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Abbreviations

APA   American psychiatric association 

ADHD  attention-deficit hyperactivity disorder 

SCN  suprachiasmatic nucleus 

CLOCK gene circadian locomotor output cycles kaput gene 

LC  locus coeruleus 

MSLT  multiple sleep latency test 

PSG  polysomnography 

ODD  oppositional defiant disorder 

CD  conduct disorder 

CBCL  child behavior checklist  

MEQ  morningness-eveningness questionnaire 

SOI  sleep onset insomnia 

DLMO  dim light melatonin onset 

HPA axis hypothalamic-pituitary-adrenal axis 

CRF  corticotropin releasing factor 

RAS  reticular activation system 

DMH  dorsomedial hypothalamic nucleus 

VLPO area sleep-related ventrolateral preoptic area 

NE  noradrenaline 

PFC  prefrontal cortex 

DRD-4  gene dopamine receptor D4 gene 

fMRI  functional magnetic resonance imaging 

PET  positron emission tomography 

EEG  electroencephalogram 

ERP  event related potential 
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Abstract 

Disruptions in the sleep-wake cycle and the circadian system have been found in a 

wide range of psychiatric disorders and are generally correlated with clinical severity and 

diminished quality of life. Emerging evidence suggests similar disturbances may be found in 

attention deficit/hyperactivity disorder (ADHD). Here we review the available literature on 

across the day fluctuations in ADHD-related processes in terms of ; (i) time of day effects on 

behavior and activity; (ii) morningness-eveningness chronotypology; (iii) sleep/wake rhythms; 

and (iv) rhythmicity in neuroendocrine and neurophysiological responsiveness. On this basis, 

we propose a neurobiological framework to guide future study, which sees circadian effects in 

ADHD, along with other aspects of ADHD arousal-related deficits (e.g., cognitive energetic 

deficits), as being the result of dysregulated locus coeruleus function. Based on this 

perspective specific recommendations for future research are presented.   

Keywords: ADHD, arousal, circadian, suprachiasmatic nucleus, eveningness, behavior, 

sleep, melatonin, cortisol, heart rate, locus coeruleus 
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1. Introduction 

There is mounting evidence to support the notion that circadian rhythms are altered in 

a wide range of psychiatric diseases, especially affective disorders (see for reviews: Boivin, 

2000; Germain and Kupfer, 2008; McClung, 2007; Wirz-Justice, 2006). For example, 

impaired sleep and daytime fatigue are included in the diagnostic criteria for depressive 

disorders (American Psychiatric Association, APA, 2000) where diurnal variations in 

symptoms (e.g., mood and psychomotor activity) have frequently been reported. These 

fluctuations are reflected in physiological measures such that, compared to a control 

population, depressive patients show alterations in circadian rhythms of melatonin and 

(Pacchierotti et al., 2001) cortisol levels (Deuschle et al., 1997);  body temperature (Daimon 

et al., 1992);  and heart rate (Stampfer, 1998). Moreover, some interventions that change the 

timing of the biological clock in the brain (e.g., sleep deprivation, light therapy) have efficacy 

as treatments for these conditions (Wehr et al., 1979). For instance, Agomelatine, a new 

antidepressive agent with phase advancing characteristics has become available (Fornaro et al., 

2010; San and Arranz, 2008) and appears to be effective in at least a subgroup of patients 

(Duke, 2008). Diurnal variations in symptoms and altered profiles of circadian markers are 

also found in seasonal depressive disorder (Lewy et al., 2006), bipolar disorder (Harvey, 

2008), and schizophrenia (Rao et al., 1994).  

In attention deficit/hyperactivity disorder (ADHD) it is well established that 

behavioral symptoms and performance fluctuate both spontaneously over time and in 

response to changing environmental contexts (Antrop et al., 2005a; Luman et al., 2005; Power, 

1992; Sonuga-Barke et al., 1996; Toplak and Tannock, 2005; Wiersema et al., 2006b; Zentall 

and Zentall, 1976). In clinical practice, sleep-wake problems are frequently reported by 

individuals with ADHD or their parents, even though these problems are not currently 

included in the diagnostic criteria. As disruptions of circadian rhythms and sleep-wake cycles 
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are generally expected to have a significant impact on symptom severity (Fallone et al., 2001), 

daytime functioning (Bearpark and Michie, 1987), and health outcomes (Gangwisch, 2009; 

Scheer et al., 2009), in recent years, researchers have become increasingly interested in the 

possibility that such effects are implicated in ADHD pathophysiology. Gathering knowledge 

on diurnal variations in ADHD is important as these results may improve educational 

guidelines (such as optimal timing of academic lessons) and diagnostic and therapeutic 

assessments. For example, knowledge of time of day effects could lead to the adjustment of 

dosing and timing of ADHD medication to optimally observe and treat problematic behavior   

at a particular time of day. Furthermore, if findings on disrupted circadian rhythms are 

confirmed in ADHD, they may point to the value of circadian-based therapies in ADHD such 

as melatonin treatment and light therapy. To the best of our knowledge, there is no review that 

assesses findings on circadian effects in ADHD. 

 To date, the underlying mechanisms of circadian rhythm alterations in psychiatric 

disorders in general, or in some of these conditions specifically, are still unknown. The 

suprachiasmatic nucleus (SCN) in the ventral hypothalamus (Weaver, 1998) is thought to 

drive these 24-hour fluctuations in both physiological (e.g., body temperature, heart rate, 

hormone secretion) and psychological (cognitive performance, personality and behavior) 

functions (Carrier and Monk, 2000; Haus, 2007; Hofstra and de Weerd, 2008; Tankova et al., 

1994; Young, 2006). This biological clock has an endogenous nature - rhythms persist even in 

the absence of external, environmental information. However, exogenous cues, also called 

zeitgebers (e.g., light, but also sleep deprivation and social cues), tune this clock to a specific 

rhythm. The SCN is responsible for the functional time synchronization of all peripheral 

oscillators found in cells, tissues, and organs. Communication to peripheral structures takes 

place through both neural and endocrine factors, and enhances synchronized functioning of 

different human systems, including the central nervous system, the autonomic nervous system, 
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and the endocrine tissues (Haus, 2007). The sleep-wake cycle is also regulated by the SCN. 

However, this circadian process (process C) interacts with a homeostatic process (process S) 

to maintain wakefulness (which we further refer to as arousal; a physiological and 

psychological state of being awake, aware, and alert) during the day and to consolidate sleep 

at night. Whereas the process C is particularly important in the timing of sleep and arousal 

states, the process S regulates the duration and structure of sleep (Borbély, 1982). When 

considering the available evidence, disruptions in circadian rhythms and sleep-wake cycles 

have usually been related to changes in the timing of the biological clock (though alternative 

hypotheses have been provided; e.g., social zeitgeber theory, process S deficiency; Boivin, 

2000; Grandin et al., 2006). Alterations in biological clock timing have been seen as a 

consequence of changes in neurotransmitter activity related to the condition (Maurizi, 1984; 

Pacchierotti et al., 2001), but there is emerging research on circadian locomotor output cycles 

kaput (CLOCK) genes as an etiological factor (Barnard and Nolan, 2008).  

The current paper has two aims. First, to systematically review published data on 

across the day fluctuations in ADHD behavior, performance and physiological functioning in 

terms of ; (i) morningness-eveningness chronotypology; (ii) time of day effects of behavior 

and activity; (iii) sleep/wake rhythm problems; and (iv) rhythmicity in neuroendocrine and 

neurophysiological factors. Clinical implications of these (putative) effects will also be drawn 

out. Second, to develop a neurobiological framework to guide future research into circadian 

disruptions in ADHD. At the heart of this account is the hypothesis that disrupted circadian 

rhythms in ADHD, along with other arousal-related processes thought to be deficient in 

ADHD such as cognitive energetic problems, are due to locus coeruleus (LC) dysfunction.   

2. Review of Circadian Profiles in ADHD 

ADHD is one of the most prevalent psychiatric disorders in children and adolescents 

(Spencer et al., 2007), characterized by persistent problems in attention, hyperactivity and 
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impulsivity (APA, 2000). Based on the symptomatology, different ADHD subtypes can be 

distinguished namely the inattentive type, the hyperactive-impulsive type, and the combined 

(inattentive and hyperactive-impulsive) type. Although pervasiveness and persistence of 

symptoms and impairment are important criteria for the diagnosis of ADHD (APA, 2000), 

time- and context-dependent variability in behavioral symptoms and performance has been 

reported (Antrop et al., 2005a; Luman et al., 2005; Power, 1992; Sonuga-Barke et al., 1996; 

Toplak and Tannock, 2005; Wiersema et al., 2006b; Zentall and Zentall, 1976). Fluctuations 

in ADHD behavior have typically been explained in terms of either context-dependent acute 

changes in arousal state (both hypo- and hyperarousal; see section 3.2 and 3.3 for more 

detailed information), which in turn have been thought  to display spontaneous circadian 

effects across the day (see section 3.1 and 3.4 for more detailed information).  

2.1. Method 

An electronic literature search was performed using Web of Science and Pubmed 

(Medline) databases. Search terms were “circadian” or “diurnal” or “time of day” intersected 

with “ADHD” or “hyperactivity”. Based on the results of these strings, a more specific search 

was conducted using all combinations of previous terms with “eveningness” or “physical 

activity” or “sleep” or “melatonin” or “cortisol” or “heart rate”. A search through the 

references of original and related articles resulted in additional citations. Searches were 

restricted to papers in the English language published from 1967 to the present and included 

all studies with children, adolescents, and adults as participants. Since the “sleep” search 

string generated a lot of original articles and reviews, this paper focuses on findings with high 

relevance to the sleep-wake ‘rhythm’, i.e. results on sleep duration, sleep latency, and sleep 

efficiency as obtained by subjective and objective evaluation. The latter comprises 

investigations using either actigraph or multiple sleep latency test (MSTL). Polysomnography 

(PSG) research mainly focusing on sleep ’architecture’, e.g. REM and non-REM, and ADHD 
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has been thoroughly reviewed elsewhere (Cohen-Zion and Ancoli-Israel, 2004; Cortese et al., 

2009; Cortese et al., 2006; Sadeh et al., 2006) and is not reviewed again here.  

Because the literature directly related to circadian measures and ADHD is limited, 

studies using a single or short-term basal measurement of a circadian endocrine or autonomic 

variable were also included, even if they did not examine complete circadian patterns. 

However, studies including a basal pre-test measurement in the context of an experimental 

task were deemed to be less relevant for this review: These measurements could be influenced 

by anticipatory stress and have therefore only limited value in circadian evaluations. Time of 

day effects reported in behavioral studies were also considered, even if these primarily 

focused on contextual factors and not on 24-hour fluctuations. In addition, studies in patients 

with ADHD and comorbid disorders such as insomnia or disruptive behavioral disorders (i.e., 

oppositional defiant disorder (ODD) or conduct disorder (CD)) were reviewed although it is 

often difficult to disentangle the effects of the comorbid disorders from ADHD itself. 

2.2. Results 

The searches yielded studies using both subjective (e.g., questionnaires on 

chronotypology and sleep) and objective (e.g., endocrine measures, activity, and physiological 

registration) dependent measures. The majority of studies evaluated circadian rhythms in a 

naturalistic setting.  

2.2.1. Chronotypology. 

Chronotypology refers to a continuum on which individuals can be rated from high 

morning to high evening types (Cavallera and Giudici, 2008; Kerkhof, 1985; Tankova et al., 

1994).  The morningness-eveningness paradigm correlates highly with circadian rhythms and 

physiological measures of arousal (Baehr et al., 2000; Jankowski and Ciarkowska, 2008). We 

identified one paper in a general population of children and three papers in a clinical sample 

of adults with ADHD addressing this issue. In a healthy child population aged 8-13, Susman 
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et al. (2007) described an association between ADHD symptoms and distinctive patterns of 

circadian preference. The authors reported eveningness to be associated with higher scores on 

both attention problems and rule-breaking behavior in boys as measured by the Child 

Behavior Checklist (CBCL; Achenbach, 2001). In a clinical population of adults with ADHD, 

Rybak et al. (2007) found a circadian phase delay during the fall/winter period in adults with 

ADHD: They reported eveningness, as measured by the morningness-eveningness 

questionnaire (MEQ) (Horne and Ostberg, 1976), to correlate with both subjective (Brown 

Adult Attention Deficit Disorder Scale; Brown, 1996) and objective (Conners’ Continuous 

Performance Test; Conners, 2000) measures of attention deficits in ADHD. The association 

between eveningness and ADHD appeared to be independent of comorbid seasonal affective 

disorder. Caci et al. (2009) confirmed this relationship in adults suspected of having ADHD. 

Although inattention symptoms were strongly related to eveningness in their study, 

impulsivity and hyperactivity were not. Therefore, the authors suggested that eveningness 

may constitute an endophenotype of the predominantly inattentive subtype of ADHD. Also 

Bae et al. (2010) supported the idea that eveningness may be strongly associated with 

inattention problems in adult ADHD. Considering hyperactivity and impulsivity, they 

reported an association with eveningness in male subjects only. The link between ADHD and 

a later time of day preference (i.e., eveningness) is thought to reflect a delayed timing of 

optimal arousal levels. One possibility is that this differential across the day arousal pattern in 

ADHD is due to an altered 24-hour rhythmic control of the biological clock.  

2.2.2. Diurnal variations in behavior and performance. 

Behavioral observational research has provided overwhelming evidence for significant 

group differences between ADHD and controls in terms of mean levels of attention and 

activity measured across long periods of time. Although fluctuations in ADHD 

symptomatology and performance have been well studied in relation to changing 
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environmental demands (Antrop et al., 2005a; Luman et al., 2005; Power, 1992; Sonuga-

Barke et al., 1996; Toplak and Tannock, 2005; Wiersema et al., 2006b; Zentall and Zentall, 

1976), only seven studies have looked systematically at time of day effects (Table 1).  

<INSERT TABLE 1 ABOUT HERE> 

Observational studies: Zagar and Bowers (1983) reported a relationship between the 

hyperactive behavior of children with ADHD and time of day. During their observations 

(repeated 4-min periods once a week across four weeks), the authors found children with 

ADHD to be more inattentive and active in the afternoon. Recently, also Wehmeier et al. 

(2011) reported that the degree to which the various times of the day are found to be 

challenging fluctuates over the day. The authors investigated performance across different 

times of the day in children with ADHD receiving placebo or atomoxetine treatment. Though 

they found no indication of a differential treatment effect of the day, both groups showed a 

peak performance at 10 am which was followed by a decline with a trough at 2 pm; then 

performance improved again at 5 pm and declined toward the evening hours. The two studies 

described above could however not disentangle these findings from daily rhythms in attention 

(Lawrence and Stanford, 1999) and activity (Riddoch et al., 2007) in the normal population 

because they did not include a control group. Antrop et al. (2005b) investigated the influence 

of time of day on the effects of playtime on behavior in elementary school children with 

ADHD and normal developing classmates. They found an increase in hyperactive behavior in 

ADHD children only in the afternoon after controlling for several factors such as medication 

(see Table 1).  

Actigraph research: Analysis of activity in terms of its relative/absolute intensity has 

revealed distinctive time of day effects in ADHD.  Porrino et al. (1983) registered naturalistic 

activity levels in children with ADHD and control children during seven consecutive days. 

They reported that children with ADHD were more active than control children only during 
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specific hours of the school day (7 am, 8 am, 10 am, 11 am, noon, 2 pm, 3 pm, and 5 pm). 

However, the sample size in their study was small and direct observations were not performed. 

The authors tried to overcome this problem by keeping a diary of the children’s activities. 

They discovered that the hours of increased activity in children with ADHD coincided with 

structured school activities (reading and math classes), but not with recess/lunch periods. Also 

Tsujii et al. (2007) pointed to the possibility that time of day effects are likely to be 

confounded by context effects. They investigated the level of activity in different naturalistic 

educational settings, e.g., structured in-seat classes and non-structured classes at different 

times of day. Children with ADHD were significantly more active than controls during 

structured in-seat lessons in the afternoon, but no group differences were found during non-

structured classes, or during morning classes. More recently, Licht and Tryon (2009) found a 

significant group x time of day interaction effect in their naturalistic study investigating 

activity levels in a small group of children with ADHD and controls during one week. As 

hyperactivity in the ADHD group was only obvious during daytime and not during nighttime 

periods, the authors suggested that -along with contextual factors- circadian rhythms might 

play a role in these differential activity patterns. Similar findings were obtained in a larger 

sample by Imeraj et al. (2011). Moreover, their finding of higher daytime activity levels -

especially during noon and early afternoon hours- confirmed an important role for time of day 

effects in addition to environmental conditions in the expression of (afternoon) problem 

behavior in ADHD.  

2.2.3. Sleep-wake rhythms. 

Ten reviews on sleep patterns and ADHD in children and adults have already been 

published (Cohen-Zion and Ancoli-Israel, 2004; Cortese et al., 2009; Cortese et al., 2006; 

Gruber, 2009; Owens et al., 2009; Owens, 2005; Philipsen et al., 2006; Sadeh et al., 2006; van 

der Heijden et al., 2005a; Walters et al., 2008). In general, sleep studies in ADHD have given 
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mixed results on both subjective (i.e., clinical history, sleep diaries, and rating scales) and 

objective (i.e., actigraphy, and MSTL) sleep measures. The presence of different confounding 

factors in different studies have been suggested to be responsible for some of these 

discrepancies, e.g., age and sex (Boonstra et al., 2007), seasonal effects (Boonstra et al., 2007), 

temporal changes in DSM classification (Cortese et al., 2006), ADHD subtype (Wiggs et al., 

2005), medication status (Corkum et al., 1999; Cortese et al., 2006), and psychiatric 

comorbidity (Corkum et al., 1999; Cortese et al., 2006). The relation between ADHD and 

sleep becomes even more complex as sleep-related disorders such as restless leg syndrome 

and sleep apnea can present alongside ADHD (van der Heijden et al., 2005a). Primary sleep 

disorders may be a true comorbid condition with idiopathic ADHD, but some children may 

actually have a primary sleep disorder, misdiagnosed as ADHD, due to the fact that diurnal 

manifestations of primary sleep disorders can mimic ADHD symptoms (Chervin et al., 2002; 

Cortese et al., 2005). As this review focuses on the effect of circadian rhythms in ADHD, we 

concentrate here on circadian characteristics of the sleep-wake cycle, i.e., time of falling 

asleep, time of awakening, disturbed sleep phases, and daytime sleepiness, in children and 

adults with ADHD. As the timing of the sleep-wake cycle is controlled by the circadian 

pacemaker (i.e., the process C; Borbély, 1982), alterations in the timing of sleep and 

awakening could reflect an underlying circadian shift of the biological clock. Such disruption 

can cause significant daytime sleepiness, which is hypothesized to be more pronounced earlier 

in the day. However, daytime sleepiness and nighttime awakening could also reflect problems 

in the arousal-sleep “flip-flop” mechanism pointing to instability of the transition between 

sleep and wake, not necessarily related to specific times of day (Schwartz and Roth, 2008). 

For an overview of the 26 subjective and objective original papers included, see Table 2. 

<INSERT TABLE 2 ABOUT HERE> 
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Subjective evaluations: Nighttime parameters with high relevance to the sleep-wake 

rhythm include sleep onset, sleep duration, nighttime awakenings and difficulties with 

morning awakenings. Considering sleep onset difficulties and sleep onset latency, some 

studies report that children with ADHD show more difficulties initiating sleep or have longer 

sleep onset latency than normal controls (Hvolby et al., 2009; O'Brien et al., 2003a; O'Brien et 

al., 2003b; Owens et al., 2000), whereas other studies report sleep onset problems to be 

associated with ODD comorbidity and stimulant medication rather than ADHD itself 

(Corkum et al., 1999; Mick et al., 2000). Higher bedtime resistance in an ADHD population 

with ODD may exacerbate sleep complaints. However, an added effect of comorbid ODD on 

problematic behavior scores around bedtime was not confirmed by the study of Hvolby et al. 

(2009). As Owens et al. (2000) included unmedicated children with ADHD, stimulant 

medication could not be responsible for sleep onset latency problems reported in their study. 

With respect to total sleep duration, some authors reported no differences in sleep duration 

considering clinical samples of children with ADHD and normal controls (Hvolby et al., 2009; 

Marcotte et al., 1998; Mick et al., 2000), in contrast to other authors who reported both longer 

(Corkum et al., 2001) and shorter (Owens et al., 2000) sleep duration in ADHD. Several 

recent studies in larger population samples confirmed that short sleep duration is associated 

with problems related to attentional control and hyperactivity/impulsivity (Paavonen et al., 

2009; Pesonen et al., 2010; Touchette et al., 2009). In terms of sleep efficiency, some studies 

reported more nighttime awakenings in children with ADHD compared to normal controls 

(O'Brien et al., 2003a), whereas others found no differences (Hvolby et al., 2009; Mick et al., 

2000). Although some authors described more difficulties with morning awakenings (Chiang 

et al., 2010; Corkum et al., 2001; Owens et al., 2009), others found no support for this 

(Corkum et al., 1999; Mick et al., 2000; O'Brien et al., 2003a). With regard to daytime 

parameters, excessive daytime sleepiness has consistently been found to be more common in 
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children with ADHD compared to normal controls (Chiang et al., 2010; Cortese et al., 2009; 

O'Brien et al., 2003a; O'Brien et al., 2003b; Owens et al., 2009; Owens et al., 2000). To date, 

there are few studies of adolescents and adults. In adolescence, subjective severity of sleep 

problems was related to stimulant medication and comorbid depressive symptoms (Stein et al., 

2002), whereas in adults with ADHD, sleep problems such as sleep onset problems, 

difficulties with morning awakenings, and daytime sleepiness were reported to occur 

independent of stimulant medication and comorbidity (Schredl et al., 2007; Surman et al., 

2009). 

Objective evaluations: Actigraphy is a practical and accurate method to assess 

circadian rhythm disorders as actigraphic data can also be analyzed in terms of more general 

patterns of activity and rest as indicative of the sleep-wake cycle (Morgenthaler et al., 2007). 

Actigraphic studies in ADHD show mixed results (Cohen-Zion and Ancoli-Israel, 2004). 

Crabtree et al. (2003) found a delayed sleep onset in a group of children with ADHD referred 

to a sleep centre. As the authors included both medication treated and unmedicated children, 

results may be confounded by medication status. However, in unmedicated samples of 

children with ADHD (children discontinued medication or were medication naïve), shorter 

sleep duration (Owens et al., 2009) and longer sleep onset latency (Hvolby et al., 2008) have 

been confirmed as compared to controls. Nevertheless, sleep onset latencies have been shown 

to increase following stimulant medication in multiple (placebo-controlled) studies (Corkum 

et al., 2008; Ironside et al., 2010; Schwartz et al., 2004). For example, Barkley et al. (1990) 

found 15% of their subjects with ADHD experiencing insomnia during the placebo condition 

and more than 50% in the methylphenidate condition. Beneficial effects of medication on 

some aspects of sleep such as nighttime awakenings and parasomnias have also been reported 

(Kim et al., 2010).  
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Not all studies using objective measures have found differentiating sleep-wake results 

in ADHD (Corkum et al., 2001; Dagan et al., 1997; Gruber et al., 2000). One explanation for 

this inconsistency is that higher night-to-night variability accounts for similar mean sleep 

estimates in ADHD and control groups, despite the fact that standard deviations are 

significantly different between groups (Crabtree et al., 2003; Gruber et al., 2000; van der 

Heijden et al., 2005a). Another possibility is that sleep/wake findings are only applicable to a 

specific subgroup of children with ADHD as Van der Heijden et al. (2005b) reported different 

findings in ADHD with a comorbid sleep disorder and ADHD without sleep problems. A 

subgroup of children with ADHD and comorbid chronic sleep onset insomnia (SOI) disorder, 

compared to children with ADHD without sleep problems, showed a delayed sleep onset (on 

actigraphy) together with a delayed onset of the nocturnal melatonin peak (dim light 

melatonin onset, DLMO). As no control group was included in this study, one cannot be 

certain to what extent ADHD with or without SOI would differ from controls. Parallel 

findings have recently been obtained in adults with ADHD and SOI (significant differences 

between ADHD with and without SOI; Van Veen et al., 2010). However, the authors also 

included a normal control group from which both ADHD+SOI and ADHD-SOI differed in 

sleep onset latency and sleep efficiency. Similarly, Boonstra et al. (2007) reported that adults 

with ADHD (irrespective of SOI) take longer to fall asleep, have lower sleep efficiency, and 

shorter within-night periods of uninterrupted sleep compared to normal controls. It is possible 

that the biological clock influencing the timing of sleep-wake cycles is set to a later time in 

children with ADHD as compared to controls. The DLMO additionally reflects this delayed 

sleep timing. The use of melatonin as a marker for circadian evaluation and the effect of 

melatonin treatment to reset the circadian clock in ADHD are discussed below.  

Two studies using the MSLT reported significantly more daytime sleepiness in 

children and adolescents with ADHD than in controls (Golan et al., 2004; Lecendreux et al., 
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2000). This means that subjects with ADHD have shorter sleep onset latency during one or 

more daytime naps. Although children with ADHD were more sleepy throughout the day, 

Golan et al. (2004) observed the most severe sleepiness was in the morning (8 AM). This 

finding is consistent with a delayed circadian rhythm in ADHD. In a driving simulation 

experiment, similar results were obtained in adult drivers with ADHD: They were more 

susceptible to fatigue earlier in the day (Reimer et al., 2007).  

Altogether, a majority of studies on sleep-wake rhythms support a delayed sleep phase 

syndrome, suggestive of a disruption of the 24-hour sleep/arousal control, in (at least a 

subgroup of) subjects with ADHD. Several factors may have confounded these results (see 

Table 2 for more detailed study-specific information). However, a recent meta-analysis by 

Cortese et al. (2009), controlling for medication status and comorbidity, confirmed more sleep 

onset difficulties, night awakenings, difficulties with morning awakenings, higher sleep onset 

latency and lower sleep efficiency in children with ADHD (irrespective of comorbid SOI 

diagnosis). These characteristics provide additional support for the hypothesis of a delayed 

sleep phase syndrome in ADHD. As this meta-analysis did not consider other confounding 

factors (e.g., comorbid anxiety or depression, stress, difficulty settling down), it needs to be 

further determined to what extent these problems are specific to ADHD (or at least to a 

subgroup of ADHD). To address these issues a transdiagnostic approach has been proposed in 

the treatment of insomnia across a variety of psychiatry disorders (Harvey et al., 2011).  This 

approach could be especially useful in relation to ADHD given that SOI problems occur in up 

to 54% of ADHD cases affecting daily functioning and quality of life (Tjon Pian Gi et al., 

2003). 

2.2.4. Circadian effects on neuroendocrine and neurophysiological processes. 
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To date, research using neuroendocrine (e.g., cortisol) and neurophysiological (e.g., 

heart rate) measures in ADHD are mainly laboratory-based. However some data from more 

naturalistic studies measuring across the day changes is available.    

2.2.4.1. Melatonin.  

Melatonin is an  interesting hormonal marker used in the evaluation of circadian 

rhythms which affects the circadian regulation of different biological functions, including the 

sleep-wake cycle. Melatonin production by the pineal gland and the retina occurs at night 

such that concentrations are very low during daytime, increase at nightfall (DLMO) and peak 

around 3-4 am (Haus, 2007). DLMO production is the most reliable marker of circadian phase 

position (Hofstra and de Weerd, 2008; Klerman et al., 2002; Van der Heijden et al., 2005b; 

see also Macchi and Bruce (2004), Claustrat et al. (2005), and Benloucif et al. (2008) for a 

more detailed description of melatonin regulation, secretion, and analysis).  

Deviant melatonin levels have been related to several psychiatric disorders including 

depression, mania (Crasson et al., 2004; Kennedy et al., 1996), and seasonal affective disorder 

(Lewy et al., 2006). Very recently, Chaste et al. (2011) provided the first genetic 

ascertainment of defects in the melatonin pathway of patients with ADHD. Two studies have 

examined endogenous melatonin rhythms in children with ADHD and there is one study in 

adults (see also Table 2). Compared to control subjects, Nováková et al. (2011) did not report 

different 24-h melatonin profiles in their group of children with ADHD (6-12y). However, 

when considering younger and older subgroups separately, subtle developmental differences 

were revealed: i.e., in the oldest children with ADHD (10-12 y) only the onset, but not the 

offset, phase delayed with increasing age. In their group of children with ADHD (6-12 y), 

Van der Heijden et al. (2005b) reported that 73% of subjects met the criteria for sleep onset 

insomnia. Based on the measurements of activity levels and DLMO, they found evidence for 

a delayed sleep phase syndrome, i.e. longer sleep onset, later wake-up time, and delayed 
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DLMO (Nagtegaal et al., 1998), in their subgroup of children with ADHD and comorbid 

chronic SOI compared to the group with ADHD without sleep problems. This has been 

confirmed in adults with ADHD+SOI compared to adults with ADHD-SOI and normal 

controls (Van Veen et al., 2010). The therapeutic use of exogenous melatonin (5 mg 

melatonin in the evening), used to reset the timing function of the SCN, is associated with 

advanced sleep onset and DLMO compared to placebo in children with idiopathic chronic 

sleep-onset insomnia (Smits et al., 2001; Smits et al., 2003). Also in children with ADHD, 

melatonin administration is considered to be an effective treatment of initial SOI (Bendz and 

Scates, 2010). Significant improvement in sleep parameters such as sleep onset and sleep 

onset latency were described in both non-stimulant treated (Hoebert et al., 2009; Van Der 

Heijden et al., 2007) and stimulant treated (Tjon Pian Gi et al., 2003; Weiss et al., 2006) 

children with ADHD and insomnia. Although melatonin resets the circadian timing system, 

no effect of melatonin on daytime behavior symptoms could be observed in the study of Van 

der Heijden et al. (2007). In contrast, parents stated that melatonin was not only effective for 

sleep onset insomnia, but also for behavior problems in the 3-year follow-up assessment of 

this sample (Hoebert et al., 2009).  

2.2.4.2. Cortisol. 

The hypothalamic-pituitary-adrenal (HPA) axis is also sensitive to time information 

from the SCN (Haus, 2007), which is reflected in a typical diurnal cortisol pattern with a 

trough (the nadir) around midnight. In normal subjects, cortisol concentrations gradually 

increase 2 to 3 hours after bedtime, with a peak (the acrophase) 30 to 45 minutes after 

awakening, i.e., the cortisol awakening response. Levels then decrease gradually to nighttime 

concentrations (Buckley and Schatzberg, 2005; Edwards et al., 2001). Cortisol level in saliva 

is a reliable peripheral measure of arousal (see also Levine et al. (2007) for a review on the 

analysis of cortisol).  
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With respect to ADHD, cortisol levels have mostly been measured in response to 

stress (Hong et al., 2003; Randazzo et al., 2008; Shin and Lee, 2007; Snoek et al., 2004; van 

West et al., 2009), although a few attempts have been made to evaluate the influence of time 

of day. Although most of the stress response studies also describe basal cortisol levels on a 

single pre-stress measurement, results on this measure are inconsistent and have only limited 

value in the evaluation of diurnal cortisol patterns. Intra- and inter-day variability in 

individual cortisol patterns requires an evaluation using repeated cortisol measures across 

several days (Bartels et al., 2003; Edwards et al., 2001; Houtveen and de Geus, 2009; Schulz 

et al., 1997). To our knowledge, such an ‘ideal’ investigation has only been applied in one 

study (Imeraj et al., 2012). We therefore include studies with multiple measurements across 

one day (combined morning and basal sampling), but also studies including awakening or 

basal samples only. For an overview of the thirteen studies considered, see Table 3. 

<INSERT TABLE 3 ABOUT HERE> 

Most studies of diurnal patterns of cortisol have found a relationship between ADHD 

symptoms and altered circadian cortisol patterns. Results are inconsistent however showing 

both hypo- and hyperarousal deviations at different time points. Considering studies with 

repeated measurements across one day, Kaneko et al. (1993) originally found a normal diurnal 

cortisol pattern in only 43.3 % of the children with ADHD, suggesting a dysregulation of the 

HPA axis in the majority of children. Though Pesonen et al. (2011) could not find an 

association beween ADHD symptoms and diurnal cortisol profile in 8-year old children from 

the general population, other authors did. In a slightly older population sample, Susman et al. 

(2007) reported a small morning-to-afternoon cortisol ratio in boys -but not girls- with 

attention problems, which suggests an atypical circadian rhythm. Also Sondeijker et al. (2007) 

reported ADHD problems to be associated with higher basal evening cortisol levels in a 

general child population sample. However, they reported the opposite effect of sex of child 
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compared to Susman et al. (2007) with high rates of ADHD problems being associated with 

higher awakening cortisol levels in boys, but not in girls. Studies considering only awakening 

values also suggested a dysregulation of the HPA axis in ADHD, although findings were 

inconsistent. Some authors found a lower cortisol awakening response in a group of children 

with ADHD compared to a group of controls (Blomqvist et al., 2007; Ma et al., 2011), 

whereas Hatzinger et al. (2007) found higher morning peak levels in a much younger 

population sample of boys with hyperactivity symptoms. In contrast to previous findings, two  

recent studies failed to find any difference on morning cortisol between children with ADHD 

(without comorbid disorders) and control children (Freitag et al., 2009; Wang et al., 2011). 

Only one study has examined this in adults which reported no effect of ADHD diagnosis 

(Hirvikoski et al., 2009): Both the overall cortisol levels and the typical diurnal cortisol 

rhythm, including the awakening response, were normal in ADHD. 

Considering the high comorbidity rates of ODD in ADHD, inconsistent results may be 

explained by confounding effects of ODD. According to the hypo-arousal theory (Quay, 1965; 

Raine, 1996), disruptive disorders such as ODD and CD are linked to lower basal cortisol 

levels and lower stress responses  (McBurnett et al., 2000; Moss et al., 1995; van Goozen et 

al., 2000; van Goozen et al., 1998), but also to lower morning values (Pajer et al., 2001; 

Shirtcliff et al., 2005). Results relating to ADHD with comorbid ODD/CD are inconsistent. 

Some authors confirmed a hypo-arousal pattern in children with ADHD+ODD measuring 

both awakening (Freitag et al., 2009) and basal values (Kariyawasam et al., 2002) while other 

authors failed to find any robust association between waking levels and comorbid problems in 

ADHD (Hastings et al., 2009). In line with these findings, no differences in basal levels 

between ADHD children with aggression and without aggression have been reported (Schulz 

et al., 1997), suggesting the possibility that certain characteristics of ADHD, rather than 

aggression, could be associated with cortisol levels. Very recently, this complex relation 
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between ADHD-ODD comorbidity and diurnal cortisol profiles has become a focus of interest. 

In the study of Imeraj et al. (2012), salivary cortisol was sampled five times a day (awakening, 

30 min after awakening, noon, 4PM, 8PM). Their findings supported time-related arousal 

disruptions in children with ADHD associated with the presence or absence of ODD 

comorbidity. More specifically, it seemed that the ADHD subgroup without ODD 

comorbidity showed a flatter slope with relative morning hypo-arousal and evening 

hyperarousal, whereas the ADHD+ODD subgroup showed a steeper slope with relative 

morning hyperarousal and evening hypo-arousal.  

2.2.4.3. Heart rate. 

As arousal involves activation of the autonomic nervous system, physiological 

dysregulation of this system could be related to several psychiatric disorders involving arousal 

problems (Dietrich et al., 2007; Lorber, 2004; Ortiz and Raine, 2004). For example, a relation 

between low basal heart rate and disruptive behaviors has been established by several authors 

(Lorber, 2004; Mezzacappa et al., 1997; Ortiz and Raine, 2004). However, results on 

autonomic functioning in ADHD are less clear. Moreover, studies focusing on full circadian 

patterns are still limited despite the well-known time of day effects in heart rate. Recently, 

normal intrinsic circadian rhythms have been described (Waterhouse et al., 2007): an average 

day-night difference in resting heart rate of 6.5 bpm has been replicated by several authors 

(Burgess et al., 1997; Kerkhof et al., 1998; Scheer et al., 2003).  

Research in relation to ADHD has mainly focused on specific laboratory conditions 

such as stress inducing performance (Lackschewitz et al., 2008), peer provocation 

(Waschbusch et al., 2002), performance (Borger and van der Meere, 2000; Crone et al., 2003), 

and reward (Beauchaine et al., 2001; Crone et al., 2003; Crowell et al., 2006; Iaboni et al., 

1997; Luman et al., 2007). Pre-test heart rate usually did not differ between subjects with 

ADHD and normal controls (Iaboni et al., 1997; Lackschewitz et al., 2008). However, these 
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levels may be influenced by anticipatory stress and studies have tended not to investigate time 

of day fluctuations in ADHD. Only recently, a study on 24-hour heart rate patterns in ADHD 

has been completed (Imeraj et al., 2011).  

Crowell et al. (2006) reported lower basal heart rate (pre-test value) in children with 

ADHD+ODD. Herpertz et al. (2001) compared ADHD groups with and without comorbid CD 

- they reported lower autonomic responses in the comorbid but not in the ADHD-only group, 

relative to controls. Although non-specific skin conductance responses were significantly 

different between groups in this study, this was not the case for resting heart rate levels. In 

contrast, van Lang et al. (2007) reported a higher mean basal heart rate (measured between 1 

pm and 5 pm) in a group of children with high scores on ADHD+CD/ODD compared to a 

group with ADHD without comorbidity. These results suggest that differences in basal heart 

rate and autonomic functioning could be due to confounding effects of comorbidity, 

medication, and time of day.  

Recently, Tonhajzerova et al. (2009) found that unmedicated children with ADHD 

without comorbid disorders were more likely to display tachycardia compared to normal 

controls during a short-term evaluation (3 intervals of 5 minutes) in both supine position and 

orthostasis. These measurements were conducted between 8 AM and noon. Although this 

study was limited by a small sample and possible confounding effects of stress in a laboratory 

setting, spectral analysis of these results indicated changes in the cardiac autonomic regulation, 

i.e., decreased cardiac vagal modulation in supine position and altered ability of dynamic 

activation of the autonomic nervous system in response to orthostasis. It has been 

hypothesized that such an autonomic imbalance -low parasympathetic activity and a relative 

sympathetic dominance- reflects low heart rate variability, a marker for prefrontal hypo-

activity (Thayer and Sternberg, 2006) as seen in ADHD (Arnsten, 1998; Halperin and Schulz, 

2006; Himelstein et al., 2000; Valera et al., 2007). Very recently, the finding of higher heart 
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rate levels in non-medicated children with ADHD was confirmed during a 5-day heart rate 

registration study (Imeraj et al., 2011). Additional analyses revealed that group effects were 

larger at specific times of the day, namely afternoon and nighttime hours; a finding 

independent of activity and comorbid psychiatric disorders. The authors suggested that time 

of day may be an important contributor to altered heart rate patterns in ADHD. Especially the 

increase in nighttime levels, i.e., resting heart rate, seems important as this measure refers to a 

lower vagal tone which is associated with cardiovascular disease and mortality (Thayer and 

Lane, 2007). 

2.2.5 Summary of findings, limitations and clinical implications of research to 

date.  

Although patchy and inconsistent, this review found initial support for disrupted 

circadian rhythms in ADHD with respect to each area reviewed. First, a circadian phase delay 

was suggested in (at least a subgroup of) subjects with ADHD. This evidence was clearest in 

relation to chronotypology and sleep-wake rhythms, pointing to an association of ADHD with 

self-reported optimal arousal later in the day (i.e., eveningness) and with later sleep times, 

difficulties with morning awakenings, and excessive daytime sleepiness earlier in the day. 

The idea that the biological clock is responsible for this delayed timing of sleep-arousal states 

in ADHD was further supported by melatonin studies showing a delayed DLMO in a 

subgroup of subjects with ADHD and chronic SOI, which improved after melatonin treatment.  

Second, on the behavioral level, studies supported time of day effects in attention, 

performance, and activity. However, group differences were particularly expressed during 

afternoon hours, which runs counter to the previously hypothesized circadian phase delay. 

One possibility is that optimal arousal levels in children with ADHD are set at later times of 

the day as compared to controls, but both still occur in the morning/noon rather than the 

afternoon. Alternatively, more overt problematic behavior could be the result of a complex 
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interaction between specific times of day (especially afternoon) and contextual conditions 

(e.g., high cognitive, self-regulatory demands).  

Finally, published data on across the day fluctuations in cortisol and heart rate, 

although inconsistent, provide some additional support for this point of view. With respect to 

cortisol, most data support differential diurnal cortisol patterns in ADHD, but the specific 

time points (awakening vs evening) responsible for this circadian effect could not been 

established. Very recently, the evaluation of diurnal cortisol patterns during multiple days 

revealed that ADHD with or without ODD subgroups may be hypo- versus hyperaroused at 

different times of the day (Imeraj et al., 2012). Despite well-established across the day 

fluctuations in heart rate in normal populations, in ADHD, this measure has mostly been 

examined in relation to stress without taking into account possible time of day effects. There 

is only one longer-term evaluation of heart rate in ADHD. In this study, children with ADHD 

showed higher heart rate levels which were particularly expressed during the night and the 

afternoon, suggesting that circadian effects are important in explaining autonomic dysfunction 

in ADHD (Imeraj et al., 2011).  

These results must be interpreted in the light of study limitations. First, most of the 

studies were not designed to investigate time of day effects in ADHD and so the results may 

be confounded by factors that influence the endogenous biological clock function. Potential 

confounders include; (i) environmental factors such as light, climate and latitude; (ii) 

developmental factors such as age, sex, pubertal stage, menstrual cycle stage; (iii) factors 

related to health status (including tobacco use, caffeine intake, and alcohol consumption) and 

disease characteristics (including ADHD severity, subtype, comorbidity, and medication 

status); and (iv) factors as stress, digestion, motivation, and physical exercise (Atkinson et al., 

2007; Blatter and Cajochen, 2007; Carskadon et al., 1993; Cortese et al., 2006; Portaluppi et 

al., 2008).  
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Second, studies have typically used a small number of measures evaluated during 

relative short observation periods. This limits the interpretability and generalizability of 

results across biological and psychological systems. In circadian research, combinations of 

measures have been suggested to be important as interactions and common pathways between 

several circadian markers have been described. For example, there is a mutual link between 

the autonomic nervous system and the HPA axis: sympathetic activation results in higher 

production of CRF and therefore, also of cortisol; inversely, corticotropin releasing factor 

(CRF) stimulates noradrenergic neurons (Chrousos and Gold, 1998; Sondeijker et al., 2007). 

Also interactions between melatonin and cardiovascular function (Scheer et al., 2003; 

Zawilska et al., 2009), between melatonin and body temperature (Zawilska et al., 2009) and 

between HPA axis functioning and sleep patterns have been reported (Buckley and 

Schatzberg, 2005; Edwards et al., 2001). High inter- and intra-day variability in these 

circadian measures warrants longer-term evaluations (Bartels et al., 2003; Edwards et al., 

2001; Houtveen and de Geus, 2009; Schulz et al., 1997).  

Finally, previous research does not assess which mechanisms may underpin the 

association of disrupted circadian rhythms and ADHD and does not allow inferences to be 

drawn about the causal role of such circadian effects. On the one hand, a delayed timing of 

sleep-arousal states by the SCN seems to be important in subjects with ADHD. Though this 

finding could probably not be generalized to all subjects, considering the heterogeneous 

nature of ADHD, a disrupted circadian regulation of arousal could aggravate ADHD 

symptoms or could even represent a specific developmental pathway in at least some cases. 

On the other hand, in general, arousal dysregulation in ADHD seems to be associated with a 

more complex pattern of behavioral problems throughout the day, which are even more 

expressed in interaction with environmental and stress-related events.    
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Despite inconsistencies in studies and methodological limitations the emerging 

evidence for circadian effects may eventually have practical value. For example, children with 

ADHD and comorbid insomnia (aged 6-14) were reported to benefit from exogenous 

melatonin administration -with or without combined stimulant medication treatment. It may 

therefore be valuable to routinely evaluate sleep problems in ADHD  to detect this subgroup 

and improve their outcomes. Although light therapy seems effective in adults with ADHD and 

a delayed sleep phase (Rybak et al., 2004), so far, no melatonin medication studies in this 

population are available. Well-designed studies to establish optimal dosing regimens for 

different age groups and long-term safety are needed (Bendz and Scates, 2010).  

Identifying the afternoon as a period of risk for ADHD (especially when there is an 

overlap with high environmental demands) may encourage further educational adaptations 

considering the timing of academic lessons. Relatedly, adjustment of dosing and timing of 

ADHD medication to optimally observe and treat problematic behavior considering its 

fluctuating expression should be considered. Systematic methods of assessment of time of day 

effects for clinical purposes need to be developed (Chavez et al., 2009; Pelham et al., 2001; 

Sonuga-Barke et al., 2004; Swanson et al., 2004). Though the specific mechanisms that may 

underpin time of day effects in arousal dysregulation are still unknown, such knowledge may 

guide specific therapeutic choices for individual patients as arousal levels are often the target 

of focus for interventions. For example, according to Stadler et al. (2008), children with a 

lower basal heart rate, i.e., lower autonomic arousal, profit less from psychotherapy than 

children with higher basal heart rate. In contrast, stimulant medication increases arousal, and 

it may therefore be especially useful at times of underarousal (Hermens et al., 2007; but see 

section 3.3 for more detailed information on action mechanisms). Such adaptations in the 

timing of arousal-based treatments may be particularly relevant in different ADHD subgroups 

(e.g., with or without ODD). As nighttime tachycardia has been reported in unmedicated 
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children with ADHD, this might question the use of stimulant medication that could further 

increase heart rate levels (Daniels, 2009; Hammerness et al., 2011). Though Vitiello et al. 

(2012) concluded that stimulant treatment in ADHD probably does not increase the risk for 

hypertension over a 10-year period, the persistent adrenergic effect on heart rate during 

treatment may be an important issue especially for adult’s with ADHD who are at risk due to 

higher rates of adult obesity and tobacco use (Cohen et al., 1999; Young and Bray, 2007). As 

in normal populations, an association of circadian misalignment with obesity and other 

cardiovascular risk factors has been reported, this could even further increase health risks in 

ADHD (Gangwisch, 2009; Scheer et al., 2009). 

3. LC-mediated Arousal Dysfunction in ADHD – A Working Hypothesis  

Linking Context-driven, Cognitive Energetic, and  

Context-independent Circadian-based Alterations. 

Studies to date provide a fragmented pattern of circumstantial evidence linking ADHD 

to altered circadian rhythms. A more systematic approach to studying the relationship 

between time of day effects and ADHD needs to be established and this in turn needs to be 

built on a platform underpinned by biologically and psychologically plausible models. Here 

we describe one such framework established on a working hypothesis of the biological basis 

of putative circadian disruptions in ADHD, their links to other aspects of ADHD function, 

and their biological and psychological roots. In this hypothesis we postulate that circadian 

disruptions are one aspect of a more general arousal regulation problem that has already been 

identified as the basis for a range of cognitive-energetic deficits in ADHD (Sergeant and Van 

der Meere, 1988, 1990). More specifically, we suggest an extension of models of altered 

arousal mechanisms in ADHD (Sergeant and Van der Meere, 1988, 1990) encompassing both 

cognitive energetic effects due to altered responses to changes in environmental context and 

disrupted patterns of spontaneous circadian activity across the day. Therefore in addition to 
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the pattern of findings relating to circadian effects in ADHD reported above this model is 

built on two areas of well established existing evidence. First, that LC function, as a key locus 

in noradrenergic pathways in the brain is implicated in arousal more generally and circadian 

effects specifically. Second, the evidence that arousal mechanisms are altered in ADHD 

leading to general difficulties in regulating physiological state in response to changing 

conditions. These patterns of evidence highlight the potential role of the LC disruption in 

ADHD as a biological mediator of both context specific cognitive energetic effects and 

context independent circadian effects (This model is represented in figure 1). In the following 

section, we review the literature linking LC function (and noradrenergic function more 

generally) to (i) arousal and circadian processes and (ii) ADHD pathophysiology more 

generally. We then identify areas for future research exploring the role of LC dysfunction 

specifically in relation to circadian effects in ADHD (see section 4).  

3.1. The Role of Locus Coeruleus in Arousal and Circadian Effects  

The LC, the main noradrenergic nucleus in the brain, is responsible for the regulation 

of cortical arousal which can be described as a physiological and psychological state of being 

awake, aware and alert (Aston-Jones, 2005; Samuels and Szabadi, 2008). Arousal involves 

the activation of the reticular activation system (RAS) in the brain stem, the autonomic 

nervous system and – if induced or accompanied by stress- the endocrine system (Pfaff and 

Banavar, 2007; Pfaff et al., 2007; Schwartz and Roth, 2008; Silver and LeSauter, 2008). Next 

to arousal-influencing effects of factors such as hormonal stress reactivity, emotions, 

temperament, and psychopharmacotherapy, it is assumed that arousal state regulation is also 

driven by circadian rhythms (Silver and LeSauter, 2008). A correct timing of the circadian 

clock (SCN) is important to orchestrate neural activity, regulate sleep-wake states, and control 

emotion and cognition functions (Vicentic et al., 2009).  
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The hypothesis that the LC shows fluctuations in diurnal activity has been supported 

in animals. Aston-Jones (2005) described an indirect projection from the SCN, the circadian 

pacemaker, to the LC with the dorsomedial hypothalamic nucleus (DMH) as a relay from the 

SCN to the LC. The DMH plays a major role in circadian rhythms of corticosteroid and other 

endocrine secretion, locomotor activity, and sleep (Chou et al., 2003; Germain and Kupfer, 

2008). In this SCN-DMH-LC circuit, wakefulness is induced by hypocretin/orexin 

neuropeptides activating the arousal-related LC (Ivanov and Aston-Jones, 2000), and 

inversely, suppressing the sleep-related ventrolateral preoptic areas (VLPO) (Winsky-

Sommerer et al., 2003).  

When noradrenaline (NE) is released from the LC, it exerts unique and additive wake-

promoting actions through binding on noradrenergic receptor subtypes α1 and β (please see 

Berridge and Waterhouse (2003) for a more detailed review). Such noradrenergic release in 

the cortex may produce a prolonged depolarization of cortical neurons that would increase 

their responsiveness to other inputs, for example dopaminergic prefrontal cortex (PFC) 

circuits (Gorelova et al., 2002). In contrast to α1 and β receptors that are thought to exist at 

postsynaptic sites primarily, α2  receptors can be found both pre- and postsynaptically. 

Binding of NE on the α2  receptor has sedative effects. Pre-synaptic receptors provide a local 

feedback mechanism for counteracting excessive release of NE (please see Berridge and 

Waterhouse (2003) for a more detailed review). Though clonidine, an α2  noradrenergic 

agonist, decreases LC firing (thus suppresses NE release), it enhances cognitive performance 

through binding on postsynaptic receptors in PFC (Berridge and Devilbiss, 2011). This way, 

the LC-NE system has been reported to be involved not only in (i) initiation of behavioral and 

neuronal activity ready to collect sensory information (e.g., waking), but also in (ii) 

modulation of sensory information processing, attention, and memory within the waking state 

(Berridge and Waterhouse, 2003). These behavioral processes have been associated with 
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different discharge modes of LC: The tonic noradrenergic release (i.e., spontaneous, baseline 

activity of the nucleus; which shows a circadian rhythm with an increase from sleep to waking) 

and the phasic discharge (i.e., brief, rapid increases in response to environmental stimuli when 

awake). In the latter case, phasic activation takes place in response to the processing of task-

relevant stimuli and optimalizes task performance (only possible when tonic discharge levels 

are moderately increased), whereas in the tonic mode (high levels of ongoing tonic activity), 

the LC fails to respond phasically to task demands an effect associated with poor focused 

attention and exploration (Aston-Jones and Cohen, 2005). Parallel to the Yerkes-Dodson 

relationship between arousal and performance, the authors proposed a theory stating that 

optimal performance is associated with moderate LC tonic activity and prominent phasic LC 

activation and that poor performance is associated with both low levels (inattentive, drowsy, 

sleepy) and high levels (distractible) of tonic activity, with small or even absent LC phasic 

responses. As the LC is associated with both circadian regulation and cognitive performance, 

Aston-Jones and colleagues (2001) hypothesized that circadian changes in LC activity may be 

reflected in complex task behavior, such as a circadian fluctuation in cognitive ability, next to 

alterations in sleep-wake cycles.  

3.2. ADHD, Arousal and Deficient State Regulation  

In ADHD the best evidence of arousal-related dysregulation comes from studies of the 

impact of changing environmental context on information processes. These have usually been 

interpreted in the light of state regulation deficits using cognitive energetic models (Sergeant 

and Van der Meere, 1988, 1990). Sergeant and Van der Meere (1988, 1990) first interpreted 

the non-optimal state of arousal as due to failures to appropriately allocate effort during 

information processing. In this model state dysregulation refers to an imbalance between three, 

closely linked, energetic systems, namely effort, arousal and activation. Difficulties in state 
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regulation in ADHD are predicted to arise not only from under arousal/activation but also due 

to over arousal/activation (Sonuga-Barke et al., 2010; Van der Meere, 2005).  

To date, taken from this perspective, the focus of the primary deficit in ADHD relates 

to the response preparation-related activation processes which are associated with response 

organization. In their review, Sonuga-Barke et al. (2010) point to investigation of cognitive 

performance in ADHD children during tasks with different event rates (the key probe of 

activation processes) which provide support for environmental influences on state-regulation,  

the importance of ‘optimal’ stimulation and relevance of the inverted U-curve (parallel to the 

Yerkes-Dodson relationship) linking event rate to performance via arousal/activation levels: 

during fast event rate, ADHD children responded fast and inaccurate, while during slow event 

rate, they are expected to show slow-inaccurate responding. Although there is currently little 

research on the neurobiological correlates of this deficit, a role for LC dysfunction has been 

suggested (Sonuga-Barke et al., 2010). This suggestion shifts the primary focus of interest 

from dopaminergic to noradrenergic deficits in ADHD. For a long time, the dopamine theory 

(Levy, 1991) has been the leading dogma, suggesting an inhibitory dopaminergic effect at 

prefrontal/striatal level in ADHD, which has repeatedly been supported by neuroimaging, 

genetic and stimulant medication studies (Faraone and Biederman, 1998; Faraone and Khan, 

2005; Levy and Swanson, 2001; Solanto, 1984). More recent data, however, suggest an 

important modulating role of the LC and noradrenergic arousal pathways on dopaminergic 

PFC function.  

3.3 Existing Evidence Implicating LC-related Noradrenergic Function in ADHD  

The cognitive-energetic models described above hypothesize that state regulation 

deficits are in part related to LC dysfunction (Sergeant and Van der Meere, 1988, 1990). 

Tonic activity of the LC system, located in the RAS, is associated with the regulation of 

arousal and several state-dependent processes, such as sensory information processing, 
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attention, working memory, and motor processes (Arnsten and Dudley, 2005; Devilbiss and 

Waterhouse, 2004; Sonuga-Barke et al., 2010). Below we hypothesize that the 

pathophysiology of ADHD involves an ‘overdrive’ of the LC, with excessive noradrenergic 

tonic release leading to reduced capacity of the PFC to respond to phasic stimuli (Mefford and 

Potter, 1989; Pliszka et al., 1996; Sonuga-Barke et al., 2010). More specifically, the increase 

in tonic discharge above a certain level has been associated with less robust phasic discharge 

and decrease in focused attention and increase in impulsivity (Aston-Jones and Cohen, 2005). 

Reciprocal connections between the PFC and the LC have been hypothesized by Arnsten et al. 

(1996), pointing to the role of noradrenergic in concert with dopaminergic systems in 

explaining prefrontal dysregulation (Levy and Swanson, 2001).  Studies showed that NE may 

enhance “signal/noise” processing in the PFC via actions at α2 receptors (increase signal) and 

impair its function via α1 and β receptors; these processes coincide with optimal dopamine 

(D1) stimulation (decrease noise) and excessive D1 stimulation respectively (see review 

Arnsten, 2006). Therefore, the authors suggest that catecholamines may act as a chemical 

switch: turning on PFC during normal waking and turning it off during drowsiness or stress.  

With respect to ADHD, monkey models with blockade of the α2 receptors of the PFC 

created symptoms of ADHD (hyperactivity, impulsivity, and impaired working memory), 

whereas clonidine, an α2 noradrenergic agonist used in the treatment of ADHD, has cognitive-

enhancing effects due to its ability to activate post-synaptic α2 receptors (see review Berridge 

and Devilbiss, 2011). Other treatment modalities in ADHD support (modulatory) deficits in 

noradrenergic pathways (see Berridge and Devilbiss, 2011; Biederman and Spencer, 1999; del 

Campo et al., 2011 for reviews on this topic). For example, beneficial arousal-promoting  

effects of psychostimulants are due not only to extracellular increases in dopamine but also in 

NE concentrations in the PFC (Devilbiss and Berridge, 2008).  Looking more closely at 

electrotonic coupling, on the level of the LC, low-dose administrated stimulants moderately 
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decreased the tonic discharge (which is however overcompensated by drug-induced elevations 

in extracellular NE), but largely preserved phasic signaling which is important in the 

regulation of behavioral actions (Berridge and Devilbiss, 2011). Also modafinil, an analeptic 

drug used in the treatment of narcolepsy and excessive daytime sleepiness, has been 

suggested to shift the LC to low tonic, high phasic activity which potentially enhances PFC 

function in ADHD (del Campo et al., 2011). Additionally, tricyclic antidepressants 

(noradrenergic reuptake inhibitors) have been described to be effective in the treatment of 

ADHD symptoms through an increase of extracellular NE in the PFC by blocking 

noradrenergic reuptake (Biederman and Spencer, 1999). Finally, the idea that modulation of 

noradrenergic circuits may improve ADHD symptoms is supported by the newer ADHD 

agent atomoxetine, which is also a selective inhibitor of noradrenergic transporters. Swanson 

et al. (2006) showed that atomoxetine increases NE in several brain regions including the PFC 

and dopamine in the PFC (not in other regions such as striatum and nucleus accumbens). 

Therefore, atomoxetine is assumed to have less abuse potential as compared to 

methylphenidate. The clinical use of atomoxetine has moreover been promoted in terms of its 

24-hour treatment of inattention, hyperactivity/impulsivity. Though it needs to be further 

investigated to what extent this drug modulates circadian rhythm in humans with ADHD, 

recent data suggest that atomoxetine may reset the circadian clock in mice (O’Keeffe and al., 

2012). Finally, atomoxetine is considered to be a first-line treatment in patients with comorbid 

anxiety or tics (Garnock-Jones and Keating, 2009).  

3.4. A Working Hypothesis: Circadian Effects as a Special Case of LC / Arousal 

Dysfunction in ADHD 

Based on the above review we postulate that in this case state regulation problems and 

altered circadian effects in ADHD both arise from shared origins in dysfunctional SCN-

DMH-LC pathways (see Figure 1). This hypothesis is based specifically on the idea that (i) 
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ADHD is associated with tonic hyperactivity of the LC (as described above in the state 

regulation model; Mefford and Potter, 1989; Pliszka et al., 1996; Sonuga-Barke et al., 2010), 

and (ii) that the LC itself is integrally involved in the regulation of  circadian effects generated 

by the SCN (Aston-Jones et al., 2007), next to its role in behavioral states and cognitive 

performance.  

Direct evidence for the functionality of the SCN-DMH-LC circuit comes from patients 

with a lesioned SCN who fail to modulate attention, dysregulating the timing of the attention 

focus (Cohen et al., 1997). Also with respect to hyperactivity, Sylvester et al. (2002) 

described a modulating role of SCN as suggested in studies with rats (Stephan and Zucker, 

1972). Though little techniques are available yet to detect dysfunctions of the SCN (Sylvester 

et al., 2002), clock gene polymorphisms are expected to alter the timing of the circadian 

pacemaker (Rosenwasser, 2010). With respect to ADHD, Levitan et al. (2004) suggested a 

link between polymorphisms of the 7-repeat allele of the dopamine receptor D4 gene (DRD-4), 

ADHD and circadian rhythm problems. Other authors have recently established a more direct 

link between ADHD and genetic circadian dysregulation by describing a significant 

association between polymorphisms of the 3’-untranslated region of the CLOCK gene -a gene 

previously linked to both sleep disturbances and evening preference- and ADHD (Kissling et 

al., 2008; Xu et al., 2010). Also Brookes et al. (2006) detected associations between two 

genes in the circadian rhythm system and ADHD. Very recently, Yan et al. (2011) pointed to 

additional evidence linking disruption in circadian rhythms with ADHD. In their NK1 

receptor lacking mice, resembling abnormalities in ADHD, performance varied as a function 

of time of day and for some measures of response control an interaction between NK1 

function and circadian rhythms was observed. The authors mention that this is not surprising 

as NK1R are prevalent in regions responsible for circadian control (e.g., SCN) and antagonist 

agents have been reported to cause daytime fatigue, insomnia, and disruptions of circadian 
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motor activity. On the level of DMH, lesions have also been reported to reduce circadian 

rhythms of wakefulness, locomotor activity, and cortisol levels (Chou et al., 2003). On the 

level of the LC, there is evidence for a circadian rhythm in its impulse activity and its role in 

producing transitions between sleep-waking cycles; after lesions of the LC, a decrease in the 

amplitude of the circadian rhythms in sleep-wake cycles was noted as described in reviewed 

work of Aston-Jones and colleagues (Aston-Jones et al., 2007). In their experiments, they 

additionally showed that light deprivation caused substantial decreases in noradrenergic 

neurotransmission in the rat’s frontal cortex.  

Despite the role of the LC in circadian regulation, it is currently not known whether an 

overdrive of this nucleus is specifically associated with a circadian phase delay. However, this 

hypothesis is highly plausible; Aston-Jones and colleagues hypothesized that upregulated 

noradrenergic release may contribute to both sleep (e.g., sleep onset insomnia) and behavioral 

symptomatology (e.g., daytime hyperactivity and inattention) in ADHD, as they observed 

these specific ADHD types of behavior during the tonic mode of activity in monkey LC.  

Though we assume that sleep onset problems may subsequently lead to difficulties with 

awakening and daytime sleepiness, these problems may also relate more directly to 

hyperactive tonic discharge of the LC. With respect to morning awakening, an increase in 

tonic activity is needed for transition from sleep to wake. High baseline levels are however 

associated with less variability (Phillips et al., 2000) (see section 4.1.b; pupil diameter), which 

may hypothetically impede such transitions. During wake, changes in the tonic and 

subsequently phasic activity of the LC have been associated with fluctuations in alertness 

under specific conditions (Aston-Jones, 2005). As in our review above it was noted that 

ADHD behavior  becomes more overt at specific times of day, it is reasonable to hypothesize 

that the two functions of the LC - its role in both state control and performance- interact and 

that ‘baseline LC hyperarousal’ in ADHD leads to a complex profile of circadian-regulated 
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and context-dependent behavioral dysregulation. It still needs to be determined though how 

time of day effects would interact with the expression of the tonic/phasic mode of LC activity 

–or transitions between them- to affect prefrontal functioning.  

INSERT FIGURE 1 ABOUT HERE 

Though highlighting the link between circadian alterations and ADHD may allow us 

to identify novel processes for study in ADHD, the complexity of the working hypothesis 

presented above must be recognized (see Figure 1). First, neurotransmitter systems do not 

operate independently, and the interaction between NE, dopamine, and serotonin is probably 

important in psychopathology (Harvey et al., 2011). In addition to the noradrenergic circuitry 

described above, dopaminergic and serotonergic dysfunctions may additionally link circadian 

alterations to ADHD as these neurotransmitters are themselves influenced by the circadian 

rhythm system and considered to be pathophysiologically involved in ADHD (Faraone and 

Khan, 2005; Levy, 2009; Paclt et al., 2005; Pattij and Vanderschuren, 2008; van der Kooij 

and Glennon, 2007). Second, complex interactions between neurotransmitters, clock genes, 

and circadian neurobiological structures have been described. For example, Barnard and 

Nolan (2008) refer to the fact that clock gene expression is modulated by neurotransmitter 

effects. The circadian clock has also been described to be influenced by an ‘overdrive’ of the 

LC and related increase in noradrenergic activity (Maurizi, 1984) such as seen in ADHD. This 

could be due to inadequate noradrenergic stimulation of the pineal gland, altering the 

concentrations of its main hormonal product melatonin, which in turn is important in the 

regulation of the circadian clock containing melatonin receptors (Pacchierotti et al., 2001). 

Finally, the idea that circadian alterations are an expression of ADHD-related arousal-based 

problems is probably only valid for a specific subsample of subjects with ADHD, and may 

also be present in other psychiatric disorders. This hypothesis is in line with for example 
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findings that executive functioning deficits and delay aversion are implicated in ADHD, 

though that neither is necessary for ADHD nor specific too it (Sonuga-Barke et al., 2008).  

4. Proposals for Future Study of Circadian Effects in ADHD  

In this section we discuss future directions for research indicated by the LC-based 

model of circadian effects described above and described in Figure 1. Multilevel 

interdisciplinary research will be necessary to address the current gaps in this research area. 

At this point, there is evidence for a link between ADHD, dysregulated arousal and LC, and a 

link between LC and circadian rhythms (described above). More systematic research however 

is needed to investigate circadian-related effects in ADHD to confirm currently available 

findings presented in the review.  

Based on the model proposed above, we formulate the following predictions: (i) 

ADHD is associated with LC-mediated circadian rhythm alterations; subpredictions are: (a) 

LC tonic hyperactivity in ADHD is more expressed at specific times of day than others; (b) 

there is a disruption in the circadian rhythms of LC-noradrenergic mediated arousal in ADHD; 

(c) subjects with ADHD show specific alterations in behavioral and physiological measures as 

a function of time of day; (d) circadian disruptions in LC activity, arousal, and behavioral/ 

physiological measures will be correlated in ADHD; (ii) there is an interaction of time of day 

effects and specific environmental stimuli suggesting a ‘shared LC state-regulation pathway 

deficit’ in ADHD; and (iii) the theory of disrupted circadian rhythms is probably only valid 

for a subgroup of cases with ADHD and may overlap with other psychiatric conditions. 

4.1. Prediction 1: ADHD is Associated with LC-mediated Circadian Rhythm Alterations 

a. LC tonic hyperactivity in ADHD is more expressed at specific times of day than 

others.  

ADHD has been associated with an ‘overdrive’ of the LC (Mefford and Potter, 1989; 

Pliszka et al., 1996; Sonuga-Barke et al., 2010), which is in turn involved in the circadian 
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regulation of arousal and sleep-wake states (Aston-Jones et al., 2007). These findings rely 

heavily on animal studies, but it is reasonable –though still challenging- to investigate the LC 

in humans with ADHD and to detect whether the LC dysfunction in ADHD is circadian 

sensitive. One way to do so is the use of neuroimaging methods, such as functional magnetic 

resonance imaging (fMRI) and positron emission tomography (PET). To address this question 

imaging procedures need to be repeated across a 24-hour period. During daytime hours, this 

has been done before not only for visualization of circadian activity in the LC but also in the 

SCN (Schmidt et al., 2009), when subjects were exposed to different environmental 

stimulus/task conditions at different times of day. Scanning during sleep will be cumbersome 

but is theoretically feasible. However, practical problems may arise as it is difficult to fall 

asleep during scanning procedures. A PET protocol to study sleep in a naturalistic setting has 

been provided, though with decreased temporal resolution (Nofzinger et al., 1998). In this 

regard, less invasive, peripheral arousal measures and electroencephalogram (EEG) (as 

described in the second and third subprediction) may be interesting to (additionally) study 

sleep in humans.  

Pharmacological studies also allow investigation of the LC function and activity. For 

example, studies with clonidine used for ADHD or as an anesthetic have provided in-depth 

knowledge on sleep-wake and cognition regulatory functions through the study of binding on 

pre- and postsynaptic α2 adrenergic receptors (see for reviews: Arnsten et al., 1996; Berridge 

and Devilbiss, 2011). Another example relates to disruption of circadian rhythms in 

dopaminergic concentration and receptor activity which have been linked to circadian 

symptomatology in drug addiction (Falcon and McClung, 2009; Naber et al., 1980; Sleipness 

et al., 2007). In their review, Manev and Uz (2009) reported time-dependent behavioral 

actions of both cocaine and amphetamines. In relation to noradrenergic receptors, circadian 

rhythms are thought to be modified by tricyclic antidepressants (Wirz-Justice et al., 1980). It 
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will be valuable to explore time-dependent effects on ADHD drugs’ working mechanisms 

considering both dopaminergic and noradrenergic pathways. Such knowledge could guide 

more systematic effect-evaluation studies taking into account time of day effects of different 

drug-releasing modalities for ADHD (Swanson et al., 2004) to treat time-specific arousal 

problems in this population (see prediction 2).  

b. There is a disruption in the circadian rhythms of LC-noradrenergic mediated 

arousal in ADHD. 

 In recent research, the utility of two candidate psychophysiological markers of LC-

noradrenergic activity has been investigated: the P3- event related potential (ERP) and pupil 

diameter (Murphy et al., 2011). The P3 is an ERP component peaking 300-600 ms after a 

task-relevant stimulus, which has been argued to represent a cortical electrophysiological 

correlate of the phasic LC response and the noradrenergic potentiation of information 

processing (Nieuwenhuis et al., 2005). A second index is pupil diameter, an autonomic 

measure involving both sympathetic and parasympathetic activity, which has been 

hypothesized to reflect both tonic and phasic aspects of LC activity. More specifically, 

upregulation of tonic noradrenergic activity has been associated with increases in baseline 

pupil diameter and decrease in pupillary variability, while pupil dilatory response occurs to a 

wide range of task-related stimuli (Phillips et al., 2000).  

To confirm the circadian-related prediction above, it would be necessary to assess 

baseline pupil diameter at different times of the day in both cases with and without ADHD. 

Because of the close relation between tonic and phasic activity in daytime cognitive 

performance it is important to detect whether ADHD-associated increases in tonic activity 

(and therefore larger pupil diameter baseline) are more expressed at different times of the day. 

With respect to the P3, which is assumed to reflect phasic activity, amplitudes have often been 

found to be smaller in ADHD as compared to controls (Barry et al., 2003b). There is evidence 



CIRCADIAN PROFILES IN ADHD  40 
 

that P3 differences in ADHD are related to arousal states: for example, in their event rate 

study, Wiersema et al. (2006a; 2006b) found altered P3 components in the ADHD as 

compared to a control group only when in underaroused state. However, as of yet, no study 

has evaluated time of day effect on P3 deviation in ADHD. Suggestions to investigate the 

circadian-environmental overlap are discussed in prediction 2.    

Though pupillometry is often used in research on daytime sleepiness (decreased pupil 

size due to parasympathetic influence) under both light and darkness conditions, 

measurements can not be made “during” sleep. With respect to P3, small or even absent 

potentials are expected during sleep as low tonic firing rate does not allow phasic discharge. 

Though studies analyzing auditory input during sleep observed a sleep P3, it is uncertain to 

what extent this potential is equivalent to waking P3 (Bastuji et al., 2002). Nevertheless, 

further investigation of the role of the LC in regulating autonomic nervous system and sleep-

wake cycles is important as fluctuations in a variety of measures of “arousal state” (e.g., heart 

rate) have been reported to affect P3 morphology (Polich and Kok, 1995). Such peripheral 

measures may provide an excellent alternative to monitor arousal states during both night and 

day (see also description in prediction 1c): Nieuwenhuis et al. (2011) described in their review 

that changes in LC activity are not only highly correlated with changes in P3 component and 

pupil diameter, but also in skin conductance level and heart rate.  

Alternatively, EEG is very suitable for this purpose as it is a direct index of the 

electrical activity of the brain. More specifically, the θ/β ratio and α power in the EEG signal 

have been used as a marker of central nervous system arousal. In ADHD, higher θ/β and α 

deviances have been argued as an indication of cortical underarousal (see Barry et al. (2003a) 

for a review). As of yet, there are no studies that evaluated time of day effects for these EEG 

deviances. MSTL represents another option for the evaluation of daytime sleepiness and PSG 

for more micro-evaluation of wake-sleep transitions and nighttime awakenings. 
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c. Subjects with ADHD show specific alterations in behavioral and peripheral 

physiological measures of arousal as a function of time of day. 

Though behavioral and physiological measures of arousal have value in the evaluation 

of 24-hour patterns, studies evaluating these effects in ADHD have mostly been confounded 

so far. Suggestions to address the issue of sample heterogeneity are discussed in prediction 3. 

To control for environmental confounding effects, laboratory protocols have been developed 

for circadian evaluations. The constant routine protocol controls for possible exogenous 

factors in order to avoid their masking influences on the endogenous rhythm of the measured 

variables. In this protocol, both contextual factors, such as light, feeding and activity, and 

circadian measurement conditions are strictly regulated (Atkinson et al., 2007; Bailey and 

Heitkemper, 2001; Blatter and Cajochen, 2007; Scheer et al., 2003). However, this 

methodology not only raises financial, practical and ethical issues, especially in children, but 

also the ecological validity of such procedure is questionable. Therefore, longer-term 

evaluations in naturalistic settings, including multiple ‘combined’ measurements across 

several days, are required (Houtveen and de Geus, 2009). As an extension to previous 

research, we propose a longer term ‘combined’ approach that may include  the assessment of 

environmental information (e.g., lights out, daily activities), subjective and objective  

sleep/wake assessments during several days and nights (e.g., actigraphy, DLMO, MSLT, 

PSG), in addition to a ‘full’ circadian cortisol investigation (several measurements a day), 24-

hour registration of heart rate (with simultaneous ‘control’ measurement of activity), and 

alternative measures which so far have not been carried out in ADHD. Useful alternative 

measures could be for example blood pressure (Houtveen and de Geus, 2009), skin 

conductance (Hot et al., 1999) and body temperature (Bailey and Heitkemper, 2001; Hofstra 

and de Weerd, 2008). It must be noted however that some measures, for example of body 

temperature, are probably not feasible in children as it is a relatively invasive procedure. 
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Finally, heart rate variability and spectral analysis of this measure are today one of the best 

methods to follow the activity of autonomic nervous system and its differential influences of 

the ortho- and parasympathetic branches during night.  

d. Circadian disruptions in different arousal-related measures (LC, arousal, and 

behavioral/ physiological measures) will be highly correlated in ADHD. 

Based on our working hypothesis, we expect that circadian effects on different 

arousal-related measures will be highly correlated within participants with ADHD. However, 

if circadian discrepancies between measures exist, this may reveal subtle differences in 

underlying neural processes. For example, when studying the circadian SCN-DMH-LC circuit, 

DMH lesions appear to eliminate circadian rhythms of corticosteroids but not melatonin 

(Chou et al., 2003). These authors hypothesize that a ‘combined’ disruption of cortisol and 

melatonin rhythm may be originated in the SCN –which is highly sensitive to melatonin 

input- rather than the DMH as other studies lesioning DMH and regions outside the DMH 

found circadian alterations in both measures.  

Examination of the correlation between peripheral and more fundamental measures is 

also warranted. Schmidt et al. (2009) studied the influence of circadian and homeostatic 

processes on cognitive performance in different chronotypes (morning vs evening) by 

imaging the LC and SCN (fMRI) during performance-related tasks (reaction times) at two test 

sessions (morning vs evening). Participants were also monitored by PSG at their preferred 

bedtimes during two consecutive nights; combined with assessments of subjective sleepiness, 

objective vigilance, and hourly collected saliva samples for assessment of melatonin phase 

starting 7 hours prior to habitual sleep time. Such a protocol might be adapted (oddball 

performance tasks) and extended with, for example, P3 ERP evaluation or pupil diameter 

response as these measures have been  associated with information processing, reflecting 

phasic activity of the LC-noradrenergic system (Nieuwenhuis et al., 2005). 
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In our literature review some studies suggested a circadian phase delay in ADHD. 

Normally, during sleep and drowsiness there is low tonic activity, whereas tonic activity is 

increased when one is alert (Aston-Jones and Cohen, 2005). If a circadian delay is truly 

present in ADHD, following this reasoning this would mean relatively low tonic LC activity 

in the morning and relatively high tonic LC activity in evening. These deviations would both 

lead to non optimal performance: in the morning reflected by inattentive, drowsiness and 

being non-alert, in the evening by distractibility (see model Aston-Jones, page 406 in Aston-

Jones & Cohen, 2005). At this point, it is difficult to say what phasic indices of LC will do, as 

during both (too) low and high tonic LC activity, phasic responses will be diminished (as can 

be measured by P3 component, pupil diameter response). In terms of baseline tonic LC 

activity, a smaller pupil diameter in the morning, but larger in the evening would be predicted.  

4.2. Prediction 2: There is an Interaction of Time of Day Effects and Specific 

Environmental Stimuli Suggesting a ‘Shared LC State-regulation Pathway Deficit’ in 

ADHD 

From a more theoretical perspective, current task protocols could be used at different 

times of the day to investigate the influence of arousing environmental stimuli on state 

regulation deficits in ADHD to see whether these results fluctuate across the day. In his study 

with NK1R-lacking mice, Yan et al. (2011) explicitly included the time of day during which 

mice were trained and tested. Based on their findings, the authors suggested that “time of day 

might be a key variable in studies of ADHD patients and that the effect of an interaction 

between NK1R function and circadian rhythms on response control merits further 

investigation.” A concrete test of the interaction of time of day and environmental effects of 

arousal could be performed using event rate effects during different times of day, for example 

morning versus afternoon. Therefore, we additionally recommend longer-term evaluations of 
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ADHD behavior (both quantitative and qualitative) in different contexts or under different 

environmental conditions.  

One context of interest would refer to the lab school protocol that is used in 

medication effect evaluation studies so far. This quasi-experimental naturalistic setting allows 

for the combined registration of behavior and additional measures (e.g., heart rate, saliva 

sampling) under different context conditions (e.g., academic tasks, free play) controlling for 

possible time of day effects. Though such protocols typically include ADHD children during 

summer camps, comparison with typically developing children would be interesting to detect 

during which specific situations and times of day group differences become more overt. This 

information would be very useful in the further evaluation of medication effects to treat 

problematic behavior especially at times when it is more expressed (Chavez et al., 2009; 

Pelham et al., 2001; Sonuga-Barke et al., 2004; Swanson et al., 2004).  

Another context of relevance is stress. Though arousal is closely related to stress, Pfaff 

et al. (2007)  provided a framework to understand the asymmetric relation between stress and 

arousal mechanisms, suggesting that stimuli causing stress are theorized to cause arousal, but 

inversely, that not all stimuli causing arousal are stressful. Whereas autonomic responses (e.g., 

heart rate) are activated in both stressful and non-stressful arousal conditions, the HPA axis 

(e.g., cortisol) is only activated in stressful conditions. Therefore, the combined diurnal 

assessment of heart rate and cortisol in diurnal evaluations could further explore to what 

extent underlying hypotheses relating time of day effects in arousal are specific for ADHD or 

whether they are the product of a more general stress-related dysregulation.  

4.3. Prediction 3: The Association with Circadian Rhythm is Only Valid for a Subgroup 

of ADHD and May Overlap with Other Psychiatric Conditions 

Considering the heterogeneous nature of ADHD, it seems necessary to determine 

whether alterations in peripheral measures and underlying pathways, if confirmed in ADHD, 
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are specific for some cases with the disorder or to what extent sleep-wake disruptions reflect a 

transdiagnostic phenomenon relevant across psychiatric disorders. Therefore, we suggest that 

future research should account for confounding effects related to age and sex characteristics, 

but also to ADHD subtype, ADHD severity, comorbidity with externalizing disorders (ODD, 

CD),  internalizing disorders (anxiety, depression), or sleep disorders, and use of (stimulant) 

medication. One could aim to study homogeneous clinical samples, but -what may be even 

more fascinating- would be the use of a large-scale heterogeneous sample and a search for 

specific subgroups of patients with circadian dysregulation. Cases with ADHD and sleep-

wake problems and cases with executive function (state regulation) deficit problems would be 

especially interesting to study. ADHD subgroups may be differentially affected by time of 

day effects; however, some may show eveningness chronotypology to inattention problems 

(Caci et al., 2009), whereas others reported the combined group to be more vulnerable for 

circadian problems (Chiang et al., 2010).  

5. Conclusion 

In line with evidence in other psychiatric disorders, the current literature provides 

some initial evidence of at least a subgroup of children with ADHD with circadian problems. 

Considering the heterogeneous nature of the disorder, it is plausible that anomalies related to 

one or more circadian measures reflect a distinct subgroup. Though it is not clear to what 

extent these problems are specific for ADHD at this stage, available evidence suggests that 

the circadian rhythm disruptions can at least modify severity and outcome, and may in some 

cases play a more etiological role. Although pathophysiological theories on ADHD so far 

largely ignored circadian effects on arousal and ADHD symptomatology, developing 

knowledge in several circadian domains, including underlying neurobiological mechanisms, 

led us to propose a working hypothesis that could serve as a framework for further research. 

In this putative model ADHD-related disruption of circadian processes and context-specific 
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effects on arousal-related processes such as cognitive energetic deficits are hypothesized to be 

the result of LC dysfunction. Here we review the potential implications of this model for 

clinical practice and future research.  



CIRCADIAN PROFILES IN ADHD  47 
 

Acknowledgements 

This work was financially supported by the Fund for Scientific Research, Flanders, 

Belgium (3G032607).  

 

Financial disclosures 

Lindita Imeraj: no disclosures or conflicts of interest to report 

Edmund Sonuga-Barke:  

Recent speaker board: Shire, UCB Pharma 

Current & recent consultancy: UCB Pharma, Shire 

Current & recent research support: Janssen Cilag, Shire, Qbtech, Flynn Pharma 

Advisory Board: Shire, Flynn Pharma, UCB Pharma, Astra Zeneca  

Conference support: Shire 

Inge Antrop: no disclosures or conflicts of interest to report 

Herbert Roeyers:  

Concultancy: Shire  

Research support: Shire, Lilly  

Conference support: Lilly 

Roeljan Wiersema: no disclosures or conflicts of interest to report 

Sarah Bal: no disclosures or conflicts of interest to report 

Dirk Deboutte: no disclosures or conflicts of interest to report  

 



CIRCADIAN PROFILES IN ADHD  48 
 

References 

Achenbach, T.M., 2001. Child Behavior Checklist for ages 4-18 (CBCL/4-18), University of Vermont, 

Burlington. 

Antrop, I., Buysse, A., Roeyers, H., and Van Oost, P., 2005a. Activity in children with ADHD during waiting 

situations in the classroom: A pilot study. Br. J. Educ. Psychol. 75, 51-69. 

Antrop, I., Roeyers, H., and De Baecke, L., 2005b. Effects of time of day on classroom behaviour in children 

with ADHD. Sch. Psychol. Int. 26, 29-43. 

American Psychiatric Association (APA), 2000. Diagnostic and statistical manual of mental disorders, fourth ed.  

American Psychiatric Press, Washington, D.C. 

Arnsten, A.F., 2006. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J. Clin. 

Psychiatry 67, 7-12. 

Arnsten, A.F., and Dudley, A.G., 2005. Methylphenidate improves prefrontal cortical cognitive function through 

alpha2 adrenoceptor and dopamine D1 receptor actions: Relevance to therapeutic effects in Attention 

Deficit Hyperactivity Disorder. Behav. Brain Funct. 1, 2. 

Arnsten, A.F., Steere, J.C., and Hunt, R.D., 1996. The contribution of alpha 2-noradrenergic mechanisms of 

prefrontal cortical cognitive function. Potential significance for attention-deficit hyperactivity disorder. 

Arch. Gen. Psychiatry 53, 448-455. 

Arnsten, A.F.T., 1998. Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn. Sci. 2, 

436-447. 

Aston-Jones, G., 2005. Brain structures and receptors involved in alertness. Sleep Med. 6, S3-S7. 

Aston-Jones, G., Chen, S., Zhu, Y., and Oshinsky, M.L., 2001. A neural circuit for circadian regulation of 

arousal. Nat. Neurosci. 4, 732-738. 

Aston-Jones, G., and Cohen, J.D., 2005. An integrative theory of locus coeruleus-norepinephrine function: 

adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403-450. 

Aston-Jones, G., Gonzalez, M., and Doran, S. (2007). Role of the locus coeruleus-norepinephrine system in 

arousal and circadian regulation of the sleep–wake cycle, in: Ordway, G.A., Schwartz, M.A., Frazer, A. 

(Eds),  Brain norepinephrine: Neurobiology and therapeutics. Cambridge University Press, Cambridge, 

pp. 157-195. 

Atkinson, G., Edwards, B., Reilly, T., and Waterhouse, J., 2007. Exercise as a synchroniser of human circadian 

rhythms: an update and discussion of the methodological problems. Eur. J. Appl. Physiol. 99, 331-341. 



CIRCADIAN PROFILES IN ADHD  49 
 
Bae, S.M., Park, J.E., Lee, Y.J., Cho, I.H., Kim, J.H., Koh, S.H., Kim, S.J., Cho, S.J., 2010. Gender difference in 

the association between adult attention deficit hyperactivity disorder symptoms and morningness-

eveningness. Psychiatry Clin. Neurosci. 64, 649-651. 

Baehr, E.K., Revelle, W., and Eastman, C.I., 2000. Individual differences in the phase and amplitude of the 

human circadian temperature rhythm: with an emphasis on morningness-eveningness. J. Sleep Res. 9, 

117-127. 

Bailey, S.L., and Heitkemper, M.M., 2001. Circadian rhythmicity of cortisol and body temperature: 

Morningness-eveningness effects. Chronobiol. Int. 18, 249-261. 

Barkley, R.A., McMurray, M.B., Edelbrock, C.S., and Robbins, K., 1990. Side-effects of methylphenidate in 

children with attention-deficit hyperactivity disorder - a systematic, placebo-controlled evaluation. 

Pediatrics 86, 184-192. 

Barnard, A.R., and Nolan, P.M., 2008. When clocks go bad: Neurobehavioural consequences of disrupted 

circadian timing. PLoS Genet. 4: e1000040. 

Barry, R.J., Clarke, A.R., and Johnstone, S.J., 2003a. A review of electrophysiology in attention-

deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin. 

Neurophysiol. 114, 171-183. 

Barry, R.J., Johnstone, S.J., and Clarke, A.R., 2003b. A review of electrophysiology in attention-

deficit/hyperactivity disorder: II. Event-related potentials. Clin. Neurophysiol. 114, 184-198. 

Bartels, M., de Geus, E.J.C., Kirschbaum, C., Sluyter, F., and Boomsma, D.I., 2003. Heritability of daytime 

cortisol levels in children. Behav. Genet. 33, 421-433. 

Bastuji, H., Perrin, F., and Garcia-Larrea, L., 2002. Semantic analysis of auditory input during sleep: studies 

with event related potentials. Int. J. Psychophysiol. 46, 243-255. 

Bearpark, H.M., and Michie, P.T., 1987. Changes in morningness-eveningness scores during adolescence and 

their relationship to sleep/wake disturbances. Chronobiologia 14, 151. 

Beauchaine, T.P., Katkin, E.S., Strassberg, Z., and Snarr, J., 2001. Disinhibitory psychopathology in male 

adolescents: Discriminating conduct disorder from attention-deficit/hyperactivity disorder through 

concurrent assessment of multiple autonomic states. J. Abnorm. Psychol. 110, 610-624. 

Bendz, L.M., and Scates, A.C., 2010. Melatonin Treatment for Insomnia in Pediatric Patients with Attention-

Deficit/Hyperactivity Disorder. Ann. Pharmacother. 44, 185-191. 



CIRCADIAN PROFILES IN ADHD  50 
 
Benloucif, S., Burgess, H.J., Klerman, E.B., Lewy, A.J., Middleton, B., Murphy, P.J., Parry, B.L., and Revell, 

V.L., 2008. Measuring melatonin in humans. J. Clin. Sleep Med. 4, 66-69. 

Berridge, C.W., and Devilbiss, D.M., 2011. Psychostimulants as cognitive enhancers: the prefrontal cortex, 

catecholamines, and attention-deficit/hyperactivity disorder. Biol. Psychiatry 69, e101-111. 

Berridge, C.W., and Waterhouse, B.D., 2003. The locus coeruleus-noradrenergic system: modulation of 

behavioral state and state-dependent cognitive processes. Brain Res. Rev. 42, 33-84. 

Biederman, J., and Spencer, T., 1999. Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic 

disorder. Biol. Psychiatry 46, 1234-1242. 

Blatter, K., and Cajochen, C., 2007. Circadian rhythms in cognitive performance: Methodological constraints, 

protocols, theoretical underpinnings. Physiol. Behav. 90, 196-208. 

Blomqvist, M., Holmberg, K., Lindblad, F., Fernell, E., Ek, U., and Dahllof, G., 2007. Salivary cortisol levels 

and dental anxiety in children with attention deficit hyperactivity disorder. Eur. J. Oral Sci. 115, 1-6. 

Boivin, D.B., 2000. Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders. J. 

Psychiatry Neurosci. 25, 446-458. 

Boonstra, A.M., Kooij, J.J.S., Oosterlaan, J., Sergeant, J.A., Buitelaar, J.K., and Van Someren, E.J.W., 2007. 

Hyperactive night and day? Actigraphy studies in adult ADHD: a baseline comparison and the effect of 

methylphenidate. Sleep 30, 433-442. 

Borbély, A.A., 1982. A two process model of sleep regulation. Hum. Neurobiol. 1, 195-204. 

Borger, N., and van der Meere, J., 2000. Motor control and state regulation in children with ADHD: a cardiac 

response study. Biol. Psychol. 51, 247-267. 

Brookes, K., Xu, X., Chen, W., Zhou, K., Neale, B., Lowe, N., Anney, R., Franke, B., Gill, M., Ebstein, R., 

Buitelaar, J., Sham, P., Campbell, D., Knight, J., Andreou, P., Altink, M., Arnold, R., Boer, F., 

Buschgens, C., Butler, L., Christiansen, H., Feldman, L., Fleischman, K., Fliers, E., Howe-Forbes, R., 

Goldfarb, A., Heise, A., Gabriels, I., Korn-Lubetzki, I., Johansson, L., Marco, R., Medad, S., Minderaa, 

R., Mulas, F., Muller, U., Mulligan, A., Rabin, K., Rommelse, N., Sethna, V., Sorohan, J., Uebel, H., 

Psychogiou, L., Weeks, A., Barrett, R., Craig, I., Banaschewski, T., Sonuga-Barke, E., Eisenberg, J., 

Kuntsi, J., Manor, I., McGuffin, P., Miranda, A., Oades, R.D., Plomin, R., Roeyers, H., Rothenberger, 

A., Sergeant, J., Steinhausen, H.C., Taylor, E., Thompson, M., Faraone, S.V., and Asherson, P., 2006. 

The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association 

signals in DRD4, DAT1 and 16 other genes. Mol. Psychiatry 11, 934-953. 



CIRCADIAN PROFILES IN ADHD  51 
 
Brown, T.E., 1996. Manual for Brown Attention Deficit Disorder Scales, The Psychological Corporation, San 

Antonio (Texas). 

Buckley, T.M., and Schatzberg, A.F., 2005. Review: On the interactions of the hypothalamic-pituitary-adrenal 

(HPA) axis and sleep: Normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J. 

Clin. Endocrinol. Metab. 90, 3106-3114. 

Burgess, H.J., Trinder, J., Kim, Y., and Luke, D., 1997. Sleep and circadian influences on cardiac autonomic 

nervous system activity. Am. J. Physiol.-Heart Circul. Physiol. 273, H1761-H1768. 

Caci, H., Bouchez, J., and Bayle, F.J., 2009. Inattentive symptoms of ADHD are related to evening orientation. J. 

Atten. Disord. 13, 36-41. 

Carrier, J., and Monk, T.H., 2000. Circadian rhythms of performance: New trends. Chronobiol. Int. 17, 719-732. 

Carskadon, M.A., Vieira, C., and Acebo, C., 1993. Association between puberty and delayed phase preference. 

Sleep 16, 258-262. 

Cavallera, G.M., and Giudici, S., 2008. Morningness and eveningness personality: A survey in literature from 

1995 up till 2006. Pers. Individ. Differ. 44, 3-21. 

Chaste, P., Clement, N., Botros, H.G., Guillaume, J.L., Konyukh, M., Pagan, C., Scheid, I., Nygren, G.,  

Anckarsäter, H., Rastam, M., Ståhlberg, O., Gillberg, I.C., Melke, J., Delorme, R., Leblond, C., Toro, 

R., Huguet, G., Fauchereau, F., Durand, C., Boudarene, L., Serrano, E., Lemière, N., Launay, J.M., 

Leboyer, M., Jockers, R., Gillberg, C., Bourgeron, T., 2011. Genetic variations of the melatonin 

pathway in patients with attention-deficit and hyperactivity disorders. J. Pineal Res. 51, 394-399. 

Chavez, B., Sopko, M.A., Jr., Ehret, M.J., Paulino, R.E., Goldberg, K.R., Angstadt, K., and Bogart, G.T., 2009. 

An update on central nervous system stimulant formulations in children and adolescents with attention-

deficit/hyperactivity disorder. Ann. Pharmacother. 43, 1084-1095. 

Chervin, R.D., Archbold, K.H., Dillon, J.E., Panahi, P., Pituch, K.J., Dahl, R.E., and Guilleminault, C., 2002. 

Inattention, hyperactivity, and symptoms of sleep-disordered breathing. Pediatrics 109, 449-456. 

Chiang, H.L., Gau, S.S.F., Ni, H.C., Chiu, Y.N., Shang, C.Y., Wu, Y.Y., Lin, L.Y., Tai, Y.M., and Soong, W.T., 

2010. Association between symptoms and subtypes of attention-deficit hyperactivity disorder and sleep 

problems/disorders. J. Sleep Res. 19, 535-545. 

Chou, T.C., Scammell, T.E., Gooley, J.J., Gaus, S.E., Saper, C.B., and Lu, J., 2003. Critical role of dorsomedial 

hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23, 10691-10702. 



CIRCADIAN PROFILES IN ADHD  52 
 
Chrousos, G.P., and Gold, P.W., 1998. A healthy body in a healthy mind - and vice versa - The damaging power 

of "uncontrollable" stress. J. Clin. Endocrinol. Metab. 83, 1842-1845. 

Claustrat, B., Brun, J., and Chazot, G., 2005. The basic physiology and pathophysiology of melatonin. Sleep 

Med. Rev. 9, 11-24. 

Cohen-Zion, M., and Ancoli-Israel, S., 2004. Sleep in children with attention-deficit hyperactivity disorder 

(ADHD): a review of naturalistic and stimulant intervention studies. Sleep Med. Rev. 8, 379-402. 

Cohen, H., Matar, M.A., Kaplan, Z., and Kotler, M., 1999. Power spectral analysis of heart rate variability in 

psychiatry. Psychother. Psychosom. 68, 59-66. 

Cohen, R.A., Barnes, H.J., Jenkins, M., and Albers, H.E., 1997. Disruption of short-duration timing associated 

with damage to the suprachiasmatic region of the hypothalamus. Neurology 48, 1533-1539. 

Conners, C.K., 2000. Conners' Continuous Performance Test, Multi-Health Systems Inc., North Tonawanda 

(New York). 

Corkum, P., Moldofsky, H., Hogg-Johnson, S., Humphries, T., and Tannock, R., 1999. Sleep problems in 

children with attention-deficit/hyperactivity disorder: Impact of subtype, comorbidity, and stimulant 

medication. J. Am. Acad. Child Adolesc. Psychiatry 38, 1285-1293. 

Corkum, P., Panton, R., Ironside, S., MacPherson, M., and Williams, T., 2008. Acute impact of immediate 

release methylphenidate administered three times a day on sleep in children with attention-

deficit/hyperactivity disorder. J. Pediatr. Psychol. 33, 368-379. 

Corkum, P., Tannock, R., Moldofsky, H., Hogg-Johnson, S., and Humphries, T., 2001. Actigraphy and parental 

ratings of sleep in children with attention-deficit-hyperactivity disorder (ADHD). Sleep 24, 303-312. 

Cortese, S., Faraone, S.V., Konofal, E., and Lecendreux, M., 2009. Sleep in children with Attention-

Deficit/Hyperactivity Disorder: Meta-analysis of subjective and objective studies. J. Am. Acad. Child 

Adolesc. Psychiatry 48, 894-908. 

Cortese, S., Konofal, E., Lecendreux, M., Arnulf, I., Mouren, M.C., Darra, F., and Bernardina, B.D., 2005. 

Restless legs syndrome and attention-deficit/hyperactivity disorder: A review of the literature. Sleep 28, 

1007-1013. 

Cortese, S., Mid, E.K., Yateman, N., Mouren, M.C., and Lecendreux, M., 2006. Sleep and alertness in children 

with attention-deficit/hyperactivity disorder: A systematic review of the literature. Sleep 29, 504-511. 



CIRCADIAN PROFILES IN ADHD  53 
 
Crabtree, V.M., Ivanenko, A., and Gozal, D., 2003. Clinical and parental assessment of sleep in children with 

attention-deficit/hyperactivity disorder referred to a pediatric sleep medicine center. Clin. Pediatr. 42, 

807-813. 

Crasson, M., Kjiri, S., Colin, A., Kjiri, K., L'Hermite-Baleriaux, M., Ansseau, M., and Legros, J.J., 2004. Serum 

melatonin and urinary 6-sulfatoxymelatonin in major depression. Psychoneuroendocrinology 29, 1-12. 

Crone, E.A., Jennings, J.R., and van der Molen, M.W., 2003. Sensitivity to interference and response 

contingencies in attention-deficit/hyperactivity disorder. J. Child Psychol. Psychiatry 44, 214-226. 

Crowell, S.E., Beauchaine, T.P., Gatzke-Kopp, L., Sylvers, P., Mead, H., and Chipman-Chacon, J., 2006. 

Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in 

preschool children. J. Abnorm. Psychol. 115, 174-178. 

Dagan, Y., Zeevi-Luria, S., Sever, Y., Hallis, D., Yovel, I., Sadeh, A., and Dolev, E., 1997. Sleep quality in 

children with attention deficit hyperactivity disorder: an actigraphic study. Psychiatry Clin. Neurosci. 51, 

383-386. 

Daimon, K., Yamada, N., Tsujimoto, T., and Takahashi, S., 1992. Circadian rhythm abnormalities of deep body 

temperature in depressive disorders. J. Affect. Disorders 26, 191-198. 

Daniels, S.R., 2009. Cardiovascular effects of methylphenidate. J. Pediatr. 155, 84-89. 

del Campo, N., Chamberlain, S.R., Sahakian, B.J., and Robbins, T.W., 2011. The Roles of Dopamine and 

Noradrenaline in the Pathophysiology and Treatment of Attention-Deficit/Hyperactivity Disorder. Biol. 

Psychiatry 69, E145-E157. 

Deuschle, M., Schweiger, U., Weber, B., Gotthardt, U., Korner, A., Schmider, J., Standhardt, H., Lammers, C.H., 

and Heuser, I., 1997. Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in 

male depressed patients and healthy controls. J. Clin. Endocrinol. Metab. 82, 234-238. 

Devilbiss, D.M., and Berridge, C.W., 2008. Cognition-enhancing doses of methylphenidate preferentially 

increase prefrontal cortex neuronal responsiveness. Biol. Psychiatry. 64(7),  626–635.  

Devilbiss, D.M., and Waterhouse, B.D., 2004. The effects of tonic locus ceruleus output on sensory-evoked 

responses of ventral posterior medial thalamic and barrel field cortical neurons in the awake rat. J. 

Neurosc. 24, 10773-10785. 

Dietrich, A., Riese, H., Sondeijker, F., Greaves-Lord, K., Van Roon, A.M., Ormel, J., Neeleman, J., and 

Rosmalen, J.G.M., 2007. Externalizing and internalizing problems in relation to autonomic function: A 

population-based study in preadolescents. J. Am. Acad. Child Adolesc. Psychiatry 46, 378-386. 



CIRCADIAN PROFILES IN ADHD  54 
 
Duke, B.J., 2008. Pathogenic effects of central nervous system hyperarousal. Medical Hypotheses 71, 212-217. 

Edwards, S., Evans, P., Hucklebridge, F., and Clow, A., 2001. Association between time of awakening and 

diurnal cortisol secretory activity. Psychoneuroendocrinology 26, 613-622. 

Falcon, E., and McClung, C.A., 2009. A role for the circadian genes in drug addiction. Neuropharmacology 56, 

91-96. 

Fallone, G., Acebo, C., Arnedt, J.T., Seifer, R., and Carskadon, M.A., 2001. Effects of acute sleep restriction on 

behavior, sustained attention, and response inhibition in children. Percept. Motor Skill. 93, 213-229. 

Faraone, S.V., and Biederman, J., 1998. Neurobiology of attention-deficit hyperactivity disorder. Biol. 

Psychiatry 44, 951-958. 

Faraone, S.V., and Khan, S.A., 2005. Candidate gene studies of attention-deficit/hyperactivity disorder, in: 

Teleconference on New Developments in the Treatment of Attention-Deficit/Hyperactivity Disorder. 

Physicians Postgraduate Press, Electr Network, pp. 13-20. 

Fornaro, M., Prestia, D., Colicchio, S., and Perugi, G., 2010. A Systematic, Updated Review on the 

Antidepressant Agomelatine Focusing on its Melatonergic Modulation. Curr. Neuropharmacol. 8, 287-

304. 

Freitag, C.M., Hanig, S., Palmason, H., Meyer, J., Wust, S., and Seitz, C., 2009. Cortisol awakening response in 

healthy children and children with ADHD: Impact of comorbid disorders and psychosocial risk factors. 

Psychoneuroendocrinology 34, 1019-1028. 

Gangwisch, J.E., 2009. Epidemiological evidence for the links between sleep, circadian rhythms and metabolism. 

Obes. Rev. 10 Suppl 2, 37-45. 

Garnock-Jones, K.P., and Keating, G.M., 2009. Atomoxetine: a review of its use in attention-deficit 

hyperactivity disorder in children and adolescents. Paediatric Drugs. 11(3), 203–226. 

Germain, A., and Kupfer, D.J., 2008. Circadian rhythm disturbances in depression. Hum. Psychopharmacol.-Clin. 

Exp. 23, 571-585. 

Golan, N., Shahar, E., Ravid, S., and Pillar, G., 2004. Sleep disorders and daytime sleepiness in children with 

attention-deficit/hyperactive disorder. Sleep 27, 261-266. 

Gorelova, N., Seamans, J.K., and Yang, C.R., 2002. Mechanisms of dopamine activation of fast-spiking 

interneurons that exert inhibition in rat prefrontal cortex. J. Neurophysiol. 88, 3150-3166. 

Grandin, L.D., Alloy, L.B., and Abramson, L.Y., 2006. The social zeitgeber theory, circadian rhythms, and 

mood disorders: Review and evaluation. Clin. Psychol. Rev. 26, 679-694. 



CIRCADIAN PROFILES IN ADHD  55 
 
Gruber, R., 2009. Sleep Characteristics of Children and Adolescents with Attention Deficit-Hyperactivity 

Disorder. Child Adolesc. Psychiatr. Clin. N. Am. 18, 863-876. 

Gruber, R., Sadeh, A., and Raviv, A., 2000. Instability of sleep patterns in children with attention-

deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 39, 495-501. 

Halperin, J.M., and Schulz, K.P., 2006. Revisiting the role of the prefrontal cortex in the pathophysiology of 

attention-deficit/hyperactivity disorder. Psychol. Bull. 132, 560-581. 

Hammerness, P.G., Perrin, J.M., Shelley-Abrahamson, R., Wilens, T.E., 2011. Cardiovascular risk of stimulant  

treatment in pediatric attention-deficit/hyperactivity disorder: Update and clinical recommendations. J. 

Am. Acad. Child Adolesc. Psychiatry 50, 978-990. 

Harvey, A.G., 2008. Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and 

regulation. Am. J. Psychiatry 165, 820-829. 

Harvey, A.G., Murray, G., Chandler, R.A., and Soehner, A., 2011. Sleep disturbance as transdiagnostic: 

Consideration of neurobiological mechanisms. Clin. Psychol. Rev. 31, 225-235. 

Hastings, P.D., Fortier, I., Utendale, W.T., Simard, L.R., and Robaey, P., 2009. Adrenocortical functioning in 

boys with Attention-Deficit/Hyperactivity Disorder: Examining subtypes of ADHD and associated 

comorbid conditions. J. Abnorm. Child Psychol. 37, 565-578. 

Hatzinger, M., Brand, S., Perren, S., von Wyl, A., von Klitzing, K., and Holsboer-Trachsler, E., 2007. 

Hypothalamic-pituitary-adrenocortical (HPA) activity in kindergarten children: Importance of gender 

and associations with behavioral/emotional difficulties. J. Psychiatr. Res. 41, 861-870. 

Haus, E., 2007. Chronobiology in the endocrine system. Adv. Drug Deliv. Rev. 59, 985-1014. 

Hermens, D.F., Cooper, N.J., Clark, C.R., Debrota, D., Clarke, S.D., Williams, L.M., 2007. An integrative  

approach to determine the best behavioral and biological markers of methylphenidate. J Integr Neurosci. 

6(1),105-140. 

Herpertz, S.C., Wenning, B., Mueller, B., Qunaibi, M., Sass, H., and Herpertz-Dahlmann, B., 2001. 

Psychophysiological responses in ADHD boys with and without conduct disorder: Implications for 

adult antisocial behavior. J. Am. Acad. Child Adolesc. Psychiatry 40, 1222-1230. 

Himelstein, J., Newcorn, J.H., and Halperin, J.M., 2000. The neurobiology of attention-deficit hyperactivity 

disorder. Front. Biosci. 5, 461-478. 



CIRCADIAN PROFILES IN ADHD  56 
 
Hirvikoski, T., Lindholm, T., Nordenstrom, A., Nordstrom, A.L., and Lajic, S., 2009. High self-perceived stress 

and many stressors, but normal diurnal cortisol rhythm, in adults with ADHD (attention-

deficit/hyperactivity disorder). Horm. Behav. 55, 418-424. 

Hoebert, M., van der Heijden, K.B., van Geijlswijk, I.M., and Smits, M.G., 2009. Long-term follow-up of 

melatonin treatment in children with ADHD and chronic sleep onset insomnia. J. Pineal Res. 47, 1-7. 

Hofstra, W.A., and de Weerd, A.W., 2008. How to assess circadian rhythm in humans: A review of literature. 

Epilepsy Behav. 13, 438-444. 

Hong, H.J., Shin, D.W., Lee, E.H., Oh, Y.H., and Noh, K.S., 2003. Hypothalamic-pituitary-adrenal reactivity in 

boys with attention deficit hyperactivity disorder. Yonsei Med. J. 44, 608-614. 

Horne, J.A., and Ostberg, O., 1976. A self-assessment questionnaire to determine morningness-eveningness in 

human circadian rhythms. Int. J. Chronobiol. 4, 97-110. 

Hot, P., Naveteur, J., Leconte, P., and Sequeira, H., 1999. Diurnal variations of tonic electrodermal activity. Int. 

J. Psychophysiol. 33, 223-230. 

Houtveen, J.H., and de Geus, E.J.C., 2009. Noninvasive psychophysiological ambulatory recordings study 

design and data analysis strategies. Eur. Psychol. 14, 132-141. 

Hvolby, A., Jorgensen, J., and Bilenberg, N., 2008. Actigraphic and parental reports of sleep difficulties in 

children with attention-deficit/hyperactivity disorder. Arch. Pediatr. Adolesc. Med. 162, 323-329. 

Hvolby, A., Jorgensen, J., and Bilenberg, N., 2009. Parental rating of sleep in children with attention 

deficit/hyperactivity disorder. Eur. Child Adolesc. Psychiatry 18, 429-438. 

Iaboni, F., Douglas, V.I., and Ditto, B., 1997. Psychophysiological response of ADHD children to reward and 

extinction. Psychophysiology 34, 116-123. 

Imeraj, L., Antrop, I., Roeyers, H., Deschepper, E., Bal, S., and Deboutte, D., 2011. Diurnal variations in arousal: 

a naturalistic heart rate study in children with ADHD. Eur. Child Adolesc. Psychiatry 20, 381-392. 

Imeraj, L., Antrop, I., Roeyers, H., Swanson, J., Deschepper, E., Bal, S., and Deboutte, D., 2012.Time-of-day  

effects in arousal: Disrupted diurnal cortisol profiles in children with ADHD. J. Child Psychol. 

Psychiatry. doi:10.1111/j.1469-7610.2012.02526.x 

Ironside, S., Davidson, F., and Corkum, P., 2010. Circadian motor activity affected by stimulant medication in 

children with attention-deficit/hyperactivity disorder. J. Sleep Res. 19, 546-551. 

Ivanov, A., and Aston-Jones, G., 2000. Hypocretin/orexin depolarizes and decreases potassium conductance in 

locus coeruleus neurons. Neuroreport 11, 1755-1758. 



CIRCADIAN PROFILES IN ADHD  57 
 
Jankowski, K.S., and Ciarkowska, W., 2008. Diurnal variation in energetic arousal, tense arousal, and hedonic 

tone in extreme morning and evening types. Chronobiol. Int. 25, 577-595. 

Kaneko, M., Hoshino, Y., Hashimoto, S., Okano, T., and Kumashiro, H., 1993. Hypothalamic pituary-adrenal 

axis function in children with attention-deficit hyperactivity disorder. J. Autism Dev. Disord. 23, 59-65. 

Kariyawasam, S.H., Zaw, F., and Handley, S.L., 2002. Reduced salivary cortisol in children with comorbid 

Attention deficit hyperactivity disorder and Oppositional defiant disorder. Neuroendocrinol. Lett. 23, 

45-48. 

Kennedy, S.H., Kutcher, S.P., Ralevski, E., and Brown, G.M., 1996. Nocturnal melatonin and 24-hour 6-

sulphatoxymelatonin levels in various phases of bipolar affective disorder. Psychiatry Res. 63, 219-222. 

Kerkhof, G.A., 1985. Inter-individual differences in the human circadian system - a review. Biol. Psychol. 20, 

83-112. 

Kerkhof, G.A., Van Dongen, H.P.A., and Bobbert, A.C., 1998. Absence of endogenous circadian rhythmicity in 

blood pressure? Am. J. Hypertens. 11, 373-377. 

Kim, H.W., Yoon, I.Y., Cho, S.C., Kim, B.N., Chung, S., Lee, H., Kim, C.W., Park, S.K., and Yoo, H.J., 2010. 

The effect of OROS methylphenidate on the sleep of children with attention-deficit/hyperactivity 

disorder. Int. Clin. Psychopharmacol. 25, 107-115. 

Kissling, C., Retz, W., Wiemann, S., Coogan, A.N., Clement, R.M., Hunnerkopf, R., Conner, A.C., Freitag, 

C.M., Rosler, M., and Thome, J., 2008. A polymorphism at the 3 '-untranslated region of the CLOCK 

gene is associated with adult attention-deficit hyperactivity disorder. Am. J. Med. Genet. B 147B, 333-

338. 

Klerman, E.B., Gershengorn, H.B., Duffy, J.F., and Kronauer, R.E., 2002. Comparisons of the variability of 

three markers of the human circadian pacemaker. J. Biol. Rhythms 17, 181-193. 

Lackschewitz, H., Huther, G., and Kroner-Herwig, B., 2008. Physiological and psychological stress responses in 

adults with attention-deficit/hyperactivity disorder (ADHD). Psychoneuroendocrinology 33, 612-624. 

Lawrence, J.B., and Stanford, M.S., 1999. Impulsivity and time of day: Effects on performance and cognitive 

tempo. Pers. Individ. Differ. 26, 199-207. 

Lecendreux, M., Konofal, E., Bouvard, M., Falissard, B., and Mouren-Simeoni, M.C., 2000. Sleep and alertness 

in children with ADHD. J. Child Psychol. Psychiatry 41, 803-812. 

Levine, A., Zagoory-Sharon, O., Feldman, R., Lewis, J.G., and Weller, A., 2007. Measuring cortisol in human 

psychobiological studies. Physiol. Behav. 90, 43-53. 



CIRCADIAN PROFILES IN ADHD  58 
 
Levitan, R.D., Masellis, M., Lam, R.W., Muglia, P., Basile, V.S., Jain, U., Kaplan, A.S., Tharmalingam, S., 

Kennedy, S.H., and Kennedy, J.L., 2004. Childhood inattention and dysphoria and adult obesity 

associated with the dopamine D4 receptor gene in overeating women with seasonal affective disorder. 

Neuropsychopharmacology 29, 179-186. 

Levy, F., 1991. The dopamine theory of attention-deficit hyperactivity disorder (ADHD). Aust. N. Z. J. 

Psychiatry 25, 277-283. 

Levy, F., 2009. Dopamine vs noradrenaline: inverted-U effects and ADHD theories. Aust. N. Z. J. Psychiatry 43, 

101-108. 

Levy, F., and Swanson, J.M., 2001. Timing, space and ADHD: the dopamine theory revisited. Aust. N. Z. J. 

Psychiatry 35, 504-511. 

Lewy, A.J., Lefler, B.J., Emens, J.S., and Bauer, V.K., 2006. The circadian basis of winter depression. P. Natl. 

Acad. Sci. U.S.A. 103, 7414-7419. 

Licht, C.A., and Tryon, W.W., 2009. Are children diagnosed with the combined form of ADHD pervasively 

hyperactive? Behav. Modif. 33, 655-681. 

Lorber, M.F., 2004. Psychophysiology of aggression, psychopathy, and conduct problems: A meta-analysis. 

Psychol. Bull. 130, 531-552. 

Luman, M., Oosterlaan, J., Hyde, C., van Meel, C.S., and Sergeant, J.A., 2007. Heart rate and reinforcement 

sensitivity in ADHD. J. Child Psychol. Psychiatry 48, 890-898. 

Luman, M., Oosterlaan, J., and Sergeant, J.A., 2005. The impact of reinforcement contingencies on AD/HD: A 

review and theoretical appraisal. Clin. Psychol. Rev. 25, 183-213. 

Ma, L., Chen, Y.H., Chen, H., Liu, Y.Y., Wang, Y.X., 2011. The function of the hypothalamus-pituitary-adrenal  

axis in children with ADHD. Brain Res. 1368, 159-162.  

Macchi, M.M., and Bruce, J.N., 2004. Human pineal physiology and functional significance of melatonin. Front. 

Neuroendocrinol. 25, 177-195. 

Manev, H., and Uz, T., 2009. Dosing time-dependent actions of psychostimulants. Int. Rev. Neurobiol. 88, 25-41. 

Marcotte, A.C., Thacher, P.V., Butters, M., Bortz, J., Acebo, C., and Carskadon, M.A., 1998. Parental report of 

sleep problems in children with attentional and learning disorders. J. Dev. Behav. Pediatr. 19, 178-186. 

Maurizi, C.P., 1984. A mechanism of mania and the chemistry of dreams: A hypothesis. South. Med. J. 77, 1491. 

McBurnett, K., Lahey, B.B., Rathouz, P.J., and Loeber, R., 2000. Low salivary cortisol and persistent aggression 

in boys referred for disruptive behavior. Arch. Gen. Psychiatry 57, 38-43. 



CIRCADIAN PROFILES IN ADHD  59 
 
McClung, C.A., 2007. Circadian genes, rhythms and the biology of mood disorders. Pharmacol. Therapeut. 114, 

222-232. 

Mefford, I.N., and Potter, W.Z., 1989. A neuroanatomical and biochemical basis for attention deficit disorder 

with hyperactivity in children: a defect in tonic adrenaline mediated inhibition of locus coeruleus 

stimulation. Med. Hypotheses 29, 33-42. 

Mezzacappa, E., Tremblay, R.E., Kindlon, D., Saul, J.P., Arseneault, L., Seguin, J., Pihl, R.O., and Earls, F., 

1997. Anxiety, antisocial behavior, and heart rate regulation in adolescent males. J. Child Psychol. 

Psychiatry 38, 457-469. 

Mick, E., Biederman, J., Jetton, J., and Faraone, S.V., 2000. Sleep disturbances associated with attention deficit 

hyperactivity disorder: The impact of psychiatric comorbidity and pharmacotherapy. J. Child Adolesc. 

Psychopharmacol. 10, 223-231. 

Morgenthaler, T., Alessi, C., Friedman, L., Owens, J., Kapur, V., Boehlecke, B., Brown, T., Chesson, A., 

Coleman, J., Lee-Chiong, T., Pancer, J., and Swick, T.J., 2007. Practice parameters for the use of 

actigraphy in the assessment of sleep and sleep disorders: An update for 2007. Sleep 30, 519-529. 

Moss, H.B., Vanyukov, M.M., and Martin, C.S., 1995. Salivary cortisol responses and risk for substance-abuse 

in prepubertal boys. Biol. Psychiatry 38, 547-555. 

Murphy, P.R., Robertson, I.H., Balsters, J.H., and O'Connell, R.G., 2011. Pupillometry and P3 index the locus 

coeruleus–noradrenergic arousal function in humans. Psychophysiology. doi: 10.1111/j.1469-

8986.2011.01226.x 

Naber, D., Wirzjustice, A., Kafka, M.S., and Wehr, T.A., 1980. Dopamine Receptor-Binding in Rat Striatum - 

Ultradian Rhythm and Its Modification by Chronic Imipramine. Psychopharmacology 68, 1-5. 

Nagtegaal, J.E., Kerkhof, G.A., Smits, M.G., Swart, A.C.W., and Van der Meer, Y.G., 1998. Delayed sleep 

phase syndrome: A placebo-controlled cross-over study on the effects of melatonin administered five 

hours before the individual dim light melatonin onset. J. Sleep Res. 7, 135-143. 

Nieuwenhuis, S., Aston-Jones, G., and Cohen, J.D., 2005. Decision making, the P3, and the locus coeruleus--

norepinephrine system. Psychol. Bull. 131, 510-532. 

Nieuwenhuis, S., De Geus, E.J., and Aston-Jones, G., 2011. The anatomical and functional relationship between 

the P3 and autonomic components of the orienting response. Psychophysiology 48, 162-175. 



CIRCADIAN PROFILES IN ADHD  60 
 
Nofzinger, E.A., Mintun, M.A., Price, J., Meltzer, C.C., Townsend, D., Buysse, D.J., Reynolds Iii, C.F., Dachille, 

M., Matzzie, J., and Kupfer, D.J., 1998. A method for the assessment of the functional neuroanatomy of 

human sleep using FDG PET. Brain Res. Protoc. 2, 191-198. 

Nováková, M., Paclt, I., Ptáček, R., Kuželová, H., Hájek, I., Sumová, A., 2011. Salivary melatonin rhythm as a 

marker of the circadian system in healthy children and those with attention-deficit/hyperactivity 

disorder. Chronobiol. Int. 28, 630-637. 

O'Brien, L.M., Holbrook, C.R., Mervis, C.B., Klaus, C.J., Bruner, J.L., Raffield, T.J., Rutherford, J., Mehl, R.C., 

Wang, M., Tuell, A., Hume, B.C., and Gozal, D., 2003a. Sleep and neurobehavioral characteristics of 5-

to 7-year-old children with parentally reported symptoms of attention-deficit/hyperactivity disorder. 

Pediatrics 111, 554-563. 

O'Brien, L.M., Ivanenko, A., Crabtree, V.M., Holbrook, C.R., Bruner, J.L., Klaus, C.J., and Gozal, D., 2003b. 

Sleep disturbances in children with attention deficit hyperactivity disorder. Pediatr. Res. 54, 237-243. 

O'Keeffe, S.M., Thome, J., Coogan, A.N.. 2012. The noradrenaline reuptake inhibitor atomoxetine phase-shifts 

the circadian clock in mice. Neuroscience 201, 219-230. 

Ortiz, J., and Raine, A., 2004. Heart rate level and antisocial behavior in children and adolescents: A meta-

analysis. J. Am. Acad. Child Adolesc. Psychiatry 43, 154-162. 

Owens, J., Sangal, R.B., Sutton, V.K., Bakken, R., Allen, A.J., and Kelsey, D., 2009. Subjective and objective 

measures of sleep in children with attention-deficit/hyperactivity disorder. Sleep Med. 10, 446-456. 

Owens, J.A., 2005. The ADHD and sleep conundrum: a review. J. Dev. Behav. Pediatr. 26, 312-322. 

Owens, J.A., Maxim, R., Nobile, C., McGuinn, M., and Msall, M., 2000. Parental and self-report of sleep in 

children with attention-deficit/hyperactivity disorder. Arch. Pediatr. Adolesc. Med. 154, 549-555. 

Paavonen, E.J., Raikkonen, K., Lahti, J., Komsi, N., Heinonen, K., Pesonen, A.K., Jarvenpaa, A.L., Strandberg, 

T., Kajantie, E., and Porkka-Heiskanen, T., 2009. Short Sleep Duration and Behavioral Symptoms of 

Attention-Deficit/Hyperactivity Disorder in Healthy 7-to 8-Year-Old Children. Pediatrics 123, E857-

E864. 

Pacchierotti, C., Iapichino, S., Bossini, L., Pieraccini, F., and Castrogiovanni, P., 2001. Melatonin in psychiatric 

disorders: A review on the melatonin involvement in psychiatry. Front. Neuroendocrinol. 22, 18-32. 

Paclt, I., Koudelova, J., Krepelova, A., Uhlikova, P., Gazdikova, M., and Bauer, P., 2005. Biochemical markers 

and genetic research of ADHD. Neuroendocrinol. Lett. 26, 423-430. 



CIRCADIAN PROFILES IN ADHD  61 
 
Pajer, K., Gardner, W., Rubin, R.T., Perel, J., and Neal, S., 2001. Decreased cortisol levels in adolescent girls 

with conduct disorder. Arch. Gen. Psychiatry 58, 297-302. 

Pattij, T., and Vanderschuren, L., 2008. The neuropharmacology of impulsive behaviour. Trends Pharmacol. Sci. 

29, 192-199. 

Pelham, W.E., Gnagy, E.M., Burrows-Maclean, L., Williams, A., Fabiano, G.A., Morrisey, S.M., Chronis, A.M., 

Forehand, G.L., Nguyen, C.A., Hoffman, M.T., Lock, T.M., Fielbelkorn, K., Coles, E.K., Panahon, C.J., 

Steiner, R.L., Meichenbaum, D.L., Onyango, A.N., and Morse, G.D., 2001. Once-a-day concerta 

methylphenidate versus three-times-daily methylphenidate in laboratory and natural settings. Pediatrics 

107, E105. 

Pesonen, A.K., Kajantie, E., Jones, A., Pyhälä, R., Lahti, J., Heinonen, K., Eriksson, J.G., Strandberg, T.E., 

Räikkönen, K., 2011. Symptoms of attention deficit hyperactivity disorder in children are associated 

with cortisol responses to psychosocial stress but not with daily cortisol levels. J. Psychiatr. Res. 45, 

1471-1476. 

Pesonen, A.K., Raikkonen, K., Paavonen, E.J., Heinonen, K., Komsi, N., Lahti, J., Kajantie, E., Jarvenpaa, A.L., 

and Strandberg, T., 2010. Sleep Duration and Regularity are Associated with Behavioral Problems in 8-

year-old Children. Int. J. Behav. Med. 17, 298-305. 

Pfaff, D., and Banavar, J.R., 2007. A theoretical framework for CNS arousal. Bioessays 29, 803-810. 

Pfaff, D.W., Martin, E.M., and Ribeiro, A.C., 2007. Relations between mechanisms of CNS arousal and 

mechanisms of stress. Stress 10, 316-325. 

Philipsen, A., Hornyak, M., and Riemann, D., 2006. Sleep and sleep disorders in adults with attention 

deficit/hyperactivity disorder. Sleep Med. Rev. 10, 399-405. 

Phillips, M.A., Szabadi, E., and Bradshaw, C.M., 2000. Comparison of the effects of clonidine and yohimbine on 

spontaneous pupillary fluctuations in healthy human volunteers. Psychopharmacology 150, 85-89. 

Pliszka, S.R., McCracken, J.T., and Maas, J.W., 1996. Catecholamines in attention-deficit hyperactivity disorder: 

current perspectives. J. Am. Acad. Child Adolesc. Psychiatry 35, 264-272. 

Polich, J., and Kok, A., 1995. Cognitive and biological determinants of P300: an integrative review. Biol. 

Psychol. 41, 103-146. 

Porrino, L.J., Rapoport, J.L., Behar, D., Sceery, W., Ismond, D.R., and Bunney, W.E., 1983. A naturalistic 

assessment of the motor-activity of hyperactive boys. 1. Comparison with normal controls. Arch. Gen. 

Psychiatry 40, 681-687. 



CIRCADIAN PROFILES IN ADHD  62 
 
Portaluppi, F., Touitou, Y., and Smolensky, M., 2008. Ethical and methodological standards for laboratory and 

medical biological rhythm research. Chronobiol. Int. 25, 999-1016. 

Power, T.J., 1992. Contextual factors in vigilance testing of children with ADHD. J. Abnorm. Child Psychol. 20, 

579-593. 

Quay, H.C., 1965. Psychopathic personality as pathological stimulation-seeking. Am. J. Psychiatry 122, 180-183. 

Raine, A., 1996. Autonomic nervous system factors underlying disinhibited, antisocial, and violent behavior - 

Biosocial perspectives and treatment implications. Ann. N. Y. Acad. Sci. 794, 46-59. 

Randazzo, W.T., Dockray, S., and Susman, E.J., 2008. The stress response in adolescents with inattentive type 

ADHD symptoms. Child Psychiatry Hum. Dev. 39, 27-38. 

Rao, M.L., Gross, G., Strebel, B., and Halaris, A., 1994. Circadian rhythm of tryptophan, serotonin, melatonin, 

and pituitary hormones in schizophrenia. Biol. Psychiatry 35, 151-163. 

Reimer, B., D'Ambrosio, L.A., Coughlin, J.F., Fried, R., and Biederman, J., 2007. Task-induced fatigue and 

collisions in adult drivers with attention deficit hyperactivity disorder. Traffic Inj. Prev. 8, 290-299. 

Riddoch, C.J., Mattocks, C., Deere, K., Saunders, J., Kirkby, J., Tilling, K., Leary, S.D., Blair, S.N., and Ness, 

A.R., 2007. Objective measurement of levels and patterns of physical activity. Arch. Dis. Child. 92, 

963-969. 

Rosenwasser, A.M., 2010. Circadian clock genes: Non-circadian roles in sleep, addiction, and psychiatric 

disorders? Neurosci. Biobehav. Rev. 34, 1249-1255. 

Rybak, Y.E., McNeely, H.E., Mackenzie, B.E., Jain, U.R., and Levitan, R.D. (2004). An open trial of light 

therapy in adult attention-deficit/hyperactivity disorder, in: 16th Annual Conference of the Society-for-

Light-Treatment-and-Biological-Rhythms, Toronto, pp. 1527-1535. 

Rybak, Y.E., McNeely, H.E., Mackenzie, B.E., Jain, U.R., and Levitan, R.D., 2007. Seasonality and circadian 

preference in adult attention-deficit/hyperactivity disorder: clinical and neuropsychological correlates. 

Compr. Psychiat. 48, 562-571. 

Sadeh, A., Pergamin, L., and Bar-Haim, Y., 2006. Sleep in children with attention-deficit hyperactivity disorder: 

A meta-analysis of polysomnographic studies. Sleep Med. Rev. 10, 381-398. 

Samuels, E.R., and Szabadi, E., 2008. Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in 

the regulation of arousal and autonomic function part I: Principles of functional organisation. Curr. 

Neuropharmacol. 6, 235-253. 



CIRCADIAN PROFILES IN ADHD  63 
 
San, L., and Arranz, B., 2008. Agomelatine: A novel mechanism of antidepressant action involving the 

melatonergic and the serotonergic system. Eur. Psychiatry 23, 396-402. 

Scheer, F., Kalsbeek, A., and Buijs, R.M., 2003. Cardiovascular control by the suprachiasmatic nucleus: Neural 

and neuroendocrine mechanisms in human and rat. Biol. Chem. 384, 697-709. 

Scheer, F.A., Hilton, M.F., Mantzoros, C.S., and Shea, S.A., 2009. Adverse metabolic and cardiovascular 

consequences of circadian misalignment. Proc. Natl. Acad. Sci. U. S. A. 106, 4453-4458. 

Schmidt, C., Collette, F., Leclercq, Y., Sterpenich, V., Vandewalle, G., Berthomier, P., Berthomier, C., Phillips, 

C., Tinguely, G., and Darsaud, A., 2009. Homeostatic sleep pressure and responses to sustained 

attention in the suprachiasmatic area. Science 324, 516-519. 

Schredl, M., Alm, B., and Sobanski, E., 2007. Sleep quality in adult patients with attention deficit hyperactivity 

disorder (ADHD). Eur. Arch. Psych. Clin. Neurosci. 257, 164-168. 

Schulz, K.P., Halperin, J.M., Newcorn, J.H., Sharma, V., and Gabriel, S., 1997. Plasma cortisol and aggression 

in boys with ADHD. J. Am. Acad. Child Adolesc. Psychiatry 36, 605-609. 

Schwartz, G., Ben Amor, L., Grizenko, N., Lageix, P., Baron, C., Boivin, D.B., and Joober, R., 2004. 

Actigraphic monitoring during sleep of children with ADHD on methylphenidate and placebo. J. Am. 

Acad. Child Adolesc. Psychiatry 43, 1276-1282. 

Schwartz, J.R., and Roth, T., 2008. Neurophysiology of sleep and wakefulness: basic science and clinical 

implications. Curr. Neuropharmacol. 6, 367-378. 

Sergeant, J., and Van der Meere, J., 1988. What happens after a hyperactive child commits an error? Psychiatry 

Res. 24, 157-164. 

Sergeant, J., and Van der Meere, J., 1990. Convergence of approaches in localizing the hyperactivity deficit, in:  

Lahey, B.B., Kazdin, A.E. (eds.), Advances in Clinical Child Psychology, Plenum, New York, pp. 207-

246. 

Shin, D.W., and Lee, S.H., 2007. Blunted hypothalamo-pituitary-adrenal axis reactivity is associated with the 

poor intelligence performance in children with attention-deficit/hyperactivity disorder. Neuropediatrics 

38, 298-303. 

Shirtcliff, E.A., Granger, D.A., Booth, A., and Johnson, D., 2005. Low salivary cortisol levels and externalizing 

behavior problems in youth. Dev. Psychopathol. 17, 167-184. 

Silver, R., and LeSauter, J., 2008. Circadian and homeostatic factors in arousal. Ann. N. Y. Acad. Sci. 1129, 

263-274. 



CIRCADIAN PROFILES IN ADHD  64 
 
Sleipness, E.P., Sorg, B.A., and Jansen, H.T., 2007. Contribution of the suprachiasmatic nucleus to day: night 

variation in cocaine-seeking behavior. Physiol. Behav. 91, 523-530. 

Smits, M.G., Nagtegaal, E.E., van der Heijden, J., Coenen, A.M.L., and Kerkhof, G.A., 2001. Melatonin for 

chronic sleep onset insomnia in children: A randomized placebo-controlled trial. J. Child Neurol. 16, 

86-92. 

Smits, M.G., van Stel, H.F., van der Heijden, K., Meijer, A.M., Coenen, A.M.L., and Kerkhof, G.A., 2003. 

Melatonin improves health status and sleep in children with idiopathic chronic sleep-onset insomnia: A 

randomized placebo-controlled trial. J. Am. Acad. Child Adolesc. Psychiatry 42, 1286-1293. 

Snoek, H., Van Goozen, S.H.M., Matthys, W., Buitelaar, J.K., and Van Engeland, H., 2004. Stress responsivity 

in children with externalizing behavior disorders. Dev. Psychopathol. 16, 389-406. 

Solanto, M.V., 1984. Neuropharmacological basis of stimulant drug action in attention deficit disorder with 

hyperactivity: a review and synthesis. Psychol. Bull. 95, 387-409. 

Sondeijker, F., Ferdinand, R.F., Oldehinkel, A.J., Veenstra, R., Tiemeier, H., Ormel, J., and Verhulst, F.C., 2007. 

Disruptive behaviors and HPA-axis activity in young adolescent boys and girls from the general 

population. J. Psychiatr. Res. 41, 570-578. 

Sonuga-Barke, E.J., Swanson, J.M., Coghill, D., DeCory, H.H., and Hatch, S.J., 2004. Efficacy of two once-

daily methylphenidate formulations compared across dose levels at different times of the day: 

preliminary indications from a secondary analysis of the COMACS study data. BMC Psychiatry 4, 28. 

Sonuga-Barke, E.J.S., Sergeant, J.A., Nigg, J., and Willcutt, E., 2008. Executive dysfunction and delay aversion 

in attention deficit hyperactivity disorder: Nosologic and diagnostic implications. Child Adolesc. 

Psychiatr. Clin. N. Am. 17, 367-384. 

Sonuga-Barke, E.J.S., Wiersema, J.R., van der Meere, J.J., and Roeyers, H., 2010. Context-dependent dynamic 

processes in attention deficit/hyperactivity disorder: differentiating common and unique effects of state 

regulation deficits and delay aversion. Neuropsychol. Rev. 20, 86-102. 

Sonuga-Barke, E.J.S., Williams, E., Hall, M., and Saxton, T., 1996. Hyperactivity and delay aversion .3. The 

effect on cognitive style of imposing delay after errors. J. Child Psychol. Psychiatry 37, 189-194. 

Spencer, T.J., Biederman, J., and Mick, E., 2007. Attention-Deficit/Hyperactivity disorder: Diagnosis, lifespan, 

comorbidities, and neurobiology. J. Pediatr. Psychol. 32, 631-642. 

Stadler, C., Grasmann, D., Fegert, J.H., Holtmann, H., Poustka, F., Schmeck, K., 2008. Heart rate and treatment 

effect in children with disruptive behavior disorders. Child Psychiatry Hum. Dev. 39, 299-309. 



CIRCADIAN PROFILES IN ADHD  65 
 
Stampfer, H.G., 1998. The relationship between psychiatric illness and the circadian pattern of heart rate. Aust. 

N. Z. J. Psychiatry 32, 187-198. 

Stein, D., Pat-Horenczyk, R., Blank, S., Dagan, Y., Barak, Y., and Gumpel, T.P., 2002. Sleep disturbances in 

adolescents with symptoms of attention-deficit/hyperactivity disorder. J. Learn. Disabil. 35, 268-275. 

Stephan, F.K., and Zucker, I., 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are 

eliminated by hypothalamic lesions. P. Natl. Acad. Sci. U. S. A. 69, 1583-1586. 

Surman, C.B.H., Adamson, J.J., Petty, C., Biederman, J., Kenealy, D.C., Levine, M., Mick, E., and Faraone, S.V., 

2009. Association Between Attention-Deficit/Hyperactivity Disorder and Sleep Impairment in 

Adulthood: Evidence From a Large Controlled Study. J. Clin. Psychiatry 70, 1523-1529. 

Susman, E.J., Dockray, S., Schiefelbein, V.L., Herwehe, S., Heaton, J.A., and Dorn, L.D., 2007. 

Morningness/eveningness, morning-to-afternoon cortisol ratio, and antisocial behavior problems during 

puberty. Dev. Psychol. 43, 811-822. 

Swanson, C.J., Perry, K.W., Koch-Krueger, S., Katner, J., Svensson, K.A., and Bymaster, F.P., 2006. Effect of 

the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of 

norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 50, 755-760. 

Swanson, J.M., Wigal, S.B., Wigal, T., Sonuga-Barke, E., Greenhill, L.L., Biederman, J., Kollins, S., Nguyen, 

A.S., DeCory, H.H., Dirksen, S.J.H., and Hatch, S.J., 2004. A comparison of once-daily extended-

release methylphenidate formulations in children with attention-deficit/hyperactivity disorder in the 

laboratory school (The COMACS study). Pediatrics 113, E206-E216. 

Sylvester, C.M., Krout, K.E., and Loewy, A.D., 2002. Suprachiasmatic nucleus projection to the medial 

prefrontal cortex: A viral transneuronal tracing study. Neuroscience 114, 1071-1080. 

Tankova, I., Adan, A., and Buelacasal, G., 1994. Circadian typology and individual differences - a review. Pers. 

Individ. Differ. 16, 671-684. 

Thayer, J.F., and Lane, R.D., 2007. The role of vagal function in the risk for cardiovascular disease and mortality. 

Biol. Psychol. 74, 224-242. 

Thayer, J.F., and Sternberg, E., 2006. Beyond heart rate variability - Vagal regulation of allostatic systems. Ann. 

N. Y. Acad. Sci. 1088, 361-372. 

Tjon Pian Gi, C.V., Broeren, J.P.A., Starreveld, J.S., and A. Versteegh, F.G., 2003. Melatonin for treatment of 

sleeping disorders in children with attention deficit/hyperactivity disorder: a preliminary open label 

study. Eur. J. Pediatr. 162, 554-555. 



CIRCADIAN PROFILES IN ADHD  66 
 
Tonhajzerova, I., Ondrejka, I., Adamik, P., Hruby, R., Javorka, M., Trunkvalterova, Z., Mokra, D., and Javorka, 

K., 2009. Changes in the cardiac autonomic regulation in children with attention deficit hyperactivity 

disorder (ADHD). Indian J. Med. Res. 130, 44-50. 

Toplak, M., and Tannock, R., 2005. Time perception: Modality and duration effects in Attention-

Deficit/Hyperactivity disorder (ADHD). J. Abnorm. Child Psychol. 33, 639-654. 

Touchette, E., Cote, S.M., Petit, D., Liu, X.C., Boivin, M., Falissard, B., Tremblay, R.E., and Montplaisir, J.Y., 

2009. Short Nighttime Sleep-Duration and Hyperactivity Trajectories in Early Childhood. Pediatrics 

124, E985-E993. 

Tsujii, N., Okada, A., Kaku, R., Kuriki, N., Hanada, K., Matsuo, J., Kusube, T., and Hitomi, K., 2007. 

Association between activity level and situational factors in children with attention deficit/hyperactivity 

disorder in elementary school. Psychiatry Clin. Neurosci. 61, 181-185. 

Valera, E.M., Faraone, S.V., Murray, K.E., and Seidman, L.J., 2007. Meta-analysis of structural imaging 

findings in attention-deficit/hyperactivity disorder. Biol. Psychiatry 61, 1361-1369. 

van der Heijden, K.B., Smits, M.G., and Gunning, W.B., 2005a. Sleep-related disorders in ADHD: A review. 

Clin. Pediatr. 44, 201-210. 

Van der Heijden, K.B., Smits, M.G., Van Someren, E.J.W., and Gunning, W.B., 2005b. Idiopathic chronic sleep 

onset insomnia in attention-deficit/hyperactivity disorder: A circadian rhythm sleep disorder. 

Chronobiol. Int. 22, 559-570. 

Van Der Heijden, K.B., Smits, M.G., Van Someren, E.J.W., Ridderinkhof, K.R., and Gunning, W.B., 2007. 

Effect of melatonin on sleep, behavior, and cognition in ADHD and chronic sleep-onset insomnia. J. 

Am. Acad. Child Adolesc. Psychiatry 46, 233-241. 

van der Kooij, M.A., and Glennon, J.C., 2007. Animal models concerning the role of dopamine in attention-

deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 31, 597-618. 

Van der Meere, J.J., 2005. State-regulation and ADHD, in: Gozal, D., Molfese, D.L. (eds.), Attention deficit 

hyperactivity disorder: From genes to animal models to patients, Humana, Totawa, NJ, pp. 413-433. 

van Goozen, S.H.M., Matthys, W., Cohen-Kettenis, P.T., Buitelaar, J.K., and van Engeland, H., 2000. 

Hypothalamic-pituitary-adrenal axis and autonomic nervous system activity in disruptive children and 

matched controls. J. Am. Acad. Child Adolesc. Psychiatry 39, 1438-1445. 



CIRCADIAN PROFILES IN ADHD  67 
 
van Goozen, S.H.M., Matthys, W., Cohen-Kettenis, P.T., Gispen-de Wied, C., Wiegant, V.M., and van Engeland, 

H., 1998. Salivary cortisol and cardiovascular activity during stress in oppositional-defiant disorder 

boys and normal controls. Biol. Psychiatry 43, 531-539. 

van Lang, N.D.J., Tulen, J.H.M., Kallen, V.L., Rosbergen, B., Dieleman, G., and Ferdinand, R.F., 2007. 

Autonomic reactivity in clinically referred children attention-deficit/hyperactivity disorder versus 

anxiety disorder. Eur. Child Adolesc. Psychiatry 16, 71-78. 

Van Veen, M.M., Kooij, J.J., Boonstra, A.M., Gordijn, M., and Van Someren, E.J.W., 2010. Delayed Circadian 

Rhythm in Adults with Attention-Deficit/Hyperactivity Disorder and Chronic Sleep-Onset Insomnia. 

Biol. Psychiatry 67, 1091-1096. 

van West, D., Claes, S., and Deboutte, D., 2009. Differences in hypothalamic-pituitary-adrenal axis functioning 

among children with ADHD predominantly inattentive and combined types. Eur. Child Adolesc. 

Psychiatry 18, 543-553. 

Vicentic, A., Benca, R., Duncan, M.J., Frank, E., McClung, C., and Nelson, R.J., 2009. Biological rhythms, 

higher brain function, and behavior: Gaps, opportunities, and challenges. Brain Res. Rev. 62, 57-70. 

Vitiello, B., Elliott, G.R., Swanson, J.M., Arnold, L.E., Hechtman, L., Abikoff, H., Molina, B.S., Wells, K., 

Wigal, T., Jensen, P.S., Greenhill, L.L., Kaltman, J.R., Severe, J.B., Odbert, C., Hur, K., Gibbons, R., 

2012. Blood pressure and heart rate over 10 years in the Multimodal Treatment Study of children with 

ADHD. Am. J. Psychiatry 169, 167-177.   

Walters, A.S., Silvestri, R., Zucconi, M., Chandrashekariah, R., and Konofal, E., 2008. Review of the possible 

relationship and hypothetical links between attention deficit hyperactivity disorder (ADHD) and the 

simple sleep related movement disorders, parasomnias, hypersomnias, and circadian rhythm disorders. J. 

Clin. Sleep Med. 4, 591-600. 

Wang, L.J., Huang, Y.S., Hsiao, C.C., Chiang, Y.L., Wu, C.C., Shang, Z.Y., Chen, C.K., 2011. Salivary 

dehydroepiandrosterone, but not cortisol, is associated with attention deficit hyperactivity disorder. 

World J. Biol. Psychiatry 12, 99-109. 

Waschbusch, D.A., Pelham, W.E., Jennings, J.R., Greiner, A.R., Tarter, R.E., and Moss, H.B., 2002. Reactive 

aggression in boys with disruptive behavior disorders: Behavior, physiology, and affect. . J. Abnorm. 

Child Psychol. 30, 641-656. 

Waterhouse, J., Atkinson, G., Reilly, T., Jones, H., and Edwards, B., 2007. Chronophysiology of the 

cardiovascular system. Biol. Rhythm Res. 38, 181-194. 



CIRCADIAN PROFILES IN ADHD  68 
 
Weaver, D.R., 1998. The suprachiasmatic nucleus: A 25-year retrospective. J. Biol. Rhythms 13, 100-112. 

Wehmeier, P.M., Schacht, A., Wolff, C., Otto, W.R., Dittmann, R.W., Banaschewski, T., 2011. 

Neuropsychological outcomes across the day in children with attention-deficit/hyperactivity disorder 

treated with atomoxetine: Results from a placebo-controlled study using a computer-based continuous 

performance test combined with an infra-red motion tracking device. J. Child Adolesc. 

Psychopharmacol. 21, 433-444. 

Wehr, T.A., Wirz-Justice, A., Goodwin, F.K., Duncan, W., and Gillin, J.C., 1979. Phase advance of the circadian 

sleep-wake cycle as an antidepressant. Science 206, 710-713. 

Weiss, M.D., Wasdell, M.B., Bomben, M.M., Rea, K.J., and Freeman, R.D., 2006. Sleep hygiene and melatonin 

treatment for children and adolescents with ADHD and initial insomnia. J. Am. Acad. Child Adolesc. 

Psychiatry 45, 512-519. 

Wiersema, R., Van Der Meere, J., Antrop, I., and Roeyers, H., 2006a. State regulation in adult ADHD: An event-

related potential study. J. Clin. Exp. Neuropsychol. 28, 1113-1126. 

Wiersema, R., van der Meere, J., Roeyers, H., Van Coster, R., and Baeyens, D., 2006b. Event rate and event-

related potentials in ADHD. J. Child Psychol. Psychiatry 47, 560-567. 

Wiggs, L., Montgomery, P., and Stores, G., 2005. Actigraphic and parent reports of sleep patterns and sleep 

disorders in children with subtypes of attention-deficit hyperactivity disorder. Sleep 28, 1437-1445. 

Winsky-Sommerer, R., Boutrel, B., and de Lecea, L., 2003. The role of the hypcretinergic system in the 

integration of networks that dictate the states of arousal. Drug News Perspect. 16, 504-512. 

Wirz-Justice, A., 2006. Biological rhythm disturbances in mood disorders. Int. Clin. Psychopharmacol. 21, S11-

S15. 

Wirz-Justice, A., Kafka, M.S., Naber, D., and Wehr, T.A., 1980. Circadian rhythms in rat brain alpha-and beta-

adrenergic receptors are modified by chronic imipramine. Life Sci. 27, 341-347. 

Xu, X.H., Breen, G., Chen, C.K., Huang, Y.S., Wu, Y.Y., and Asherson, P., 2010. Association study between a 

polymorphism at the 3 '-untranslated region of CLOCK gene and attention deficit hyperactivity disorder. 

Behav. Brain Funct. 6, 48. 

Yan, T.C., Dudley, J.A., Weir, R.K., Grabowska, E.M., Pena-Oliver, Y., Ripley, T.L., Hunt, S.P., Stephens, D.N., 

and Stanford, S.C., 2011. Performance deficits of NK1 receptor knockout mice in the 5-choice serial 

reaction-time task: effects of d-amphetamine, stress and time of day. PLoS One 6, e17586. 



CIRCADIAN PROFILES IN ADHD  69 
 
Young, M.E., 2006. The circadian clock within the heart: potential influence on myocardial gene expression, 

metabolism, and function. Am. J. Physiol.-Heart Circul. Physiol. 290, H1-H16. 

Young, M.E., and Bray, M.S., 2007. Potential role for peripheral circadian clock dyssynchrony in the 

pathogenesis of cardiovascular dysfunction. Sleep Med. 8, 656-667. 

Zagar, R., and Bowers, N.D., 1983. The effect of time of day on problem-solving and classroom-behavior. 

Psychol. Schools 20, 337-345. 

Zawilska, J.B., Skene, D.J., and Arendt, J., 2009. Physiology and pharmacology of melatonin in relation to 

biological rhythms. Pharmacol. Rep. 61, 383-410. 

Zentall, S.S., and Zentall, T.R., 1976. Activity and task-performance of hyperactive-children as a function of 

environmental stimulation. J. Consult. Clin. Psychol. 44, 693-697. 


