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Abstract. In this paper we consider the case of a large plant comprising
different local sites each site being modeled as a Petri Net. The interactions
between the local sites (modeled as common places) are considered unob-
servable (tokens can enter and exit unobservably the local Petri Net models).
At each site a local diagnoser must provide a diagnosis of the site based on
the local plant model, the local observations, and the information exchanged
with its neighbors. The communication between the local diagnosers does not
take place each time an observation is (locally) received but at some times
according with some prescribed rules. For this general setting we present an
algorithm that allows the local diagnosers to recover completely the results
of a centralized diagnoser after the completion of a communication protocol
and we show that under reasonable assumptions the preliminary calculation
that a local diagnoser performs before communicating is useful for taking
control actions even when the information exchange does not take place.

1 Introduction

This paper presents an algorithm for distributed diagnosis of large plants in a very
general setting. The algorithm design is model-based with the plant model given
as a (large) Petri Net (PN). Since it is commonly accepted that large and complex
systems cannot be analyzed monolithically (because of the computational complex-
ity of exploration huge state spaces), modular/distributed algorithms are designed
where the plant analysis reduces to the analysis of consistent local state spaces [2—4,
7,13,14,21,27].

We consider in this paper the case of a large plant that comprises different local
sites, each site being modeled as a PN. The interactions between local sites are
modeled as tokens passing from one PN model to another via common (border)
places [3,4,13,14,29]. At each site there is an agent supervising the activity of the
local site. Each local site has its own set of sensors that can be read only by the local
agent. The sensor readings are represented in a PN model by a subset of transitions
(events) that are observable: whenever an observable event happens in the plant the
agent is notified about its occurrence.

The plant model includes the normal plant behavior as well as the abnormal
behavior that can occur after a fault modified the plant dynamics. The abnormal
behavior is initiated by a subset of unobservable (silent) transitions that represent
the fault events that may happen in the plant. The diagnoser must use the plant
model and the plant observation in order to ask the following questions: ”"Did a
fault happen or not ?”(fault detection), ”Which kind of fault happened if any ?”
(fault isolation) [26] and ”"How it happened ?”(explanations) [18].

The distributed diagnosis problem can be formulated as follows. First the local
agents perform a preliminary local diagnosis, then they exchange information up-
dating their preliminary calculations until the consistency is achieved. We require
that at the time the agents achieve consistency of their local results, the agents



recover the result that would have been derived by a centralized agent that knows
the overall plant model and receives the whole plant observation.

Moreover very important it is that a preliminary local diagnosis (calculated
locally in absence of information exchange) to be useful for control/isolation ac-
tions that are necessary after a fault occurrence whenever a communication chan-
nel breaks down and the (global) consistency of a local site result was not achieved
yet. This problem is of practical importance for spatially distributed large systems
with unreliable communication between sites and is related to the question how the
diagnosis result relates with some control/isolation actions that may be required to
be taken in response to fault occurrences. To model the unreliable communication
channels we impose as requirement that the communication between agents is not
initiated by the local observations but it takes place at different times according to
some prescribed rules. Thus before being able to communicate, a local agent may
receive a sequence of observed events and is required to have a local preliminary
calculation that ezplains what was locally observed.

A difficult problem arises when no assumption is made on the observabiltiy of
the border places (i.e. the observability of the input/output transitions of the border
places). When the input/output transitions of the border places are unobservable
the number of tokens in the input places is unknown and the problem we face is to
analyze a PN model with an uncertain initial marking [15].

When a priori knowledge of the token traffic between two sites is assumed
known the problem can be solved by considering for the preliminary calculations
upper bounds (maximum number of tokens that could have entered a local site) that
result in the preliminary calculation of an over-estimate of the local plant behavior.
Based on this overestimate each local agent computes an over-diagnosis of the local
site. This may be useful for very conservative applications [27]. This method is a
translation of the methods proposed in [2] and [26] for the plant model given as
a network of communicative automata . This translation is not straightforward.
Structural assumptions must be satisfied otherwise the calculation of the upper-
bounds is not possible unless first generating the overall plant state space (that is
usually not feasible for a large plant whose structure changes often).

In this paper we assume that the unobservable transitions are silent: tokens can
move unobseravbly from one PN model to another. Thus we extend the distributed
diagnosis methodology to the situation when a sensor failure is reported to the
supervisor, the plant operation cannot be stopped, and the sensor is not repaired
immediately. To avoid that local calculations would have the same magnitude as the
global plant calculation [29] we have proposed in [4] a backward search method that
starts from the locally observed events and derives the minimum number of tokens
required to have entered from the neighboring sites. In this way we derive the set
of minimal explanations of all the local observation together. Here we extend this
method in several ways. First we drop the structural assumption considered in [4]
namely ”any oriented path that leads from an input place of one site to one of its
output places must contain at least one observable transition”. The distributed algo-
rithm proposed in this paper recovers completely the results of a centralized agents
(by exchanging limited information the local agents) and not only the centralized
diagnoser state F' (a fault happened for sure [24]).

After locally computing the set of minimal explanations of the local observation
based on the minimal number of tokens required to have entered, a local agent
extends (forward) the minimal explanations for estimating the tokens that could
have exited the local site PN model. Notice that the local preliminary calculation
performed in this way does not include, nor is included in the projection of the global
centralized calculation onto the local site. Then the algorithm checks whether local
preliminary traces can be matched to consistent traces, or not (preliminary traces
that can not be matched are discarded) while some new traces may be generated



because by communication ”new things may be found that were possible”. This is
because initially a minimum number of tokens was assumed to have entered while
later it may be found that more tokens than this minimal number may have entered
the local site. Since at each communication round new traces are generated, we need
to show that the algorithm terminates by achieving a fix point when no new traces
are generated by any agent. Then the set of local traces that were found consistent
recover the result of a centralized agent.

To increase the computational efficiency we use the unfolding technique for both
forward [3,19] and backward [1] calculations. Beside the advantage that a configura-
tion in an unfolding compactly represents a family of traces (obtained by linearizing
the partial order relation between the event nodes of the configuration) there is also
the advantage that the partial order between the nodes induces the time information
on the border-conditions (tokens that must have entered and tokens that could have
exited). The information exchanged allows each local agent to check the consistency
of its local results with the results of the neighboring agents.

The paper is organized as follow. Section 2 revises PN notions that are used
in the paper and introduces the notation. In Section 3 we formally present the oc-
currence nets and the net unfolding technique. Then the reverse occurrence nets
(backward unfolding) is introduced in Section 4. In Section 5 we present the cen-
tralized diagnosis of a PN model of a large plant under partial observation. Then in
Section 6 we formally describe the setting of distributed plant analysis while Sec-
tion 7 presents the distributed algorithm. Then in Section 8 we prove that in finitely
many communication rounds the proposed distributed algorithm recovers the cen-
tralized diagnosis result by local calculations and limited information exchange.
Finally Section 9 concludes the paper with some remarks and future work.

2 Definitions and notation

2.1 Petri nets

A Petri Net is a structure N’ = (P, T, F) where P denotes the set of P places, T
denotes the set of §7 transitions, and F' C (P x T) U (T x P) is the flow relation.
F = PreUPost where Pre(p,t) : PxT — Nand Post(t,p) : T xP — N are the pre-
and the post-incidence relations that specify the arcs. Denote X = P U T . Then for
z € X we use the standard notations z®* = {y € X | «Fy} and *z = {y € X' | yFx}.

A marking M of a PN N is represented by a fP-vector that assigns to each
place p of P a non-negative number of tokens M : P — N.

The set of all possible traces of a PN A, with an initial marking My (denoted
(N, Mp)) is defined as follows. A transition t is enabled at the marking M if
M > Pre(-,t). Firing, an enabled transition ¢ consumes Pre(-,t) tokens in the
input places of ¢ (p €°® t) and produces Post(t,-) tokens in the output places of ¢
(p € t*). The next marking is M' = M + Post(t,-)— Pre(-,t). A trace T in (N, Mp) is
defined as: 7 = My L, M, Ly by My, where fori =1,...,k, M;_1 > Pre(-,t;);
My 5+ M;, denotes that the enabling conditions are all satisfied so that 7 may fire
at My yielding M.

The set of all allowable traces in (N, M) is denoted by Lx(Mp) while the set
of reachable markings is Ry (M) = {M | 31 € La(Mo) A My = M}

The set of transitions T is partitioned into disjunct sets of observable transitions
T, and unobservable (silent) transitions Ty,-

Assumption 1 When fired, an observable transition t € T, emits a deterministic
label §(t) (i.e. 6(t1) = 0(ta) = t1 = t2), whereas an unobservable event does not
emit anything: Vt € Ty, = 6(t) = € where € is the empty string. .



Denote by 7* the Kleene closure of the set 7 . Let 0 € Ly (Mp) C T* and
T' C T. The projection IT7r : Lar(Mo) — T'* is defined as:

Assumption 2 We make the assumption that the PN under investigation is:

A1) self-loop free Yte T *tNt®* =10

A2) bounded w.r.t to the unobservable evolution: VM € Ry (My): M = M' A
TETH =M M

A3) and all the arcs have capacity one Y(p,t), Pre(p,t) < 1A Post(t,p) <1

Definition 1 A PN N' = (P',T', F') is a sub-net of the PN N = (P, T, F) iff:
P CP,T'CT and F' is the restriction of F to P' and T' (e.g. F'(p,t) = F(p,t)
if p € P' Nt €T’ otherwise it is not-defined and similarly for F'(t,p)). A sub-net
N' of the PN N is a proper sub-net iff for any transition Vt € T all its input and
output places in N are preserved in N'.

Definition 2 A multi set Sy over a non empty set S is a function Sy : S = S x N
that associates with each element o € S the pair (a, p(a)) where the non-negative
integer p(a) € N is the number of appearances of the element « in Sn() (Sn(e) =
(o, p(@))). An element of a multi-set Sy is denoted (o, v(a)) where 0 < v(a) <
u(a), v(a) € N.

Given an allowable trace 7 € L (M) we denote by alph(r) the alphabet of
7 that is the set of transitions that fired in 7; u(t) | counts for the number of
executions of a transition ¢ € alph(7) in 7. Denote by Xn(7) (or simply X;) the
multi set corresponding with the events that are considered in 7:

e = {(a, u(@) |-) | @ € alph(r)}

The letters 0,7 are used for denoting strings of letters or traces. Whenever
necessary we treat a marking M in a PN N as a multi-set defined by the marked
places and the number of tokens contained in each marked place. Thus for M < M’
we use also M C M'. When the markings are interpreted as multisets we use & to
denote the addition with summation of two markings.

Definition 3 Given a PN N, ¢ = pot1...t,p, is a non-trivial unobservable ele-
mentary path in N if: i) n > 0 ; i) tg41 C PyN® pgy1 for g =1,...,n;iii) t; € Tuo
for g = 1,...,n. An unobservable elementary circuit (uec) denoted ¢ is an unob-
servable elementary path g that comprises different transitions and different places
except for the initial place po that is the same as the final place p,,.

For a set or a multiset X, 2% is the set of all the sub-sets of X. Given f: X - Y
and A C X then f(A) = U, cq f(x).

3 Occurrence Nets and net unfoldings

To make the paper self-content we present in this section the unfolding technique.
For more details the reader is referred to [3,9,10,19].

Definition 4 Let V be a multi set and < a binary relation in V (XCV x V). <
is an ordering relation in V denoted (V,=<), or V is ordered by < if:



i) = is reflezive (a €V = a < a)
it) = is transitive (Ya,b,c € V, (a b)) A (b=<¢c) = (a=¢))
iii) =< is antisymmetric (a,b €V, (a Xb) A (b<a) = (a=1))

For (V,=) ifVa,b €V, either a < b or b < a then < is a total ordering relation on
V' otherwise X is a partial order in V.

Denote by Min(V') and Max (V') the set of minimal respectively the set of maximal
nodes of V, where Min(V) = {a |b S a=a =b}andMax(V) ={a |a 2 b= a = b}.

Definition 5 Given a PN N = (P, T, F) the immediate dependence relation <;C
(P xT)U(T x P) is defined as:

V(a,b) € (P x TYU(T x P) : a =<1 b iff F(a,b) #0
Then define <X as the transitive closure of <1 (3==7).

Definition 6 Given a PNN = (P, T, F) the immediate conflict relationty C TxT
is defined as:

V(tl,tg) ceT xT: tlﬁth 'Lﬁ *t1 Nty 75 0
Then define t C (PUT) x (PUT) as:
V(a,b) € (PUT) x (PUT) : aftb iff 3t1,t2 s.t tifl1ts and t1 < a and ta < b

Definition 7 Given a PN N = (P, T, F) the independence relation || C (PUT) X
(PUT) is defined as:

V(a,b) e ( PUT)x (PUT):allb=>a8bAadAbAbAa

Definition 8 Given two PNs N = (P, T,F) and N' = (P',T',F"), ¢ is a homo-
morphism from N to N, denoted ¢ : N' — N where:

1. ¢(P) CP and ¢(T)C T’
2. Vt € T, the restriction of ¢ to °t is a bijection between °*t and °*¢(t)
3. Vt € T, the restriction of ¢ to t* is a bijection between t* and ¢(t)*

Definition 9 An occurrence net is a net O = (B, E, <1) such that:

i) Va € BUE : =(a = a) (acyclic)
it) Ya€ BUE : | {b:a=<b}|< oo (well-formed)
iii) Ya€ B : | *b|<1 (no backward conflict)

In the following B is referred as the set of conditions while E is the set of events.
Denote by X., a set of pairwise concurrent nodes, by XZ a concurrent set of events,
and by X2 a concurrent set of conditions. A maximal (w.r.t. set inclusion) set of
concurrent conditions is called a cut.

Remark 1 The partial order relation < introduces the roughest notion of time. For
instance a,b € E, a b and a < b can be interpreted as a happens before b.

Definition 10 A configuration C = (B, E, <1) in the occurrence net O is defined
as follows:

i) C is a sub-net of O (C CO)

i) C is conflict free i.e. Va,b € (BUE) x (BUE) = a—b
iii) C is causally upward-closed i.e. Vb€ BUE : a X1 b=>a€ BUE
i) Min(C) = Min(O)



Denote by C the set of all the configurations of the occurrence net O.

Definition 11 Consider a PN (N, M) s.t. Vp € P : Mo(p) € {0,1}. A branching
process B of a PN N is a pair B = (O, $) where O is an occurrence net and ¢ is
a homomorphism ¢ : O — N s.t.:

1. the restriction of ¢ to Min(9) is a bijection between Min(O) and My (the set of
initially marked places).

2. ¢(B)CPand ¢(E)CT

3. Va,be E: (*a= *b)A (a®*=0*)=>a=b

For a PN NV = (P, T, F) with a general initial marking M, € N¥7 the branching
process O of (N, Mp) is constructed in the following way (see [9]):

1. let N' =(P',T', F') where:
1.1 P' =P U {Pstart}
1.2 T'=TU {7.-s‘ta7't}
1.3 Y(a,b) € (P xT)U(T xP): F'(a,b) = F(a,b)
1.4 for each marked place p and for each token in My(p) we have psiart, tstart
S.t. Dstart ® = tstare A t;tart =p

1.5 vpstart € Pstart: .pstaTt = (0
1.6 Let M{}(p) =1 for p € Pgiart and M (p) = 0 otherwise

2. construct O’
3. remove Pgiort, Tstare and their corresponding arcs

Definition 12 Given a PN (N, My) and two branching processes B,B' then B' C
B if there exists an injective homomorphism ¢ : B' — B s.t. »(Min(B')) = Min(B)
and potp =¢'.

There exists (up to an isomorphism) a unique maximum branching process
(w.r.t. C) that is the unfolding of N and is denoted Uy [10,19].

4 Reverse Petri Nets (RPNs)

Backwards search methods were found applicable in different fields as model-checking
[1,12,8], fault detection and diagnosis [22, 25, 28] modeling and analysis [20, 23], and
plant estimation [15]. We present in the following the reverse occurrence nets that

P
may be simply understood as the unfolding technique applied to the reverse net N
(obtained by reversing the direction of all the arcs in A [17]).

4.1 Coverability and Reverse Occurrence Nets

Defineacb=a—bif a > b, and a © b = 0 otherwise and extend ”©” to multisets
in the natural manner [1].

Definition 13 Backwards enabling rule: A transition t is backward enabled in a
marking M € NP iff Ip € t* s.t. M(p) > 1. Backwards firing rule: A backward
enabled transition t in a marking M € NP fires backwards from M producing M’

(denoted M & M') where M' = M © Post(t,-) + Pre(-,t).

A sequence of transitions 7 = #; .. .t,, is backward allowable from M (denoted
M~ M'")iffforg=1,...,m, 7, =t ...t,_1 and t, is backward enabled in M"
where M <& M".



Definition 14 Given a PN A/, consider a marking M € Nf7. Then M is covered
by M'iff 3o € Ly (M'), st. M' S M" A M" > M.

Proposition 1 Given a PN (N, My) and a marking M, then M is covered by M,
iff IM' < My st M % M.

— — —
Definition 15 A reverse occurrence net (RON) O is a net O = (B, E,<;) s.t.:

’

—
i) Va€ BUE : =(a = a) (acyclic)
i) Ya € E UE : | {a:a < b}|< 0o (well-formed)
iii) Ya € B | a |< 1 (no-forward conflict)
iv) Max(D) - B

Definition 16 Given a PNN and a final marking Mgy, the reverse branching
process of (N, Myin) is % (D,¢) s.t.:

i) $(B) C P and $(B) T
i) Myin C ¢(Max(D))
i) Ya,be E: (*a= *b) A (a®*=0b*)=>a=b

—
Remark 2 Notice that above condition ii) requires that Mg, C $(Max(9O)) and not

P
Myin = ¢(Max(9)) since our aim is to compute markings that cover Mg;, and not
markings that reach Mgy .

-
Definition 17 Given a PN N the immediate backward conflict relation §, C T xT
is defined as follows:

V(t1,t0) € T x T :t1 8§ 1t iff £ N8
Then define {ﬁ_ CPUT)x(PUT) as

—
V(a,b) € (PUT) x (PUT):atb= I(tr,ts) € 4, s.t. a =<t and b= ts.

Definition 18 Given a PN N, a final marking My;,, and a reverse branching

— — «— — o«
process B = (O,9), the immediate causally confusion relation §, C E x E is
defined as follows:

— — —
V(ei,e2) € EX E, ¢(e1) = p(ez): e1f €2 iff IbE B s.t. e Ney #D A e} # €5

— — —
Then define ﬁcg(BUE) x (BUE) as:
— —  « — —
V(a,b) € (BUE) x (BUE):af b= 3(ei,e2) € ., s.t.a=ey and b= es.

— — —
Definition 19 A configuration C = (Bc, Ec, <1) in a reverse occurrence net O is
defined as follows:

— —
i) C is a sub-net of O

— — — — —

i1) C is causally downward-closed - Vb € BcUE¢ : b<a = a € BcUE¢
— —

iii) C is backward conflict free - ¥(a,b) € (Bc U E¢) X (Bc UEg) = a— b
— —

i) C is causally confusion free - V(a,b) € (BUE) x (BU E) = a—f:b



“— — “—
v) Max(C) C Max(9O) and My, C ¢(Max(C))
— —
Denote by C the set of all the configurations of a reverse occurrence net .

-
By item 47) and 4ii) we require that in a configuration C every condition-node

—
b € B¢ has at most one input event-node in U (My;,). The reason we put this

P
condition is that we need C' to result as a configuration in a forward unfolding Uys.
In the remaining of the paper we drop the lower index of E¢, Bc whenever this is
clear from the context.

Deﬁnition 20 Given a PNN and a final marking Mg;, and two reverse bmnchmg

processes % %' then %’ C % if there e:msts an injective homomorphism w %’ — %
P

s.t. w(Mln(%’)) = Min(*B) and ¢> ¢ (;5’

Definition 21 Given a PN N with an initial marking My and a final marking
—
Mpyin denote by Un(Myin) the mazimal branching process w.r.t. set inclusion s.t.
— e — — «—
VC e C,3C" € C s.t. CCC' and ¢(Min(C")) = M.

-
Proposition 2 U (My;y,) s unigue up to isomorphism.

-
Proof. First denote C' = {C’ € C | ¢(M1n(C’ )) = } Then we have by definition

-
that every maximal configuration C’ € C' in the backward unfolding U (Mgin)
is also a configuration in the forward unfolding Uy . Since Uy is unique up to

yul
isomorphism it results that also U ar(My;y,) is unique. O

‘_
4.2 Algorithm to construct U (My;n)

— — —
Given a configuration C = (B, E, =) in the backward unfolding U - (My;y) denote
—
by Cut(C) the maximal set (clique) of concurrent conditions and then denote by
— —
¢(C) the marking that corresponds to Cut(C).

Cut(C) = { clee E} UMax(C) \ {e' lee E}

— —
Denote in the following by X2 a co- set of conditions in C. A transition ¢ is

P
backward enabled in U N by a configuration C’ if X, (B > C Cut(C yand 0 < ¢(XB) < t°.
Denote by Enable(C) the set of all backwards enabled transitions.

co? co?

Enable(g’) {(X Bt | (X (B t) — backwards enabled }

-
A configuration C is extended by a backwards enabled transition ¢ in the fol-
lowing way:

i) add an event e with ¢(e) =t
—

add arcs from each b € X2 to e
.

)
iv) add conditions b s.t. ¢(b) =p A p € t*\ ¢(X2) and add arcs from each b to e
iii) add conditions b s.t. ¢(b) =p A p € °t



-
Uy is generated extending each configuration by enabled transitions the only
requirement being that ¢(e1) = ¢(ez) A e} = e5 = e; = es (no redundancy).
-

Throughout of the remaining paper we use the notation C ® e and e ® C to

-
indicate that a configuration C resp. C is extended forward resp. backwards by
appending an event e.

-

Example 1 To illustrate the computation of U (My,y,) consider for simple PN N

displayed in Fig. 1.a where Mgy = {m(p2) = 1,m(p3) = 1,m(ps) = 1} and My =
—

{m(po) = 2}. Then Fig. 1.b displays Uy while in Fig. 1.c U (My;y,) is displayed.

«— — — — —
We have that C = {01,02} where the event node-sets for C1 and Coare E; =

-
{eh, een,€1,€2,e3} and Es = {eo, eey, €1, €2, €3} respectively.

P 2]

$

3O Ors O s

a) c)

5 PN analysis under partial observation

Consider an agent Ag that supervises a plant. The agent has the plant model given
as a PN A and receives the plant observation via the readings of a set of sensors. The
plant observation is abstracted into the observation of a subset of events (i.e. the
observable transitions) in the PN model. The agent Ag derives the plant estimation
by deriving the set of possible evolutions from the initial state and the set of possible
states the plant can be in. Further based on the plant estimation agent Ag can take
some control actions in response to unpredictable (and unobservable) events (e.g.
fault events) whose occurrences may lead the plant out of the desired behavior.

Assumption 3 We consider in this paper that the observation is correct and is
always received (no loss of observation or sensor failure). Moreover we consider
that the observation of an event includes also the time tag when the event happened
in the plant and that this time is measured with accuracy according to a global

clock(GPS).



This assumption is not too restrictive since the GPS technology is a common use
nowadays. Besides in our field application (the electrical transmission power network
[5]) almost all the electrical utilities have synchronized clocks at each substation.

Denote in the following by Oy, the sequence of observed events received up to
time 6. by Ag where Oy, = (17,04:),(t3,04i3), ..., (t;,0:2) with O;0 the time the
observed event ¢{ happened in the plant.

Consider the plant observation Oy, = t{ ...t . Since Oy, is correct and there are
no delays in receiving the observation the possible ways the plant evolved is given
by the set of all the possible traces in the PN model N that start from the known
initial marking M, and obey the observation:

Ln(0s,) = {1 € Ly (Mo) | 7,7 = Op, } (1)

The set of the possible states the plant can be in is:
MN(Ogc):{M|HT€£N((99C)/\MOL>M} 2)

Consequently the plant diagnosis at the time 6. after observing Oy, is obtained
by projecting the set of possible evolutions on to the set of fault events 7Tp :

Dn(0y.) ={of | of =T AT € Ln(00,)} 3)

Then the centralized diagnosis result is:

N iff Dy (0g.) = {€}
DRy (0g.) = F iff € € Dy (O.) (4)
UF iff € C Dar(Oy,)

where N, F and UF are the diagnoser state normal (no fault has happened), fault
(a fault of kind F has happened for sure) and respectively uncertain (a fault may
have happened) [24].

The standard method that allows Ag for deriving Lxr(Og.), Da(Og.), DR (Os.)
and M (Op,) is the forward (reachability) search starting from the known ini-
tial marking Mp. The simplest method for (forward) state space exploration for
PN models is based on the generation of the reachability tree rooted in My. Even
though it has the advantage that has a simple implementation this method is rarely
used in practice because it is enumerative and the consideration of all the possible
interleavings of the concurrent events leads in general to state space explosion.

The unfolding technique that is considered in the following for computing the
plant evolution however popular in model-checking community for decades has been
only recently introduced in the control community firstly by [3] for diagnosis and
alarms interpretation and then by [16] for supervisory control. Beside a more efficient
computation, the unfolding technique encodes in a configuration (that represents
a possible evolution of the plant) the dependency relation between the events that
are assumed that happened.

Consider again the case of the centralized agent Ag and moreover consider that
the plant size is such that the off-line plant calculation (e.g. an off-line derived
diagnoser automaton [24]) and its usage require more time than the on-line plant
analysis.

At the receiving of the first observed event in the plant (e.g. t9) Ag starts
unfolding (N, My) computing the maximal configurations such that each maximal
configuration contains only one event node e € E that corresponds to an observable
transition ¢(e) € 7, that is the observable transition that was observed (¢(e) = 9).

Denote Upr(t9) the net unfolding obtained in this way (notice that we drop the
lower index N whenever clear from the context that we refer to N'). Then at the



receiving of the second observed event (e.g. t3) Ag extends U (¢9) in a similar manner
for finding configurations that will also include one node that corresponds to t$.

Denote by U(Oy,) the net unfolding that is obtained considering the sequence
of observed events Oy, . Then denote by C(Oy.) the set of configurations in ¢ (Oy_)
s.t. VC € C(0y,), C = (Bc, Ec, %) we have:

i) ¢ is a bijection between Eg and Yo, where Eg = {e € Ec | ¢(e) € To}
11) if 0,5;; < Htt; then either ¢_1(t,?) < q&_l(t;?) or ¢_1(t2)||¢_1 (t?).

In Uy denote by [a'] the upward closure of a node a [a'] = {b: b < a}. Then de-
note by [a'] the set of condition nodes that are first successors of nodes that are pre-
decessors of a and are not contained in [a']: [a'] = {c € B\ [a"] | 3 € [a']Ab =<y c}.

Abusing notation [a’]U[a’]’ denotes also the corresponding (proper) subnet of Uy

Definition 22 Given the unfolding Un of a PN (N, My) and an event-node e that
corresponds to an arbitrary transition t (¢(e) = t) then MinC(t) is a minimal
configuration that allows for the execution of e (resp. t):

MinC(t) = [e" U [e"] U {MinUy) \ [¢"]}

If e corresponds with the first observed event t{ then exceptinge = ¢~ (t9), MinC(t9)
contains only unobservable event-nodes. Denote by MinC(t$) the set of minimal
configurations of the first observed event.

Given a minimal configuration MinC € MinC(t{) we say that MinE (the set
of event-nodes of MinC') is the minimal explanation of ¢{. We denote by (MinE)
the set of linearizations of the partial order between the nodes of MinFE that is:

(MinE) ={o=e€1...en |Vi,j : e;<€e;=>1<i<j<m}
Then Min&(t9) denotes the set of all minimal explanations:
MinE(#3) = {o | 0 € (MinE) A MinC € MinC(t)}
The set of minimal traces in A that explain ¢{ is:
Lmin() = {r | 7 = §(0) Ao € MinE(8)} (5)

Definition 23 MinC € C(OQy,) is a minimal configuration for a sequence of ob-
served events Op, =ty ...t if Va € MinE = 3b € MinE s.t. ¢(b) € alph(Oy,) A
a=<b.

For an arbitrary observation Oy,_, denote by MinC(Qy,) the set of all the min-
imal configurations and by Min&(Oy,) the set of minimal explanations of Oy, .
Consequently the set of minimal traces that explain Oy, is:

Lm™MOg,) = {1 | T = ¢(0) Ao € (MinE(0s,))}
and the set of estimated states considering the minimal explanations of Oy, is:
M™m(0g,) = {M | My B M A7 € L7i(0,,)}
Thus we have that £™"(0,.) C £(0y,) and

vO,, U rer) = |J  Ra) (6)

MleMmi'n (OGC) M”EM(OGC)



Assumption 4 We make the natural assumption that the fault events are (un-
observable) choices that the plant may take as not obeying the (normal) designed
behavior. Thus in any reachable marking M, there exists at least one normal (not-
faulty) transition that is enabled:

VM € Ry(Mo) : FteT\Tr s.t. Pre(-,t) <M

Proposition 3 Given a PN (N, Mo) and an arbitrary observation Og, then when-
ever DR(Qp,) = F (the diagnosis result based on L(Og,) indicates that a fault
happened for sure see Eq. 4) then the diagnosis result based on L™™(0p,) also
indicates that the a fault happened for sure (DR™"™(0y,) = F).

YOy, DR(Op.) =F & DR™"(0y,) =F

e e

Proof. Straightforward based on Assumption 4. O

Based on Proposition 3 we have that if the agent Ag is allowed to take control
actions only when the diagnosis result indicates that a fault happened for sure in
the plant then there is sufficient to calculate £™"(0j,) that is usually very small
comparing with £(Oy,).

The computation of £L™"(0y_) is made backwards starting from the observed
events in the following way.

-
First the reverse occurrence net U (t9) that corresponds to the first observed
event t§ is calculated by Algorithm 1.

Algorithm 1 B_Unfold(¢°)
Input: t°, My

Output: Zj(t")

1: (L_{ = *eUeUe® where ¢(e) =t°

— — —
2: Co=U;C = {Co}

Enable = U<_ o Enable( )N Tuo

while Enable 75 0 do
B

-
plck and delete e=(X co; t) € Enable
Cnew =e® c {extend L{}

c —CUCnew

-
Enable := Enable U Enable(Chrew)
end while

Remark 3 Notice that in B_Unfold(t°) the termination conditions that guarantee
that the computation terminates are not presented. This can be easily implemented
by counting the executions of the unobservable cycles and using the fact that if M is
not unobservably covered by My then VM' > M , M’ is also not covered unbseravably
by My. Notice that (N, My) is assumed bounded w.r.t. the unobservable evolution.

-
Consider now the observed sequence Oy, = t¢...t2 the computation of U (Oy,)

e
and C(Qy,) is done recursively as is presented in Algorithm 2.

-
Proposition 4 Given Minld(Oy,) CU(Oy.) and U(Oy,) we have that:



Algorithm 2 B_Unfold(Oy,)

Input: O,

Al
Output: U(0s,)
1. k=1,

2: B_Unfold(t9, Mo) {compute U(#3)}

3: while k <n do

4:  while C(Of.) # 0 do

5 pick and delete E’ € E((’)gc)

6:  B_Unfold(t2,,) {compute U(t3,,, $(Max(C))}
7

8

(t7,..., 1)}

ST AQr

— — —
C(Oé“jl) = C(0§.) ® C(t241) {compute
L UOFT) = U(0F) U OOk
9:  end while
10: k:=k+1
11: end while

i) VE € E(Oac) = 3 MinC € U(Oy,) s.t. 8 = MinC (read as E is isomorphic
with MinC)

— —
i) YMinC € U(Op,) = IVC € C(Oy,) MinC = C

« .
Thus it results that UEGE(OQ )¢((E)) =L™"(Oy.).

Fig. 2.

Example 2 Consider the PN (N, My) displayed in Fig. 2 where the observable
transitions are tg and tig and the fault transitions are ti,ts. The initial marking
is Mo = {m(po) = 2;m(ps) = 1}. Let the first observed event be ts. By a simple
(forward) reachability analysis one can obtain:

,C/\/’(te) = {t0t4t6; t0t0t4t6; t0t4t6t7; t1t4t6t0; etc}



Fig. 3.

The unfolding U(tg) of (N, My) given the observation Oy, = tg is displayed
in Fig.3. The two tokens in Mo(po) are represented by the conditions by and bbg
(the start places and the start transitions were removed). The lower index of the
labels of the nodes in Uy indicate the corresponding node in N (e.g. ¢(e;) = t; and
@(b;) = p;) while the double notation ee and bb with prime and multi-prime are used
for distinct nodes in Uy that correspond to the same node in N'. MinCy (in grey)
represents a minimal configuration: MinCy = [eel T] U [eel T]" where ¢(eell) = ts.
In darken grey there is represented the configuration C1, MinC;i C 01 Notice that
C1 \ MinC; includes unobservable nodes that are concurrent with eey (e.g. ees, ez)
and nodes that are successors of eef (e.g. eelf). C1 compactly represents a set of
traces that can be obtained by lmearzzmg the partial order relation between the nodes
E1 = {62, €e, eex, 6€Z, 66'6,, 66"7,} (e.g. t2t2t4t6t7t5; t2t4t2t6t7t5; t2t4t6t2t7t5; etc.).

—

"
The backward unfolding U(tg) is presented in Fig. 4. Cy compactly represents
t12t0t3t6 and t0t12t3t6.

ﬁmi" (t6) = {t0t4t6; t1t4t6; t2t4t6; t0t12t3t6; t12t0t3t6; t0t2t5t9t13t3t6; - }

6 The distributed setting

We consider the distributed plant description as follow:
N =U;er Vi where N = (P, T,F), N; = (/Pi,ﬁ,Fi), andi €T

i)

i) P=U;e P, Viel,Fjel,i#jst. P;NP; = ij?éw

i) T=U;e; T, VisjeLi#j=TinT;=0

iv) F; = F |,

v) P w = Prn;; UPouty;, Pin;; N Pours; =0

vi) Prn,; = Pour; = {p € Py; |P° CTiA°*pCT;}

vii) PIN” Pour,; ={p € Pji| *p CTi Ap* C T;}

viii) A is structurally bounded w.r.t. the unobservable evolution i.e. VM € N7 A
Vou €T : M 222 M = M' 4 M

For simplicity we assume at item v above that Pjy,; and Poyr;, are disjunct
and moreover we consider My,; = 0 (My,; = Mo(P12), Vi,j € I). Denote Pry, =
{PIN“. | J € I,J ;é ) /\PINU 7é m} and POUTi = {POUTij |.7 € I?] 75 P A 7DOUTij ;é @}



Fig. 4.

Given the set of agents AG = {Ag; | i € I}, where the knowledge an agent Ag;
has is: K; = (N}, To,, Te, Mo, Prn,, Pour:) consider that:

i) the plant observation is distributed Oy, = ®J¢,0f . O) =9, ...t5, is the local
observation recorded at site i € I, where the observed events (¢} ,60%,) have the
time tag 6, indicating the time event ¢7 happened in the plant is measured
according with a global clock (denoted gc in short).

ii) the communication between agents is not event-driven i.e. the agents are allowed

to communicate at 6,0, .. ..

Problem formulation: Given the above setting design a distributed algorithm
such that:

R1) before communicating with the other agents, Ag; (i € I) derives a local prelim-
inary diagnosis of the local site ¢
R2) when the communication is allowed (e.g. at the global time 6.) then
2.1) each local agent derives the (limited) information that should be sent to the
neighboring agents for achieving the consistency of the local calculations
2.2) the local calculation of site ¢ is updated when new information is received
R3) then each local agent iterates the step 2.1) and 2.2) until a stopping criterion is
achieved (the communication protocol terminates)
R4) the completion of the communication protocol at the communication time 6,
guarantees that the agents recover the diagnosis result a centralized agent by
consistent pairs of local diagnostics

The assumption made above is that the communication exchange between two
neighboring agent is simultaneous (synchronous) and takes place in different com-
munication rounds and that the local calculations at each site do not include new ob-
servations (events observed happening after §.). The consideration of asynchronous
communication exchange brings nothing new but some more notation.

In the following section we present a distributed algorithm that comprises:

i) a procedure for performing the local preliminary calculations in absence of of
any external information (Section 7.2)



ii) a procedure for information exchange (Section 7.3)
iii) a procedure for updating a local calculation to incorporate the received infor-
mation (Section 7.4)

Then in Section 8 we prove the main result of our paper that is the distributed
algorithm we propose terminates after finitely many communication rounds and by
the completion of the information exchange (communication protocol) the central-
ized diagnosis result is recovered.

7 The distributed algorithm

We start this section by emphasizing first the difficulties in designing a distributed
algorithm under the setting that we consider and then the three procedures afore
mentioned are presented in detail.

7.1 Discussion

-+

Consider the distributed architecture shown in Fig.5. Let the local observation
at site 1 and site 2 be: O' = tg and O? = t1¢ respectively. The input and output
transitions of the border places ps and pg are unobservable thus Ag; and Ags should
analyze PN models whose initial markings are uncertain that is even though the
agents know the initial local marking My, and resp. Mg, tokens from the neighboring
site could have entered the local PN models.

Since there is required a preliminary local calculation before communicating with
the other agents (see R1 above) we are in trouble because the local agents should
handle PN models with uncertain markings (due to the unobservable interactions
with the neighboring site).

Consider the case of Ags. Via the border place ps tokens can enter Ny and
then leave via pg. The question we must answer is: "what Agy should do before



communicating with the neighboring agent Ag; ?”. One solution would be to consider
upper bounds for the marking of the input places of each component (e.g. ps for N>
in Fig. 5), computing in this way an over-estimate of the local site behavior that is
checked for consistency by communication.

This solution was proposed in [2] for modular analysis and in [26] for distributed
computation of a plant model given as a network of communicating automata but
it can not be translated straightforward for Petri Nets models unless the PN model
is converted into a communicative automata model but by this the advantage of
compact state representation of PN models would vanish.

The approach we follow for designing the distributed algorithm that can be
outlined as follow:

i) the local preliminary computation comprises two phases: i.1) first a backward
calculation is performed for deriving the set of minimal configurations that pro-
vide the minimal explanations of the local observation based on the assumption
that the minimal number of tokens have entered the local site; 7.2) then the min-
imal configurations are extended for finding the tokens that could have exited
the local site if the minimum number of tokens would have been provided.

ii) then by communicating limited information with its neighbors Ag; checks the
consistency of its local results and also generates new local traces that are
checked consistent in a new communication round.

iii) when a fix point is achieved the consistent set of local results recover the cen-
tralized diagnosis result.

7.2 Procedure for performing local preliminary calculations

In this subsection we present formally the preliminary calculations performed by a
local agent Ag; (i € I) before it initiates the communication with its neighbors.
Consider in the following the case of the agent Ag; having received the local site
observation Ogc =17, ...t . Since there is not a priori knowledge of the marking
of the input places Pyy,, Ag; can make any assumption on the number of tokens
that could have entered N;.
Thus if Ag; considers for each p; € Prn; a marking w it can then perform a
backward search for finding the minimal configurations (minimal explanations) of
gc considering as initial marking M§, where:
w _ ) Mg, (pi) = Mo, for p; € P;\ Prn; ™)
0i Mg, (pi) = w for p; € PIn;

~
As presented in Section 4 Ag; can construct ¢/;(O0") by running the algorithm
B _Unfold(0y,) with the inputs: (N, Mg), Op , To;s Tuo;-

— . — .
By computing U;(Op_ ) Ag; derives the set of configurations C;(0j ). Given a

— — . —
configuration C; € C;(Op ) denote Min(Byn;) the set of conditions that correspond
to the input places p; € Prn;:

Min(Biy,) = {b,. | b € Min(B;) A p(bi) = pi Ap; € P,N,.}

-
and let M,(Prn;) = ¢(Min(Byn;)) be the minimal marking of the input places
—

Pin; st. C; is allowable. In the following we use the simplified notations: M.
for M;(Prn;) and. My, = Mo, ¥ M;p.. Then denote M;y. the set of minimal
assumptions on the marking of the input places Pry;:



— . =
My, = {MIM |Ci € Ci(Op ) ANM, N, = ¢(M1H(BIN,-))}

Denote &£, the set of minimal preliminary explanations of the local observation Ogc
based on the minimal assumptions M, .

— — = . <
;= {ai |3C;i € Ci(0) ) Noi € (Ei)}

Denote by M, the set of estimated markings based on the set of minimal expla-
nations £; and the minimal assumptions My :

M, = {MZ | M ; € M, (Prn,),3r; € 9(E;) + My, = Mi}
Given an unobservable elementary cycle ¢, denote by 1¢ the set of limiting places
of ¢: 1¢ 2 {p|lpg(ATte( st pe °t}. A place p € T is a limiting places of

¢ since every complete execution of ( consumes tokens from p. Denote My, the
minimal marking of X¢ that allows for a complete execution of ¢.

Assumption 5 For any local model N; and for any uec (;, there does not exist
an ezecutable sequence of unobservable transitions oy, with initial marking the
marking M that has tokens only in the input places IN; (M(p) =0 for p & Pin;,)
s.t. by firing from M, 0y,, produces a marking M' greater than the limiting marking

of Gi, Mr,,. Bou, € Ty, s-t. (Mnr,, =S M) N (M(p) #0=p € Prn;).
Proposition 5 Given a PN model N s.t. Vi € I Assumption 5 holds true for
Ni, then YO} by running B_Unfold(Oq,) (Algorithm 2) for (Ni, Mg) and O}
we obtain the set of minimal assumptions of the marking of input places Prn, s.t.
VM N, € Mn, and Vp; € Prn, = My, (pi) < +00.

Proof. By Assumption 5 we have that for any marking My, of the input places
IN; any cycle in N; cannot be executed finitely many times. Thus any node in a
configuration will have a finite number of predecessor-nodes. O

Consider that at the time 6, when the communication with the neighboring
— . — .
agents is the first time allowed Ag; has computed U (0j_) having derived C(0j)

that comprises the set of preliminary minimal explanations ?, and the set of min-
imal assumptions M;y,. Then Ag; must calculate, based on the set of minimal
assumptions regarding the tokens that have entered My, , the estimate of the
number of tokens that could have exited N; via Pour;.

For doing this Ag; extends every minimal configuration a € Ei(Oéc) by consid-
ering all the unobservable extensions (sequences of unobservable transitions) that

—
can be appended. Thus C; is forward extended by starting from the set of maximal
— — ) —
conditions Max(C;) (¢(Max(C;)) = M, where M, — M, and 7; € ¢({E;))).
—

The unobservable transitions that are enabled in M;/Max(C’;) are appended gen-
erating new configurations that are further extended until the set of enabled events
contains only observable events (that were not observed yet) when the calculation
stops.

) -

Given M, € M,, denote by Minld(Op_, M,,) the subnet of U(Op ) that cor-
responds to M, . Then let Minl{(Of_, M,,) be the set the minimal unfoldings
Minld(O} , M,,) and denote by MinC(Oj , M) the set of all minimal configura-
tions.

Then denote by U(O} ,M,,) the maximal unobservable extension (w.r.t. set
inclusion) of a minimal configuration MinC(0}_, M,,) and denote C(O0}_, M) the
set of configurations in U(0f_, M,,) where:



(O}, M) = {C | C = MinC(O}, , M) @y, ... @ ex; A
A ¢(elh') € 7:L0,'7Qi = 115)kl}

Abusing notation denote £(Oj_, M,,) the set of local traces in N; that are ob-
tained by linearizing (£(0j_, M,,)):

(0., My,) = {o | o € (£(0),, M,,)}

Finally let C(O}_, M,,), L(O) , M,,) and M(O}) , M,,) be respectively the set
of all extended configurations, the set of all extended explanations and the set of all
estimated present states of the local site ¢ based on the locally received observation
Oy, and the set of (minimal) assumptions M, on the marking of the input places
Pin;:

i

(0., Mo,) = {C(0},, My,) | My, € My, } ©)
g( gca_o,- = {¢ OGC:MOi))) | C(OacaMOi) € C(OZJC,MOJ} (9)
M(0} ) = {$(Max(C(05,, M,,)) | C(Op,, My,) € (05, M)} (10)

Then the local preliminary diagnosis PLD;(0} ) is:

PﬁDz(O;c) = {Tfi

Tt = HTF,-TZ' AT € »C( g,::MO;)} (11)

Fig. 6.

Example 3 Consider the case of Ags having the PN N5 displayed on right hand
side of Fig. 5 and the local observation Ogc = ty19. The reverse unfolding of (’)zc

— —

is displayed in Fig. 6 where Ug(Ogc) comprises two configurations: Cz(Ogc) =
— —

{012,022}. Notice that C1, contains the assumption on the border condition bs

— —
while C'a, has not any assumption on the border conditions. Then for MinCy, = C4,

we present in Fig. 7 the forward extensions of MinC1, where MinC,, C C1, C Cy,.
In the similar way, consider Agy having the PN N1 showed in left hand side
—

of Fig. 5 and the local observation O;C = tg. Ul((?éc) is displayed in Fig. 8. Then

+—
for MinCy, = Cy, we present in Fig. 8 the forward extensions of MinCy, where
Mi’I’LCh C 011.



Fig. 7.

7.3 Procedure for information exchange

In what follows we restrict the presentation considering a minimal configuration
MinC; € MinC(O) , M,,).

Thus MinC; = (MinB;, MinE;, <;) requires the border conditions represented
by MinBrn,; (¢(MinByn;) = M;y,) must be satisfied. Notice that we have Vbrn, €
MinBin, : 3ef € MinE; s.t. ¢(ef) € ' (0f ) A brn, = €.

Denote E? = {e? | € € MinE; N ¢(Og,)} the set of nodes of C; that correspond
to the observed events in O _. Given a configuration C; € Ci(0}_, M,,) (MinC; C
C;) denote Y;(C;) = Min(C;) U Brn; U E? U Boyr; the set of nodes of C; that
corresponds to either the places marked by My, (Min(C;)) or to the input places
p; € Prn, (Brn;) or to the output places p; € Pour, (Bour;) or to the observed
transitions (EY).

Denote IIy,C; the isotone map of C; onto the set of nodes Y (C;), IIy,C; :
B;UE; — Y, that is the projection of one graph onto a subset of nodes by preserving
the order relation between the nodes:

Vi, y; € Vi, if 2; ~ y; then Iy, x; ~ IIy,y; where ~= {<,||}

Denote for simplicity ITy,C; by Cy,. Then Cy, represent the causality between
the input nodes (Bra;), the output nodes (Boyt; ), the observations (E?), and the
local initial marking (Min(C})).

Then for byn; € Brn; denote EY(brn;) = {e? € Ef | brn, € [(e?)"]} that is the
set of nodes in C; that correspond to observed events that have bry, as a ”cause”
(predecessor). Then the time bry, ”must have been satisfied” (a token must have
entered NV; via p; = ¢(brn;)) is:

HbINi < mine;’.at;. €q; € Ez?(bINi) (12)

Thus to each border condition byy, we can associate a temporal constraint of
the form given by Eq. 12. For simplifying the notation denote b? N, for bin; € Bin; ¢



Fig. 8.

Algorithm 3 Preliminary Local_Calculation (Ag; considered)

Input: O}, . .
Output: C;(0p,, M,,); PLD(Og,)
1: Ci(Oéc,Moi) =0 ﬁi(Oéc,Moi) =0
: B_Unfold(0}_) {calculate Ei(ogc)}
: calculate MinC;(Og,) ,
: for all MinC; € MinC;(0p,) do
calculate C;(Op,, M,,) {the unobseravble extensions of MinC;}
Ci(05,, M,,) = Ci(05,, M,,,) UCi(Op,, M, )
end for '
: for all C; € Ci(Oéc,MOi) do
Li(0f,, My,) = Li(Og,, Mo, ) U ¢((Ei))
: end for '
: PLD(0y,) = 1, Li(Op,, M,,)

—

Ob,n, < ming,. Htgi. When omitted, the left resp. the right timing constraints are
0 < 0 and 8 < oo respectively.

Hence the minimal requirement s.t. MinC; (and any of its unobservable exten-
stions MinC; C C;) is allowable can be expressed as a conjunction of temporal
conditions on the border places:

Consider now a configuration C; that unobservably extends MinC; (MinC; C
C;). The timing constraints for the output conditions Boyr; are derived as follows.

First consider the local initial marking My, as produced by a transition tsq
supposed fired at the global time 6;,,,,, = 0 when the process starts. Then for each
output condition boyr, € BouT, let 0y, be the time the condition boyr, could
be satisfied by a token that would leave N; via pour, = ¢(bouT,) where:

HbOUTi > maxzié?m x; € [bgUT,] nY; (14)



Fig. 9.

Similarly denote the timing constraint given by Eq. 14 by b?)UT,-' Notice that

6? is the earliest global time a token could have exited N; given B?N,- satisfied

bouT;
while bry, is the latest global time a token must have entered N;.

Then for an unobservable extension C; of MinC;, the output border-conditions
that could have been satisfied is given by the conjunction of constraints having the
form:

Bbyr, = /\ bouT; (15)

bouT; €EBouT;

Hence for each minimal configuration MinC; € MinC(O0)_, M,,) and for each
unobservable extension C; of MinCj, Ag; derives By and Bb ;. (see Eq. 13 and
Eq. 15 respectively). Notice that for a configuration C; s.t. MinC; E C; we have
that MinBYy = Bfy..

Denote by BYy 7. the set of output border constraints derived for all the unob-
servable continuations (extensions) of MinC;:

B(%U:n- = {B%UT,- | MinC; C Ci}
Denote (B, <) the partial order relation defined as follows:
VB, Byt € Bour, : Bour, < By, it Vo1, € BSyr,, bour, € Bbyr,

Denote Max4(BY1,) the maximal elements of Bj;7. w.r.t. <. Then the minimal
information that Ag; should send to its neighboring agents is:

MSG; = {(MinBly,, Bbyr,) | MinC; € M(O}_, M,.) A Bbyr, € Max<(Bbyr)}
(16)



Since a local agent does not know the models of the neighboring agents but only
the set of input and output places (Prn;, Pout;) the message that is sent by Ag;
to its neighbor Ag; comprises only information about their common border-places
Pij = Pin;; U PouT;,;:

MSGi ;= {(MinB?Nij,BGOUTU) | MinC; € M(O}_, Mq,) A Bbyr, € Maxg(BGOUTi)}
(17)

where

)
brn;; €BIng; boury; eBOUTiJ-

Remark 4 The reason Ag; selects only the maximal elements of B%UTi to send
them to its neighbors is as follows. The minimal requirement MinB{y. is common
to all the unobservable continuations of MinC; thus if MinB?¢ ~, will not be satisfied
then aoll the configuration that are extensions of MinC; can be discarded. Otherwise
if MinBIaNi can be satisfied there is enough to send to neighbors only the mazi-
mal (w.r.t. <) border conditions. This is because if what can be mazimally provided
BeOUT,- € Man(BgUTi ) is enough for satisfying the minimal requirement M inB}’Nﬁ
derived by Ag; for MinC; then Ag; and Ag; will know that providing less but more
than the minimal requirement leads to consistent pairs whereas if the minimal re-
quirement is not less that a mazimal element of MaXS(B?)UT,-) than it is obvious
that would have been useless to send information about the rest of the non-mazximal
elements of B‘QOUTi.

Algorithm 4 Communication_exchange (Ag; considered)
Tnput: (0., M,))
Output: MSG;; MSG;_,;
1: for all C; € C; do
calculate C?
calculate B?N,- {see Eq. 13}
calculate BSy 1, {see Eq. 14}

2

3

4

5. calculate Max<(BSyr,)

6: end for

7: calculate MSG; {see Eq. 16}

8: for all neighboring agents Ag; do
9: calculate MSG;_,; {see Eq. 17}
10: end for

Example 4 Consider again the case of Ags observing Ogc = t10. In Fig.7 we have
that MinCi, C C1, C Cs,. Then for Cs, we have that Brn, = {bl} with 65, < 6.,
and Boyr, = {b;f,bga,b’g”a} with Oy, > Oy, Opr > Oeyy and Oy > Ospare. Thus
(Brn,, Bourt,) is part of the message that will be sent to Ag; .

7.4 Procedure for updating a local calculation

Consider in this section that having received the local observation Og,c the agent
Ag; has derived the preliminary local calculation of local site model N; (M.,
MinC(0§_,M,,), C(O}_,M,,)) and then has received the message MSG;_,; sent
by Ag; based on a similar preliminary computation of site j.



In this section we present how Ag; updates its preliminary local calculation by
taking into account the received information MSG;_,;. To simplify the presentation
consider:

1. an arbitrary minimal configuration MinC; € MinC(O} ,M,,),

. the set of unobservable continuations (extensions) C; of MinC;

. an arbitrary minimal configuration MinC; € MinC(0y_, M,)),

. the set of unobservable continuations (extensions) C; of MinC;

. and the information MSG';_,; C MSG;_,; that is received by Ag; regarding
MinC]- and Cj (MSngHi = {(BINJ-“BOUTJ-i) | BOUT_,-i € MaXS(BOUTji)})

Thus in what follows we present how Ag; processes MSG';_,; for updating
MinC; and C;. Since the elements of MSG';_,; are distinct we present in following
the update Ag; makes, considering only (BfNji , BgUTji) € MSG' ;.

[SARNTNLIN V)

Notice that MinC; and C; require B?Nij to be satisfied providing then BE . ;
while B(‘g)UTji is the set of border-conditions that may be satisfied whenever B}oNﬁ
is satisfied.

Since MinC; and its unobservable extensions C; depend on the set of hypothesis
B?Nij that should be satisfied it means that Ag; interprets the local results by
considering the information sent by Ag;.

Let (BfNﬁ,Bf)UTﬁ) € MSG';_,;. Then we have for the border places Pry,; =
Pour;; the set of border-conditions BgUTji that provides the set of possible con-
ditions that could have been satisfied and B?NU expressing conditions that must
be satisfied. Similarly for the border places Pour;; = Prn;; we have that B?Nﬁ

expresses the set of conditions that must be satisfied and B(%Un-j the set conditions
that could have been satisfied.

Definition 24 Define the interpretation function 1; : B?N,-j — BgUTﬁ U{e} where:

9 0 ,
bout,; € Bour;, # Bbovr,, < Obrn,,

$i(bin,,) = { (19)

or ¢

and for bin,, # bin,,s Yilbing) = Yi(bpy,,) = ¥(bin;) = €. Similarly define
Y; : Brn;; — Bour; U {e}. Then denote by vi; = (4,1;) the interpretation
function of the common place marking and by W;; the entire set of interpretation
functions.

Denote B’I’Alf; the set of input border conditions that were assigned to conditions

0 [ .
bour,, € Boury,:
Ba,wi _ baﬂlli =p? /\bG (b0 = p?
IN,'J' - IN,'J' - IN,'J' OUTJ',' |¢1( IN,']') - OUT]','

Then denote by B}‘]‘Q’f’ the set of input border conditions that were not-assigned to
determined conditions:

Byt = {Biwst = b, | ihn,) = ¢}

and denote by B?ﬁ,:f’i’w" the set of new input border conditions that can be provided
by site j under the interpretation ;

Wi Wi _ 10 0 [/ -1
B}lﬁilp = {bge(}UTi =bour,; | bour,; € Bou,; \ ¥; (B?Nj,-)}
Then denote B}pNJ the set of input conditions under the interpretation v; where:

By, = Bisb U Bl U B (20)



Definition 25 Consider an input-border condition b?ﬁj € B}p]"\,ﬁ under the assign-
ment V;; = (i, ;) ij € ¥i;. Then we say that:

- b?j\,ﬁ is matched iff all the limits of ist timing constraints are determined (i.e.
are positive constants ct € RY, 0 or +00)

- otherwise b}l’j\,ﬁ s not matched

i iy Yi . pm; nm,; m,Y;
Then let Byy,. be partitioned as Bry,. = By, ' U By, where By is the
set of matched input border conditions and By ;1111- is the set of not-matched input-
border conditions.

Example 5 Consider two configurations C1, and Cs,. As presented in Example
4 the message sent by Ags to Agy regarding Cs, is (Brn,,Bout,).- Now having
observed Oéc = tg, Ag1 has preliminary derived for C1,, Bin, = {bgl} with O, <
0, and Boyr, = {bgl,bbgl} with 0b51 > 0., and 01,,,51 > Ogiart- Recall that for
Ca, we have Brn, = {bf,} with Oy, < 0, and Bour, = {by,, b4, by’ } with
Oy, > Obs,, Oby, > Oero and By > Bspar.

The we have the following interpretation functions ¢¥ : Brx, — Bour, and
’(ﬁg : BIN2 — BOUT1 (k‘ = 1,2, .. )

( (7] 1/1% a
bb51 — b52 Hstart S abQQ S 0610
b, L g, <0
51 5o eg — bg;”
1 ¥y
Y12 =S b~ b2, Oh, < Opg < Ocq (21)

1
116 ¥y mew
bg2 —) 91 0810 S abénlew

1
1116 ¥ IImew
\ bg2 ? b92 Hstart S ab’g’ie“’



4 1/)1
b, Db By <0

€10
bhE L2 pbew g < fynen < 0
51 5o start > bg;“’ > Ueqo

2
0 Y2, 1new
b51 — 5o 096 S Hbg;‘”

2 _
iy = 2 (22)

10 1 I )

bgzc — bg’q’eu 0[)15‘; S oblg'l;ew

bllo ’/’? bllnew 0 <0
9o 91 €10 = bglnew

B Y b8 By <Oy <6

\ Y95 9o start > bgl > Ueg

and so on. Notice that (Cy,,Ca,,%1), is consistent while (Cy,,Ca,,%?) it is not.
This is because the border condition bbg1 is not used for satisfying ng (bg2 remains
unassigned) but is assumed that has entered as a new condition (token). We need
to consider this since in general because of the unobservable loops the new entered
conditions may produce new output-border conditions and so on. Notice that in

1 1
Y1, by assigning bl Ya, b, and by Y, b§, cyclic unobservable interactions are
determined.

Definition 26 Given C;, C; and an interpretation function v;; = (v5,1;),¢i; €
@;; then (Ci(vi;),C;(1bij)) are locally consistent if B?]\Z;/’ =0 and B?]\Z’;pj =0.

Definition 27 Given a tuple C1,...,C|y| of local configurations then (C1,...,C 1)
is globally consistent if Vi,j € I, i # j there is an interpretation function 1;;, s.t.
any pair (C;(¥ij), C;(vi;)) is locally consistent.

Definition 28 Given C;, C; and an interpretation function v;;, if either Bﬁ,ﬁ’ﬂ“ #

0 or B?f\;fi’wj # 0 then (C;(vi5), Cj(vi5)) is extendable.

The interpretation of C; under the assignment v;; (C;(1);;)) contains new tem-
poral information (because of the input border that were assigned) that updates
the temporal information for the output border-conditions. Moreover the set of new
input-border conditions Byxy represents the new tokens that could have entered
N;. Obviously C;(¢;) can be updated by considering all the new extensions (un-
observable continuations) that become possible with these new tokens.

Denote by C;(v;;) the set of configurations that can be obtained from C; consid-
ering the interpretation function 1;; and all its maximal unobservable extensions.
The let A(C;(i;)) = Ci(¥i;) \ C; the local update of C;.

Similarly with what has been presented above Ag; derives first the local update
A(Ci(0}_, My, , MSG,_;) of the local calculation C;(Of_,M,,) given the received
message MSG;_,; (Update_Local_Calculation bellow). Then based on the local up-
date A(C;(0f ), M,,, MSG;_,;) Ag; derives the update of the information to be
exchanged A(MSG;).

8 The main result

In this section we start first considering the case of two agents and then we generalize
our results to an arbitrary number of agents.

Consider the following distributed diagnosis algorithm presented for the case of
only two agents: Ag; and Ag; (see Algorithm 8).



Algorithm 5 Update_Local_Calculation (Ag; considered)
Input: Ci(o‘éc,./\/ioi); MSEG;;

Output: A(Ci(0;,, M,,), MSEG;_.:)

L A(Ci(05,, Mq,), MSG; i) =

2: Cigw"((%c,Moi) =0

3: for all C; € Ci(oéc7M0,-) do

4: for all (BINJ-,-,BOUTJ-,-) € MSG;_,; do

5: for all +;; € ¥;; do

6 if (C;, Cj,vi;) - globally consistent then

T CI*"(0f,., Mo,) = C7" (0, Mo, ) U ((-- -, Ci(35); - - -, Cj (¢35) - - )

8 else if (Civij, Cj1ps5) - extendable then

9: calculate A(C;(vi;)) {extend C'¥ € A(Ci(i;)) by using B?Jf,’:¢’ # 0}
10: A(Ci(05,., My, ), MSEGj i) = A(Ci(0g,., My, ), MEG; i) U A(Ci(¢i)
11: end if

12: end for

13: end for

14: end for

15: for all C; € A(Ci(oécaﬂoi)) do

16:  ALi(Op,,M,.) = Li(0;,, M,,) U d({E:))

17:  if C; globally consisted then

18: ALIM0) = AL (0F) U Aﬁi(oéc,Moi)

19:  end if

20: end for

21: PLD;(05,) = PLD:(05,) U M1y, (ALi(Of,, M)

22: PLDI™(0;,) = PLDI™(0},) U 7y, (AL (05, M)

Now for py € P;; denote by c; and c{r:, how many times an unobservable ori-
ented path @ that starts in py crosses P; \ P;; and P; \ P;; respectively. Let
¢y = maz(ci,cl) and denote K, = Mazyen(c,) (N = N;UN;). If Ip € Ny
s.t. g is an uec then K, = oo otherwise K., is finite.

Theorem 1 Consider o distributed description of the plant comprising two local
sites and two local agents and an arbitrary distributed observation Op, = Op_ ®9°

(’)Zc. Then the global consistent local diagnosis PLDI" derived by the d-agent

Ag; at the time 0. after the k'™ communication round by running the algorithm
DD_Algo_2 is such that:

i) if K. is finite then after k > K. communication rounds, the consistent local
diagnosis result PLDI" (O} ) recovers the centralized diagnosis result of site
i PLDI" (0} ) = Di(0y,)

i) if K. is infinite then 3 knoe € NV finite s.t. after k > kmax communication
rounds PLD]*" (0} ) = Di(Oq,) where kmaa depends on both the PN topology
and the initial marking M.

Proof. The proof of ) and 4¢) is similar and comprises the following steps. First
we proof that the computation of PLDI*" (0} ) is sound. Then we show that the
computation achieves a fix point (terminates) after finitely many communication
rounds. Finally we prove that at the time the fixed point is achieved the diagnosis
based on the set of global consistent traces is the diagnosis that a centralized agent
would have computed for the local site i resp. j.

First the computation of the global consistent configurations is sound by Def.
27 and by algorithm construction. Then the proof that DD_Algo terminates af-
ter finitely many communication rounds relies on the assumption that the PN



Algorithm 6 DD_Algo_2 for two agents: Ag;,Ag; (Ag; considered)
Input: Ag;

Output: (Cigcon(Oéc,MOi)

1: Preliminary Local_Calculation(\; Of,)

2: Communication_exchange(C;(0}_, M,,)

3: repeat

4:  send MSG;,;

5:  receive MSG;_,;

6:  Update_Local_Calculation(C; ((9,’;c v My, ); MSGj:)

7:  Communication_exchange(A(C; (0}, M,,, MSG;:)){ Update_Message}
8 if A(MSG;,;) =0 then

9: MSG;_,; = stop

10:  else

11: Mng_,i = A(.MSg’L—)])

12:  end if

13: until MSG;_,; = stop

models are structurally bounded (see viii) in setting). It means that L (Mo Wicr
M;y,) is finite and is recovered by Ag; and Ag; by distributed calculations. Then
since Lar(Mo) C La(Mo Wier Myy,) it results that for any observation Op, we
have L (Mo, Op,) C La(Mo Wicr Mn,, Op.)- Then we have that II7; L (Og,) C
LI°™(0f ) while LI°°™(0f ) C II7; Lx(Og, ) is trivial. The result is proved straight-
forward by projecting equal set onto the local set of faulty transitions 7g,.

Then for i) the proof that DD_Algo terminates in k < K, is simple since K,
denotes how many times a token can cross unobservable the border. For ii) we have
that K, = oo that implies that there is an loop (uec) that comprises places and
only unobservable transitions in both A; and Nj. In this case the maximum number
of communication rounds however finite does not depend only on the net structure
but on both the net structure and the initial marking. O

Now consider the of more than two agents (| I |> 2). By Theorem 1 we have
that two neighboring agents Ag;, Ag; achieve local consistency after finitely com-
munication rounds. Without affecting the generality we assume in the following a
communication protocol s.t. when two neighboring agents communicate they do not
initiate communication with another agent until they have become locally consis-
tent. Moreover we require that the information exchange is fair [3] i.e. any local
agent is disallowed to communicate infinitely often with some neighbors ignoring to
communicate with some other neighboring agents. This is implemented in DD_Algo
bellow by counting the number of communication rounds between each two agents
Neom(?,J)- Then Ag; must maintain for its neighboring agents the difference between
the most accessed agent (e.g. Ag;,) and the less accessed agent (Ag;,) lower than a
certain threshold (e.g. Neom): Neom (%, J1) — Neom (%, 52) < Neom-

Theorem 2 Consider o distributed description of the plant and an arbitrary dis-
tributed observation Oy, = ®J¢ ,O;QC the algorithm DD_Algo terminates in finite
time and the local diagnosis PLDI" (i € I) derived by each local d-agent Ag;
(i € 1) is the diagnosis a centralized agent would have obtained for the local site i
having the entire plant observation Oy, and the knowledge of the overall plant.

Viel, Di(0i)=PLDI(O])

Proof. The proof is similar with the proof of Theorem 1 and it relies on structurally
boundness assumption see viii) that implies that Ly (Mo Wicr My;,) is finite. Thus
the algorithm terminates after a finite number of communication rounds.



Algorithm 7 DD_Algo (Ag; considered)
Input: Ni; My, ; O,
Output: D;(0;)
: for all neighbor Ag; do
Ncom (2, §) = 0 {initialize communication counter}
: end for

1
2
3
4: while global_stop=true do
5: if M&8G; =0 then
6.
7
8

local_stop=true
else if MSG; # (0 then
: choose a neighbor Ag; s.t. Vi1, j2 : | ncom (3, j1) — ncom (%, j2) |< Neom

9: Neom (4, §) = Neom (4, ) + 1
10: DD_Algo(Agj;)
11:  end if
12: end while
13: Dy(0,) = PLDI"(0},)

Before concluding the paper we discuss the assumptions made along the paper.
Assumption 1 that states that the observation is deterministic is not strong and
can be dropped. The amount of computation increases and this is because the
backward search will start from different final markings M¢;, that corresponds to
the marking of the input places of the transitions whose shared label was received.
This increase in the amount of calculations can be intuitively interpreted as the
increase that would be obtained for a forward search when the initial state is given
by a set of initial markings. Then Assumption 3 can also be dropped. For the case
of communication delays and unordered local observations the reader is referred to
[3],[7]- The only strict assumptions made are that the PN model is structurally-
bounded w.r.t. the unobservable behavior (item vii7) in setting) and Assumption 5.
These assumptions are made in order to avoid to work with w-markings.

9 Conclusions

This research is motivated by our interest in designing distributed algorithms for
large and complex systems where (e.g. because of sensors failure) unobservable in-
puts are sent/received between components placed in different sites. We have shown
that by backward and forward search an by timing constraints propagation the cen-
tralized diagnosis result can be recovered after finitely many communication rounds.
For increasing the efficiency of the local calculations we have used reachability meth-
ods based on unfoldings (backward and forward unfolding). Further directions are
the extension of this method (for reasonable models where K. < 2) to time PN
models and probabilistic analysis.
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