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ABSTRACT

In digital cameras and mobile phones, there is an ongoimgl ti@ increase the image resolution, decrease the sensor siz
and to use lower exposure times. Because smaller sensareitily lead to more noise and a worse spatial resolution,
digital post-processing techniques are required to resolany of the artifacts. Color filter arrays (CFAs), which use

alternating patterns of color filters, are very popular lseaof price and power consumption reasons. However, color
filter arrays require the use of a post-processing techrégab as demosaicing to recover full resolution RGB images.
Recently, there has been some interest in techniques théyjperform the demosaicing and denoising. This has the
advantage that the demosaicing and denoising can be pedapiimally (e.g. in the MSE sense) for the considered noise
model, while avoiding artifacts introduced when using dsaicing and denoising sequentially.

In this paper, we will continue the research line of the wat#blased demosaicing techniques. These approaches are
computationally simple and very suited for combinationhwdenoising. Therefore, we will derive Bayesian Minimum
Squared Error (MMSE) joint demosaicing and denoising rinlélse complex wavelet packet domain, taking local adaptiv-
ity into account. As an image model, we will use GaussianéShlktures, thereby taking advantage of the directionality
of the complex wavelets. Our results show that this techmigwvell capable of reconstructing fine details in the image,
while removing all of the noise, at a relatively low compidatl cost. In particular, the complete reconstructiosl(iding
color correction, white balancing etc) of a 12 megapixel Riltdge takes 3.5 sec on a recent mid-range GPU.
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1. INTRODUCTION

Because of price and power consumption reasons, color dittay/s such as the Bayer color filter array (CFA) are very
popular, therefore, demosaicing is indispensable fomsiracting full resolution RGB images. Traditionally, desaicing
and denoising has been treated separably, either perfgaeimoising first and then demosaicifighere the demosaicing

is hampered because the denoising tends to destroy higheinegps and where traditional statistical image modelaatn
be directly applied on CFA images), or vice versa, by denuisgifirst and then denoising (where denoising is more
difficult because of the local adaptivity of most demosajciigorithms, causing artifacts that are difficult to remjove
Therefore, recently there has been a lot of interest in jgémoising and demosaicifg?

While a number of authors integrate denoising in the imageaio (e.g., ref84), a second line of researth ’ fo-
cuses on performing demosaicing directly in the waveletaarof the CFA mosaic image. The CFA mosaic image is a
superposition of the individual CFA component images anttaias both chrominance and luminance information, either
non-modulated (chrominance and luminance) or modulatedainance). Then, simple linear demosaicing rules can be
derived to de-modulate or de-multiplex the chrominancelaminance information. However, such techniques make hard
assumptions on the chrominance and luminance bandwidttishase assumptions are often violated in practice. Imtece
work, we extended the technique from Réd the complex wavelet domain, where we integrated locaiapadaptivity
in the algorithm to circumvent the problems with the bandtvimssumptions. Thereby, we were also able to recover some
of the high frequency luminance information. The main adagas of the wavelet-based demosaicing methods are 1)
natural-looking reconstruction of high frequencies, 2 télatively low computation complexity. In this paper, wil go
one step further, by performing joint denoising and denwsgiinstead of demosaicing alone, thereby combining ideas
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Figure 1. (a) Example of a Bayer pattern, (b) a “shifted” Bayattern, (¢) subband names of a two level DT-CWPT.

from Hirakawa’® Aeltermarf and Anckaerf. Doing so, the joint technique (sometimes calledeaoisaicing algorithnt)
can make optimally use of the noise statistics, while theodmg can simultaneously exploit information that contesf
the demosaicing (e.g. the local edge directions).

The remainder of this paper is structured as follows: ini6a@, we will briefly discuss the locally adaptive complex-
wavelet demosaicing approach that we are considering, andilvextend this method to perform denoising jointly with
demosaicing. In Section 3, experimental results are gimeldéscussed. Finally, Section 4 concludes this paper.

2. BAYESIAN JOINT DENOISING AND DEMOSAICING
2.1 Locally adaptive complex wavelet demosaicing

Consider an RGB color image, consisting of a Ré@), greenG(p) and blue channd(p), with p = [p1, p2] the discrete
spatial position. When assuming a Bayer CFA shown in Fig(ag, the red, green and blue channels will be sub-sampled
according to the following operation:

14 (—1)Pr— (—1)P2 — (—1)PLtP2

Rn(p) = R(p) )
Gm(p) = G(p)%l)pl+p2
Bnip) = Bp) R CURE )

"Shifted” Bayer patterns (see example in Figure 1(b)) caol@ined by adding 0 or 1 to th@ andp, variables in the
above equations. Similar sub-sampling formulas can beesriior other CFA designs. In each case, the CFA mosaic
image is simply the sum of the three sub-sampled signals:

M(p) = Rm(p) + Gm(p) + Bm(p)- 2

Next, we will consider a two-scale dual-tree complex wavphcket (DT-CWPTY® decomposition of the CFA mosaic
image. Skipping the computation of the complex orientedekgtvcoefficients using complex phase modulations (see
Refll), and keeping the real and imaginary components sepataisyesults in four times 16 wavelet packet subbands.
The naming conventions for the resulting subbands are givEigure 1(c).

Complex wavelet demosaicing then consists of construdtithg sampled color bands of the CFA mosaic image. To
do so, we compute the DT-CWPT of respectivBijp), G(p) andB(p) using appropriate demosaicing rules. Then, the
backward DT-CWPT is used on each color channel independémtieconstruct the final demosaiced image.

The demosaicing rules of our approach from®Réivhich does not include denoising) are briefly summarizethinle
1. Here Rdrm, Gkimnis Bkimn: Mimn With k1, m,n =H_ L refer to different DT-CWPT subbands of respectivie(p), G(p),
B(p) andM(p). We omit the spatial position to simplify the notations. eTposition-dependent variablecontains the
estimated edge direction at the considered position. kiimdd as follows:

0 vertical edge
g= < 0.5 unsure 3)
1  horizontal edge



1) Luminance information (non-LHLL/HLLL/LLLL subbands)
R.Lmn = GLim = BLim = MiLLm, wheremn = LH,HLorHH
R Hm = GLHm = BLHmn = MUpm, wheremn = LH, HL or HH
RiLmn = GHLm = BHumn = MuLm, wheremn=LH, HL or HH
RuHmn = GHHmn = BuHm = Mubm, wheremn=LH, HL orHH
RuHLL = GHHLL = BHHi =0

2) Directionally adaptive reconstruction of high frequghaminance information (LHLL and HLLL subbands)
RLHLL = GrHLL = Brrir = q(S5 MLHLL — S MHLLL)
Rutil = GHilL =Bau =—(1—10) (S?HLLMLHLL — ﬁLLLMHLLL)

3) Combined luminance and chrominance information (LLLhtha
GLiiL = MLLLL — SHHLLMHHLL
RLLLL = 2(SHHLLMHHLL + (1 — @) S MLALL + SR MALLL) +Mu
BLLLL = 2(SHHLLMHHLL + (1 — @) Sy MLHLL + OS5 MALLL) + Mo

Table 1. Demosaicing rules for locally adaptive complex etaidenoising (R&j.

For the details on the estimation gfwe refer to Ref? Next the variablesR, | , S5, Sy SRl SSHLL L SHHLL
are—1 or 1, depending on the shifts pf andp, used in (1). For example, for the Bayer pattern from Figued,re
have:

SHHLL = Sl = S = S = — 1 SThie = S = S = 1
Remark that, despite the signs and the many subband inthiesispplementation of the locally adaptive complex wavelet
demosaicing according to Table 1 is actually quite simpt@mputationally very efficient.

2.2 Dealing with noisein thedemosaicing: ajoint approach

In this section, we explain how the demosaicing algorithomfiprevious section can be extended with denoising, based on
a Gaussian Scale Mixture prior.

We assume that the measured CFA mosaic image is composdtbasfo

M(p) = Xo(p) +W(p),

whereXo(p) is the “ideal” noise-free CFA mosaic image, and whétgp) is white stationary Gaussian nolsaith zero
mean and different variances depending on the color chgagetg andad).

Now our goal isnot to estimateXo(p) from M(p), as this would be “denoising before demosaicing”. Our geal i
instead, to estimate a demosaiced versioXy0p), denoted byX(p), from M(p).

Therefore, we extend ideas from Hirakawa the complex wavelet domain. This allows us to benefit from di-
rectionality of the complex wavelets: in particular, thare 6 directional complex wavelets per scale. Recall thattie
DT-CWPT, there are four sets of subbands. In the followiagus denote them a4, RY, G\, B whereu=1,...,4.

To compute complex coefficients correspondinglitectional subbands, it is necessary to perform an additional phase
modulation (PM)-! This PM takes the following the form:

(r1) (1)
<M'ﬂﬂ"> = i< 1 1><M|&'}”ﬂ> and
Mygmn va\-11 Migmn
(r2) )
() - (4 1)) @
Myt va\-11 Midmn
TNote that the assumption of stationary noise is a bit sifiplsecause in practice, digital camera noise is signaedéent. For

simplicity, we stick to the white stationary model in thigyea, however the equations can easily be generalized taghalsiependent
case using results from Portilfd.




WhereMk“m + ijlmn and Mkwn + JMkImn are the resulting complex wavelet coefficients (hgie the imaginary unit).
Note that we will explicitly take care of the PM (4), because PM modifies the noise correlations (see'Ref

Next, we discuss the different steps of the demosaicingitthgo (Table 1):

1. Step 1 deals with estimation of highpass luminance inédion (all subbands except LHLL/HLLL/LLLL). Because
the demosaicing rules are of the foRQm = - Gimn = Birm = Mimn, with kI, m n=H,L andkimn £ HHLL, we
can directly denoise and demosaic by setﬁg@n Gk|,m Burm = Murm - To estlmateMH,m, we first apply the
PM (4), then we perform BLS-GSM denoisitfgo each subband independently and finally we undo the PM. For
the HHLL subbands, we keep the estimBtgy | = Gy = Byue = 0.

2. Step 2 deals with the recovery of high frequency luminanf@mation in the LHLL and HLLL subbands. We can
write the demosaicing rule in matrix-form, taking the PM i@p account:

G|(_r|41|?_|_ MEll-I)LL
Gl(-m_l_ — 1 ( 11 ) ® < ashLL —qSiLLL > Ml(-llL)LL (5)
Gﬂ,ﬁ)LL v\ -1 1 ~(1-gshy @-asi Mﬁ:)LL ’
GI(-IIlL)LL A1 Ml(-|4L)LL
v: I

. . T
and a similar equation fo( ¢ 63 ¢ cid ) . Here’®/ denotes the Kronecker product.

3. Instep 3, the luminance information is separated frontkiteminance information in the LLLL subband. To benefit
from the multi-scale properties of the complex wavelet¢farm, we perform a further decomposition of the L -
subband using the dual tree complex wavelet transform (RTFL In practice, 4 scales (to have a total of 6 scales)
are sufficient for 10 megapixel images. A similar demosai¢ormula to (5) can be written:

1
(r1) M(I('lL))LL
Gri M HL

G e
LLL 1 0 B HLLL
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and a similar equation fo( g R B2 gd RZ B ) . Here,q is the estimated edge

direction, according to (3), but is considered to edden variable in our statistical model.

Now, to jointly perform denoising and demosaicing in stem# @, we use the Bayesian MMSE estimate:

Xi = EX/Y|]
= Eqy, [E[Xi[Y1,q]]
Eqpv, [Ezqy, [EDXI[Y1,2.0]]] @

with | = 1,2. When modelingh, X, using a Gaussian Scale Mixtureyds, [E[X||Y},zq]] is precisely the BLS-GSM
estimator derived in Ref? In particular, the signal and signal+noise covariance igesCy | andCy, are given by:

Cxi = ACx Al
Cy, = A (CM,|)AF =A (CXO,I +Cw,|)AIr =12



(a) Complex wavelet demosaicing (Iﬂjef (b) Proposed approach (denoising and demosaicing)

PSNR=27.09dB PSNR=32.65dB
Figure 2. Image demosaicing and denoisaicing resultsficéatinoise.

The matrixCy | is estimated using the sample covariance formula fkbmNext, the noise covariance matixy, can be
analytically computed frong, 0(23 andog, making use of the Parseval property of the DT-CWT, and basewlations
derived in Reft* The signal covariance matrix then follows by:

Cxol = (Cmi— Cw,|)+,

where(-) , replaces possible negative eigenvalues caused by estimeatdrs by a small positive numb&rThe calculation
of Eqyv, [Ezqy, [E[Xi[Y1,2 )] is then entirely similar to the BLS-GSM estimator in Ref.

Summarizing, the main advantages of this estimation agpraee:

e The noise modeling is done in the CFA domain. By taking intmant how both the DT-CWPT and the demosaicing
rules from Table 1 affect the noise statistics, we can p#yf@cedict the noise statistics in the image domain after
demosaicing.

e The Gaussian Scale Mixture prior is applied in the complexelg domain of thelemosaiced image, while the
decision of edge directiogis postponed to the very end, i.e., after denoising. Coresstyy by the edge detection
is directly adapted to the noise statistics. In case of highunts of noise, a neutral choice will be taken (the weight
corresponding tg = 0.5 will be highest in the averaging in (7)), thereby elimingtmany demosaicing artifacts due
to a wrong edge direction detection.

o Directional complex wavelets are obtained through the PM @Gbnsequently, the algorithm is not restricted to the
horizontal and vertical directions of the discrete waveighsform, resulting in overall in a better PSNR and visual
quality, especially in the presence of non-horizontal aoia-wertical edges.

3. EXPERIMENTAL RESULTS

In Figure 2, we corrupted theodim04 image of the Kodak image database with white Gaussian naisestandard
deviationg = 10. Next, we sub-sampled the image according to Bayer pditem Figure 1, and we reconstructed the
image using both the complex wavelet demosaicing (withenbiking) and the proposed approach (with denoising) nit ca
be noted that, even though the proposed approach is a jomisiEcing and denoising method, the denoising performance
is consistent with the BLS-GSM estimator in B&f the noise is removed well, while many image details (ehp, t
eyelashes) are being preserved.
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(b) Wavelet demosaicing fRef

(d) Proposed approach (e) Difference image between (c)dnd ( (f) Adaptive homogeneity-directed demosaicing

(with contrast enhancement) (implementation.bbRaw, based on Réf)
Figure 3. Image demosaicing and denoisaicing results -INiIX80 sensor noise.

Next, we applied our technique to reconstruct a RAW digitahera image (taken with a Nikon D60 at focal length
200mm, aperture /11, 1ISO 3200 and exposure tin¥0DG0s, resolution 261 3900, 10 megapixels). Due to the low
exposure time, high 1SO setting and high resolution, themstucted image contains quite a lot of noise. The image
reconstruction consists of different steps listed in orderder cropping, black subtraction, color correctionhwithite
balancing, demosaicing and denoising, and gamma correclitie noise level in each color channel of the CFA was
determined experimentally. For all steps except demasgiand denoising, we used algorithms available in the open
source libraryLibRaw.¥ Different demosaicing results (of a 256256 cropped version of the original RAW data) are
shown in Figure 3. Again, it can be noted that the noise is re@tioved, while demosaicing artifacts are avoided.

A second RAW digital camera image (of Darling Harbour in Sggnwas captured using a Panasonic DMC-FZ38,
with aperture /4, 1ISO: 80, shutter speet50s and resolution 301& 4016, 12 megapixels. The demosaicing results (of
a 256x 256 cropped version of the original RAW data) are shown inufégt. Here, the proposed method suppresses the
noise well, while preserving edges and other fine structures

With the proposed technique, the full reconstruction té&k&ssec on an NVidia Geforce 560Ti graphics card with 1Gb
RAM, programmed with CUDA and employing single-precisiarating point numbers (32-bit). The reconstruction of a
12 megapixel image currently requires 770 MB of memory (ofalvmot all memory needs to reside in the GPU memory
at the same time). Most memory (577 MB =4 x 3 x 4016x 3016 bytes) is used to store the complex wavelet packet
coefficients of the RGB output image.

*LibRaw library for reading RAW files from digital cameras;tp: //www.libraw.org/
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(a) Bilinear demosaicing (b) Wavelet demosaicing (Hirakawal®)

(c) DT-CWPT demosaicing (Aelterman et®l. (d) Proposed approach

(f) Bilinear demosaicing (g) Wavelet demosaicing (h) DT-BWdemosaicing (i) Proposed approach
Figure 4. Image demosaicing and denoisaicing results -déamalLumix DMC-FZ38 sensor noise.



4. CONCLUSION

In this paper, we have derived Bayesian Minimum SquaredrEM&SE) joint demosaicing and denoising rules in the
complex wavelet packet domain, thereby adapting to the éyeantation of edges. Due to the simplicity of the demoisajc
rules, the computational complexity of the resulting jagorithm is relatively low. Experimental results demaats that

the proposed approach is well able to remove noise duringdaiting, while image details are being preserved. In our
future work, we will extend this technique to a more sophétd signal-dependent noise model, such as our model from
Refl’
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