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ABSTRACT

In digital cameras and mobile phones, there is an ongoing trend to increase the image resolution, decrease the sensor size
and to use lower exposure times. Because smaller sensors inherently lead to more noise and a worse spatial resolution,
digital post-processing techniques are required to resolve many of the artifacts. Color filter arrays (CFAs), which use
alternating patterns of color filters, are very popular because of price and power consumption reasons. However, color
filter arrays require the use of a post-processing techniquesuch as demosaicing to recover full resolution RGB images.
Recently, there has been some interest in techniques that jointly perform the demosaicing and denoising. This has the
advantage that the demosaicing and denoising can be performed optimally (e.g. in the MSE sense) for the considered noise
model, while avoiding artifacts introduced when using demosaicing and denoising sequentially.

In this paper, we will continue the research line of the wavelet-based demosaicing techniques. These approaches are
computationally simple and very suited for combination with denoising. Therefore, we will derive Bayesian Minimum
Squared Error (MMSE) joint demosaicing and denoising rulesin the complex wavelet packet domain, taking local adaptiv-
ity into account. As an image model, we will use Gaussian Scale Mixtures, thereby taking advantage of the directionality
of the complex wavelets. Our results show that this technique is well capable of reconstructing fine details in the image,
while removing all of the noise, at a relatively low computational cost. In particular, the complete reconstruction (including
color correction, white balancing etc) of a 12 megapixel RAWimage takes 3.5 sec on a recent mid-range GPU.
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1. INTRODUCTION

Because of price and power consumption reasons, color filterarrays such as the Bayer color filter array (CFA) are very
popular, therefore, demosaicing is indispensable for reconstructing full resolution RGB images. Traditionally, demosaicing
and denoising has been treated separably, either performing denoising first and then demosaicing1 (where the demosaicing
is hampered because the denoising tends to destroy high frequencies and where traditional statistical image models cannot
be directly applied on CFA images), or vice versa, by demosaicing first and then denoising (where denoising is more
difficult because of the local adaptivity of most demosaicing algorithms, causing artifacts that are difficult to remove).
Therefore, recently there has been a lot of interest in jointdenoising and demosaicing.2–5

While a number of authors integrate denoising in the image domain (e.g., refs2,4), a second line of research3,6,7 fo-
cuses on performing demosaicing directly in the wavelet domain of the CFA mosaic image. The CFA mosaic image is a
superposition of the individual CFA component images and contains both chrominance and luminance information, either
non-modulated (chrominance and luminance) or modulated (chrominance). Then, simple linear demosaicing rules can be
derived to de-modulate or de-multiplex the chrominance andluminance information. However, such techniques make hard
assumptions on the chrominance and luminance bandwidths, and these assumptions are often violated in practice. In recent
work, we extended the technique from Ref6 to the complex wavelet domain, where we integrated local spatial adaptivity
in the algorithm to circumvent the problems with the bandwidth assumptions. Thereby, we were also able to recover some
of the high frequency luminance information. The main advantages of the wavelet-based demosaicing methods are 1)
natural-looking reconstruction of high frequencies, 2) the relatively low computation complexity. In this paper, we will go
one step further, by performing joint denoising and demosaicing instead of demosaicing alone, thereby combining ideas
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Figure 1. (a) Example of a Bayer pattern, (b) a “shifted” Bayer pattern, (c) subband names of a two level DT-CWPT.

from Hirakawa,3 Aelterman8 and Anckaert.9 Doing so, the joint technique (sometimes called adenoisaicing algorithm4)
can make optimally use of the noise statistics, while the denoising can simultaneously exploit information that comes from
the demosaicing (e.g. the local edge directions).

The remainder of this paper is structured as follows: in Section 2, we will briefly discuss the locally adaptive complex-
wavelet demosaicing approach that we are considering, and we will extend this method to perform denoising jointly with
demosaicing. In Section 3, experimental results are given and discussed. Finally, Section 4 concludes this paper.

2. BAYESIAN JOINT DENOISING AND DEMOSAICING

2.1 Locally adaptive complex wavelet demosaicing

Consider an RGB color image, consisting of a redR(p), greenG(p) and blue channelB(p), with p = [p1, p2] the discrete
spatial position. When assuming a Bayer CFA shown in Figure 1(a), the red, green and blue channels will be sub-sampled
according to the following operation:

Rm(p) = R(p)
1+(−1)p1− (−1)p2 − (−1)p1+p2

4

Gm(p) = G(p)
1+(−1)p1+p2

2

Bm(p) = B(p)
1− (−1)p1+(−1)p2 − (−1)p1+p2

4
(1)

”Shifted” Bayer patterns (see example in Figure 1(b)) can beobtained by adding 0 or 1 to thep1 andp2 variables in the
above equations. Similar sub-sampling formulas can be written for other CFA designs. In each case, the CFA mosaic
image is simply the sum of the three sub-sampled signals:

M(p) = Rm(p)+Gm(p)+Bm(p). (2)

Next, we will consider a two-scale dual-tree complex wavelet packet (DT-CWPT)10 decomposition of the CFA mosaic
image. Skipping the computation of the complex oriented wavelet coefficients using complex phase modulations (see
Ref11), and keeping the real and imaginary components separably,this results in four times 16 wavelet packet subbands.
The naming conventions for the resulting subbands are givenin Figure 1(c).

Complex wavelet demosaicing then consists of constructingfully sampled color bands of the CFA mosaic image. To
do so, we compute the DT-CWPT of respectivelyR(p), G(p) andB(p) using appropriate demosaicing rules. Then, the
backward DT-CWPT is used on each color channel independently, to reconstruct the final demosaiced image.

The demosaicing rules of our approach from Ref12 (which does not include denoising) are briefly summarized inTable
1. Here,Rklmn, Gklmn, Bklmn, Mklmn with k, l,m,n = H,L refer to different DT-CWPT subbands of respectivelyR(p), G(p),
B(p) andM(p). We omit the spatial position to simplify the notations. The position-dependent variableq contains the
estimated edge direction at the considered position. It is defined as follows:

q =







0 vertical edge

0.5 unsure

1 horizontal edge

(3)



1) Luminance information (non-LHLL/HLLL/LLLL subbands)
RLLmn = GLLmn = BLLmn = MLLmn, wheremn = LH, HL or HH

RLHmn = GLHmn = BLHmn = MLHmn, wheremn = LH, HL or HH
RHLmn = GHLmn = BHLmn = MHLmn, wheremn = LH, HL or HH

RHHmn = GHHmn = BHHmn = MHHmn, wheremn = LH, HL or HH
RHHLL = GHHLL = BHHLL = 0

2) Directionally adaptive reconstruction of high frequency luminance information (LHLL and HLLL subbands)
RLHLL = GLHLL = BLHLL = q

(
sG

LHLLMLHLL − sG
HLLLMHLLL

)

RHLLL = GHLLL = BHLLL =−(1− q)
(
sG

LHLLMLHLL − sG
HLLLMHLLL

)

3) Combined luminance and chrominance information (LLLL band)
GLLLL = MLLLL − sHHLLMHHLL

RLLLL = 2(sHHLLMHHLL +(1− q)sR
LHLLMLHLL + qsR

HLLLMHLLL)+MLLLL

BLLLL = 2(sHHLLMHHLL +(1− q)sB
LHLLMLHLL + qsB

HLLLMHLLL)+MLLLL

Table 1. Demosaicing rules for locally adaptive complex wavelet denoising (Ref8).

For the details on the estimation ofq, we refer to Ref.12 Next the variablessR
LHLL,s

G
LHLL,s

B
LHLL, sR

HLLL,s
G
LHLL,s

B
HLLL, sHHLL

are−1 or 1, depending on the shifts ofp1 and p2 used in (1). For example, for the Bayer pattern from Figure 1(a), we
have:

sHHLL = sR
HLLL = sG

LHLL = sB
LHLL =−1, sR

LHLL = sG
LHLL = sB

HLLL = 1.

Remark that, despite the signs and the many subband indices,the implementation of the locally adaptive complex wavelet
demosaicing according to Table 1 is actually quite simple and computationally very efficient.

2.2 Dealing with noise in the demosaicing: a joint approach

In this section, we explain how the demosaicing algorithm from previous section can be extended with denoising, based on
a Gaussian Scale Mixture prior.

We assume that the measured CFA mosaic image is composed as follows:

M(p) = X0(p)+W(p),

whereX0(p) is the “ideal” noise-free CFA mosaic image, and whereW (p) is white stationary Gaussian noise† with zero
mean and different variances depending on the color channel(σ2

R, σ2
G andσ2

B).

Now our goal isnot to estimateX0(p) from M(p), as this would be “denoising before demosaicing”. Our goal is
instead, to estimate a demosaiced version ofX0(p), denoted byX(p), from M(p).

Therefore, we extend ideas from Hirakawa3 to the complex wavelet domain. This allows us to benefit from the di-
rectionality of the complex wavelets: in particular, thereare 6 directional complex wavelets per scale. Recall that for the
DT-CWPT, there are four sets of subbands. In the following, let us denote them asM(u), R(u), G(u), B(u), whereu = 1, ...,4.
To compute complex coefficients corresponding todirectional subbands, it is necessary to perform an additional phase
modulation (PM).11 This PM takes the following the form:

(

M(r1)
klmn

M(i1)
klmn

)

=
1√
2

(
1 1
−1 1

)(

M(1)
klmn

M(4)
klmn

)

and

(

M(r2)
klmn

M(i2)
klmn

)

=
1√
2

(
1 1
−1 1

)(

M(2)
klmn

M(3)
klmn

)

, (4)

†Note that the assumption of stationary noise is a bit simplistic because in practice, digital camera noise is signal-dependent. For
simplicity, we stick to the white stationary model in this paper, however the equations can easily be generalized to the signal-dependent
case using results from Portilla.13



whereM(r1)
klmn + jM(i1)

klmn andM(r2)
klmn + jM(i2)

klmn are the resulting complex wavelet coefficients (herej is the imaginary unit).
Note that we will explicitly take care of the PM (4), because the PM modifies the noise correlations (see Ref14).

Next, we discuss the different steps of the demosaicing algorithm (Table 1):

1. Step 1 deals with estimation of highpass luminance information (all subbands except LHLL/HLLL/LLLL). Because
the demosaicing rules are of the formRklmn = Gklmn = Bklmn = Mklmn, with k, l,m,n = H,L andklmn 6= HHLL, we
can directly denoise and demosaic by settingR̂klmn = Ĝklmn = B̂klmn = M̂klmn . To estimateM̂klmn, we first apply the
PM (4), then we perform BLS-GSM denoising15 to each subband independently and finally we undo the PM. For
the HHLL subbands, we keep the estimateRHHLL = GHHLL = BHHLL = 0.

2. Step 2 deals with the recovery of high frequency luminanceinformation in the LHLL and HLLL subbands. We can
write the demosaicing rule in matrix-form, taking the PM (4)into account:








G(r1)
LHLL

G(r1)
HLLL

G(i1)
LHLL

G(i1)
HLLL








︸ ︷︷ ︸

Y1

=
1√
2

(
1 1
−1 1

)

⊗
(

qsG
LHLL −qsG

HLLL
−(1− q)sG

LHLL (1− q)sG
HLLL

)

︸ ︷︷ ︸

A1








M(1)
LHLL

M(1)
HLLL

M(4)
LHLL

M(4)
HLLL








︸ ︷︷ ︸

M1

, (5)

and a similar equation for
(

G(r2)
LHLL G(r2)

HLLL G(i2)
LHLL G(i2)

HLLL

)T
. Here′⊗′ denotes the Kronecker product.

3. In step 3, the luminance information is separated from thechrominance information in the LLLL subband. To benefit
from the multi-scale properties of the complex wavelet transform, we perform a further decomposition of theLLLL-
subband using the dual tree complex wavelet transform (DT-CWT). In practice, 4 scales (to have a total of 6 scales)
are sufficient for 10 megapixel images. A similar demosaicing formula to (5) can be written:













G(r1)
LLLL

R(r1)
LLLL

B(r1)
LLLL

G(i1)
LLLL

R(i1)
LLLL

B(i1)
LLLL













︸ ︷︷ ︸

Y2

=
1√
2

(
1 1
−1 1

)

⊗





1 0 0 −sHHLL

1 2(1− q)sR
LHLL 2q · sR

HLLL 2sHHLL

1 2(1− q)sB
LHLL 2q · sB

HLLL 2sHHLL





︸ ︷︷ ︸

A2


















M(1)
LLLL

M(1)
LHLL

M(1)
HLLL

M(1)
HHLL

M(4)
LLLL

M(4)
LHLL

M(4)
HLLL

M(4)
HHLL


















︸ ︷︷ ︸

M2

, (6)

and a similar equation for
(

G(r2)
LLLL R(r2)

LLLL B(r2)
LLLL G(i2)

LLLL R(i2)
LLLL B(i2)

LLLL

)T
. Here, q is the estimated edge

direction, according to (3), but is considered to be ahidden variable in our statistical model.

Now, to jointly perform denoising and demosaicing in step 2 and 3, we use the Bayesian MMSE estimate:

X̂l = E[Xl |Yl ]

= Eq|Yl
[E[Xl |Yl ,q]]

= Eq|Yl

[
Ez|q,Yl

[E[Xl |Yl ,z,q]]
]
, (7)

with l = 1,2. When modelingAlXl using a Gaussian Scale Mixture, Ez|q,Yl
[E[Xl |Yl ,z,q]] is precisely the BLS-GSM

estimator derived in Ref.15 In particular, the signal and signal+noise covariance matricesCX ,l andCY,l are given by:

CX ,l = AlCX0,lA
T
l

CY,l = Al
(
CM,l

)
AT

l = Al
(
CX0,l +CW,l

)
AT

l l = 1,2



(a) Complex wavelet demosaicing (Ref8) (b) Proposed approach (denoising and demosaicing)
PSNR=27.09dB PSNR=32.65dB

Figure 2. Image demosaicing and denoisaicing results - artificial noise.

The matrixCM,l is estimated using the sample covariance formula fromMl . Next, the noise covariance matrixCW,l can be
analytically computed fromσ2

R, σ2
G andσ2

B, making use of the Parseval property of the DT-CWT, and basedon relations
derived in Ref.14 The signal covariance matrix then follows by:

CX0,l =
(
CM,l −CW,l

)

+
,

where(·)+ replaces possible negative eigenvalues caused by estimation errors by a small positive number.15 The calculation
of Eq|Yl

[
Ez|q,Yl

[E[Xl |Yl ,z,q]]
]

is then entirely similar to the BLS-GSM estimator in Ref.15

Summarizing, the main advantages of this estimation approach are:

• The noise modeling is done in the CFA domain. By taking into account how both the DT-CWPT and the demosaicing
rules from Table 1 affect the noise statistics, we can perfectly predict the noise statistics in the image domain after
demosaicing.

• The Gaussian Scale Mixture prior is applied in the complex wavelet domain of thedemosaiced image, while the
decision of edge directionq is postponed to the very end, i.e., after denoising. Consequently, by the edge detection
is directly adapted to the noise statistics. In case of high amounts of noise, a neutral choice will be taken (the weight
corresponding toq= 0.5 will be highest in the averaging in (7)), thereby eliminating many demosaicing artifacts due
to a wrong edge direction detection.

• Directional complex wavelets are obtained through the PM (4). Consequently, the algorithm is not restricted to the
horizontal and vertical directions of the discrete wavelettransform, resulting in overall in a better PSNR and visual
quality, especially in the presence of non-horizontal and non-vertical edges.

3. EXPERIMENTAL RESULTS

In Figure 2, we corrupted thekodim04 image of the Kodak image database with white Gaussian noise with standard
deviationσ = 10. Next, we sub-sampled the image according to Bayer pattern from Figure 1, and we reconstructed the
image using both the complex wavelet demosaicing (without denoising) and the proposed approach (with denoising). It can
be noted that, even though the proposed approach is a joint demosaicing and denoising method, the denoising performance
is consistent with the BLS-GSM estimator in Ref15 : the noise is removed well, while many image details (e.g., the
eyelashes) are being preserved.



(a) Bilinear demosaicing (b) Wavelet demosaicing (Ref6) (c) DT-CWPT demosaicing (Ref8)

(d) Proposed approach (e) Difference image between (c) and (d) (f) Adaptive homogeneity-directed demosaicing

(with contrast enhancement) (implementation ofLibRaw, based on Ref16)

Figure 3. Image demosaicing and denoisaicing results - Nikon D60 sensor noise.

Next, we applied our technique to reconstruct a RAW digital camera image (taken with a Nikon D60 at focal length
200mm, aperture f/11, ISO 3200 and exposure time 1/4000s, resolution 2612×3900, 10 megapixels). Due to the low
exposure time, high ISO setting and high resolution, the reconstructed image contains quite a lot of noise. The image
reconstruction consists of different steps listed in order: border cropping, black subtraction, color correction with white
balancing, demosaicing and denoising, and gamma correction. The noise level in each color channel of the CFA was
determined experimentally. For all steps except demosaicing and denoising, we used algorithms available in the open
source libraryLibRaw.‡ Different demosaicing results (of a 256× 256 cropped version of the original RAW data) are
shown in Figure 3. Again, it can be noted that the noise is wellremoved, while demosaicing artifacts are avoided.

A second RAW digital camera image (of Darling Harbour in Sydney) was captured using a Panasonic DMC-FZ38,
with aperture f/4, ISO: 80, shutter speed 1/250s and resolution 3016×4016, 12 megapixels. The demosaicing results (of
a 256×256 cropped version of the original RAW data) are shown in Figure 4. Here, the proposed method suppresses the
noise well, while preserving edges and other fine structures.

With the proposed technique, the full reconstruction takes3.5 sec on an NVidia Geforce 560Ti graphics card with 1Gb
RAM, programmed with CUDA and employing single-precision floating point numbers (32-bit). The reconstruction of a
12 megapixel image currently requires 770 MB of memory (of which not all memory needs to reside in the GPU memory
at the same time). Most memory (577 MB = 4×4×3×4016×3016 bytes) is used to store the complex wavelet packet
coefficients of the RGB output image.

‡LibRaw library for reading RAW files from digital cameras,http://www.libraw.org/



(a) Bilinear demosaicing (b) Wavelet demosaicing (Hirakawa et al.6)

(c) DT-CWPT demosaicing (Aelterman et al.8) (d) Proposed approach

(f) Bilinear demosaicing (g) Wavelet demosaicing (h) DT-CWPT demosaicing (i) Proposed approach
Figure 4. Image demosaicing and denoisaicing results - Panasonic Lumix DMC-FZ38 sensor noise.



4. CONCLUSION

In this paper, we have derived Bayesian Minimum Squared Error (MMSE) joint demosaicing and denoising rules in the
complex wavelet packet domain, thereby adapting to the local orientation of edges. Due to the simplicity of the demosaicing
rules, the computational complexity of the resulting jointalgorithm is relatively low. Experimental results demonstrate that
the proposed approach is well able to remove noise during demosaicing, while image details are being preserved. In our
future work, we will extend this technique to a more sophisticated signal-dependent noise model, such as our model from
Ref.17
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