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Abstract
Background: As an alternative to the frequently used "reference design" for two-channel
microarrays, other designs have been proposed. These designs have been shown to be more
profitable from a theoretical point of view (more replicates of the conditions of interest for the
same number of arrays). However, the interpretation of the measurements is less straightforward
and a reconstruction method is needed to convert the observed ratios into the genuine profile of
interest (e.g. a time profile). The potential advantages of using these alternative designs thus largely
depend on the success of the profile reconstruction. Therefore, we compared to what extent
different linear models agree with each other in reconstructing expression ratios and
corresponding time profiles from a complex design.

Results: On average the correlation between the estimated ratios was high, and all methods
agreed with each other in predicting the same profile, especially for genes of which the expression
profile showed a large variance across the different time points. Assessing the similarity in profile
shape, it appears that, the more similar the underlying principles of the methods (model and input
data), the more similar their results. Methods with a dye effect seemed more robust against array
failure. The influence of a different normalization was not drastic and independent of the method
used.

Conclusion: Including a dye effect such as in the methods lmbr_dye, anovaFix and anovaMix
compensates for residual dye related inconsistencies in the data and renders the results more
robust against array failure. Including random effects requires more parameters to be estimated
and is only advised when a design is used with a sufficient number of replicates. Because of this, we
believe lmbr_dye, anovaFix and anovaMix are most appropriate for practical use.
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Background
Microarray experiments have become an important tool
for biological studies, allowing the quantification of thou-
sands of mRNA levels simultaneously. They are being cus-
tomarily applied in current molecular biology practice.

In contrast to the Affymetrix based technology, for the
two-channel microarray technology assays, mRNA
extracted from two conditions is hybridised simultane-
ously on a given microarray. Which conditions to pair on
the same array is a non trivial issue and relates to the
choice of the "microarray design". The most intuitively
interpretable and frequently used design is the "reference
design" in which a single, fixed reference condition is cho-
sen against which all conditions are compared. Alterna-
tively, other designs have been proposed (e.g. a loop
design). From a theoretical point of view, these alternative
designs usually offer, at the same cost, more balanced
measurements in the number of replicates per condition
than a common reference design. They are thus, based on
theoretical issues, potentially more profitable [1,2]. For
instance, a loop design would outperform the common
reference design when searching for differentially
expressed genes [3]. However, the drawback of such alter-
native design is that the interpretation of the measure-
ments becomes less straightforward. More complex
analysis procedures are needed to reconstruct the factor of
interest (genes being differentially expressed between two
particular conditions, a time profile, etc.), so that the prac-
tical usefulness of a design depends mainly on how well
analysis methods are able to retrieve this factor of interest
from the data. Such analysis would require removing sys-
tematic biases from the raw data by the appropriate nor-
malization steps and combining replicate values to
reconstruct the factor of interest.

When focusing on profiling the changes in gene expres-
sion over time, the factor of interest is the time profile
[1,2]. For such time series experiments, the "reference
design", where, for instance, time point zero is chosen as
the common reference has a straightforward interpreta-
tion: for each array, the genes' mean ratio between repli-
cates readily represents the changes in expression of that
gene relative to the first time point. However, when using
an alternative design, such as an interwoven design, mean
ratios represent the mutual comparison between distinct
(sometimes consecutive) time points. A reconstruction
procedure is needed to obtain the time profile from the
observed ratios [3-5].

Several profile reconstruction methods are available for
complex designs. They all rely on linear models, and for
the purpose of this study, we subdivided them in "gene-
specific" and "two-stage" methods. Gene-specific profile
reconstruction methods apply a linear model to each gene

separately. The underlying linear model is usually only
designed for reconstructing a specific gene profile from a
complex design, but not for normalizing the data. As a
result, normalized log-ratios are used as input to these
methods (see 'Methods'). Examples of these methods are
described by Vinciotti, et al. (2005) [3] and Smyth, et al.
(2004) (Limma) [4]. Two-stage profile reconstruction
methods on the other hand, first apply a single linear
model to all data simultaneously, i.e. the model is fitted
to the dataset as a whole. These models use the separate
log-intensity values for each channel, as spot effects are
explicitly incorporated. They return normalized absolute
expression levels for each channel separately, which can
then be used to reconstruct the required time profile by a
second-stage gene-specific model. An example of such
two-stage method is implemented in the MAANOVA
package [6].

So far, comparative studies focused on the ability of differ-
ent methods to reconstruct "genes being differentially
expressed" from different two-color array based designs
[7-9] or the ratio estimation between two particular con-
ditions [5]. In this study, we aimed at performing a com-
parative study focusing on the time profile as the factor of
interest to be reconstructed from the data.

We compared to what extent five existing profile recon-
struction methods (lmbr, lmbr_dye, limmaQual, ano-
vaFix, and anovaMix; see 'Methods' for details) were able
to reconstruct similar profiles from data obtained by two
channel microarrays using either a loop design or an inter-
woven design. We assessed similarities between the meth-
ods, their sensitivity towards using alternative
normalizations and their robustness against array failure.
A spike-in experiment was used to assess the accuracy of
the ratio estimates.

Results
Assessing the influence of the used methodology on the 
profile reconstruction
We compared to what extent the different methods agreed
with each other in 1) estimating the changes in gene
expression relative to the first time point (i.e. the log-
ratios of each single time point and the first time point)
and 2) in estimating the overall gene-specific profile
shapes. Results were evaluated using two test sets, each of
which represents a different complex design.

The first dataset was a time series experiment consisting of
6 time points measured on 9 arrays using an interwoven
design (Figure 1a). This design resulted in three replicate
measurements for each time point, with alternating dyes.
As a second test, a smaller loop design was derived from the
previous dataset by picking the combination of five arrays
that connect five time points in a single loop (Figure 1b). A
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balanced loop is obtained with two replicates per condi-
tion, for which each condition is labeled once with the red
and once with the green dye (see 'Methods')

The balance with respect to the dyes (present in the loop
design) ensures that the effect of interest is not con-
founded with other sources of variation. In this study, the
effect of interest corresponds to the time profile. The rep-
lication (as present in the interwoven design) improves
the precision of the estimates and provides the essential
degrees of freedom for error estimation [2]. Moreover, the
interwoven design not only has more replicates, but also
increases the possible paths to join any two conditions in
the design. As they have different characteristics, using
both datasets allows us to assess the reconstruction proc-
ess under two different settings, while the RNA prepara-
tions for both designs are the same.

Effect of profile reconstruction methods on the ratio estimates
We first assessed to what extent the different methods
agreed with each other in estimating similar log-ratios for
each single gene at each single time point. To this end, we
calculated the overall correlation per time point between
the gene expression ratios estimated by each pair of two
different methods. Table 1 gives the results for all mutual
comparisons between the methods tested for the loop
design. Irrespective of which two methods were com-
pared, the correlation between the estimated ratios was
high on average, ranging from 0.94 to 0.98 (Table 1, mean
column). Moreover, this high average correlation is due to
a high correlation of all individual ratios throughout the
complete ratio range (see Additional file 1), with only a
few outliers (genes for which a rather different ratio esti-
mate was obtained, depending on the method used).
Note that for the loop design, there was no difference
between the results of lmbr and lmbr_dye due to the bal-
anced nature of this design (see 'Methods' section).

For this loop design the ratio estimates T3/T1 or T4/T1
obtained by each of the different methods are on overall
more correlated than estimates of respectively T5/T1 and
T6/T1. As can be expected, direct estimates, i.e. estimates
of a ratio for which the measurements were assessed on
the same array (see Figure 1b: ratios T3/T1 and T4/T1) are
more consistent than indirect estimates, i.e. the measure-
ments used to obtain the estimates were assessed on dif-
ferent arrays (see Figure 1b: ratios T5/T1 and T6/T1). A
similar observation was already made by Kerr and
Churchill (2001) [2], and Yang and Speed (2002) [10].
For a loop design, both the ANOVA (two-stage) [2] and
the gene-specific methods [10], have trouble estimating
ratios between conditions not measured on the same
array (indirect estimates). The larger the loops (the longer
the paths) between indirectly measured pairs of condi-
tions, the less precise estimates will be.

For the interwoven design, the correlation between ratio
estimates, obtained by any pair of two different methods
was even higher, with values ranging from 0.95 to 0.99

Experimental microarray designs used in this studyFigure 1
Experimental microarray designs used in this study. 
Circles represent samples or time points, and arrows repre-
sent a direct hybridization between two samples. The arrows 
point from the time point labeled with Cy3 to the time point 
labeled with Cy5. (a) Interwoven design (first dataset). Grey 
arrows were removed to generate a single loop design (see 
(b)). (b) Loop design (second dataset).
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Table 1: Pairwise correlation between ratios estimates for the loop design

Method 1 Method 2 T3/T1 T4/T1 T5/T1 T6/T1 Mean

lmbr/lmbr_dye limmaQual 0.9966 0.9998 0.9648 0.9909 0.9880
lmbr/lmbr_dye anovaFix 0.9899 0.9913 0.9721 0.9856 0.9848
lmbr/lmbr_dye anovaMix 0.9829 0.9751 0.9420 0.9549 0.9637
limmaQual anovaFix 0.9889 0.9918 0.9298 0.9775 0.9720
limmaQual anovaMix 0.9810 0.9758 0.8950 0.9467 0.9496
anovaFix anovaMix 0.9936 0.9847 0.9726 0.9694 0.9801

Correlation between ratios estimated by each pair of applied methods (column 1 and column 2) for a loop design. Each ratio corresponds to a time 
dependent change in expression as compared to the first time point (T1). The last column corresponds to the mean correlation of the 4 estimates. 
Since the loop design is balanced with respect to the dyes, the results for lmbr and lmbr_dye were the same (see 'Methods' section), which is why 
they are not treated differently.
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(see Additional file 2). For this unbalanced design, the
ratio estimates for the lmbr_dye and the lmbr methods
were no longer exactly the same. The difference in consist-
ency between direct and indirect ratio estimates was not
obviously visible for this design.

Effect of profile reconstruction methods on the profile shape
A high average correlation between the ratio estimates
obtained by the different methods at each single time
point is a first valuable assessment. However, it is biolog-
ically more important that gene-specific profiles recon-
structed by the different methods exhibit the same
tendency over time. Therefore, we also compared to what
extent profile shapes estimated by each of the methods
differed from each other. This was done by computing the
mean similarity between profile estimates obtained by
any combination of two methods (Table 2).

Figure 2 shows a few illustrative examples of profiles esti-
mated by the different methods. For the ribosomal gene
"L22" (Figure 2a), irrespective of the method, highly sim-
ilar profiles were obtained. However, for the MGC85244
gene (Figure 2c), the observed degree of similarity
between profiles derived by each of the different methods
is much lower, especially for the last two time points.

Table 2 summarizes the results of the profile comparison
expressed as average profile similarities across all genes.
The similarity was computed with the cosine similarity
measure after mean centering the profiles (see 'Methods').
It ranges from -1 (anti-correlation) to 1 (perfect correla-
tion), 0 being no correlation. Also here, the overall corre-
lation between different methods was not drastically
different. From this table, it appears that the more similar
the underlying principles of the used methods (both the
model and the input data) are, the more correlated their
results. Indeed, correlations between profiles estimated by
either limmaQual and lmbr (both gene-specific models
without dye effect), or anovaMix and anovaFix (both two-
stage models) are high. The most divergent correlations
are observed when comparing a gene-specific method
(more specifically lmbr, or limmaQual) with a two-stage

method (anovaFix or anovaMix). When using lmbr_dye
on the interwoven design, it behaves somewhere in
between: although it is a single gene model, it includes a
dye effect just like the two-stage models. This does not
apply for the loop design due to its dye-balance (lmbr and
lmbr_dye give the same results for balanced designs; see
'Methods').

Differences in the input data (log-ratio versus log-expres-
sion values) and alterations in the underlying model
(including a dye or random effect) are confounded in
affecting the final result. Therefore, in order to assess in
more detail the specific effect of including either a dye or
a random effect in the model, we compared results
between methods that share the same input data.

To assess the influence of including a dye effect on profile
estimation, we compared the results of the gene-specific
methods (see Table 2, the first two rows). Including a dye
effect (present in lmbr_dye but not in limmaQual and
lmbr) has a strong effect under the unbalanced interwo-
ven design (seen as decrease in correlation between
lmbr_dye and the other single gene methods). For the
loop design this effect is non-existent because of the loop
design's balance with respect to the dyes (see 'Methods').

The mere impact of including a random effect in the
model can be assessed by comparing results of anovaFix
and anovaMix. Indeed, they both contain the same input
data, the same normalization procedure, and the same
model except for the random effect. Seemingly, inclusion
of the random effect has a higher influence on the loop
design than on the interwoven design.

Usually in a microarray experiment, an important propor-
tion of the genes does not change its expression signifi-
cantly under the conditions tested (global normalization
assumption), exhibiting a "flat" profile. We wondered
whether removing such flat genes, with a noisy profile
would affect the similarity in profile estimation between
the different methods. Indeed, because the cosine similar-
ity with centering only measures the similarity in profile

Table 2: Mean similarity between profiles for both the interwoven and the loop design

Interwoven design Loop design

lmbr lmbr_dye limmaQual anovaFix lmbr/lmbr_dye limmaQual anovaFix

lmbr_dye 0.9477 1.0000
limmaQual 0.9940 0.9359 0.9844
anovaFix 0.9321 0.9572 0.9157 0.9514 0.9252
anovaMix 0.9138 0.9373 0.8989 0.9767 0.9186 0.8934 0.9611

Values in the table correspond to the similarity between any two methods, expressed as the mean profile similarity of the genes. Since the loop 
design is balanced with respect to the dyes, the results for lmbr and lmbr_dye were the same (see 'Methods' section), which is why they are not 
treated differently. No filtering applied and similarity is assessed for all 2999 profile estimates.
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shape, regardless of its absolute expression level, the
higher level of similarity we observe between the methods
might be due to a high level of random correlation
between the "flat" profiles. Therefore, we applied a filter-
ing procedure by removing those genes for which the pro-
file variance over the different time points was lower than
a certain threshold (a range of threshold values going
from 0.2–0.4 was tested). The similarity was assessed for
any pair of profile estimates corresponding to the same
gene if at least one of the two profiles passed the filter
threshold (Table 3 for the variance threshold of 0.4,

results for the other thresholds can be found in the sup-
plementary information, see Additional file 3).

Overall, the results obtained with each of the different var-
iance thresholds confirmed the observations of Table 2: 1)
the more similar the models and input data, the more
similar the methods behaved (two-stage methods differed
most from limmaQual followed by lmbr in estimating the
gene profiles), 2) including a dye effect has a pronounced
effect in an interwoven design (in a loop design there is no
distinction due to the balance with respect to the dyes; see

Table 3: Mean similarity between profiles after filtering for both the interwoven and the loop design

Interwoven design Loop design

lmbr lmbr_dye limmaQual anovaFix lmbr/lmbr_dye limmaQual anovaFix

lmbr_dye 0.9834 1.0000
limmaQual 0.9980 0.9799 0.9920
anovaFix 0.9800 0.9948 0.9755 0.9961 0.9851
anovaMix 0.9748 0.9905 0.9701 0.9957 0.9866 0.9728 0.9905

Mean profile similarity using a filtering threshold of 0.4 on all profiles estimated by each of the methods. A pairwise similarity comparison is made 
for all profile pairs (corresponding to the same gene) estimated by each of the two methods compared, for which at least one profile is above the 
filtering threshold.

Examples of reconstructed profiles for two representative genes from the interwoven designFigure 2
Examples of reconstructed profiles for two representative genes from the interwoven design. For the gene-spe-
cific methods (based on log-ratios estimate) the ratios are expressed relative to T1 and the ratio T1/T1 is set to zero. For the 
two-stage (ANOVA) methods, the estimated VG effect (gene-variety) is plotted. (a) Estimated profiles for the Ribosomal like 
gene under the interwoven design. (b) Reconstructed time profile for the gene MGC85244 under the interwoven design.

a)   Ribosomal protein L22−like 1
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'Methods'), 3) including a random effect has most influ-
ence on the loop design. In addition, it seems that, the
more flat profiles are filtered from the dataset, the more
similar the results obtained by each of the different meth-
ods become.

The effect of array failure on the profile reconstruction
In practice, when performing a microarray experiment
some arrays might fail with their measurements falling
below standard quality. When these bad measurements
are removed from the analysis, the complete design and
the results inferred from it will be affected. Here we eval-
uated this issue experimentally by simulating array
defects. In a first experiment, the interwoven design (data-
set 1) was considered as the original design without fail-
ure. We tested 9 different possible situations of failure, by
each time removing a single array from the design, result-
ing in 9 reduced datasets. The same test was performed
with the loop design (dataset 2).

We compared for each of the different profile reconstruc-
tion methods the mean similarity between the ratios
obtained either with the full dataset or with each of the
reduced datasets (9 comparisons). Table 4 summarizes
the results for the interwoven design, and Table 5 for the
loop design.

For the interwoven design (Table 4), it appears that in
general removing one array from the original design did
not really affect the ratio reconstruction. For all methods,
ratio estimates tend to be more affected when an array
measuring the reference time point was removed (T1)
(Table 4). Overall the two-stage methods, and in particu-
lar anovaMix, seemed most robust against array failure,
while limmaQual was most sensitive (Table 4). Methods
including a dye effect were more robust against array fail-
ure. Similar results were obtained when the effect of array

failure was assessed on the similarity in profiles (see Addi-
tional file 4).

For the loop design, the situation was quite different
(Table 5). Note that here, the lmbr_dye and limmaQual
methods were not used for profile reconstruction as the
reduced datasets did not contain sufficient information
for estimating all the model parameters. For both
lmbr_dye and limmaQual, the linear models lose their
main differing characteristics compared to lmbr (see
'Methods' section). For all remaining methods removing
one array from the design affected the results considerably
more than was the case for the interwoven design. Two-
stage methods were the most robust, but in this design
anovaMix performs slightly worse than anovaFix. The
lmbr method turned out to be very sensitive to array fail-
ure, giving a mean profile similarity around 0.2, indicat-
ing no correlation between profiles estimated with and
without array failure (see Additional file 5).

Note that overall, all methods seem to be more robust to
array failure under the interwoven design than under the
loop design. This is to be expected as the latter design con-
tains more replicates.

Consistency of the methods under different normalization 
procedures
In the previous section we compared profiles and ratio
estimates obtained by the different methods after apply-
ing default normalization steps. However, other normali-
zation strategies are possible, and could potentially affect
the outcome. To assess the influence of using alternative
normalization procedures, we compared profiles recon-
structed from data normalized with 1) print tip Loess
without additional normalization step (the default setting
for anovaMix and anovaFix as used throughout this
paper), 2) print tip Loess with a scale-based normaliza-

Table 4: Assessing the effect of array failure on estimated ratios for the interwoven design

Array removed lmbr lmbr_dye limmaQual anovaFix anovaMix Conditions 
affected

1 0.9615 0.9812 0.9623 0.9824 0.9784 T2/T3
2 0.8905 0.9277 0.8768 0.9317 0.9431 T1/T3
3 0.9606 0.8790 0.9521 0.8951 0.8943 T3/T5
4 0.9080 0.9353 0.8821 0.9478 0.9539 T4/T1
5 0.9601 0.9632 0.9505 0.9569 0.9592 T6/T1
6 0.9773 0.9863 0.9742 0.9852 0.9847 T5/T2
7 0.9238 0.9585 0.9317 0.9549 0.9662 T5/T6
8 0.9615 0.9599 0.9615 0.9617 0.9690 T2/T4
9 0.9816 0.9859 0.9613 0.9836 0.9845 T4/T6

Mean 0.9472 0.9530 0.9392 0.9555 0.9592

The different methods for which the influence of array failure was assessed are represented in the columns. Each row shows the mean correlation 
between the corresponding estimated ratios from the complete design and those obtained from a defect design (where one array was removed 
compared to the complete design). Mean: shows the overall mean correlation for a given method.
Page 6 of 14
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:1 http://www.biomedcentral.com/1471-2105/9/1
tion between arrays [11], and 3) print tip Loess with a
quantile-based between array normalization [12,13] (the
default normalization for lmbr, lmbr_dye, and lim-
maQual as used throughout this paper).

Table 6 shows, for each of the different methods, the
mean similarity between reconstructed profiles derived
from differently normalized datasets. Overall, the influ-
ence of the normalization was not drastic. More impor-
tantly, the influence of the additional normalization steps
seemed independent of the method used (similar influ-
ences were observed for all methods). When assessing the
similarity in ratio estimates instead of profile estimates,
similar results were obtained (data not shown).

Accuracy of estimation
So far we only assessed to what extent changes in the used
methodologies or normalization steps affected the
inferred profiles. This, however, does not give any infor-
mation on the accuracy of the methods, i.e., which of

these methods is able to best approximate the true time
profiles. Assessing the accuracy is almost impossible as
usually the true underlying time profile is not known.
However, datasets that contain external controls (spikes)
could prove useful in this regard. Spikes are added to the
hybridisation solution in known quantities, so that we
have a clear view of their actual profile. In the following
analysis, we used a publicly available spike-in experiment
in attempt to assess the accuracy of each of the profile
reconstruction methods [14]. For the technical details of
this dataset we refer to 'Methods' and Table 7.

As lmbr and lmbr_dye and limmaQual gave exactly the
same results using this balanced design, we further
assessed to what extent lmbr, anovaFix and anovaMix
agreed with each other. Fig. 3 shows the effect of using dif-
ferent spike concentrations as reference points for ratio
estimation. Panels A through C reflect decreasing refer-
ence concentrations. The choice of reference has little
effect on the shape of the profile (as indicated by

Table 6: Effect of additional normalization procedures on estimating gene profiles from both the interwoven design and the loop 
design

Interwoven design

Normalization 
methods

lmbr lmbr_dye limmaQual anovaFix anovaMix

none/quantile 0.9602 0.9576 0.9599 0.9605 0.9584
none/scale 0.9900 0.9881 0.9914 0.9867 0.9848
scale/quantile 0.9540 0.9531 0.9557 0.9547 0.9566

Loop design

lmbr lmbr_dye limmaQual anovaFix anovaMix

none/quantile 0.9520 0.9520 0.9534 0.9601 0.9481
none/scale 0.9822 0.9822 0.9793 0.9835 0.9778
scale/quantile 0.9355 0.9355 0.9361 0.9433 0.9370

Similarities between profiles were assessed using the mean cosine similarity measure. Rows indicate the different normalization procedures. 
Columns indicate the different models used to reconstruct the profiles.

Table 5: Assessing the effect of array failure on estimated ratios for the loop design

Array removed lmbr anovaFix anovaMix Conditions affected

1 0.5964 0.6461 0.5312 T1/T3
2 0.7161 0.7545 0.6559 T3/T5
3 0.6713 0.8883 0.7606 T5/T6
4 0.5697 0.7883 0.6637 T6/T4
5 0.4359 0.6042 0.5534 T4/T1

Mean 0.5979 0.7363 0.6330

The different methods for which the influence of array failure was assessed are represented in the columns. Each row shows the mean correlation 
between the corresponding estimated ratios from the complete design and those obtained from a defect design (where one array was removed 
compared to the complete design). Mean: shows the overall mean correlation for a given method. Lmbr_dye and limmaQual were not evaluated as 
in this particular case they lose their main differing characteristic compared to lmbr.
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consistent relationships between the different estimates).
However, Fig. 3 illustrates that 1) lower reference concen-
trations (intensities) introduce a bias in the profile (true
ratio's are consistently underestimated), 2) irrespective of
the concentration of the reference ratio's derived for the
lower expression values of the test are nearly identical,
and thus uninformative. Both observations can be attrib-
uted to the lower saturation characteristics of microarray
data (low concentrations do not generate signals that are
distinguishable from the background). Although not as
complex as the previously used loop or interwoven
designs, the spiked-in design illustrates that this lower sat-
uration effect, an inherent property of microarray data,
can distort estimated profiles: interpretation of ratios with

lower signals for test or reference should be done with
care.

Discussion
In this study, we evaluated the performance of five meth-
ods based on linear models in estimating gene expression
ratios and reconstructing time profiles from complex
microarray experiments. From a theoretical viewpoint,
two major differences can be distinguished between the
methods selected for this study: 1) differences related to
alterations in the input data: the selected two-stage meth-
ods make use of the log-intensity values while the gene-
specific methods use log-ratios, 2) differences related to
the model characteristics: some of the models include an

Spike-in expression ratio estimatesFigure 3
Spike-in expression ratio estimates. Reconstructed expression ratio estimates of spikes 7 (+ markers) and 8 (x markers) 
are plotted for lmbr/lmbr_dye/limmaQual (solid line), anovaFix (dotted line), and anovaMix (dashed line). Concentrations (cpc; 
copies per cell) of 104 cpc (panel A), 10 cpc (panel B), and 10-1 cpc (panel C) were used as reference points. Estimated ratios 
were sorted from low to high concentrations. The solid grey line (o-markers) corresponds to the expected ratios for the 
known concentrations.

Table 7: Concentration (copies per cell) of the control clones spiked

Spike No. Spike Mix 1 Spike Mix 2 Spike Mix 3 Spike Mix 4 Spike Mix 5 Spike Mix 6 Spike Mix 7 Reference 
Mix

1, 2 10,000 0 0.1 1 10 100 1,000 100
3, 4 1,000 10,000 0 0.1 1 10 100 100
5, 6 100 1,000 10,000 0 0.1 1 10 100
7, 8 10 100 1,000 10,000 0 0.1 1 100
9, 10 1 10 100 1,000 10,000 0 0.1 100
11, 11a 0.1 1 10 100 1,000 10,000 0 100
12, 13 0 0.1 1 10 100 1,000 10,000 100

From the total of 14 arrays, 7 were hybridized with the respective spike mixes labeled in Cy5 against the reference mix labeled in Cy3. The 
remaining 7 arrays were hybridized with the spike mixes labeled in Cy3 against the reference mix labeled in Cy5. Spike 11a was removed from 
analysis due to quality issues (Allemeersch et al., 2005 [17]).
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explicit dye effect (lmbr_dye, anovaFix and anovaMix) or
an explicit random effect (anovaMix).

Although Kerr [5] assumed that observed differences in
estimates obtained by different models are due to the dif-
ferences in model characteristics, rather than to the input
data, we cannot clearly make this distinction. Indeed, the
way the error-term is modeled influences the statistical
inference and hence the use of log-intensities or log-ratios
does cause a difference between models [5]. However,
when focusing on results obtained between methods with
similar input data, we can assess, to some extent, the effect
of different model specificities. In the following sections,
some of these effects are discussed more in detail.

The inclusion of the dye effect
In general we observed that, gene-specific methods with-
out dye effects, and two-stage models with dye effect
behaved more similar with each other than when they
were compared among each other. Lmbr_dye (a gene-spe-
cific model with dye effect) is situated somewhere in
between when the design is unbalanced with respect to
the dyes. Indeed, the gene-specific models lmbr and lim-
maQual contain a combination of log-ratios plus an error
term. However, when adding a dye effect to these models
as is the case of lmbr_dye, the formulations and estima-
tions converge with those of the two-stage ANOVA mod-
els for unbalanced designs.

Originally, Vinciotti, et al. (2005) [3] and Wit, et al.
(2005) [15] added the dye effect for purposes of data nor-
malization when one is working with non-normalized
data. From our results, we also noted a practical advantage
of including a dye effect even with normalized data. The
fact that adding a dye effect showed pronounced differ-
ences for a dye-unbalanced design indicates that, despite
the data being normalized, there are still dye-related
inconsistencies in the data that might -partially- be com-
pensated for by including a dye effect. Moreover, models
with dye effects seemed more robust in estimating log-
ratios from a design disturbed by array failure. Therefore,
when working with unbalanced designs, it is advisable to
include a dye effect, not only for the two-stage ANOVA
models, as was also suggested by Wolfinger (2001) [16],
Kerr (2003) [5], and Kerr and Churchill (2001) [2], but
also for gene-specific models based on log-ratios.

Mixed models versus Fixed models
Several studies advise the users to model the spot-gene or
array-gene effects as random variables [9,16]. We
observed that under the loop design (with 5 arrays), pro-
files estimated by anovaMix and anovaFix diverged. We
also noticed that, for the loop design anovaMix had a
lower capacity than anovaFix to handle array failures. For
the interwoven design with 9 arrays these effects were less

pronounced. The loop design used in our study does not
contain a sufficient number of replicates to allow for reli-
able estimation of the spot-gene effect when using a
mixed ANOVA model. As a result, ratios and time profiles
estimated by anovaMix than anovaFix are less reliable for
an experiment with few replicates

The effect of using alternative normalization steps on the 
methods' performance
We tested the influence of using additional normalization
steps. Differently normalized data give different results,
but the effects were not dramatic. Moreover, they had the
same influence on all methods, indicating that all
methods were equally sensitive to changes in the
normalization.

Accuracy of estimated ratios
Based on spike-in experiments for two-channel microar-
rays, we could also assess to what extent the estimated
ratios approximated the true ratios (i.e., the accuracy of
the estimated ratios). We observed that all five tested lin-
ear methods generated biased estimations, consistently
overestimating changes in expression relative to a refer-
ence with low mRNA-concentration. These results were
independent of the method used (gene-specific or two-
stage) or of the number of effects included the model.

Conclusion
On average the correlation between the estimated ratios
was high, and all methods more or less agreed with each
other in predicting the same profile. The similarity in pro-
file estimation between the different methods improved
with an increasing variance of the expression profiles.

We observed that when dealing with unbalanced designs,
including a dye effect, such as in the methods lmbr_dye,
anovaFix and anovaMix, seems to compensate for residual
dye related inconsistencies in the data (despite an earlier
normalization step). Adding a dye effect also renders the
results more robust against array failure. Including ran-
dom effects requires more parameters to be estimated and
is only advised when a design is used with a sufficient
number of replicates.

Conclusively, because of their robustness against imbal-
ances in the design and array failure, we believe lmbr_dye,
anovaFix and anovaMix are most appropriate for practical
use (given a sufficient number of replicates in case of the
latter).

Methods
Microarray data
The first dataset used in this study was a temporal Xenopus
tropicalis expression profiling experiment. The array used
consisted of 2999 oligos of 50 mers, corresponding to
Page 9 of 14
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:1 http://www.biomedcentral.com/1471-2105/9/1
2898 unique X. tropicalis gene sequences and negative
control spots (Arabidopsis thaliana probes, blanks and
empty buffer controls). Each oligo was spotted in dupli-
cate on each array in two separated grids. On each grid,
oligonucleotides were spotted in 16 blocks of 14 × 14
spots. Pairs of duplicated oligo's on the two grids of the
same gene sequence were treated as replicates during anal-
ysis, corresponding to a total of 2999 different duplicated
measurements (a few oligos were spotted multiple times
on the arrays). MWG Biotech performed oligonucleotide
design, synthesis and spotting. X. tropicalis gene sequences
were derived from the assembly of public and in-house
expressed sequence tags. The temporal expression of X.
tropicalis during metamorphosis was profiled at 6 time
points, using an experimental design consisting of 9
arrays. Each time point was measured three times, with
alternating dyes as shown in Figure 1a. This interwoven
design was used as a first test set.

From this original design a second test set containing a
smaller loop design was derived by picking the combina-
tions of five arrays that connect five time points in a single
loop (Figure 1b) and with the first time point as a refer-
ence. This results in a balanced loop design

A publicly available spike-in experiment [17] was used as
a third test set. This dataset contains 13 spikes-in, or con-
trol clones spiked with known concentrations. The con-
trol clones were spiked at different concentrations for each
of the 7 conditions (Table 7).

The microarray design used for the spike-in experiment
was a common reference design, with dye swap for each
condition, and the concentrations of spikes ranges from 0
to 10,000 copies per cellular equivalent (cpc), assuming
that the total RNA contained 1% poly(A) mRNA and that
a cell contained on average 300,000 transcripts. This con-
centration range covered all biologically relevant tran-
script levels.

Probes preparation and microarray hybridization
10 μg of total RNA were used to prepare probes. Labeling
was performed with the Invitrogen SuperScript™ Indirect
cDNA labeling system (using polyA and random hexam-
ers primers) using the Amersham Cy3 or Cy5 monofunc-
tional reactive dyes. Probe quality was assessed on an
agarose minigel and quantified with a Nanodrop ND-
1000 spectrophotometer. Dye quantities were equili-
brated for hybridization by the amount of fluorescence
per ng of cDNA. The arrays were hybridized for 20 h at
45°C according to the manufacturers protocol (QMT ref).
Washing was performed in 2× SSC 0.1% SDS at 42°C for
5' and then twice at room temperature in 1× SSC, 0.5×
SSC each time for 5'. Arrays were scanned using a GenePix
Axon scanner.

Microarray normalization
The raw intensity data were used for further normaliza-
tion. No background subtraction was performed. Data
were log-transformed and the intensity dependent dye or
condition effects were removed by using a local linear fit
loess on these log-transformed data (Printtiploess com-
mand with default settings as implemented in the limma
BioConductor package [18]). As this loess fit not only nor-
malizes the data but also linearizes them, applying it
before profile reconstruction is a prerequisite as all linear
models used for profile reconstruction assume non linear-
ities to be absent from the data.

For the gene-specific methods (lmbr, lmbr_dye and lim-
maQual), Loess corrected log-ratios (per print tip) were
subjected to an additional quantile normalization step
[4,12] as suggested by Vinciotti et al. (2005) [3] in order
to improve the intercomparability between arrays. It
equalizes the distribution of probe intensities for each
array in a set of arrays. For the two-stage profile recon-
struction methods (anovaFix and anovaMix), corrected
log-intensities for the red (RCORR) and green (GCORR) chan-
nels were calculated from the Loess corrected log-ratios
(MCORR; no additional quantile normalization was done
for the two-stage methods) and mean absolute intensities
(A) as follows: RCORR = (A + MCORR)/2, and GCORR = (A -
MCORR)/2.

Used profile reconstruction methods
Available R implementations (BioConductor [19]) of the
presented methods were used to perform the analyses.

Gene-specific methods based on log-ratios
Gene-specific profile reconstruction methods apply a lin-
ear model on each gene separately. The goal is to estimate
the true expression differences between the mRNA of
interest and the reference mRNA, from the observed log-
ratios. The presented models assume that the expression
values have been appropriately pre-processed and nor-
malized [3,20]. The three selected gene-specific models
for this study are:

1) lmbr, the linear model described by Vinciotti et al. (2005)
[3]:

An observation yjk is the log-ratio of condition j and con-
dition k. For each gene a vector of n observations y =
(y1,...,yn) can be represented as

y = X  + 

where X is the design matrix defining the relationship
between the values observed in the experiment and a set

of independent parameters  = ( 12, 13,..., 1T representing
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true expression differences, and  is a vector of errors. The

parameters in  are arbitrarily chosen this way for estima-
tion purposes; all expression differences between other
conditions i and k can be calculated from these parame-

ters as ik = 1k - 1i. The goal is to obtain estimates of the true

expression differences  separately for each gene. Given
the assumptions behind the linear model, the least

squares estimator for  is [3]

2) lmbr_dye, an extension of lmbr including a general dye
effect:

The previous model can be extended to include a gene-
specific dye effect [3]

y = X  + D + 

where D is a vector of n times a constant value representing
the gene-specific dye effect . Alternatively, one could write
y = XD D +  where XD is the design matrix X with an extra col-
umn of ones, and  = ( 12, 13,..., 1T, ). Note that in the case
of dye-balanced designs, the addition of a dye effect will
not yield any different estimators for the contrasts of inter-
est. In a balanced design, each column of X will have an
equal amount of 1's and -1's. I.e. the ith column of X, cor-
responding to the true expression difference 1i, reflects how
condition i was measured an equal number of times with
both dyes. As such, the positive and negative influences of
the dye effect will cancel each other out in the estimation of
true expression differences. The use of lmbr_dye will thus
only render different results compared to lmbr when using
it to analyze unbalanced experiments.

In order to estimate all parameters, the matrix XD must be
of full rank. If the column representing the dye effect is
not linearly independent, the matrix is rank deficient. This
situation occurs for example when an array is removed
from the loop design used in this paper. In this case, there
are an infinite number of possible least squares parameter
estimates. Since we expect a single set of parameters, a
constraint must be applied (this is done on the dye effect)
in which case the true expression estimates are the same as
for lmbr.

Lmbr and lmbr_dye were implemented in the R language
using the function 'lm' for linear least squares regression.

3) limmaQual, the Limma model [4,20,21] including an
array quality adjustment:

The quality adjustment assigns a low weight to poor qual-
ity arrays, which can be included in the inference. The

approach is based on the empirical reproducibility of the
gene expression measures from replicated arrays, and it
can be applied to any microarray experiment. The linear
model is similar to the model describes by Vinciotti et al.,
(2005) but the variance of the observations y includes the
weight term. In this case, the weighted least squares esti-

mator of  is [20]:

where Σ is the diagonal matrix of weights.

The weights in the limmaQual model are the inverse of
estimated array variances, down weighting the observa-
tions of lower quality arrays in order to decrease the
power to detect differential expression. The method is
restricted for use on data from experiments that include at
least two degrees of freedom. When testing the array fail-
ure in case of the loop design, there is no array level repli-
cation for two of the conditions so the array quality
weights can not be estimated: the Limma function returns
a perfect quality for all the arrays (in this case Σ is a diag-
onal matrix of 1's).

The fit is by generalized least squares allowing for correla-
tion between duplicate spots or related arrays, imple-
mented in an internal function (gls.series) of the Limma
package.

Two-stage methods based on the log-intensity values
The selected methods correspond to ANOVA (Analysis of
variance) models. They can normalize microarray data
and provide estimates of gene expression levels that are
corrected for potential confounding effects.

Since the global methods are computationally time-con-
suming, we selected two-stage methods that apply a first
stage on all data simultaneously and a second stage on a
gene by gene level. These models use partially normalized
data as input (i.e., the separate log-intensity values for
each channel), as spot effects are explicitly incorporated.
They return normalized absolute expression levels for
each channel separately (i.e. no ratios), which can then be
used to reconstruct the required time profile.

4) anovaFix, two-stage ANOVA with fixed effects [6]:

We denote the loess-normalized log-intensity data by yijkgr
that represents the measurement observed in the array i,
labeled with the dye j, representing the time point k, from
gene g and spot r. The first stage is the normalization
model:

yijkgr =  + Ai + Dj + ADij + rijkgr

μ̂

ˆ ( )μ = −X X X yt t1

μ̂

ˆ ( )μ = ∑ ∑− − −X X X yt t1 1 1
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where the term  captures the overall mean. The other
terms capture the overall effects due to arrays (A), dyes
(D) and labelling reactions (AD). This step is called "nor-
malization step" and it accounts for experiment system-
atic effects that could bias inferences made on the data
from the individual genes. The residual of the first stage is
the input for the second stage, which models the gene-
specific effects:

rijkgr = G + SGr + DGj + VGk + ijkgr

Here G captures the average effect of the gene. The SG
effect captures the spot-gene variation and we used it
instead of the more global AG array-gene effect. The use of
this effect obviates the need for intensity ratios. DG cap-
tures specific dye-gene variation and VG (variety-gene) is
the effect of interest, the effects due to the time point
measured. The MAANOVA fixed model computes least
squares estimators for the different effects.

5) anovaMix, two-stage ANOVA with mixed effects [6,16]:

The model applied is exactly the same as anovaFix, but in
this case the SG effect was treated as a random variable,
meaning that if the experiment were to be repeated, the
random spot effects would not be exactly reproduced, but
they would be drawn from a hypothetical population. A
mixed model, where some variables are treated as ran-
dom, allows for including multiple sources of variation.

We used the default method to solve the mixed model
equation, the REML (restricted maximum likelihood)
method. Duplicated spots were treated as independent
measurements of the same gene. For MAANOVA and
Limma packages the option to do so is available, for lmbr
and lmbr_dye duplicated spots were taken into account
by the design matrix.

Profile reconstruction
Applying the gene-specific methods mentioned above
results in estimated differences in log-expression between a
test and a reference condition or in log-ratios. To recon-
struct from the different designs a time profile, the first time
point was chosen as the reference. A gene-specific recon-
structed profile thus consists of a vector which contains as
entries ratios of the measured expression level of that gene
at each time point except the first, relative to its expression
value at the first time point. For instance, for the loop
design shown in Table 1 the profile contains 4 ratios.

In contrast to the gene-specific methods, two-stage meth-
ods estimate the absolute gene expression level for each
time point rather than log-ratios. In this case, for the loop
design shown in Table 1, the profile contains 5 gene
expression levels.

Comparison of profile reconstruction
To assess the influence of using different methodologies
on the profile reconstruction, the following similarity
measures were used to compare the consistency in recon-
structing profiles for the same gene between the compared
methods:

1. Overall similarity in the estimated ratios: we assessed
the similarity between the estimations of each single ratio
of the time profile generated by two methods using the
Pearson correlation. Since two-stage methods estimate
gene expression levels (variety-gene effect in the model)
instead of log-ratios, we converted these absolute values
into log-ratios by subtracting from the absolute expres-
sion levels estimated for each of the conditions the esti-
mated level of the first time point (the reference).

2. Profile shape similarity: the profile shape reflects the
expression behaviour of a gene over time. For each single
gene, we computed the mutual similarity between profile
estimates obtained by any combination of two methods.
To make profiles consisting of log-ratios obtained by the
gene-specific methods comparable with the profiles esti-
mated by the two-stage methods, we extended the log-
ratios profile by adding as a first time point a zero. This
represents the contrast between the expression value of
the first time point against itself in log-scale (Figure 2).

Profile Similarity
The mutual similarity was computed as the cosine similar-
ity, which corresponds to the angle between two vectors
representing genes i and j with profiles Pi and Pj.

All profiles were mean centered, i.e. data have been shifted
by the mean of the profile ratios to have an average of zero
for each gene, prior to computing the cosine similarity.
With centered data, the cosine similarity can also be viewed
as the correlation coefficient, and it ranges between -1
(opposite shape) and 1 (similar shape), 0 being no correla-
tion. The cosine similarity only considers the angle between
the vectors focusing on the shape of the profile. As a result,
it ignores the magnitude of ratios of the profiles, resulting
in relatively high similarities for false positives (i.e. "flat
profiles", genes that do not change their expression profile
over time, but for which the noise profile corresponds by
chance to other gene profiles).

No variance normalization was performed on the profiles
to preserve their shape. Instead of normalizing by the vari-
ance, the profiles were filtered using the standard deviation.

cos( , )P P
Pi Pj
Pi Pji j =

⋅
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Filtering flat profiles
Constitutively expressed genes or genes for which the
expression did not significantly change over the condi-
tions were filtered by removing genes of which the vari-
ance in expression over different conditions was lower
than a fixed threshold (the following range of thresholds
was tested: 0.1, 0.2, 0.4). A pair wise similarity compari-
son was made for all profile estimates (corresponding to
the same gene) that were above the filtering threshold in
at least one of the two methods compared. Similar results
were obtained when applying as a filter that all profile
estimates had to be above the filtering threshold in both
methods compared (data not shown).
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Plot of corresponding ratios estimated by two linear methods. Comparison 
of corresponding ratios estimated by lmbr and anovaMix using the loop 
design. The line indicates the identity between both methods and most of 
the points are situated near this identity line.
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[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-1-S1.pdf]

Additional file 2
Pairwise correlation between ratios estimated for the interwoven design. 
The table shows the pairwise correlation between ratios estimated by each 
pair of methods (columns 1 and 2) for the interwoven design. The ratios 
correspond to the change in expression compared to the first time point. 
The last column corresponds to the mean correlation of the 5 estimations.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-1-S2.pdf]

Additional file 3
Mean similarity between profiles using different filtering thresholds. Val-
ues in the table correspond to the similarity between any two methods, 
expressed as the mean profile similarity of the genes. Results are shown for 
both the interwoven and loop design using different filtering thresholds. 
Since the loop design is balanced with respect to the dyes, the results for 
lmbr and lmbr_dye were the same (see 'Methods' section), which is why 
they are not treated differently. A) No filtering applied, similarity is 
assessed for all 2999 profile estimates, B) a filtering threshold (SD) is 
used on all profiles estimated by each of the methods, a pairwise similarity 
comparison is made for all profile pairs (corresponding to the same gene) 
estimated by each of the two methods compared, for which at least one pro-
file is above the filtering threshold (SD >0.1, 0.2, 0.4 respectively).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-1-S3.pdf]

Additional file 4
Effect of array failure for the interwoven design. The table shows the effect 
of array failure in reconstructing profiles from an interwoven design. Pro-
file similarities were assessed using the cosine similarity. The different 
methods for which the influence of the failure was assessed are represented 
in the columns. Each row shows the mean cosine similarity between the 
corresponding profiles estimated from the complete design and those 
obtained from a defect design (where one array was removed compared to 
the complete design). Mean: shows the overall mean similarity for a given 
method.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-1-S4.pdf]

Additional file 5
Effect of array failure for the loop design. The table shows the effect of 
array failure in reconstructing profiles from a loop design. Profile similar-
ities were assessed using the cosine similarity. The different methods for 
which the influence of the failure was assessed are represented in the col-
umns. Each row shows the mean cosine similarity between the correspond-
ing profiles estimated from the complete design and those obtained from a 
defect design (where one array was removed compared to the complete 
design). Mean: shows the overall mean similarity for a given method.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-1-S5.pdf]
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