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Abstract In the context of geographic information systems (GIS), points of interest
(POIs) are descriptions that denote geographical locations which might be of interest
for some user purposes. Examples are public transport facilities, historical buildings,
hotels and restaurants, recreation areas, hospitals etc. Because information gather-
ing with respect to POIs is usually resource consuming, the user community is often
involved in this task. In general, POI data originate from different sources (or users)
and are therefore vulnerable to imperfections which might have a negative impact
on data quality. Different POIs referring to, or describing the same physical geo-
graphical location might exist. Such POIs are said to be coreferent POIs. Coreferent
POIs must be avoided as they could harm the data(base) quality and integrity. In
this chapter, a novel soft computing technique for the (semi-)automated cleansing
of POI databases is proposed. The proposed technique consists of two consecutive
main steps: the detection of collections of coreferent POIs and the fusion, for each
collection, of all coreferent POIs into a single consistent POI that represents all the
POIs in the collection. The technique is based on fuzzy set theory, whereas possi-
bility theory is used to cope with the uncertainties in the data. It can be used as a
component of (semi-)automated data quality improvement strategies for databases
and other information sources.

1 Introduction

Geographic information systems are characterized by a tremendous amount of data,
which must be collected, processed and represented in an efficient, user-friendly
way. Moreover, some of these data must regularly be actualised as geographic ob-
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jects like roads, buildings or borderlines often change. A specific kind of informa-
tion concerns the description of geographic locations or entities at geographic loca-
tions. In general, such information is modelled by objects which are called points
of interest (POIs). Examples of POIs are objects that describe historical buildings,
public services, hotels, restaurants and bars, panoramic views, interesting places to
visit, etc. Usually, POIs contain information about location (coordinates) and a short
textual description, but also other information such as the category the POI belongs
to, multimedia like pictures and video and meta-data like the creator’s name, the
timestamp of creation, the file size, etc. can be provided.

In practice and due to their specific content, POI databases often contain data that
are obtained from different heterogeneous sources, of which some might be main-
tained by user communities. User communities are often involved in data collection
processes in cases where detailed, not commonly known data have to be inserted
and maintained. When POIs originate from different sources or are entered by a
user community, taking care of data consistency and correctness needs special at-
tention. Indeed, such data are extremely vulnerable to errors, which might among
others be due to uncertainty, imprecision, vagueness or missing information.

A problem that seriously harms the overall quality of a geographical information
system (GIS) occurs when different POIs, denoting the same geographic entity, are
inserted in the system. Such POIs are called coreferent POIs: they differ from each
other, but all describe the same geographic location or object at a geographic loca-
tion. Coreferent POIs can introduce uncertainty and inconsistency in the data, result
in a storage and data processing overhead and moreover can cause low quality or,
even worser, incorrect information retrieval results [26].

It is therefore important and relevant to develop techniques to detect coreferent
POIs. Once detected, the problem of coreference has to be solved. Two basic ap-
proaches can be identified. In the first approach, the existence of coreferent POIs is
prevented with techniques that, e.g., inform users about POIs that are detected to be
in the neighbourhood of a new POI. As such, it is up to the user to check and ver-
ify whether the insertion makes sense. In the second approach, which is handled in
more detail in this chapter, the responsibility for the correctness of the database is to
a considerable extent shifted to the database management system. Coreferent POIs
have to be merged (or fused) by the database management system into one single,
consistent POI and the duplicates have to be removed. Perhaps, the simplest merg-
ing strategy is to keep one of the coreferent POIs and then remove all the others. As
this simple merging strategy often introduces an information loss, more advanced
merging techniques are required.

The research described in this chapter contributes to as well automatic detec-
tion, as automatic merging of coreferent POIs. The automatic detection of coreferent
POIs has been approached as an uncertain Boolean problem. This means that two
POIs are either coreferent or not (i.e., a boolean matter), but uncertainty about this
decision must be dealt with. In order to determine this uncertainty, the POI structure
is decomposed into elementary attributes (i.e., atomic sub objects). In this chapter it
has been explicitly assumed that all POIs share the same structure. Thus, the issue of
POI schema matching is not taken into account here. For each elementary attribute,
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an elementary evaluator is allocated. Such an evaluator determines the uncertainty
about the coreference of two values of the attribute’s domain (which is the set of
all allowed values for the attribute). The returned uncertainty is modelled by a pos-
sibilistic truth value [35, 18]. Because the POI’s coordinates are among the main
characteristics of a POI, special attention is paid to the detection of co-location of
POIs, i.e., the definition of an appropriate evaluator for geographic coordinates. To
obtain the overall uncertainty on the coreference of two POIs, the elementary eval-
uators are applied and their resulting possibilistic truth values are aggregated. For
this aggregation, a variant of the Sugeno integral, as presented in [8] is used. The
proposed merging approach for coreferent POIs uses the possibilistic truth values
that are returned from the elementary evaluations and the aggregation, to determine
how and which parts of two coreferent POIs should be merged to obtain a single
deduplicated POI. Different strategies are described in the chapter.

The presented work also contributes to research on data quality issues in infor-
mation retrieval by studying techniques that allow to automatically improve the data
quality of information sources. Although applied in the context of geographic POI
databases, the presented techniques can also be used and further extended for coref-
erence detection and handling in other data sources and web sources. An improved
data quality on its turn will automatically lead to better database query and informa-
tion retrieval results. In cases where the data sources are read-only and hence can
not be updated, coreference handling can be postponed until the data querying or in-
formation retrieval results are retrieved. Coreferent results can then be automatically
filtered out and adequately handled before presenting them to the users.

The remainder of the paper is structured as follows. In Section 2, a brief overview
of related work is given. Next, in Section 3, some preliminary definitions and nota-
tions with respect to objects and POIs are presented. Then, in Section 4 the prob-
lem of determining the uncertainty about the coreference of two POIs is dealt with.
Herewith special attention is respectively paid to the definition of evaluators for
atomic objects (in Subsection 4.1), the determination of the uncertainty about the
co-location of two POIs in a two-dimensional space (in Subsection 4.2), and the
computation of the overall uncertainty about the coreference of the overall POIs,
i.e., the definition of aggregators for complex objects (in Subsection 4.3). Section 5,
discusses the problem of merging two coreferent objects. Some general merge func-
tions are described. These general functions allow one to develop a specific merge
technique for POIs. The presented techniques for the detection and merging of coref-
erent POIs are illustrated in Section 6. Finally, in Section 7, some conclusions and
indications for further work are given.

2 Related Work

Both the topics of coreference detection and of the merging of coreferent data have
already been studied from different perspectives. In the next subsections we briefly
give an overview of related work in these areas.
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2.1 Coreference Detection

Coreference detection is already being studied since the late ’60s, at which time it
was commonly described as record linkage. A basic work on record linkage is [25].
Both traditional and fuzzy approaches exist.

In traditional approaches, coreference detection is typically done by means of a
clustering method. An example is the DBSCAN algorithm [24]. When applying the
DBSCAN algorithm to a POI database, clusters of coreferent POIs are expanded
by adding similar POIs. Similarity between POIs is often determined by means of
some multidimensional similarity measure, which is a weighted linear combination
of spatial, linguistic and semantic measures. Spatial similarity is usually measured
by calculating the distance between two POIs [34] and map this to inverse values in
the interval [0,1], where 1 denotes an identical location and 0 represents the maxi-
mal distance. Linguistic similarity is usually measured by applying the Jaro-Winkler
or another string comparison metric [29, 43] and semantic similarity can be com-
puted by comparing the relative positions of the concepts under consideration in a
taxonomic ontology structure [37].

In fuzzy approaches, the problem of detecting coreferent POIs is usually ad-
dressed by considering that duplicates are due to uncertainty and by explicitly han-
dling this uncertainty by means of fuzzy set theory [47] and its related possibility
theory [48, 21] (see, e.g., [40, 20]). Fuzzy ranges are then used to model spatial
uncertainty about the co-location of two POIs. In [40], rectangular ranges are used,
whereas in [20] context dependent circular ranges are proposed that are based on the
scales of the maps in which the POIs are entered. In the remainder of this chapter,
fuzzy set theory is used to further enhance spatial similarity measures so that these
better cope with imperfections in the descriptions (of the locations) of the POIs. The
problem of detecting co-location and merging of co-located data is also somewhat
related to issues of conflation in GIS (see, e.g., [27]). Conflation is the complex pro-
cess of combining information from two digital maps to produce a third map which
is better than either of its component sources. In [36] the software agent technol-
ogy paradigm has been applied as a conflation solution. Agent system techniques
are hereby combined with expert system techniques to provide a feasible system
architecture for distributed conflation.

2.2 Merging of Coreferent Data

The scientific foundations of POI merging lay in the research on information fusion,
which deals with the combination of information provided by independent sources
into one piece of information. The challenge hereby is to resolve inconsistencies
between the different sources. An interesting aspect of information fusion is its ap-
plicability in many different contexts.

In a mathematical context, information fusion has led to the development of nu-
merous aggregation operators such as generalized means [45, 23], t-norms and t-
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conorms [22] and uninorms [46]. Aggregation operators fuse information that is
represented as an element of a complete lattice (L,≤). The information typically
expresses facts, for example the opinion or score of an agent. A flexible spatial data
fusion approach based on a generalized ordered weighted averaging operator re-
flecting the concept of a fuzzy majority is presented in [16, 5]. Next to aggregation
operators, a significant body of research deals with the case where deductive knowl-
edge, such as inference rules and (integrity) constraints is used to combine informa-
tion from different sources. Hereby, each source is considered to be a propositional
belief base modelled as a first-order theory (see, e.g., [4, 1, 2, 31, 32, 30]). A typical
difference between propositional belief bases and aggregation operators, is the pres-
ence of non-factual knowledge, such as inference rules and integrity constraints. As
a consequence, the interest here is to combine all information in a maximal first-
order theory. Such a setting occurs, amongst others, in heterogeneous databases [7].
A third type of information fusion deals with the case where each source provides
knowledge by means of a possibility distribution (see, e.g., [38, 19]). In this case, it
is assumed that the different sources have to cope with imprecision and/or incom-
plete knowledge and the key question is how uncertainty can be processed when
dealing with different sources, that can provide conflicting information. Other ap-
proaches include heterogeneous data source fusion based on semantic rules (e.g.,
[33]) or ontologies (e.g., [6]).

Despite these related research areas, surprisingly the problem of merging coref-
erent data has not been as deeply investigated as the problem of coreference detec-
tion. An interesting overview of information combination operators for data fusion
is given in [3]. In [12] the properties of object merging functions are investigated
and a general framework for the merging of coreferent objects is proposed. In this
paper we investigate and illustrate how this general framework can be applied in the
context of POI merging.

3 Some Preliminaries

In this section we give some basic definitions and properties of objects and points of
interest (POIs). These definitions form the formal basis for the techniques presented
in the remainder of the chapter.

3.1 Basic Concepts on Objects

A fundamental concept in this chapter is that of an object. An object is axiomatically
defined as a piece of data that describes an entity. A distinction is made between
atomic and complex objects. Atomic objects are objects of which the universe is
non compound, while complex objects belong to a universe O that is composed
of non compound universes, i.e., O = U1 × ·· · ×Un. The appropriate universe of
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entities is denoted by E and the link between objects and entities is formalised by a
surjective function ρ : O → E . Objects that refer to the same entity in E through ρ
are said to be coreferent. Formally:

∀(o1,o1) ∈ O2 : (o1 ↔ o2)⇔ (ρ(o1) = ρ(o2)) . (1)

The universe of an object is always equipped with a label function l : O → L ,
where L represents the appropriate set of labels. The label of a universe represents
the class of entities that objects in the universe are describing. For example, consider
l(R) =‘latitude’, then we know that objects in R are describing entities of the class
‘latitude’, i.e., describe the geographic latitude coordinate of a location on the earth’s
surface.

In addition, complex objects are equipped with a tree structure in the sense that
there exist logical groups of labels that belong together. For example, in objects that
describe geographic entities, the universes with label ‘street’, ‘house number’, and
‘postal code’ form a logical group, i.e., the address. Formally, for a complex universe
O and with the understanding that P(U) denotes the power set of U (i.e., the set of
all subsets of U , including the empty set and U itself), there exists a function:

λ : P ({l (Ui)}i=1...n)→{0,1}. (2)

such that λ indicates for each group of labels, whether these labels form a logical
group or not. As the structure that corresponds to λ must be a tree structure, some
constraints must be satisfied. The labels themselves must represent leaf nodes and
the root node is given by the set of all labels, which means that:

∀i ∈ {1, . . . ,n} : λ ({l(Ui)}) = 1 (3)
λ ({l(U1), . . . , l(Un)}) = 1. (4)

Also, the parent child relation must be respected. In terms of λ , this means that for
two arbitrary sets of labels, the following constraint must be satisfied:

(λ (A) = λ (B) = 1)⇒ (A ⊆ B∨B ⊆ A∨A∩B = /0) (5)

which states that two logical groups A and B are either connected through the an-
cestor relation or are disjoint.

3.2 Basic concepts on POIs

Reconsider the universe of entities E . A point of interest (or POI) is axiomatically
understood as a piece of data that describes a geographic entity in the real world
that is modelled by E . A POI is hence a special kind of complex object which is
commonly used to describe an interesting location (or an entity at an interesting
location).
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By applying the function ρ that has been introduced in the previous subsection
we obtain that two POIs POI1 and POI2 are coreferent, i.e., POI1 ↔ POI2 iff

(POI1 ↔ POI2)⇔ (ρ(POI1) = ρ(POI2)) . (6)

Note that with the previous assumptions, we aim to keep the automated cleansing
approach as general as possible and thus applicable to any data(base) model. The
only requirements are that the data(base) model should support the modelling of
complex objects which belong to a compound universe O = U1 × ·· ·×Un and for
which there exists a label function l. The universe O is moreover equipped with a
tree structure that is modelled by a function λ , which specifies logical groups of
labels that belong together.

Example 1. An example of a compound universe that can be used to model POIs is

OPOI =U1 ×U2 ×U3 ×U4 ×U5 ×U6

where

U1 = S

U2 = S

U3 = [−90,90]
U5 = [−180,180]
U5 = S

U6 =C.

Herewith, S is the set of all character strings and C is an enumerated list of allowed
POI types. The label function l is specified as follows

∀u ∈U1 : l(u) = identifier
∀u ∈U2 : l(u) = name
∀u ∈U3 : l(u) = latitude
∀u ∈U4 : l(u) = longitude
∀u ∈U5 : l(u) = description
∀u ∈U6 : l(u) = type
∀o ∈ OPOI : l(u) = POI.

The tree structure that is specified on OPOI is given by the function λ which is
specified as follows (all subsets of labels that are not explicitly mentioned map to
0):
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λ ({l(U1)}) = λ ({identi f ier}) = 1
λ ({l(U2)}) = λ ({name}) = 1
λ ({l(U3)}) = λ ({latitude}) = 1
λ ({l(U4)}) = λ ({longitude}) = 1
λ ({l(U5)}) = λ ({description}) = 1
λ ({l(U6)}) = λ ({type}) = 1
λ ({identi f ier,name, latitude, longitude,description, type}) = 1
λ ({l(U3), l(U4)}) = λ ({latitude, longitude}) = 1.

The tree structure corresponding to these mappings is presented in Figure 1. The
semantics of the POIs under consideration can then be described as follows. The
element of U1 is the unique identifier of the POI, the element of U2 is the name
of the POI. The elements of U3 and U4 are connected to each other and together
represent the location of the POI, which is given by a latitude and a longitude. Both
latitudes and longitudes are expressed in decimal degrees (where 0.000001 degrees
corresponds to 0.111 metre). The element of U5 is a free description, provided by
the user and modelled by full text. Finally, the element of U6 is the type (or category)
of the POI. It is assumed that this type is chosen from a given list. �

Because each POI is an element of a universe O=U1×·· ·×Un, it can be denoted
by a n-tuple (u1, . . . ,un), where ui ∈Ui, i = 1, . . . ,n.

Example 2. Reconsider the POI structure as introduced in Example 1. The following
four 6-tuples are illustrations of POIs.

(POI1, ‘Friday market’,51.056934,3.727112, ‘Friday Market, Ghent’, ‘Market’)
(POI2, ‘St-Bavo’,51.053036,3.727015, ‘St-Bavo’s Cathedral, Ghent’, ‘Church’)
(POI3, ‘Ghent cathedral’,51.053177,3.726382, ‘St-Bavo Cathedral’, ‘Cathedral’)
(POI4, ‘St-Bavo’,51.033333,3.700000, ‘St-Bavo – Ghent’, ‘Cathedral’).

POI2, POI3 and POI4 are examples of coreferent POIs. All four POIs have a differ-
ent location. �

Fig. 1 Tree structure on labels corresponding to the mappings of Example 1.



Automated Cleansing of POI databases 9

4 Detection of Coreferent POIs

In this section, the problem of determining the uncertainty about the coreference of
two POIs is dealt with. A possibilistic solution for finding coreferent objects con-
sists of finding functions that express the uncertainty of coreference by means of
possibilistic truth values [35, 42, 17, 18], which are possibility distributions over
the Boolean domain B= {T,F}. Thus, for a given Boolean proposition p, the pos-
sibilistic truth value (or PTV) p̃:

p̃ =
{
(T,µp̃(T )),(F,µp̃(F))

}
(7)

expresses the possibility that p is true (T) and the possibility that p is false (F).
The domain of all possibilistic truth values is denoted F (B), i.e., the power set of
normalised fuzzy sets over B. In what follows, we shall adopt the couple shorthand
notation for possibilistic truth values, i.e., p̃ = (µp̃(T ),µp̃(F)). Let us define the
order relation ≥ on the set F (B) as follows:

p̃ ≥ q̃ ⇔
{

µp̃(F)≤ µq̃(F), if µp̃(T ) = µq̃(T ) = 1
µq̃(T )≤ µp̃(T ), else (8)

An evaluator is a function that estimates a possibilistic truth value in order to
express uncertainty about coreference [9].

Given a universe of objects O, an evaluator over O is defined as a function EO:

EO : O2 → F (B) (9)

An evaluator compares two objects and yields a possibilistic truth value that ex-
presses both the possibility that the objects are coreferent and the possibility that
the objects are not coreferent. An evaluator is

• Reflexive if and only if:

∀(o1,o2) ∈ O2 : (o1 = o2)⇒ (EO(o1,o2) = (1,0)) (10)

• Strong reflexive if and only if:

∀(o1,o2) ∈ O2 : (o1 = o2)⇔ (EO(o1,o2) = (1,0)) (11)

• Commutative if and only if:

∀(o1,o2) ∈ O2 : EO(o1,o2) = EO(o2,o1) (12)

In what follows, evaluators are always assumed to be commutative and at least
reflexive. Finally, an evaluator is called transitive if and only if, for every triplet
(o1,o2,o3) ∈ O3:
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1−µEO(o1,o3)(F)≥ min
(
1−µEO(o1,o2)(F),1−µEO(o2,o3)(F)

)
1−µEO(o1,o3)(T )≥ min

(
1−µEO(o1,o2)(F),1−µEO(o2,o3)(T )

)
1−µEO(o1,o3)(T )≥ min

(
1−µEO(o1,o2)(T ),1−µEO(o2,o3)(F)

)
.

In the next subsections we successively describe evaluators for atomic objects,
evaluators for determining co-location and evaluators for complex objects.

4.1 Elementary Evaluators for Atomic Objects

When it comes to the evaluation of atomic objects (i.e., objects with a non com-
pound universe), some existing approaches are useful in the detection of coreferent
POIs. More specifically, the comparison of character strings and numerical data has
already been studied extensively and is the basis for the development of general pur-
pose evaluators for character strings and numerical data. Such evaluators are briefly
introduced in the next subsections.

4.1.1 Evaluators for Character Strings

First, syntactical evaluators have been proposed. These evaluators allow for the
comparison of two character strings, taking into account the occurrence of spelling
errors, abbreviations, . . . [10, 13]. Hereby, strings are decomposed into a multiset
of substrings. These multisets are then compared such that similarities between el-
ements are taken into account [9]. The evaluators are called ‘syntactical’, because
they decide upon coreference of two objects by comparing the syntactical construc-
tion of objects. Syntactical evaluators for strings are for example well suited for
comparison of POI names and descriptions.

Secondly, semantical evaluators have been proposed [11]. As opposed to syntac-
tical evaluators, semantical evaluators reject the idea that a decision of coreference
must be based on a syntactical similarity between two objects. Instead, it accepts
the fact that the existence of some (semantical) relationship between two objects
can be sufficient to decide that these objects are coreferent. Examples of such rela-
tionships are the synonym relationship, the specification/generalization relationship,
. . . In [11], an approach is proposed for the dynamical discovery of (semantical) rela-
tionships between objects. In the case of POIs, semantical evaluators are well suited
for the comparison of POI types.



Automated Cleansing of POI databases 11

4.1.2 Evaluators for Numerical Data

Evaluators for character strings can also be used for coreference detection of nu-
merical data too. Indeed, coreferent numerical values refer to the same number, but
can differ from each other due to typing errors or uncertainty. A typical example are
telephone numbers or bank account numbers. In such cases, depending on the con-
text in which the numbers are used, either syntactical and/or semantical evaluators
can be applied for coreference detection.

Correferency of numerical data can also be due to imprecision. In such a case
the difference between two numbers can be used as the basis for evaluation. If two
numbers a and b are close enough, i.e., if |a−b| ≤ ε , then a and b can be considered
as being coreferent, else they are not considered to be coreferent. Hereby, ε acts as
a threshold value and depends on the application under consideration. An example
on how the value of ε can be determined is given in the next subsection.

4.2 Evaluators for Co-Location

Next to these general purpose evaluators described in the previous subsection, the
case of POIs requires some case-specific evaluators for the comparison of locations.
More details on these evaluators are discussed below.

Perhaps the most important aspect of a POI is its registered geographic location.
POI’s are considered to be zero dimensional objects, whereas geographic entities
in the real world are generally two or three dimensional objects and hence can be
denoted by multiple locations. Consider for example all locations of the surface
of a bridge, park or lake or all locations in a building. To construct the POI, one
of these locations has to be chosen as the representative location (or point). The
location of a POI is hence, due to its nature, already very vulnerable to imprecision
what is one of the main causes for coreferency. Beside of this inherent imprecision,
coreferent POIs can also be assigned to different locations due to uncertainty or a
lack of information.

In the remainder of this subsection a soft technique for estimating the uncertainty
about the co-location of two POIs is presented. First, a basic technique commonly
used in fuzzy geographic applications is presented. Secondly, this basic technique
is further enhanced in order to explicitly cope with the scale at which the POI is
entered by the user.

4.2.1 Basic Technique

The geographic location of a POI is usually modelled in a two-dimensional space
by means of a latitude lat and longitude lon, as has been illustrated in Example 1.
Consider two POIs POI1 and POI2 with locations (lat1, lon1) and (lat2, lon2) re-
spectively. In geographic applications, the distance (in metres) between the two lo-
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cations is usually approximately computed by

d(POI1,POI2) = 2Rarcsin(h) (13)

where R = 6367000 is the radius of the earth in metres and

h = min

(
1,

√
sin2

(
latr

2 − latr
1

2

)
+ cos(latr

1)cos(latr
2)sin2

(
lonr

2 − lonr
1

2

))

with latr
j =

π
180

lat j and lonr
j =

π
180

lon j, for j = 1,2, being the conversions in
radians of lat j and lon j [39]. The higher the precision of the measurement of the
latitude and longitude, the higher the precision of this distance.

From a theoretical point of view, POIs are considered to be geographic locations.
Hence, two POIs are considered to be co-located if their distance equals zero. In
practice however, one has to deal with imperfect positioning specifications of loca-
tions. Therefore, it is more realistic to consider two POIs as being co-located if they
refer to the same area and are thus close enough. In traditional approaches ‘close
enough’ is usually modelled by a threshold ε > 0, such that two POIs POI1 and
POI2 are ε-close if and only if

d(POI1,POI2)≤ ε. (14)

The problem with such a single threshold is that it puts a hard constraint on the
distance, which implies an ‘all or nothing’ approach: depending on the choice for ε ,
two POIs will be considered as being co-located or not. If an inadequate threshold
value is chosen, this will yield in a bad decision. A single threshold neither offers
the flexibility to use different criteria in different contexts.

Fuzzy sets [47] have been used to soften the aforementioned hard constraint. In
general, a fuzzy set with a membership function µε−close, as presented in Figure 2,
is used to model ‘close enough’. This membership function is defined by

Fig. 2 Fuzzy set with membership function µε−close for representing ‘close enough’.
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µε−close : [0,+∞]→ [0,1]

d 7→


1 , if d ≤ ε
δ −d
δ − ε

, if ε < d ≤ δ

0 , if d > δ .

(15)

The extent to which two POIs POI1 and POI2 are considered to be co-located is
then given by µε−close(d(POI1,POI2)). Hence, for distances below ε , µε−close de-
notes co-location, for distances larger than δ no co-location is assumed, whereas
for distances between ε and δ , there is a gradual transition from co-location to no
co-location. Other membership function definitions can be used.

4.2.2 Enhanced Technique

A practical problem with fuzzy approaches as described above, is that the member-
ship function has to reflect reality as adequate as possible. This implies that ade-
quate values for ε and δ must be chosen. Values that are too stringent (too small)
will result in false negatives, i.e., some POIs will falsely be identified as not being
co-located, whereas values that are too soft (too large) will result in false positives,
i.e., some POIs will falsely be identified as being co-located. In this subsection, it
is considered that different POIs can originate from different sources or users. Such
a situation often occurs in practical cases where data of different origins have to be
collected and combined. Under this consideration, it makes sense to study how the
parameters ε and δ are influenced by the context in which the POI has been origi-
nally registered. Eq. (15) can then be further enhanced in order to better reflect the
imperfection and the context of the placement of the POI.

In practice, the exact coordinates of the location of a POI will not always be
known. In such a case, the location of the POI has to be approximated. When user
communities are involved in the construction and maintenance of a POI database,
users might be asked to denote the position of the POI on a map. User communities
are often involved when the content of the database changes regularly, which is for
example the case with locations of speed control devices, locations that denote dan-
gerous road conditions, and locations that denote interesting points to visit during
walking or cycling activities.

If POI locations are entered via geographic maps the quality of the data will to
some extent depend on the context the user is working in. Next, we focus on two
aspects of this work context, namely scale and precision, and show how explicitly
coping with these can help to improve Eq. (15).

If users work with maps on computer screens or screens of mobile devices when
entering or maintaining (locations of) POIs, they work with a representation of (a
part of) the real world that is drawn at a specific scale (1 : s), which means, e.g.,
that 1 cm on the scale corresponds to s cm in reality. For example, a map of Europe
on a computer screen can be drawn at scale (1 : 15000000), a map of Belgium at
scale (1 : 1000000) and a map of Ghent at scale (1 : 125000). It is clear that the
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precision with which a user can place a POI on a map depends on the scale of the
map. Denoting a POI that represents the Eiffel tower on a map of Europe will be less
precise than on a map of France, which on its turn will be less precise than on a map
of Paris. On the other hand, depending on his or her knowledge about the location
of the new POI the user can zoom-in or zoom-out on the map to enter the POI
at the map with the most appropriate detail for the user. Considering the different
scales used in the different sources or used by different users, a scale (1 : smin)
corresponding to the most detailed level and a scale (1 : smax) corresponding to the
least detailed level can be determined. Hence, all occurring scales (1 : s) will be
within the range (1 : smin)≤ (1 : s)≤ (1 : smax).

Another aspect to take into account is the precision with which the user can
denote the location of a POI on the screen. Usually, when working at an appropriate
scale (1 : s), the user will be able to place a point on the screen with a precision of
a couple of centimetres, i.e., the exact location of the point will be within a circle
with the denoted point as centre and radius ds. This radius can be considered to be
a parameter that depends on the scale (1 : s) and the user’s abilities for accurately
denoting the POI on the screen. Therefore, in practical applications, ds could be
adjustable by the user or by a user feedback mechanism.

The scales (1 : s), smin ≤ s≤ smax, and corresponding radiuses ds can now be used
to further enhance the definition of the membership function µε−close that is used in
Eq. (15).

Estimating the Value of ε

In order to better approach reality, ε should reflect the maximum distance for which
two POIs are indistinguishable and hence must be considered as being co-located.

If no further information about the geographical area of the POI is available, then
the POI is positioned at the location that is entered by the user and modelled by its
latitude and longitude. Two POIs are then indistinguishable if they are mapped to
the same latitude and longitude. The maximum precision can be approximated by
the dot pitch of the screen and be used to estimate the value of ε . The dot pitch dp
of a screen is defined as the diagonal distance between two pixels on the screen and
usually has a standard value of 0.28mm. Considering the minimum scale (1 : smin),
the value of ε can then be approximated by

ε = dpsmin. (16)

If information about the geographical area of the POI is given, then the length l of
the diagonal of the minimum bounding rectangle that surrounds this area can be used
to approximate ε . Indeed, all POIs that are placed in the rectangle can reasonably be
considered as being co-located. If the POI location of POI1 and POI2 is respectively
entered at a scale (1 : s1) and (1 : s2), the value of ε can be approximated by

ε = max(
l
2

s1,
l
2

s2) (17)
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where the maximum operator is used to take the roughest, largest approximation
(which is due to the least precise scale) in cases where both POIs were entered at a
different scale.

Estimating the Value of δ

Taking into account the scale (1 : s1) and precision ds1 with which a user entered
POI1 and the scale (1 : s2) and precision ds2 with which POI2 was entered, the value
of δ can be defined by

δ = ε +max(s1ds1 ,s2ds2) (18)

where the maximum operator is again used to take the roughest approximation in
cases where both POIs were entered at a different scale. With this definition the
precisions ds1 and ds2 are handled in a pessimistic way. Alternative definitions for δ
are possible.

4.2.3 Evaluator for Co-Location

The membership function µε−close can now be used to define an evaluator Eloc for
the determination of co-location. Such an evaluator should satisfy Eq. (9) and hence
result in a PTV, expressing the uncertainty about the colocation of two locations of
POIs.

A proposal for a simple definition for Eloc is

Eloc : ([−90,90]× [−180,180])2 → F (B)
((lat1, lon1),(lat2, lon2)) 7→ (µp̃(T ),µp̃(F)) (19)

where the membership grades µp̃(T ) and µp̃(F) are defined by

µp̃(T ) =
µε−close(d)

max(µε−close(d),1−µε−close(d))
(20)

µp̃(F) =
1−µε−close(d)

max(µε−close(d),1−µε−close(d))
. (21)

where the distance d = d((lat1, lon1),(lat2, lon2)) is computed using Eq. (13) and
the membership function µε−close is defined by Eq. (15) with the parameter values
ε and δ being estimated as described above. An example of the use of the evaluator
Eloc is given in Section 6.

The evaluator Eloc can be used as a component of a technique to determine
whether two POIs are coreferent or not. The resulting PTVs as obtained by Eq. (20)
and (21), then denote a measure for the uncertainty about the co-location or spatial
similarity of the POIs.
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4.3 Evaluators for Complex Objects

Once atomic objects have been compared, a comparison of complex objects can be
performed by aggregating the results of atomic comparisons. For that purpose, an
extension of the Sugeno integral to the domain of PTVs has been proposed [8].

This integral uses two fuzzy measures (γT and γF ). The measure γT (resp.
γF ) provides the conditional necessity that two complex objects are (not) coref-
erent, given that some set of attributes are (not) coreferent. In the case of POIs,
γT ({‘name’, ‘type’}) is a number in the unit interval that represents the necessity
that two POIs are coreferent, provided that their names and types are coreferent.
Similarly, γF({‘name’, ‘type’}) is a number in the unit interval that represents the
necessity that two POIs are not coreferent, provided that their names and types are
not coreferent. As required by the definition of fuzzy measures, γT and γF are nor-
malised between /0 and L and are monotonic.

It is noted that the fuzzy measures can be used to take structural information of
objects into account. For example, it can be reflected in γT and γF that street, zip
code and city together constitute an address by introducing dependencies between
these atomic objects. This can be easily automated by usage of the function λ as
introduced by Eq. (2).

The Sugeno integral introduced in [8] combines conditional necessity (γT and
γF ) with marginal necessity (the PTVs obtained from atomic comparison) into one
PTV that reflects the uncertainty about the fact that two complex objects are coref-
erent. The inference used for this combination is purely possibilistic in nature and
is therefore a valid and well suited aggregation method for PTVs in the case of
coreference.

With the understanding that P̃ denotes a finite set of PTVs P̃ = { p̃1, . . . , p̃n}, the
Sugeno integral of P̃ with respect to γT and γF is defined by

SγT,F (P̃) : F (B)n → F (B) : P̃ 7→ p̃ (22)

so that

µp̃(T ) = Posp̃(T )

= 1−Necp̃(F)

= 1−
n∨

i=1

Nec
(

P̃(i)F = F
)
∧ γF

(
P̃(i)F

)
= 1−

n∨
i=1

(
min

p̃∈P̃
(i)F

(1−µp̃(T ))

)
∧ γF

(
P̃(i)F

)
and
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µp̃(F) = Posp̃(F)

= 1−Necp̃(T )

= 1−
n∨

i=1

Nec
(

P̃(i)T = T
)
∧ γT

(
P̃(i)T

)
= 1−

n∨
i=1

(
min

p̃∈P̃
(i)T

(1−µp̃(F))

)
∧ γT

(
P̃(i)T

)
where .()T and .()F are permutations on the elements of P̃. With the understanding
that p̃(i)T (resp. p̃(i)F ) denotes the ith element of the permutation .()T (resp. .()F ) and
that ≤ is the order relation for PTVs as defined by Eq. 8, the permutations .()T and
.()F are defined as follows:

∀i ∈ {1, . . . ,n−1} : p̃(i+1)T ≤ p̃(i)T . (23)

In other words .()T is a permutation that orders the elements of P̃ according to largest
PTV first. Furthermore the permutation .()F on the elements of P̃ is defined by

∀i ∈ {1, . . . ,n−1} : p̃(i)F ≤ p̃(i+1)F . (24)

This is the reciproque permutation of .()T .
More details about (the use of) the Sugeno integral can be found in [8].
Because a POI is considered to be a special kind of a complex object, the evalu-

ators for complex objects can be used to determine the PTV expressing the overall
uncertainty that two POIs are coreferent or not. This will be illustrated in Section 6.

5 Merging of Coreferent POIs

Once coreferent POIs are detected, their duplicate information should be removed
and their non-duplicate information should be merged. The challenges hereby are to
avoid information loss and to resolve the inconsistencies that might exist among the
different coreferent data.

A general merge function for coreferent objects of a universe O has been formally
defined by

ϖO : M (O)→ O (25)

where M (O) denotes the set of all multisets drawn from the universe O [13, 15].
The merge function thus takes a multiset of objects and produces one single object
as a result. As proposed by Yager [44], a multiset M over O is hereby characterized
by a counting function ωM : O → N. For v ∈ O, ωM(v) then represents the number
of times that v occurs in M.

In the next Subsections 5.1 and 5.2, specific merge functions for atomic and
complex objects will be defined. These functions will then be further fine-tuned for
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the purpose of POI merging in Subsection 5.3. More information on the properties
of the proposed functions is given in [13].

5.1 Merge Functions for Atomic Objects

Let us first introduce merge functions ϖU where U is a non compound universe.
Recall that the context in which ϖU is to be used, is that of coreference. As such, we
can assume that upon merge time, an evaluator EU is available. Let M be a multiset
of coreferent objects that are identified by a coreference detection framework. Then,
for each object u ∈ M, |M| = ∑u∈U ωM(u) PTVs can be calculated by comparing u
with all objects in M. Due to reflexivity of EU , the PTV (1,0) occurs at least ωM(u)
times. As such, for each object u ∈ M a collection of PTVs is obtained where each
p̃ indicates the uncertainty about the proposition that two objects are coreferent. In
[28], a method is proposed to construct a possibility distribution πN (a fuzzy integer)
from a collection of PTVs. Hereby, πN(k) indicates the possibility that exactly k
propositions are true. Hence, for each element u ∈ M, a possibility distribution πu

N
can be constructed, where πu

N(n) represents the possibility that ‘exactly n values in
M are coreferent with u’.

The method described in [28] has been used for the construction of a confidence
based merge function as it allows to express the uncertainty about the number of
coreferent objects according to a given evaluator EU . It works as follows. Let P be a
set of independent Boolean propositions and let P̃ be the multiset of corresponding
PTVs which results from the evaluation of the proposition in P. Then, the quantity
of true propositions in P is modelled by the possibility distribution πN such that:

πN(k) = min( sup
{

α ∈ [0,1]||{p ∈ P|µp̃(T )≥ α}| ≥ k
}
,

sup
{

α ∈ [0,1]||{p ∈ P|µp̃(F)< α}| ≥ k
})

. (26)

Eq. (26) states that the possibility πN(k) is the minimum of the possibility that at
least k propositions are true and the possibility that at most |P|− k propositions are
false. The possibility πN(k) can be efficiently calculated by adopting the following
notations. For a multiset P̃, let p̃(i) denote the ith largest PTV with respect to the
order relation defined in Eq. (8). The following then holds:

πN(k) =


µp̃(k)(F) , if k = 0
µp̃(k)(T ) , if k = |M|
min

(
µp̃(k)(T ),µp̃(k+1)(F)

)
, else

(27)

Figure 3 shows two example multisets, each consisting of five PTVs (µp̃(T ),µp̃(F)),
where ◦ denotes the possibility µp̃(T ) of T and × denotes the possibility µp̃(F) of
F . The derived possibility distributions πN, computed using Eq. (27), are shown be-
low the PTVs. Note that the membership functions of the derived fuzzy integers πN
are always convex.
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Applying this method allows us to express the number of coreferent objects,
according to the evaluator EU . Hence, although we already know that objects in M
are coreferent, the distributions πN express the uncertainty about this statement, at
least, according to the evaluator EU . Based on these observations, a merge function
can be defined, considering that the result of the merging should be the object which
has the highest number of coreferent objects according to EU . We then obtain a
merging technique where the uncertainty model of EU is used to choose the best
representative.

For this purpose, a method for comparing fuzzy integers is required. Many meth-
ods have been proposed. The most common technique is to defuzzify the fuzzy in-
teger, for example by means of the center of gravity [22]. Fuzzy integers are then
compared by comparing the results of defuzzification. The method that we shall
adopt here, is not based on defuzzification, but is rather possibilistic in nature. We
propose two order relations for fuzzy integers, one constructed from the viewpoint
of possibility and one constructed from the viewpoint of necessity.

For two fuzzy integers, ñ and m̃, the sup-order relation ≺sup is defined by

ñ ≺sup m̃ ⇔ sup ñα < sup m̃α . (28)

Hereby, ñα is the α-cut of ñ where α is chosen such that:

α = sup{x|sup ñx ̸= sup m̃x}.

Also, for two fuzzy integers, ñ and m̃, the inf-order relation ≺inf is defined by

Fig. 3 Two example sets of five PTVs (µ p̃(T ),µ p̃(F)) where ◦ and × respectively denote µ p̃(T )
and µ p̃(F) (top) and their corresponding derived fuzzy integer (bottom).
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ñ ≺inf m̃ ⇔ inf ñα < inf m̃α . (29)

Hereby, ñα is the α-cut of ñ where α is chosen such that:

α = sup{x| inf ñx ̸= inf m̃x}.

The sup-order of fuzzy integers searches for the highest α , such that the α-cuts
have a different supremum and then chooses the fuzzy number for which the α-
cut has the higher supremum. It can be seen that this method is equivalent to first
searching the fuzzy integers that have the maximal k, say kmax, for which πN(kmax)=
1. If multiple such fuzzy integers exist, the decision is obtained by applying the
leximax-operator on the sequence πN(kmax + 1), . . . ,πN(|M|). The dual is true for
≺inf. Note that both ≺sup and ≺inf are partial orders. If multiple fuzzy numbers are
equivalent, a random choice is made. Note that two non-equal convex fuzzy integers
are always comparable by either ≺inf or ≺sup.

Consider the fuzzy integers shown in Figure 3. The order relation ≺sup denotes
the leftmost fuzzy integer as the largest, because the 1-cut of the leftmost fuzzy in-
teger has a higher supremum (4) than the rightmost (3). However, the order relation
≺inf denotes the rightmost fuzzy integer as the largest, because the 0.2-cut (denoted
by the dashed line) of the leftmost fuzzy number has a lower infimum (2) than the
0.2-cut of the rightmost fuzzy integer (3).

Using the order of fuzzy integers, it is possible to define a merge function ϖU ,
which is driven by an evaluator EU for atomic universes U . For example, using the
order relation ≺sup, the confidence-based merge function ϖU for coreferent objects
of an atomic universe U has been defined by

ϖU (M) = argmax
u∈M

πu
N (30)

where πu
N is a possibility distribution, representing a fuzzy integer, that is obtained

from the multiset P̃u of PTVs for which

∀u′ ∈ M : ωP̃u
(EU (u,u′)) = ωM(u′).

As such, ϖU (M) selects the object u ∈ M that has the largest corresponding fuzzy
number πu

N according to the order relation ≺sup. Selecting the largest fuzzy number
hereby reflects that the object with the largest confidence has been chosen as the
result of the merging. Illustrations of such merge functions for atomic objects are
given in Subsection 6.2.

5.2 Merge Functions for Complex Objects

In order to merge coreferent objects of a complex, composite universum O, a com-
posite merge function is used. A possible strategy in doing so is to consider an
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evaluator EO and to construct merge functions for complex universes as explained
in the previous subsection.

Another way of defining composite merge functions is to combine the projection
operator on the compound universe O with merge functions for the atomic universes.
Doing so, yields the following definition.

Consider a complex universe O =U1×·· ·×Un. A composite merge function ϖO
over O is defined by

ϖO : M (O)→ O (31)

where
ϖO(M) = (ϖU1 (Proj1 (M)) , . . . ,ϖUn (Projn (M)))

with Proji(M) ∈ M (Ui) such that

ωProji(M)(u) = ∑
o∈M∧oi=u

ωM(o).

5.3 Merging of Coreferent POIs

The general merge strategies presented in the previous subsections can be used to
develop a merge technique for coreferent POIs. Because POIs are complex objects
(as specified in Subsection 3.2), a composite merge function as defined by Eq. (31)
can be used to merge coreferent POIs.

This approach is motivated by the fact that we prefer to keep only the best (par-
tial) information from each coreferent POI in the resulting merged POI. Hence,
we do not prefer to select and preserve one of the existing POIs as the result of
the merging operation. With this strategy, we explicitly opt to cleanse the (regu-
lar) POI database without introducing uncertain data in it. Indeed, alternatively one
might also choose to work with a ‘fuzzy’ POI database in which uncertainty about
the possible values of the POI attributes is explicitly stored. As such the informa-
tive richness of the many sources provided by the user communities can be better
maintained. However, such an approach will result in POIs that are more difficult
to interpret and to process. For that reason this approach is not further considered
within the scope of the work presented in this chapter.

In order to specify the composite merge function in accordance with Eq. (31),
merge functions for atomic objects, handling locational, descriptive and categorical
data must be provided. The use and selection of such merge functions is discussed
in the next subsections.

5.3.1 Merging of Locational Data

In POIs, locational data is usually specified by means of a latitude and a longitude
value, each of them being modelled by an atomic object, respectively taken from the
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atomic universa [−90,90] and [−180,180] (cf. Example 1). Because POIs are often
descriptions of geographic areas (buildings, parks, lakes, etc.) latitude and longitude
data are often imprecise. A good merge function for latitude and longitude data has
to reduce this imprecision as good as possible. Hence, an aggregation function like
arithmetic mean could be a good candidate. Two situations are distinguished:

• If we have no information about the scale 1 : s of the map on which the POIs are
entered by the user (or if no map is used to enter POIs), then the latitude value
lat (resp. longitude value lon) of the merged POI, resulting from the merging of
the coreferent POIs POI1, . . . ,POIn is obtained by taking the arithmetic mean of
the latitudes lati, i = 1, . . . ,n (resp. longitudes loni) of all coreferent POIs, i.e.,

lat =
∑i=1,n lati

n
, lon =

∑i=1,n loni

n
. (32)

Alternatively, to eliminate the impact of outliers, the median of the latitudes (resp.
longitudes) can be taken as merge result.

• If the POI locations have been inserted by users using maps, then we have scale
information and only the latitudes (resp. longitudes) of the POIs at the most de-
tailed scale are considered in the computation of the arithmetic means, i.e.,

lat =
∑ i=1,n

si=smin
lati

∑ i=1,n
si=smin

1
, lon =

∑ i=1,n
si=smin

loni

∑ i=1,n
si=smin

1
(33)

where 1 : si is the scale at which POIi is entered and smin =min{si|i= 1,2, . . . ,n}.

This approach guarantees that only POIs that are entered at the scale with the highest
precision among the scales that are used for the coreferent POIs under consideration
are involved in the merge operation.

5.3.2 Merging of Descriptive Data

For descriptive, atomic POI components, a confidence-based merge function, as de-
fined by Eq. (30) can be used. This is motivated by the assumption that the descrip-
tion for which the possible quantity of coreferent descriptions is maximised, is a
good candidate for the merge result. Indeed, because for this description we have
the highest confidence that it is coreferent with most of the other descriptions.

On the one hand, by selecting only one description from the descriptions of the
coreferent POIs, the risk for an inconsistent description in the merged POI is min-
imised as one could assume that users most likely provide consistent descriptions.
However, on the other hand, by neglecting the descriptions of the non-selected POIs,
information not present in the description of the selected POI might be lost. A so-
lution for this is to a apply a multi-document summarising technique to the descrip-
tions of all coreferent POIs. Such summarising techniques have been described in
[41, 15].
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5.3.3 Merging of Categorical Data

For atomic POI components that contain categorical data, a confidence-based merge
function, as defined by Eq. (30) can also be used. This is motivated by the assump-
tion that the category for which the possible quantity of coreferent descriptions is
maximised, is a good candidate for the merge result.

The underlying assumption at this point is that if different category labels are
used in the coreferent POIs, these are most likely the result of user mistakes. Hence,
keeping only the label for which the confidence is the highest might be a good merge
strategy.

Alternatively, if the category labels are organised in a hierarchical structure, re-
flecting category-subcategory relationships, then the most common ancestor of the
category labels in the coreferent POIs, might be taken as the merge result. In such a
case, there is less chance for mistakes, but specific category label information might
get lost.

6 An Illustrative Example

To illustrate the corefence detection and merging of POIs as described in the previ-
ous sections, the POIs of Example 2 are reconsidered. First we deal with coreference
detection in Subsection 6.1, next in Subsection 6.2 the merging is illustrated.

6.1 Illustration of Coreference Detection

As illustrated in Example 1, the POIs under consideration are objects of a complex
universe OPOI = U1 ×U2 ×U3 ×U4 ×U5 ×U6 that consists of six non compound
universa U1, . . . ,U6 of which only the five universa U2, . . . ,U6 are relevant with re-
spect to corefence detection. Indeed, the univere U1 is used to model the identifier
of a POI which by definition should be unique and which is either provided by the
user or generated by the system. Hence it is assumed that the semantics of the iden-
tifier do not contribute to the coreference detection process. In the next example, we
illustrate POI coreference detection on the basis of the universa U2, . . . ,U6.

Example 3. Consider the four POIs of Example 2 and assume that all of them have
been entered by users using a map interface. POI1, POI2 and POI3 are entered at
scale 1 : 10000 which corresponds to a street map of Ghent, whereas POI4 is en-
tered at scale 1 : 1000000 which corresponds to a map of Belgium. The latitude,
longitude, scale, radius of screen precision, and parameter value for ε of these POIs
(cf. Subsection 4.2.2) are summarised in Table 1. The minimum scale supported is
assumed to be 1 : 10000. For all POIs, the same precision ds = 0.01m is used. This
precision is assumed to be provided by the user (or could alternatively be set by
default in the system).
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Table 1 Information about the POIs used in Example 3.

POI lat lon 1 : s ds ε = dpsmin

POI1 51.056934 3.727112 1:10000 0.01m 2.8m
POI2 51.053036 3.727015 1:10000 0.01m 2.8m
POI3 51.053177 3.726382 1:10000 0.01m 2.8m
POI4 51.033333 3.700000 1:1000000 0.01m 2.8m

We now present the calculation of the uncertainty of coreference for objects of
each of the constituting relevant universa U2, . . . ,U6.

• Coreference detection for objects of the universum U2. This universum is used
to model the name of the POI. As explained before, the uncertainty of coreference
for names is preferably determined by means of a syntactical evaluator Ename. By
using the evaluators described in [10, 12], the PTVs (µp̃(T ),µp̃(F)) in Table 2
are obtained. These PTVs express the uncertainty about the coreference of the
names of the POIs under consideration, i.e., POI1, POI2, POI3 and POI4. From

Table 2 Uncertainty about the coreference of the names of POIx and POIy.

POIx POIy Ename(POIx,POIy)

POI1 POI2 (0,1)
POI1 POI3 (0,1)
POI1 POI4 (0,1)
POI2 POI3 (0,1)
POI2 POI4 (1,0)
POI3 POI4 (0,1)

these results it can be seen that the names of POI2 and POI4 are certainly corefer-
ent because reflexivity of the evaluator requires that equal object value are certain
to be coreferent. In addition, other POI names are certainly not coreferent, due to
a lack of sufficient syntactical similarities between names.

• Coreference detection for objects of the universa U3 and U4. Universa U3 and
U4 are respectively used to model the latitude and longitude of a POI. In order to
apply the techniques presented in Subsection 4.2 both the latitude and longitude
of a POI have to be considered together. An evaluator elocation, which uses Eq. 19,
is applied to compute the PTV that reflects the (un)certainty about the co-location
of two POIs. Table 3 gives an overview of the results obtained from the applica-
tion of the evaluator Elocation for the POIs under consideration. The third column
gives the distances between the POIs as computed by using Eq. (13). The fourth
column contains the values for the parameter δ as computed by using Eq. (18).
Whereas the last column represents the resulting PTVs (µp̃(T ),µp̃(F)) denot-
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ing the (un)certainty about the co-location of the POIs as obtained by applying
Eq. 19.

Table 3 Uncertainty about the co-location of POIx and POIy.

POIx POIy d(POIx,POIy) δ = ε +max(s1ds1 ,s2ds2 ) Elocation(POIx,POIy)

POI1 POI2 433.2m 102.8m (0,1)
POI1 POI3 420.6m 102.8m (0,1)
POI1 POI4 3235.2m 10002.8m (1,0.48)
POI2 POI3 46.9m 102.8m (1,0.79)
POI2 POI4 2890.8m 10002.8m (1,0.41)
POI3 POI4 2874.1m 10002.8m (1,0.40)

These results reflect that POI1 is not co-located with POI2 and POI3, which is
reflected by the PTV (0,1). Remind that it has been assumed in the example that
POI4 is entered at scale 1 : 1000000, which is less precise than scale 1 : 10000.
This makes that there is no certainty about the co-location of POI4 with POI1,
POI2 and POI3 what is respectively reflected in the PTVs (1,0.48), (1,0.41) and
(1,0.40). Due to their possibilistic interpretation each of these PTVs expresses
that it is either completely possible that there is co-location (µp̃(T ) = 1) or that it
is either to a lower extent possible that there is no co-location (µp̃(F) resp. being
equal to 0.48, 0.41 and 0.40). Likewise, the PTV (1,0.79) expresses that it is ei-
ther completely possible (µp̃(T ) = 1) that POI2 and POI3 are co-located, or that
it is either possible to a lower extent µp̃(F) = 0.79 that these are not co-located.
This rather high value of 0.79 is due to the pessimistic assumption of ε being only
2.8m, where Saint-Bavo cathedral has a diagonal of about 110m. Alternatively,
using Eq. (17), we obtain that ε = 55m and applying Eq. (18) yields δ = 155m.
So, using this alternative approach, the resulting PTV becomes {(T,1)}, what
corresponds to true and illustrates the efficiency of Eq. (17).

• Coreference detection for objects of the universum U5. Universum U5 is used
to model the description of the POI. Similarly as for the name, the coreference
detection for the description of a POI is preferably done using a syntactical eval-
uator Edescr. The PTVs in Table 4 show the uncertainty about coreference of the
descriptions of the POIs under consideration and are obtained by applying the
evaluators that have been described in [10, 12]. From these results it follows that
the POI description of POI1 is certainly not coreferent with that of POI3 (PTV
(0,1)). There is also higher confidence that this description is not coreferent with
that of POI2 (µp̃(F) = 1 in PTV (0.5,1)) and POI4 (µp̃(F) = 1 in PTV (0.3,1))
than there is confidence that the description of POI1 is coreferent with the de-
scription of POI2 (µp̃(T ) = 0.5 in PTV (0.5,1)) and the description of POI4
(µp̃(T ) = 0.3 in PTV (0.3,1)). Furthermore, there is higher confidence that the
descriptions of POI2, POI3 and POI4 are coreferent (PTVs (1,0.1)) than there is
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Table 4 Uncertainty about the coreference of the descriptions of POIx and POIy.

POIx POIy Edescr(POIx,POIy)

POI1 POI2 (0.5,1)
POI1 POI3 (0,1)
POI1 POI4 (0.3,1)
POI2 POI3 (1,0.1)
POI2 POI4 (1,0.1)
POI3 POI4 (1,0.1)

confidence that these descriptions are not coreferent.

• Coreference detection for objects of the universum U6. Universum U6 is used
to model the category class of the POI. As opposed to the POI name and de-
scription, the type of the POIs is compared in a semantical manner. Therefore, a
binary relation R between POI types is constructed dynamically as described in
[11]. Then, based on this binary relation, uncertainty about category values can
be inferred using the semantic evaluator Ecategory. Table 5 presents the results of
these computations.

Table 5 Uncertainty about the coreference of the category values of POIx and POIy.

POIx POIy Ecategory(POIx,POIy)

POI1 POI2 (0,1)
POI1 POI3 (0,1)
POI1 POI4 (0,1)
POI2 POI3 (1,0.5)
POI2 POI4 (1,0.5)
POI3 POI4 (1,0)

As can be seen, because of the PTV (0,1) the category value of POI1 (‘Market’)
is not coreferent with the category values of POI2 (‘Church’), POI3 (‘Cathe-
dral’) and POI4 (‘Cathedral’). The category values of POI3 and POI4 are the
same (‘Cathedral’) and therefore coreferent, what is reflected by the PTV (1,0).
Furthermore, the category value of POI3 and POI4 (‘Cathedral’) is connected
through an ‘is-a’ relation with the category value of POI2 (‘Church’). This con-
nection is reflected in the binary relation R (not shown in the chapter) and re-
sulted in a PTV (1,0.5) describing that there is higher confidence that the value
‘Church’ is related to the value ‘Cathedral’ (µp̃(T ) = 1 in PTV (1,0.5)) than
there is confidence that both values are not coreferent (µp̃(F) = 0.5 in PTV
(1,0.5)).

Finally, given the above uncertainties about the coreference for all the objects of
the universa U2, . . . ,U6 (i.e., marginal possibilities), the uncertainty about the coref-
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erence of POIs can be calculated using a complex evaluator EPOI . For that purpose,
an aggregation technique based on the Sugeno integral is used. As has been pro-
posed in [8], such an approach requires two necessity measures γT and γF . These
fuzzy measure γT (resp. γF ) evaluates subsets of POI attributes and expresses the
necessity that coreference of the values of the attributes in the set implies corefer-
ence (resp. does not imply coreference) of the POIs containing those values. The
necessity measures used in this example are given as shown in Table 6. The given
measures reflect that marginal knowledge about less than three attributes is con-
sidered to provide us with no necessity at all about the coreference of the POIs.
However, marginal knowledge of three or more attributes allows us to infer neces-
sity about (non) coreference. Note that the fuzzy measures satisfy the normalisation
constraint:

∀L ∈ L : min
(
γT (L),γF (L))= 0. (34)

Table 6 The given necessity measures γT and γF used in the Sugeno integral in order to reflect
how conditional knowledge about the values of POI attribute subsets leads to knowledge about the
coreferece of the POIs.

L ⊆ L γT (L) γF (L)

/0 0 0

{name} 0 0
{location} 0 0
{description} 0 0
{type} 0 0

{name, location} 0 0
{name, description} 0 0
{name, type} 0 0
{location, description} 0 0
{location, type} 0 0
{description, type} 0 0

{name, location, description} 0.9 1
{name, location, type} 0.6 1
{name, description, type} 0 1
{location, description, type} 0.8 1

{name, location, description, type} 1 1

Combining the conditional necessity as given in Table 6 with the marginal neces-
sities that can be derived from the marginal PTVs from Tables 2, 3, 4 and 5 is then
done using the Sugeno integral for PTVs, which is defined by Eq. (22). Applying
the Sugeno integral with the PTVs from Tables 2, 3, 4 and 5 leads to the aggregated
PTVs shown in Table 7. More details about (the use of) the Sugeno integral are
given in [8]. �
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Table 7 Overall uncertainty about the coreference of POIx and POIy.

POIx POIy EPOI(POIx,POIy)

POI1 POI2 (0,1)
POI1 POI3 (0,1)
POI1 POI4 (0.3,1)
POI2 POI3 (1,0.79)
POI2 POI4 (1,0.41)
POI3 POI4 (1,0.40)

6.2 Illustration of Merging

Reconsider the POIs of Example 2. Based on the coreference detection results pre-
sented in Table 7, we can safely conclude that POI2, POI3 and POI4 are coreferent
(to some extent). In the next example we illustrate the merging of these three coref-
erent POIs.

Example 4. By applying the techniques described in Section 5, the merging of coref-
erent POIs is done in two steps. In the first step, merge functions for the relevant
universa U2, . . . ,U6 are specified and applied.

• Merging of objects of the universum U2. Objects of the universe U2 repre-
sent POI names. The names of the coreferent POIs POI2, POI3 and POI4 are
respectively, ‘St-Bavo’, ‘Ghent cathedral’ and ‘St-Bavo’. Reconsider the PTVs
obtained from the coreference detection of POI names given in Table 2. By ap-
plying Eq. (30), it is obtained that the name with the largest possible quantity of
coreferent names is ‘St-Bavo’.
Indeed, for each coreferent POI POIi, the corresponding fuzzy number πPOIi

N is
obtained as follows:

– For POI2:

Ename(POI2,POI2) = (1,0)
Ename(POI2,POI3) = (0,1)
Ename(POI2,POI4) = (1,0).

This allows us to construct the multiset P̃ = {(1,0),(1,0),(0,1),(1,0)} where
the first POI (1,0) is added to obtain a correct modelling for πPOIi

N (0). Apply-
ing Eq. (8) yields the ordered list of POIs

[(1,0),(1,0),(1,0),(0,1)].

Applying Eq. (27) then yields
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πPOI2
N (0) = 0

πPOI2
N (1) = min(1,0) = 0

πPOI2
N (2) = min(1,1) = 1

πPOI2
N (3) = 0.

– For POI3:

Ename(POI3,POI3) = (1,0)
Ename(POI3,POI2) = (0,1)
Ename(POI3,POI4) = (0,1).

This allows us to construct the extended multiset P̃= {(1,0),(1,0),(0,1),(0,1)}
and the ordered list of POIs

[(1,0),(1,0),(0,1),(0,1)].

Applying Eq. (27) then yields

πPOI3
N (0) = 0

πPOI3
N (1) = min(1,1) = 1

πPOI3
N (2) = min(0,1) = 0

πPOI3
N (3) = 0.

– For POI4:

Ename(POI4,POI4) = (1,0)
Ename(POI4,POI2) = (1,0)
Ename(POI4,POI3) = (0,1).

This yields the extended multiset P̃ = {(1,0),(1,0),(1,0),(0,1)} and the or-
dered list of POIs

[(1,0),(1,0),(1,0),(0,1)].

Applying Eq. (27) then yields

πPOI4
N (0) = 0

πPOI4
N (1) = min(1,0) = 0

πPOI4
N (2) = min(1,1) = 1

πPOI4
N (3) = 0.

Applying Eq. (28) results in
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πPOI3
N ≺sup πPOI2

N and πPOI3
N ≺sup πPOI4

N

Such that using Eq. (30) returns

ϖname({POI2,POI3,POI4}) = arg max
u∈{POI2,POI3,POI4}

πu
N = POI2 or POI4.

Hence the name with the largest possible quantity of coreferent names is the
name of POI2 or POI4, which is in both cases ‘St-Bavo’. So, the merged value
for the POI name is ‘St-Bavo’. As a side effect of this merge technique the (less
specific) information ‘Ghent cathedral’ is lost.

• Merging of objects of the universa U3 and U4. Universa U3 and U4 together
model the location of a POI. These universa were handled together in the coref-
erence detection process. Recall from Table 1 that POI2 and POI3 have been
entered at scale 1 : 10000, whereas POI4 has been entered at a less detailed map
scale 1 : 1000000. Because we have scale information and not all coreferent POIs
have been entered at the same scale, Eq. (33) can be used to compute the latitude
and longitude value of the merged POI. Hereby, only the information related to
the most detailed scale, i.e., the data from POIs POI2 and POI3, are considered.
Using the data given in Table 1, this yields

lat =
51.053036+51.053177

2
= 51.053106

and
lon =

3.727015+3.726382
2

= 3.726699.

The differences between the latitude and longitude of POI2 and POI3 are inher-
ent to the fact that both POIs are representing (the geographical area of) St.-Bavo
cathedral, which has a diagonal of about 110m, at a scale with a precision of
0.01m.

• Merging of objects of the universum U5. Objects of the universe U5 represent
POI descriptions. The descriptions of the coreferent POIs POI2, POI3 and POI4
are respectively, ‘St-Bavo’s Cathedral, Ghent’, ‘St-Bavo Cathedral’ and ‘St-Bavo
– Ghent’. The same technique as previously used for POI names can be applied.
Hence, Eq. (30) can now be applied with the PTVs obtained from the coreference
detection of POI descriptions given in Table 4.
For each coreferent POI POIi, the corresponding fuzzy number πPOIi

N is obtained
as follows:

– For POI2:

Edescr(POI2,POI2) = (1,0)
Edescr(POI2,POI3) = (1,0.1)
Edescr(POI2,POI4) = (1,0.1).
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This allows us to construct the extended multiset P̃= {(1,0),(1,0),(1,0.1),(1,0.1)}
and the ordered list of POIs

[(1,0),(1,0),(1,0.1),(1,0.1)].

Applying Eq. (27) then yields

πPOI2
N (0) = 0

πPOI2
N (1) = min(1,0.1) = 0.1

πPOI2
N (2) = min(1,0.1) = 0.1

πPOI2
N (3) = 1.

– For POI3:

Edescr(POI3,POI3) = (1,0)
Edescr(POI3,POI2) = (1,0.1)
Edescr(POI3,POI4) = (1,0.1).

This yields the extended multiset P̃ = {(1,0),(1,0),(1,0.1),(1,0.1)} and the
ordered list of POIs

[(1,0),(1,0),(1,0.1),(1,0.1)].

Applying Eq. (27) then yields

πPOI3
N (0) = 0

πPOI3
N (1) = min(1,0.1) = 0.1

πPOI3
N (2) = min(1,0.1) = 0.1

πPOI3
N (3) = 1.

– For POI4:

Edescr(POI4,POI4) = (1,0)
Edescr(POI4,POI2) = (1,0.1)
Edescr(POI4,POI3) = (1,0.1).

This yields the extended multiset P̃ = {(1,0),(1,0),(1,0.1),(1,0.1)} and the
ordered list of POIs

[(1,0),(1,0),(1,0.1),(1,0.1)].

Applying Eq. (27) then yields
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πPOI4
N (0) = 0

πPOI4
N (1) = min(1,0.1) = 0.1

πPOI4
N (2) = min(1,0.1) = 0.1

πPOI4
N (3) = 1.

Using Eq. (30) returns

ϖdescr({POI2,POI3,POI4}) = arg max
u∈{POI2,POI3,POI4}

πu
N = POI2 or POI3 or POI4.

Hence, all three descriptions qualify as the description with the largest possible
quantity of coreferent descriptions. A choice has to be made. Considering the
fact that we want to minimise information loss, the description which consists of
most characters will be chosen in such a case. So, the merged value for descrip-
tion becomes ‘St-Bavo’s Cathedral, Ghent’.

• Merging of objects of the universum U6. Objects of the universe U6 represent
the categorical data about the POI. For categorical data, the same confidence-
based merge technique as used before is applied. The POI categories in the
coreferent POIs POI2, POI3 and POI4 are respectively, ‘Church’, ‘Cathedral’
and ‘Cathedral’. Using the PTVs obtained from the coreference detection of POI
(category) types given in Table 5 yields that the type with the largest possible
quantity of coreferent types is ‘Cathedral’. This follows from the following com-
putations.
For each coreferent POI POIi, the corresponding fuzzy number πPOIi

N is obtained
as follows:

– For POI2:

Ecategory(POI2,POI2) = (1,0)
Ecategory(POI2,POI3) = (1,0.5)
Ecategory(POI2,POI4) = (1,0.5).

This allows us to construct the extended multiset P̃= {(1,0),(1,0),(1,0.5),(1,0.5)}
and the ordered list of POIs

[(1,0),(1,0),(1,0.5),(1,0.5)].

Applying Eq. (27) then yields

πPOI2
N (0) = 0

πPOI2
N (1) = min(1,0.5) = 0.5

πPOI2
N (2) = min(1,0.5) = 0.5

πPOI2
N (3) = 1.



Automated Cleansing of POI databases 33

– For POI3:

Ecategory(POI3,POI3) = (1,0)
Ecategory(POI3,POI2) = (1,0.5)
Ecategory(POI3,POI4) = (1,0).

This allows us to construct the extended multiset P̃= {(1,0),(1,0),(1,0.5),(1,0)}
and the ordered list of POIs

[(1,0),(1,0),(1,0),(1,0.5)].

Applying Eq. (27) then yields

πPOI3
N (0) = 0

πPOI3
N (1) = min(1,0) = 0

πPOI3
N (2) = min(1,0.5) = 0.5

πPOI3
N (3) = 1.

– For POI4:

Ecategory(POI4,POI4) = (1,0)
Ecategory(POI4,POI2) = (1,0.5)
Ecategory(POI4,POI3) = (1,0).

This allows us to construct the extended multiset P̃= {(1,0),(1,0),(1,0.5),(1,0)}
and the ordered list of POIs

[(1,0),(1,0),(1,0),(1,0.5)].

Applying Eq. (27) then yields

πPOI4
N (0) = 0

πPOI4
N (1) = min(1,0) = 0

πPOI4
N (2) = min(1,0.5) = 0.5

πPOI4
N (3) = 1.

Such that using Eq. (30) returns

ϖcategory({POI2,POI3,POI4}) = arg max
u∈{POI2,POI3,POI4}

πu
N = POI3 or POI4.

Thus, the type with the largest possible quantity of coreferent types is the type of
POI3 or POI4, which is in both cases ‘Cathedral’. Hence, the incorrect category
value ‘Church’ is neglected by the merge strategy.
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In the second step, the results of the previous merge operations are combined
using the composite merge function given by Eq. (31). The resulting merged POI
then finally becomes

(POImerge, ‘St-Bavo’,51.053106,3.726699,
‘St-Bavo’s Cathedral, Ghent’, ‘Cathedral’).

This POI gives a consistent description of St-Bavo’s cathedral. �

The case study presented above is limited, though chosen for exemplifying the
presented coreference detection and merging mechanisms. Other, more specific and
statistically relevant tests, covering more extended data sets, have been performed
and published in [14]. These tests proof the efficiency of the presented methods in
terms of precision and recall as compared to the other methods presented in the
literature.

7 Conclusions and Further Work

7.1 Contribution

In this chapter, a novel soft computing approach to cleanse POI databases is de-
scribed. In essence, this approach consists of two parts. In the first part, the un-
certainty about the potential coreference of two POIs is estimated and subsets of
potentially coreferent POIs are identified (two POIs are considered to be coreferent
if they describe the same geographical location or object at a geographical loca-
tion). In the second part, coreferent POIs are merged into a new POI which acts as
a representation of all information present in the coreferent POIs.

At the basis of the approach is the concept of evaluators for coreference detec-
tion. Such an evaluator takes two objects as input and returns an estimation of the
(un)certainty that these objects are coreferent, expressed by means of a possibilistic
truth value (PTV). Evaluators have been proposed for atomic objects, co-location
detection and complex objects.

The specific evaluators for co-location detection are especially suited for cases
where latitude and longitude coordinates of POIs are entered by users using a map
interface, which is often the case with POI databases that are maintained by a user
community. The evaluators allow to explicitly cope with the context (scale and pre-
cision) with which the locational data have been entered. Fuzzy ranges are used to
determine in a flexible way whether two POI locations can be considered to be close
enough to conclude that they are co-located.

Coreferent POIs are merged using merge functions. A merge function takes a
finite number of objects as input and returns a (new) object that acts as a represen-
tation of the input objects. Merge functions have been proposed for atomic objects
and complex objects. The presented merge functions for atomic objects are based on
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an evaluator. Complex objects are merged using a composite merge function. Typi-
cal for composite merge functions is that they do not preserve any of the coreferent
POIs, but combine the best (most confident) parts of each of them to construct a
novel, merged POI.

7.2 Context

The presented work contributes to research on data quality issues in information
retrieval. On the one hand it offers automatic data cleansing techniques which could
be developed further and generalised in order to improve data quality in information
sources. Information retrieval processes could benefit from an improved data quality
and provide better results as the data quality will be propagated in data processing
results.

On the other hand such data cleansing techniques can also be applied to cleanse
the results of information retrieval operations that run on unclean data. Coreference
detection techniques can be used to detect coreferent results, which in their turn
eventually can be merged using merging techniques.

Moreover, the computed uncertainty measures obtained from the coreference de-
tection can be communicated to the users as an indication of the quality of the re-
trieval results.

The presented approach is based on soft computing techniques and allows to
reflect human reasoning with respect to coreference detection and object merging in
an adequate way. This leads to more justifiable results as compared to those obtained
by using existing approaches. This is the main advantage of the proposed approach.
Statistically relevant experiments on different data sets reported in [14] reveal that
the proposed techniques for coreference detection overall perform better in terms of
precision and recall than the related techniques that were mentioned in Section 2.
More extended tests to validate the performance of the proposed merge techniques
are required and are currently under development. Note that such tests are more
difficult to implement as the ground truth for object merging is much more difficult
to obtain.

7.3 Further Work

Further research is required and planned. The techniques presented in this chapter
have been specifically developed for the cleansing of POI databases. An impor-
tant aspect that will be further investigated is the generalisation of the approach so
that it will become applicable for the cleansing of other, more general databases.
For that purpose, among others, it is worth investigating whether other aggrega-
tion techniques like, e.g., the technique used in logic scoring of preference (LSP)
which is based on the generalized conjunction/disjunction (GCD) function [23], of-
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fer better aggregation facilities for coreference detection than the approach based
on the Sugeno integral. Furthermore, the desired mathematical properties of merge
functions should be better understood and new families of merging functions able
to model different kinds of desired behavior should be developed. For example, in
some cases it might be preferable to keep as much information as possible in the
resulting merged object. In such cases, rather than selecting the most confident part,
the merging function should concatenate, summarise or combine all available data
in an intelligent way.

Another aspect to investigate further concerns the optimization of the object com-
parison technique. Optimization is possible as not all pairs in a set of objects must
necessarily be checked to detect all coreferent objects. Moreover, not all compo-
nents of a complex object must necessarily in all cases be evaluated to come to a
conclusion regarding coreference.
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