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Abstract— In the field of Reservoir Computing, scaling the
spectral radius of the weight matrix of a random recurrent
neural network to below unity is a commonly used method to
ensure the Echo State Property. Recently it has been shown that
this condition is too weak. To overcome this problem, other –
more involved – sufficient conditions for the Echo State Property
have been proposed. In this paper we provide a large-scale
experimental verification of the Echo State Property for large
recurrent neural networks with zero input and zero bias. Our
main conclusion is that the spectral radius method remains
a valid indicator of the Echo State Property; the probability
that the Echo State Property does not hold, drops for larger
networks with spectral radius below unity, which are the ones
of practical interest.

I. INTRODUCTION

RESERVOIR COMPUTING is a simple, yet efficient

method to train large recurrent networks [1]. It has

been successfully applied to a broad range of tasks. The core

of the method is the reservoir, a large randomly connected

recurrent neural network. Training consists of adjusting the

readout layer which is a linear mapping from the neuron

states to the output.

To ensure applicability, the reservoir must exhibit the Echo

State Property, which prescribes that the system forgets its

inputs after a limited amount of time [1]. A commonly used

indicator for the Echo State Property is the spectral radius,

the supremum among the absolute values of the eigenvalues

of the reservoir weight matrix. It is commonly assumed

that the spectral radius ought to be smaller than unity in

order for a reservoir to exhibit the Echo State Property.

Recently, Yildiz et al. (2012) [2] explicitly illustrated – by

means of low-dimensional networks – that a spectral radius

smaller than unity does in fact not necessarily result in a

network for which the Echo State Property holds. While the

counterexamples in [2] were small and their extensions to

larger networks lead to relatively sparse neural networks,

we also found large, densely connected reservoirs which

do not exhibit the Echo State Property. Fortunately, our

results indicate that such systems occur rarely. We found

that both reservoir size and connectivity influence the Echo

State Property. Large, densely connected reservoir systems

can be used in order to avoid this anomaly.
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Despite efforts by many authors (see for example [2]–[5]),

the misconception that the spectral radius of input driven

reservoir systems should always be smaller than unity is still

vivid among many researchers.

The remainder of this paper is structured as follows. In

Section II we briefly recapitulate the concept of Reservoir

Computing. Next, in Section III, we elaborate on the findings

of Yildiz et al. (2012) [2]. We will show by means of 2- and

8-dimensional networks that other metrics such as the Schur

stability are very restrictive. In Section IV we extend our

results to large recurrent neural networks and investigate the

influence of reservoir size and connectivity on the Echo State

Property. Finally, in Section V, we elaborate on our findings

and draw the conclusions.

II. RESERVOIR COMPUTING

Reservoir Computing (RC) is an approach for efficient

training of large recurrent neural networks. Typically, a

network of randomly connected neurons – the reservoir –

is created, excited with one or more inputs and then trained

by adjusting the readout weights using linear regression. A

schematic overview of an RC system is given in Fig. 1.

Formally, for a reservoir with N neurons, the weights of

the connections within the reservoir are represented by a

matrix Wres of size N×N . Additionally, matrices Win and

Wbias represent the connection weights from the input to

the reservoir and from a bias to the reservoir respectively.

Typically, Wbias has dimensions N × 1 and Win has

dimensions N × I , where I is equal to the number of inputs

to the reservoir. After sampling these weights from a random

distribution, e.g. a standard normal distribution, the update

of the system’s state x at discrete time step k is defined by

the following equation:

x[k + 1] = tanh
�

Wresx[k] +Winu[k + 1] +Wbias

�

, (1)

where u is the input of the system. While sometimes other

squashing functions are used, we only consider the hyper-

bolic tangent function in this work.

The output y of a reservoir system is defined by:

y[k] = WT

outx[k], (2)

where Wout are the connection weights from the reservoir to

the output. The dimensions of this weight matrix are N×O,

where O equals the number of outputs.

After construction of the weight matrices, the reservoir

system can be trained by adjusting the readout weights Wout.

As reported in [1], the main method for training is linear

regression. In practice, training consists of two phases: (1)
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Fig. 1. Schematic overview of an RC system with multiple inputs and
outputs. Only the readout weights (dashed connections) are trained.

collecting neuron states during the simulation phase, and (2)

adjusting the readout weights by computation of the mean

squared error.

During the simulation phase the neuron states are collected

by stimulating the system using the inputs from the training

dataset by applying equation 1. For every time step (from 1
to K) the neuron states (N neurons in total) are collected

resulting in a state matrix X which has size N ×K . After

collecting the state matrix X, training the readout weights

is done by linear regression. Let matrix T be the collection

of desired outputs, the readout weights Wout can then be

obtained by minimizing the mean squared error of the linear

mapping from the reservoir state matrix X to the desired

output T:

Wout = argW min �WX−T�2. (3)

This leads to the following matrix solution:

Wout = (XTX)−1XTT. (4)

One of the key principles behind RC is the Echo State

Property (ESP) introduced by [1]. A reservoir system ex-

hibits the ESP if it forgets all previous input after a limited

time, i.e. it cannot have infinitely long memory (cf. the

concept of fading memory introduced in [6]). In other words,

without any external input, the system’s state should converge

to a single fixed point. In order to tune the dynamics of the

reservoir, many researchers use the spectral radius ρ, which

is defined as the largest absolute eigenvalue of the reservoir

weight matrix Wres. The effect of the spectral radius on the

dynamics of the reservoir system becomes clear when we

plot the bifurcation diagrams of the reservoirs. In Fig. 2 the

bifurcation diagram is shown for a 128-dimensional network

with neither input, nor bias. The bifurcation diagram shows

the different equilibrium points (i.e. local extrema) of three

randomly selected neurons of a simulated reservoir after

many different initializations. For ρ < 1.0, one observes that

the system’s state converges to a fixed point at the origin.

At ρ = 1 the system undergoes a bifurcation which makes

the reservoir dependent on its initial condition. Consequently,

the ESP does not hold anymore. This bifurcation point does

not always occur for ρ = 1. When the system is fed an
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Fig. 2. Bifurcation diagram of a 128-dimensional reservoir with zero input
and zero bias. The equilibrium points for three randomly selected neurons
are visualised. By increasing the spectral radius, the system bifurcates from
a single fixed point to spontaneous activity.

0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Spectral radius

x
*

Fig. 3. Bifurcation diagram of 128-dimensional network fed a constant bias.
The equilibrium points for three randomly selected neurons are visualised.
By increasing the spectral radius, the system bifurcates from a singled fixed
point to spontaneous activity. The constant input (e.g. bias) postpones this
bifurcation point.

input signal or a constant bias, this bifurcation point can

be observed for a spectral radius slightly larger than 1, see

Fig. 3. In fact, due to the nonlinearity of the system, in almost

all practical situations in which the reservoir is excited with

one or more input signals, this will be the case.

III. ECHO STATE PROPERTY REVISITED

The Echo State Property (ESP) is a key concept in

Reservoir Computing which can be formally stated as [1]:

Definition 1: A network F : X × U → X (with

the compactness condition) has the Echo State Property

with respect to U , if for any left infinite input sequence



u−∞ ∈ U−∞ and any two state vector sequences x−∞,

y−∞ ∈ X−∞ compatible with u−∞, it holds that x0 = y0.

Consequences of the ESP are that the current network state

only depends on a certain number of previous inputs and is

not influenced by the initial state after a certain period of

time (often called warm-up period).

Reservoirs with the ESP can be used as nonlinear finite

impulse response filters. Instead of crafting the neural net-

work such that it performs a certain task (i.e. emulates some

desired filter), one typically combines the available nonlinear

projections of the reservoir in a linear fashion, assuming

that the desired nonlinear computations are available in the

system.

Therefore, it is customary to study the global properties

of reservoirs with respect to a few parameters, such as the

spectral radius, input bias and leak rate. In this spirit, the

linear memory capacity [7] has been studied as well as the

apparent tradeoff between linear memory and nonlinearity

[8]. More recently it has been shown that any dynamical

system (under some mild conditions) obeying the fading

memory property (which is equivalent to the ESP) essentially

has the same amount of computational power with respect

to the number of observable variables of the system [9].

Dynamical systems with the ESP do however vary by the

precise type of computations they offer, which need to be

well-adjusted to the requirements of the application. Rules

of thumb are that high bias networks are useful for highly

nonlinear computations (because of the nonlinear behavior

of the hyperbolic tangent) and a high spectral radius (near

1) results in longer memory [8], [10]. See [5] for a complete

overview of design strategies.

One complication of the ESP is that it is input dependent.

There has been some research into the input dependent

ESP [11], but in practice it is often impossible to know all

statistics of the input sequences beforehand. The ESP is thus

mostly studied independently of the input sequence.

Different methods exist to verify if a given reservoir

exhibits the ESP. The most commonly used method (for

hyperbolic tangent networks) is to compute the spectral

radius of the weight matrix (ρ = maxi |λi|). If the spectral

radius is below unity, one assumes that the ESP is fulfilled.

The rationale for this approach is the fact that the hyperbolic

tangent has the highest gain at the origin and one thus regards

the linear system with the same weight matrix as an upper

bound for the stability (eigenvalues within the unit disk).

Unfortunately the spectral radius method is not sufficient

for the ESP (e.g. [2]) and it is possible to construct low

spectral radius (ρ << 1) counterexamples. Consider Fig. 4,

which shows the state progression for a 2-dimensional net-

work with ρ = 0.39 and neither input, nor bias. We initialized

the system in 1× 105 random states and applied the update

equation (equation 1). After a few iterations, all initial states

contract into the origin or begin oscillating between two

states. One intuitive explanation for such behavior is that

the nonlinear network understates negative feedback. It is

therefore possible to construct networks with very large

weights, which have low spectral radius and do not exhibit

the ESP.

Multiple sufficient conditions or tests for the ESP have

been proposed. In his original work, Jaeger [1] proved that

having the largest singular value of the weight matrix below

unity is sufficient for the ESP. It is easy to show that

maxi(σi) ≥ ρ, because any consistent matrix norm has a

higher value than the spectral radius. Only for normal weight

matrices (Wres
∗Wres = WresWres

∗), both norms coincide

and the SVD condition is thus more restrictive than the

spectral radius condition.

More recently, the ESP has been studied in terms of

Lyapunov exponents [3], operator norms [12] and Schur

stability [2]. However, there are multiple reasons to study

the usefulness of the spectral radius method. First of all,

the proposed methods are generally more complex to verify.

Secondly, we shall show that the spectral radius method is

often a tight bound for the ESP. Finally, RC is being extended

to various domains (e.g. robotics [13], photonics [14] and

electronics [15]). Given an equivalent to the weight matrix in

another domain and an approximation of the maximum gain

of the system, one can define an equivalent to the spectral

radius. The performance of a system can thus be quantified

in terms of the spectral radius in different domains.

We shall now consider the Schur stability method by Yildiz

et al., the largest singular value test and the spectral radius

method in more detail for small, zero input and zero bias

networks.

The Schur stability method is stated as a linear matrix

inequality condition [2]:

Definition 2: A zero bias hyperbolic tangent reservoir has

the echo state property for any input if its weight matrix

Wres is diagonally Schur stable, i.e. there exists a diagonal

matrix P > 0 such that WT
res

PWres − P is negative

definite [16].

Fig. 5 and Fig. 6 show the fraction of rejected weight

matrices for the different methods for 2 and 8 neuron reser-

voirs respectively with i.i.d. normally distributed weights as a

function of the spectral radius averaged over 1×104 random

reservoirs. To check if a network has the ESP, we initialized

each network in 1 × 103 random (uniform ∈ [−1, 1]2 or

∈ [−1, 1]8) states and updated the network for 1 × 103

iterations. If the norm of any final state was above 1×10−7,

we considered the network to not have the ESP as not all

states contracted to the origin. This is our baseline, indicated

as non-ESP.

It becomes clear that the singular value test and the Schur

method reject many networks for high spectral radii, while

the fraction of reservoirs that effectively do not have the ESP

for ρ < 1 is many times lower. Furthermore, the bounds tend

to become weaker for larger networks, while the fraction of

non-ESP networks becomes smaller.

IV. ECHO STATE PROPERTY IN LARGE RESERVOIRS

To study the ESP in large reservoirs, we performed

an extensive numerical verification. These experiments are

designed to show the influence of the reservoir size and

connectivity on the ESP.
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Fig. 4. A low spectral radius (ρ = 0.39) two neuron network without the Echo State Property. 1× 105 initial states were sampled (uniform ∈ [−1, 1]2)
and we recorded the states for multiple time steps (increasing from left to right). All initial states converge to the origin or continue to oscillate between
±[0.8975 0.9946]T. The weight matrix is given by Wres = [−3 1.24;−5.968 2.416]. This is not a degenerate case, as small variations of the weights
also result in a non-ESP network (e.g. A = [−3 1.2;−6 2.4], ρ = 0.6).
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Fig. 5. Fraction of the 2-dimensional networks (zero input, zero bias)
that do not have the experimentally verified ESP in function of ρ, fraction
of the 2-dimensional networks with max(SVD) > 1 and fraction of the
2-dimensional networks which are not Schur stable.

A. Experimental setup

In large-scale numerical experiments we varied the number

of neurons N , the connectivity (the fraction of weights that

is non-zero) c of the reservoir weight matrix and the spectral

radius ρ:

N ∈ {2, 4, 8, 16, 32, 64, 128, 256}

c ∈ {0.01, 0.0167, 0.0278,

0.0464, 0.0774, 0.1292,

0.2154, 0.3594, 0.5995, 1.0}

ρ ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9,

0.91, 0.92, 0.93, 0.94, 0.95, 0.96,

0.97, 0.98, 0.99, 1, 1.01, 1.05, 1.1, 1.2}.

Each parameter combination was tested for 1×105 randomly

generated networks with weights Wres sampled from a

standard normal distribution and 1 × 103 random (uniform

∈ [−1, 1]N ) initial states. To test the ESP for a (zero-input)
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Fig. 6. Fraction of the 8-dimensional networks (zero input, zero bias)
that do not have the experimentally verified ESP in function of ρ, fraction
of the 8-dimensional networks with max(SVD) > 1 and fraction of the
8-dimensional networks which are not Schur stable.

network, each network was updated by applying equation 2

with zero bias and zero input (u and Wbias equal to 0)

for 1, 000 iterations for each initial state. We then stored

the largest norm of the final states (�x[1000]�). We present

here the results for fully dense weight matrices with varying

network size and for networks with 128 neurons with varying

connectivity.

B. Results

Figs. 7 and 8 show the fraction of networks for which the

ESP does not hold (�x[1000]� > 10−7) as a function of the

spectral radius with respect to network size and connectivity

respectively. One can observe in Fig. 7 that for relatively

large (fully connected) networks (N > 32) the probability of

finding a network without the ESP is below 1×10−3. This is

interesting because most reservoir systems of practical use

are quite large (N > 50) and, consequently they are not

affected by the fact that the spectral radius method is not a

sufficient condition. Additionally, from Fig. 8 one learns that
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Fig. 7. Fraction of the fully connected networks with varying size for
which the ESP does not hold in function of the spectral radius. The larger
the network, the less likely that it does not exhibit the ESP for ρ < 1.0.
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Fig. 8. Fraction of the 128-dimensional networks with varying connectivity
for which the ESP does not hold in function of the spectral radius. Larger
or denser networks with ρ < 1.0 are less likely not to exhibit the ESP.

the connectivity greatly influences the ESP. The sparser the

network, the less likely it is to exhibit the ESP. For very

sparse networks, with a connectivity of 1%, the fraction

increases to 3.8% of the networks. In comparison, only

0.031% of the fully connected 128-dimensional networks did

not exhibit the ESP. This observation corresponds with the

intuition that it is very likely to find oscillating sub-networks,

e.g. the small networks given in [2], in sparse networks.

In [2] a method is given for constructing large reservoir

systems for which the ESP does not hold for spectral radii

below 1. By following that procedure, the obtained networks

will be sparse. A logical question is whether large dense

networks can be found for which the ESP does not hold

0.8 0.9 1 1.1 1.2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Spectral radius

x
*

x1

x2

x3

Fig. 9. Bifurcation diagram for 3 neurons of a fully connected 128-
dimensional network. As can be observed in the bifurcation diagram, the
ESP does also not hold for ρ < 1.0.

with ρ < 1. The answer is positive, as we learned from

Figs. 7 and 8. A bifurcation plot of such a system is given

in Fig. 9. For ρ < 0.98 this system exhibits the ESP. At

ρ ≈ 0.98 the system bifurcates and starts to oscillate for some

of the initial conditions. This contrasts with the behavior of

a normal reservoir as depicted in Fig. 2.

V. DISCUSSION

The spectral radius is the most commonly used indicator

for the dynamics of a reservoir. As a rule of thumb, it is

assumed that a reservoir will exhibit the Echo State Property

for spectral radii below unity. The ESP indicates that a

reservoir has fading memory and thus that the network state

will eventually become independent of the initial state and

past inputs. One consequence of this is that a zero input, zero

bias network has to converge to the origin (cf. Fig. 2).

However, as has been indicated in the past by a number

of researchers (e.g. [5]) and pointed out explicitly in [2], this

simple rule does not always hold. Low-dimensional examples

in [2] illustrated that in some cases a network oscillates

despite the fact that ρ < 1. These low-dimensional examples

can be extended to higher-dimensional networks, however

these are always sparse by construction. By large-scale

numerical experimentation we also found explicit examples

of large networks (N ≥ 128) for which the ESP does not

hold for ρ < 1 (see for example Fig. 9).

Fortunately, we found that the fraction of such networks

rapidly decreases with increasing network size. Apart from

reservoir size, the connectivity of the network also influences

the ESP. In particular, we showed that sparser networks with

ρ < 1 are more likely not to exhibit the ESP compared to

dense reservoirs with equal spectral radius.

These findings do not suggest that the spectral radius

should always be below 1. As the bifurcation plot in Fig. 3

indicates, inputs also greatly influence the ESP. We thus
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Fig. 10. Commonly used parameters for reservoir computing: the reservoir size N , spectral radius ρ and the connectivity c. All accessible studies citing [3]
were consulted. Researchers tend to use relatively large networks. The majority of the researchers use a spectral radius slightly below unity. Typically very
sparsely or very densely connected networks are preferred. We conclude that most studies used parameter ranges for which the spectral radius is a good
indicator for the ESP.

advocate the exploration of larger ρ, like [2]. One should

consider ρ as a task dependent global parameter for opti-

mization.

To get an overview of how reservoirs are typically tuned,

we analyzed all accessible papers citing [3] that used hy-

perbolic tangent neurons. We learned that the majority of

the researchers use 0.9 < ρ < 1.0, see Fig. 10. Based on

practical experience, it is our belief that in many applications,

the spectral radius should be much larger or much smaller

and consequently that this distribution should be more bell-

shaped.

Our meta-analysis also shows that most researchers are

using large networks. This is positive, since the ESP is more

likely to hold for ρ < 1 in such networks. More surprising is

the connectivity used in many reservoirs. There seem to be

two factions; one preferring fully dense networks for which

the spectral radius seems to be a valid indicator for the ESP

in general and the other preferring very sparse networks.

Although the latter group comprises a significant portion of

the studies, this does not necessarily indicate a problem as

the networks were typically large.

In [1] and [2] different metrics for the ESP were given.

By large-scale experimentation on 2- and 8-dimensional

networks, we showed that both the largest singular value

method and the Schur stability are too restrictive conditions

for practical use. Further experiments on larger networks

indicated that the probability of a network with spectral

radius below unity not exhibiting the ESP quickly drops

as a function of the network size for zero input, zero bias

networks. Therefore, we conclude that the spectral radius

remains a good indicator of the ESP, especially in large

reservoir systems.
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