e. the point of Π∞ which belongs
to the unique line of PG(4, 4) containing L. By the construction of the set L, we see
that the correspondence L 7→ pL defines a bijection between L and Π∞ \ H(3, 4) =

(ω∞ \ U) ∪
(⋃

p∈U(mp \ {p})
)

.

Lemma 5.4 Every point x of P is contained in precisely four affine lines of L.

Proof. Suppose first that x = pi for some i ∈ {1, 2, 3, 4}. Then the elements of L
containing x are the affine line L and the affine lines defined by pim

i
j, j ∈ {1, 2, 3}. So, x

is indeed contained in precisely four affine lines of L.
Suppose next that x 6∈ L. Then x is contained on a line pim

i
j for some i ∈ {1, 2, 3, 4}

and some j ∈ {1, 2, 3}. The plane < L, x > of PG(4, 4) intersects ω∞ in the singleton {mi
j}

and hence the affine line determined by pim
i
j is the unique element of L through x meeting

L. Now, the point mi
j of ω∞ is contained in precisely three tangent lines of ω∞, which

we denote by {m1
j1
,m2

j2
,m3

j3
,m4

j4
, u}, {m1

j′1
,m2

j′2
,m3

j′3
,m4

j′4
, u′} and {m1

j′′1
,m2

j′′2
,m3

j′′3
,m4

j′′4
, u′′}.

Then Qj1j2 , Qj′1j
′
2

and Qj′′1 j
′′
2

are those hyperbolic quadrics of the set {Qab | a, b ∈ {1, 2, 3}}
which contain x. The hyperbolic quadrics Qj1j2 , Qj′1j

′
2

and Qj′′1 j
′′
2

determine three affine
lines M , M ′ and M ′′ of L through x distinct from the affine line contained in pim

i
j. Since

the points at infinity of the affine lines M , M ′ and M ′′ are respectively contained in mu,
mu′ and mu′′, the lines M , M ′ and M ′′ are distinct. So, x is contained in precisely four
affine lines of L as we needed to prove. �
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For every point x of P , put Ax := {a1, a2, a3, a4}, where a1, a2, a3 and a4 are the four
points at infinity on the four affine lines of L through x.

Lemma 5.5 For every point x of P, Ax is a line of W ′(3). Conversely, if A is a line of
W ′(3), then there exists a unique point x ∈ P for which A = Ax.

Proof. (1) Let y1, y2 be two points of Π∞ \H(3, 4). Then there are two possibilities. If
the line y1y2 is a tangent line to H(3, 4), then y2 6∈ yζ1. If the line y1y2 is a secant line
(intersecting H(3, 4) in precisely three points), then y1 ∈ yζ2.

(2) Suppose x = pi for some i ∈ {1, 2, 3, 4}. Then Ax = {m,mi
1,m

i
2,m

i
3}. We have

{mi
1,m

i
2,m

i
3} ⊂ ω∞ = mζ . Since mi

j1
mi
j2

is a secant line, we have mi
j1
∈ (mi

j2
)ζ for all

j1, j2 ∈ {1, 2, 3} with j1 6= j2. So, Ax is indeed a line of W ′(3).

(3) Suppose next that x ∈ P \ L. Then x is contained in a line pim
i
j for some

i ∈ {1, 2, 3, 4} and some j ∈ {1, 2, 3}. The point mi
j of ω∞ is contained in precisely three

tangent lines of ω∞, which we denote by {m1
j1
,m2

j2
,m3

j3
,m4

j4
, u}, {m1

j′1
,m2

j′2
,m3

j′3
,m4

j′4
, u′}

and {m1
j′′1
,m2

j′′2
,m3

j′′3
,m4

j′′4
, u′′}. Notice that the points u, u′ and u′′ are contained in the

line (mi
j)
ζ ∩ ω∞ of ω∞. Now, Qj1j2 , Qj′1j

′
2

and Qj′′1 j
′′
2

are precisely the three hyperbolic
quadrics of the set {Qab | a, b ∈ {1, 2, 3}} through the point x. These three hyperbolic
quadric determine three affine lines M , M ′ and M ′′ of L through x distinct from the
affine line contained in pim

i
j. Let a, a′ and a′′ denote the respective points at infinity

of the affine lines M , M ′ and M ′′. Then a ∈ mu, a′ ∈ mu′ and a′′ ∈ mu′′. We have
Ax = {mi

j, a, a
′, a′′}.

Since {u, u′, u′′} ⊂ (mi
j)
ζ and m ∈ (mi

j)
ζ , we have a, a′, a′′ ∈ (mi

j)
ζ .

Now, let Π be the hyperplane < L,mi
ju
′′ > of PG(4, 4). Then Π contains the points

pi, m
i
j, x, u′′,m and intersects Π∞ in the plane < mi

j, u
′′,m >= (u′′)ζ . Now, let η be the

elation of PG(4, 4) fixing each point of Π, fixing each line through u′′ and mapping u to
u′. If i = 1, then mi

j = m1
j1

= m1
j′1

= m1
j′′1

, < u′′,m1
j1
>⊆ (u′′)ζ and hence η maps m1

j1
to

m1
j′1

= m1
j1

. If i 6= 1, then the line < u′′,m1
j1
> is a secant line and hence intersects mi

ju
′ in

the point m1
j′1

. So, also in this case η maps m1
j1

to m1
j′1

. In a similar way, one proves that

η maps m2
j2

to m2
j′2

, m3
j3

to m3
j′3

and m4
j4

to m4
j′4

. This implies that η maps the hyperbolic

quadric Qj1j2 to the hyperbolic quadric Qj′1j
′
2
. Since η fixes x, the projectivity η maps a

to a′. So, u′′, a and a′ are contained in the same line. Since u′′a is not contained in (u′′)ζ ,
the line u′′a is a secant line. Hence, a′ ∈ aζ .

In a similar way, one proves that a′′ ∈ aζ and a′′ ∈ (a′)ζ . So, Ax = {mi
j, a, a

′, a′′} is a
line of W ′(3).

Conversely, suppose that A is a line of W ′(3). Let L1, L2, L3 and L4 denote those
lines of L for which A = {pL1 , pL2 , pL3 , pL4}. If x is a point of P for which A = Ax, then x
necessarily is contained in the lines L1, L2, L3 and L4, proving that there is at most one
such point. The uniqueness of x follows from the fact that there are as many points in P
as there are lines of W ′(3), namely 40. �
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Corollary 5.6 The maps x 7→ Ax and L 7→ pL (x ∈ P and L ∈ L) define an isomor-
phism between the point-line geometry (P ,L, I) and the dual of W ′(3). As a consequence,
(P ,L, I) ∼= Q(4, 3).

Lemma 5.7 If G is a (4×4)-subgrid of (P ,L, I) ∼= Q(4, 3), then there exists a nonsingular
hyperbolic quadric Q of Π =< G > tangent to Π ∩ Π∞ such that G = Q \ (Π ∩ Π∞).
Moreover, Π ∩ P = G.

Proof. The eight points at infinity of the eight lines of G have distinct points at infinity.
This implies that G is contained in a unique nonsingular hyperbolic quadric Q of the
3-dimensional subspace Π =< G > of PG(4, 4). The two lines of Q which are disjoint
from G are contained in Π∞. This implies that the plane Π ∩ Π∞ of Π is tangent to Q
and that G = Q \ (Π ∩ Π∞).

Since Π ∩ P is a proper subquadrangle of (P ,L, I) ∼= Q(4, 3) containing G it must
coincide with G. �

Lemma 5.8 The 40 elements of L are precisely those lines of AG(4, 4) which are con-
tained in P.

Proof. Obviously, every element of L is contained in P . Conversely, suppose that K is a
line of AG(4, 4) which is contained in P and let G be a (4× 4)-grid of (P ,L, I) ∼= Q(4, 3)
containing at least two points of K. Let Q be the unique nonsingular hyperbolic quadric
of < G > containing G. By Lemma 5.7, K ⊆< G > ∩ P is completely contained in Q and
hence is contained in one of the ten lines of Q, i.e. K is one of the eight lines of G. So,
K ∈ L. �

Lemma 5.9 Let G be a (4 × 4)-subgrid of (P ,L, I) ∼= Q(4, 3), let x be a point of P \ G
and let x1, x2, x3, x4 denote the four points of G which are collinear (in (P ,L, I)) with x.
Then < x1, x2, x3, x4 >=< G >.

Proof. Since < Ax >= Π∞, we have < xx1, xx2, xx3, xx4 >= PG(4, 4). So, < x,<
x1, x2, x3, x4 >>= PG(4, 4) and < x1, x2, x3, x4 >=< G >. �

In Lemma 5.9, the points x1, x2, x3 and x4 of G form a so-called ovoid of G, this is a set
of points of G having a unique point of common with each line. We call {x1, x2, x3, x4}
the ovoid of G subtended by x.

In Section 5 of [16], Thas and Van Maldeghem classified all affine embeddings of Q(4, 3)
into AG(4, 4) by making use of the so-called coordinates of the generalized quadrangle
Q(4, 3). From Theorem 5.1 of [16] and the last part of its proof in [16], we know that the
following holds.

Proposition 5.10 Every full embedding e of Q(4, 3) into AG(4, 4) is homogeneous, i.e.
for every automorphism θ of Q(4, 3), there exists a (necessarily unique) collineation φθ of
AG(4, 4) such that e(pθ) = e(p)φθ for every point p of Q(4, 3).
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The following also holds.

Proposition 5.11 Up to isomorphism, there is a unique full embedding of Q(4, 3) into
AG(4, 4), i.e. if e1 and e2 are two full embeddings of Q(4, 3) into AG(4, 4), then there
exists a collineation φ of AG(4, 4) such that e1 = φ ◦ e2.

Proof. This is a consequence of Propositions 5.2 and 5.10. Observe that by Lemma
5.8 the image of the point set of Q(4, 3) under the embedding ei, i ∈ {1, 2}, not only
determines the embedded points but also the embedded lines. �

The original version of this paper also contained a proof of Proposition 5.10. It was
however pointed out by the referee that Proposition 5.10 is also implied by Theorem
5.1 of [16]. In the original approach of the author, Proposition 5.10 was derived from
Proposition 5.11, while Proposition 5.11 was proved in another way. Indeed, by relying
on Propositions 5.1 & 5.2, Lemmas 5.3, 5.4 & 5.5 and Corollary 5.6, it is possible to show
that there exists a collineation φ of AG(4, 4) such that: (1) for every line L of Q(4, 3), the
lines e1(L) and φ ◦ e2(L) of AG(4, 4) have the same point at infinity; (2) there exist two
distinct collinear points x and y of Q(4, 3) such that e1(x) = φ◦e2(x) and e1(y) = φ◦e2(y).
It is also possible to show that conditions (1) and (2) imply that e1 = φ ◦ e2.

5.3 The pseudo-embeddings of the (4 × 4)-grid induced by the
pseudo-embeddings of AG(n, 4), n ∈ {2, 3}

Let G be a (4 × 4)-grid. Without loss of generality, we may suppose that the points of
G are the symbols xij, 1 ≤ i, j ≤ 4, where we suppose that two distinct points xi1j1 and
xi2j2 are collinear if and only if either i1 = i2 or j1 = j2. We now define a relation R on
the set of 24 ovoids of G. If O = {x1i, x2j, x3k, x4l} and O′ = {x1i′ , x2j′ , x3k′ , x4l′} are two
ovoids of G, then we say that (O,O′) ∈ R if the permutation(

i j k l
i′ j′ k′ l′

)
of {1, 2, 3, 4} is even. The relation R is an equivalence relation with two classes. We call
these two classes the two families of ovoids of G. Let G denote the subgroup of Aut(G)
consisting of all automorphisms of G mapping any ovoid of G to an ovoid of the same
family. Clearly, G is a normal subgroup of index 2 of Aut(G).

Up to isomorphism, the (4×4)-grid has nine pseudo-hyperplanes. We list them below.
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Now, denote by Fa and Fb the two families of ovoids of G. Suppose H is a pseudo-
hyperplane of Type 7 of G. Then there are two lines L1 and L2 which are contained
in H and the set OH := (H \ (L1 ∪ L2)) ∪ (L1 ∩ L2) is an ovoid of G. We say that H
is a pseudo-hyperplane of Type 7a if OH ∈ Fa and of Type 7b if OH ∈ Fb. A pseudo-
hyperplane of Type 8 is said to be of Type 8a if its complement has Type 7a, and of
Type 8b if its complement has Type 7b. One can easily verify that G has 11 orbits on
the pseudo-hyperplanes of G. The set of pseudo-hyperplanes of Type 7 will split into two
orbits (Type 7a and 7b) and also the set of pseudo-hyperplanes of Type 8 will split into
two orbits (Type 8a and 8b).

(I) Let AG(2, 4) be the affine plane obtained from PG(2, 4) by removing a line l∞ and
let G be a (4 × 4)-subgrid of AG(2, 4). Then there exist two distinct points p∗1 and p∗2 of
l∞ such that the eight lines of G are the eight lines of AG(2, 4) whose point at infinity is
equal to either p∗1 and p∗2. We will coordinatize PG(2, 4) in such a way that p∗1 = (0, 1, 0)
and p∗2 = (0, 0, 1). A point (of AG(2, 4)) with coordinates (1, x, y) will also be denoted by
(x, y).

If K is a line of AG(2, 4) whose point at infinity is distinct from p∗1 and p∗2, then K is
an ovoid of G. The 12 ovoids of G which arise in this way form one of the two families of
ovoids of G. We denote this family by Fa.

Each automorphism of G ≤ Aut(G) is induced by an automorphism of AG(2, 4). So,
every homogeneous pseudo-embedding of AG(2, 4) will induce a G-homogeneous pseudo-
embedding of G.

(Ia) Let e be the quadratic pseudo-embedding of AG(2, 4). Then e maps the point
(x, y) of AG(2, 4) to the point (X0, X1, X2, X3, X4) = (1, x+x2, δx+δ2x2, y+y2, δy+δ2y2)
of PG(4, 2). Since G and AG(4, 2) have the same point-set, e is also a pseudo-embedding
of G. There are 25 − 1 = 31 pseudo-hyperplanes of G arising from e.
• If Π0 is the hyperplane X0 = 0 of PG(4, 2), then e−1(e(G)∩Π0) = ∅. So, the unique

pseudo-hyperplane of Type 1 arises from e.
• If Π1 is the hyperplane X1 = 0 of PG(4, 2), then e−1(e(G) ∩ Π1) is the union of the

two lines x = 0 and x = 1 of AG(2, 4) and hence is a pseudo-hyperplane of Type 2 of G.
Since e is G-homogeneous, all 12 pseudo-hyperplanes of Type 2 of G arise from e.
• If Π2 is the hyperplane X1 +X3 = 0 of PG(4, 2), then e−1(e(G)∩Π2) = {(0, 0), (0, 1),

(1, 0), (1, 1), (δ, δ), (δ, δ2), (δ2, δ), (δ2, δ2)} is a pseudo-hyperplane of G of Type 3. Since e
is G-homogeneous, all 18 pseudo-hyperplanes of Type 3 of G arise from e.

So, we have localized all 31 pseudo-hyperplanes of G which arise from e. By Proposition
2.1, e is homogeneous. The homogeneous pseudo-embedding e of G is isomorphic to one
of the homogeneous pseudo-embeddings described in De Bruyn [2, Theorem 3.1].
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(Ib) Let ẽ be the universal pseudo-embedding of AG(2, 4). Then ẽ maps the point
(x, y) of AG(2, 4) to the point (X0, X1, X2, X3, X4, X5, X6) = (1, x + x2, δx + δ2x2, y +
y2, δy + δ2y2, xy + x2y2, δxy + δ2x2y2) of PG(6, 2). Since G and AG(2, 4) have the same
point set, ẽ is also a pseudo-embedding of G. There are 27 − 1 = 127 pseudo-hyperplanes
of G arising from ẽ.
• As before, by considering the hyperplanes X0 = 0, X1 = 0 and X1 +X3 = 0, we see

that all pseudo-hyperplanes of Type 1, 2 and 3 of G arise from ẽ.
• If Π3 is the hyperplane of PG(6, 2) with equation X5 = 0, then ẽ−1(ẽ(G) ∩ Π3) =

{(0, y) | y ∈ F4} ∪ {(x, 0) |x ∈ F4} ∪ {(1, 1), (δ, δ2), (δ2, δ)} is a pseudo-hyperplane of G of
Type 7b, since the points (0, 0), (1, 1), (δ, δ2) and (δ2, δ) are not contained in some line of
AG(2, 4). Since ẽ is a G-homogeneous pseudo-embedding of G, all 48 pseudo-hyperplanes
of Type 7b of G arise from ẽ.
• If Π4 is the hyperplane of PG(6, 2) with equation X0 +X5 = 0, then ẽ−1(ẽ(G)∩Π4) is

the complement of the pseudo-hyperplane described in the previous paragraph and hence
is a pseudo-hyperplane of Type 8b. Since ẽ is a G-homogeneous pseudo-embedding of G,
all 48 pseudo-hyperplanes of Type 8b of G will arise from ẽ.

So, we have localized all 127 pseudo-hyperplanes of G which arise from ẽ. By Proposition
2.1, ẽ is G-homogeneous, but not homogeneous. In the terminology of De Bruyn [2], ẽ is
the almost-homogeneous pseudo-embedding of G whose corresponding family of ovoids of
G is equal to Fb.

So, the map ẽ defined above provides direct constructions for the almost-homogeneous
pseudo-embedding of G.

(II) Suppose AG(3, 4) is the affine space obtained from PG(3, 4) by removing a hyperplane
Π∞. Suppose G is a (4× 4)-subgrid of AG(3, 4) such that < G >= PG(3, 4). Then there
exists a unique nonsingular hyperbolic quadric Q of PG(3, 4) such that Π∞ is tangent to
Q and G = Q \ Π∞. We can choose a coordinate system such that the points of G have
the following coordinates.

u(0, δ, 0)

u(0, δ2, 0)

u(0, 1, 0)

u(0, 0, 0)

u(δ, δ, 1)

u(δ2, δ2, 1)

u(1, 1, 1)

u(0, 0, 1)

u(1, δ, δ2)

u(δ, δ2, δ2)

u(δ2, 1, δ2)

u(0, 0, δ2)

u(δ2, δ, δ)

u(1, δ2, δ)

u(δ, 1, δ)

u(0, 0, δ)

Let L1 and L2 be the two lines of Π∞ such that Q∩Π∞ = L1∪L2 and put {p∗} = L1∩L2.
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If Π is one of the twelve planes of PG(3, 4) through p∗ not containing L1, nor L2, then
Π ∩ G is an ovoid of G. The set of twelve ovoids of G arising in this way form one of the
two families of ovoids of G. We denote this family by Fa.

Each automorphism of G belonging to G is induced by an automorphism of AG(3, 4)
which stabilizes the point-set of G. So, every homogeneous pseudo-embedding of AG(3, 4)
will induce a G-homogeneous pseudo-embedding of G.

(IIa) Let e be the quadratic pseudo-embedding of AG(3, 4). Then e maps the point
(x, y, z) of AG(3, 4) to the point (X0, X1, X2, X3, X4, X5, X6) = (1, x+x2, y+y2, z+z2, δx+
δ2x2, δy + δ2y2, δz + δ2z2) of PG(6, 2). The pseudo-embedding e will induce a pseudo-
embedding e′ of G into a subspace Σ of PG(6, 2). Since e[(0, 0, 0)] = (1, 0, 0, 0, 0, 0, 0),
e[(0, 0, 1)] = (1, 0, 0, 0, 0, 0, 1), e[(0, 0, δ2)] = (1, 0, 0, 1, 0, 0, 0), e[(0, 1, 0)] = (1, 0, 0, 0, 0, 1,
0), e[(1, 1, 1)] = (1, 0, 0, 0, 1, 1, 1), e[(δ2, 1, δ2)] = (1, 1, 0, 1, 0, 1, 0) and e[(0, δ2, 0)] = (1, 0, 1,
0, 0, 0, 0) generate PG(6, 2), we have Σ = PG(6, 2). So, there are 27 − 1 = 127 pseudo-
hyperplanes of G arising from e′.
• If Π0 is the hyperplane X0 = 0 of PG(6, 2), then e−1(e(G)∩Π0) = ∅. So, the unique

pseudo-hyperplane of Type 1 arises from e′.
• If Π1 is the hyperplaneX2 = 0 of PG(6, 2), then e−1(e(G)∩Π1) is a pseudo-hyperplane

of Type 2 of G. Since e′ is G-homogeneous, all 12 pseudo-hyperplanes of Type 2 arise
from e′.
• If Π2 is the hyperplane X2 + X3 = 0 of PG(6, 2), then e−1(e(G) ∩ Π2) is a pseudo-

hyperplane of Type 3 of G. Since e′ is G-homogeneous, all 18 pseudo-hyperplanes of Type
3 of G arise from e′.
• If Π3 is the hyperplane X1 = 0 of PG(6, 2), then e−1(e(G)∩Π3) = {(0, 0, 0), (0, 0, 1),

(0, 0, δ2), (0, 0, δ), (0, 1, 0), (0, δ2, 0), (0, δ, 0), (1, 1, 1), (1, δ2, δ), (1, δ, δ2)}. Since the points
(0, 0, 0), (1, 1, 1), (1, δ2, δ) and (1, δ, δ2) are not contained in a plane, e−1(e(G) ∩ Π3) is a
pseudo-hyperplane of Type 7b of G. Since e′ is G-homogeneous, all 48 pseudo-hyperplanes
of Type 7b of G arise from e′.
• If Π4 is the hyperplaneX0+X1 = 0 of PG(6, 2), then e−1(e(G)∩Π4) is the complement

of the pseudo-hyperplane mentioned in the previous paragraph and hence is a pseudo-
hyperplane of Type 8b of G. Since e′ is G-homogeneous, all 48 pseudo-hyperplanes of
Type 8b arise from e′.

So, we have located all 127 pseudo-hyperplanes of G which arise from e′. By Propo-
sition 2.1, e′ is G-homogeneous, but not homogeneous. In the terminology of De Bruyn
[2], we have:

Lemma 5.12 e′ is isomorphic to the almost-homogeneous pseudo-embedding of G whose
corresponding family of ovoids of G is equal to Fb.

(IIb) Finally, suppose that ẽ : AG(3, 4)→ PG(12, 2) is the universal pseudo-embedding of
AG(3, 4). Then ẽ will induce a pseudo-embedding ẽ′ of G into a subspace Σ of PG(12, 2).
Using the explicit description of ẽ given in Theorem 1.2, it is possible to determine Σ. We
find that dim(Σ) = 8. Since the pseudo-embedding rank of G is equal to 9, see e.g. De
Bruyn [1, Proposition 3.7], we obtain:
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Lemma 5.13 The pseudo-embedding ẽ′ is isomorphic to the universal pseudo-embedding
of G.

5.4 Two homogeneous pseudo-embeddings of Q(4, 3)

In De Bruyn [2], we used the computer algebra system GAP [3] to show that the general-
ized quadrangle Q(4, 3) has up to isomorphism two homogeneous pseudo-embeddings, the
universal pseudo-embedding in PG(14, 2) and a certain pseudo-embedding in PG(8, 2).
In [2], we did however not give any direct constructions for these two homogeneous
pseudo-embeddings. The aim of this subsection is to show that these two homogeneous
pseudo-embeddings of Q(4, 3) are induced by the two homogeneous pseudo-embeddings
of AG(4, 4) into which Q(4, 3) is fully embeddable.

Proposition 5.14 Suppose the generalized quadrangle Q(4, 3) is fully embedded into the
affine space AG(4, 4) and let G be a (4 × 4)-subgrid of Q(4, 3). Let ẽ be the universal
pseudo-embedding of AG(4, 4) and let ẽ′ be the pseudo-embedding of Q(4, 3) induced by e.
Let e be the quadratic pseudo-embedding of AG(4, 4) and let e′ be the pseudo-embedding
of Q(4, 3) induced by e. Then ẽ′ and e′ are homogeneous pseudo-embeddings of Q(4, 3),
ẽ′ ≥ e′ and

(1) the pseudo-embedding of G induced by ẽ′ is isomorphic to the universal pseudo-
embedding of G,

(2) the pseudo-embedding of G induced by e′ is isomorphic to the almost-homogeneous
pseudo-embedding of G whose corresponding family of ovoids equals the set of sub-
tended ovoids of G.

So, ẽ′ and e′ are not isomorphic.

Proof. The fact that ẽ′ and e′ are homogeneous pseudo-embeddings of Q(4, 3) follows
from Proposition 5.10 and the fact that ẽ and e are homogeneous pseudo-embeddings of
AG(4, 4). Since ẽ ≥ e, we also have ẽ′ ≥ e′. The claims (1) and (2) of the proposition
follow from Lemmas 5.9, 5.12 and 5.13. �

Corollary 5.15 With the notations of Proposition 5.14, we have that ẽ′ is isomorphic to
the universal pseudo-embedding of Q(4, 3) and that e′ is isomorphic to the homogeneous
pseudo-embedding of Q(4, 3) into PG(8, 2).

Remark. The claims mentioned in (1) and (2) of Proposition 5.14 were already obtained
in De Bruyn [2, Theorem 1.7(b)]. In [2] however these claims were verified with the aid
of computer computations in GAP.
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2009.

[10] B. Sherman. On sets with only odd secants in geometries over GF(4). J. London
Math. Soc. (2) 27 (1983), 539–551.

[11] M. Tallini Scafati. {k, n}-archi di un piano grafico finito, con particolare riguardo a
quelli con due caratteri. I. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
(8) 40 (1966), 812–818.

[12] M. Tallini Scafati. {k, n}-archi di un piano grafico finito, con particolare riguardo a
quelli con due caratteri. II. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
(8) 40 (1966), 1020–1025.

[13] M. Tallini Scafati. Caratterizzazione grafica delle forme hermitiane di un Sr,q. Rend.
Mat. e Appl. (5) 26 (1967), 273–303.

[14] D. E. Taylor. The geometry of the classical groups. Sigma Series in Pure Mathematics
9. Heldermann Verlag, Berlin, 1992.

[15] J. A. Thas. Partial geometries in finite affine spaces. Math. Z. 158 (1978), 1–13.

[16] J. A. Thas and H. Van Maldeghem. Lax embeddings of generalized quadrangles in
finite projective spaces. Proc. London Math. Soc. (3) 82 (2001), 402–440.

34


