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0 Introduction: Motivation and Approach

0.0 Motivation

a. Mathematics in Engineering

• Rationale: 2 variants (by C. Michael Holloway)

• Simple parallels between software and classical engineering

b. Formal Methods

• Definition

• Advantages

• Rough classification

0.1 Choice of approach

a. Why not “off-the-shelf” or “cut-and dried” mathematics?

b. Chosen approach: Functional Mathematics
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0.0 Motivation

a. Mathematics in Engineering

• Rationale: 2 variants
C. Michael Holloway, “Why engineers should consider formal methods”
http://techreports.larc.nasa.gov/ltrs/PDF/1997/mtg/NASA-97-16dasc-cmh.pdf

Traditional rationale: reasoning leading to the conclusion that
“Reducing software errors and design effort requires formal methods”
Critique: complex argumentation, many unnecessary assumptions.

Revised rationale:

Software engineers strive to be true engineers (Q1);
true engineers use appropriate mathematics (Q2);
therefore, software engineers should use appropriate mathematics (Q3).
Thus, given that formal methods is the mathematics of software (Q4),
Software engineers should use appropriate formal methods (Q5).

Clearly (Q3) is the issue for software engineers aspiring to be true engineers!
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a. Mathematics in Engineering (continued)

• A parallel between electronics and software at the engineering level

Difference between professional engineers and other designers

Professional engineers can often be distinguished from other designers
by the engineers’ ability to use mathematical models to describe and
analyze their products
David L. Parnas, “Predicate Logic for Software Engineering”,
IEEE Trans. Software Engineering 19, 9, pp. 856–862 (Sept. 1993)

Technicians level (http://www.passpathways.on.ca/resources/PASSWEB/page93.html):
“Technicians generally do not do design work ... [thus require less] math than in
a 3-year technology program. For example, calculus [is not always included]”.

Yet, even so, many electronics technicians courses include calculus, e.g.,
in a typical program preparing entry-level electronic engineering technicians
(reference: http://selland.boisestate.edu/academic programs/programs/ETAAS.htm)

Suggestive question: In practice, how does the professional level of software engi-
neers compare to that of electronics technicians? (not further elaborated ...)
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a. Mathematics in Engineering (continued): giving software engineers a math-
ematical background at a level comparable to that of classical engineers

Classification Classical engineering Software/computer engineering

Basic Analysis, Linear algebra Formal proposition & predicate logic
Probability and Statistics Relations, (h.-o.) functions, orderings
Discrete mathematics Lambda calculus (elements)
(combinatorics, graphs) Lattice theory, Induction principles, . . .

Targeted Physics Formal languages and automata
Control theory Formal language semantics
Stochastic processes Concurrency (parallel, mobile etc.)
Information Theory, . . . Type theory, . . .

“Advanced” Functional analysis Category theory
Distribution Theory Unified algebra
Hilbert and Banach spaces Modal logic
Measure theory, . . . Co-algebras and co-induction, . . .

Remark: the “basic” mathematics for software engineering is equally relevant to
classical engineering mathematics — hence useful in any engineering curriculum!
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b. Formal Methods

• Definition/essence

UT FACIANT OPUS SIGNA “Let the symbols do the work”

(Maxim of the congress series “Mathematics of Program Construction”)

– “Formal methods” means more than just “mathematical methods”

– Traditional math: manipulating expressions by interpretation (symbols
no more than a notation, often even ambiguous/incondsistent)

– Formal math: manipulating expressions om the basis of their form
(precise calculation rules, reasoning guided by structure)
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• Advantages of the formal approach

– Added dimension: reasoning guided by the shape of the expressions
Note: standard practice in use of calculus, pitiful in traditional proofs

– Multi-pronged attack to problems (developing parallel intuition)

– Greater diversity of subjects can be captured by uniform methodology

– Especially useful for exploring unfamiliar terrain
(where intuition based on interpretationis still lacking)

– Avoiding hidden assumptions, making all assumptions explicit

– Importance for supporting true declarativity: verifying that specifica-
tions reflect intent by proving multiple formalizations equivalent
(in this way, the formal approach captures interpretation issues)

7



• Rough classification of formal methods

– Hardcore formal methods: using formal mathematics

Advantages: deeper understanding,
better handling of conceptual complexity and diversity
generality, adaptability, more support for innovation

Disadvantage: learning curve (steeper, more time and effort)

– Lightweight formal methods: using some tool

Advantage: lower threshold, faster near-term user motivation

Disadvantages: limited scope (specialized),
use is ineffective and unsafe without hardcore background

Related issue: use of automated tools

– Some tools support (some) hardcore methods

– Tools can never supplant hardcore methods
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0.1 Choice of approach

Goal: UT FACIANT OPUS SIGNA (no second-rate formalisms)

a. Why not “off-the-shelf” or “cut-and -dried” mathematics?
Criterion: support for formal calculation in everyday practice
This support is inversely proportional to the needs in software engineering

• Well-developed in classical mathematics
Examples: algebra (due: Viète, Descartes), calculus (due: Leibniz)
Calculation in everyday practice is de facto formal (or nearly so)

• Rather poor for discrete mathematics, e.g.,
Formal rules for

∑
rarely stated, often error-prone (Mathematica)

Ellipsis (as in a0 + a1 + · · · + an−1), other ad hoc conventions

• Woefully inadequate in logic and set theory, e.g.,

Quantifiers ∃ and ∀ in everyday practice only used as abbreviations for
words in natural language (“there exists” and “for all”)

Set comprehension/selection: disparate, ambiguous conventions like
{x ∈ X | x > y} and {x2 | x ∈ X}, no formal calculation rules

9



Example A: symbolic manipulation in engineering calculus is essentially formal

From: Blahut / data-compacting

1

n

∑

x

pn(x|θ)ln(x)

≤ 1

n

∑

x

pn(x|θ)[1− log qn(x)]

=
1

n
+

1

n
L(pn;qn) + Hn(θ)

=
1

n
+

1

n
d(pn,G) + Hn(θ)

≤ 2

n
+ Hn(θ)

From: Bracewell / transforms

F (s) =

∫ +∞

−∞
e−|x|e−i2πxsdx

= 2

∫ +∞

0
e−x cos 2πxs dx

= 2 Re

∫ +∞

0
e−xei2πxsdx

= 2 Re
−1

i2πs − 1

=
2

4π2s2 + 1
.

The only shortcoming w.r.t. the “formal norm” is the absence of justifications.
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Major defect: only for expressions in arithmetic, differential, integral calculus,
not in logical reasoning. This constitutes a serious style breach .

“The notation of elementary school arithmetic, which nowadays everyone

takes for granted, took centuries to develop. There was an intermediate
stage called syncopation, using abbreviations for the words for addition,

square, root, etc. For example Rafael Bombelli (c. 1560) would write

R. c. L. 2 p. di m. 11 L for our 3
√

2 + 11i.

Many professional mathematicians to this day use the quantifiers (∀,∃)

in a similar fashion,

∃δ > 0 s.t. |f(x) − f(x0)| < ε if |x − x0| < δ, for all ε > 0,

in spite of the efforts of [Frege, Peano, Russell] [. . .]. Even now, mathe-
matics students are expected to learn complicated (ε-δ)-proofs in analy-

sis with no help in understanding the logical structure of the arguments.
Examiners fully deserve the garbage that they get in return.”

(P. Taylor, “Practical Foundations of Mathematics”)

Key issue (quote): “understanding the logical structure of the arguments”
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Example B: ambiguities in conventions for sets

• Patterns typical in mathematical writing:

Patterns
with logical expression p
{x ∈ X | p}

with any expression e
{e | x ∈ X}

Examples {m ∈ Z | m < n} {n · m | m ∈ Z}
The usual tacit convention is that ∈ binds x. This seems innocuous, BUT

• Ambiguity is revealed in case p or e is itself of the form y ∈ Y .
Example: let Even := {2 · m | m ∈ Z} in

Patterns {x ∈ X | p} (logical p) {e | x ∈ X} (any e)

Examples
Both patterns are matched by both examples
{n ∈ Z | n ∈ Even} and {n ∈ Even | n ∈ Z}

So {n ∈ Z | n ∈ Even} and {n ∈ Even | n ∈ Z} are ambiguous.

• Worse: such conventions prohibit even the formulation of calculation rules!
Formal calculation with such expressions rare/nonexistent in the literature.

Underlying cause: overloading relational operator ∈ for binding of a dummy.
This poor convention is ubiquitous (not only for sets), as in ∀x ∈ R . x2 ≥ 0.
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b. Choice: the Functional Mathematics approach

• Formal calculation throughout continuous and discrete mathematics

Realizing the principle UT FACIANT OPUS SIGNA

Precise rules, calculational chaining of steps: eliminating the style breach.

a R 〈Justification for a R b〉 b

S 〈Justification for b S c〉 c

This allows chaining steps in a clear synoptic way with minimal repetition.
For arithmetic reasoning, R and S are = or ≤ or < (as illustrated).
For logical reasoning, R and S are ≡ or ⇒ etc.

• Supported by adequate conventions

– Entirely free of ambiguities and inconsistencies

– Extremely simple syntax: 4 syntactic constructs only.

• Concrete embodiment: Funmath

– Bonus: captures existing conventions in easily recognizable form

– Provides new, useful forms of expression by orthogonal combination
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An example (just to illustrate the style; calculation rules introduced later)

Proposition 2.1. for any function f : R→/ R, any subset S of D f and any

a adherent to S, (i) ∃ (L : R . L islimf a) ⇒ ∃ (L : R . L islimf eS a),
(ii) ∀L : R . ∀M : R . L islimf a ∧ M islimf eS a ⇒ L = M .

Proof for (ii): Letting b R δ abbreviate ∀x : S . |x − a| < δ ⇒ |f x − b| < ε,

L islimf a ∧ M islimf eS a

⇒ 〈Hint in proof for (i)〉 L islimf eS a ∧ M islimf eS a

≡ 〈Def. islim, hypoth.〉 ∀ (ε : R>0 . ∃ δ : R>0 . L R δ) ∧ ∀ (ε : R>0 . ∃ δ : R>0 . M R δ)

≡ 〈Distributivity ∀/∧〉 ∀ ε : R>0 . ∃ (δ : R>0 . L R δ) ∧ ∃ (δ : R>0 . M R δ)

≡ 〈Rename, dstr. ∧/∃〉 ∀ ε : R>0 . ∃ δ : R>0 . ∃ δ′ : R>0 . L R δ ∧ M R δ′

⇒ 〈Closeness lemma〉 ∀ ε : R>0 . ∃ δ : R>0 . ∃ δ′ : R>0 . a ∈ Ad S ⇒ |L − M | < 2 · ε
≡ 〈Hypoth. a ∈ Ad S〉 ∀ ε : R>0 . ∃ δ : R>0 . ∃ δ′ : R>0 . |L − M | < 2 · ε
≡ 〈Const. pred. sub ∃〉 ∀ ε : R>0 . |L − M | < 2 · ε
≡ 〈Vanishing lemma〉 L − M = 0

≡ 〈Leibniz, group +〉 L = M
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1 Simple expressions and equational calculation

1.0 Purpose: formalizing equational calculation

1.1 Syntax of simple expressions and equational formulas

a. Syntax conventions

b. Syntax of simple expressions

c. Syntax of equational formulas [and a sneak preview of semantics]

1.2 Formalizing substitution

1.3 Formal calculation with equality

a. Formal deduction: general

b. Deduction with equality

c. Equational calculation
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1.0 Purpose: formalizing equational calculation

Typical calculational example from high school algebra, with explicit justifications

(a + b) · (a − b)

= 〈Definition of −〉 (a + b) · (a + −b)
= 〈Distributivity of · over +〉 (a + b) · a + (a + b) · −b

= 〈Commutativity of ·〉 a · (a + b) + −b · (a + b)
= 〈Distributivity of · over +〉 (a · a + a · b) + (−b · a + −b · b)
= 〈Associativity of +〉 a · a + ((a · b + −b · a) + −b · b)
= 〈Commutativity of ·〉 a · a + ((b · a + −b · a) + −b · b)
= 〈Semidistributivity of − over ·〉 a · a + ((b · a + −(b · a)) + −(b · b)
= 〈Additive inverse〉 a · a + (0 + −(b · b))
= 〈Additive unit element〉 a · a + −(b · b)
= 〈Definition of −〉 a · a − b · b
= 〈Definition power〉 a2 − b2
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Example (continued): formulas corresponding to the textual justifications

Textual name Symbolic formula

Definition of − x − y = x + −y
Distributivity of · over + x · (y + z) = x · y + x · z
Commutativity of · x · y = y · x
Associativity of + (x + y) + z = x + (y + z)
Semidistributivity of − over · −x · y = −(x · y)

Additive inverse x + −x = 0
Additive unit element 0 + x = x

Notation for squares x2 = x · x

The equality (a+ b) ·−b = −b · (a+ b) is an instantiation of the rule x · y = y ·x.

18



1.1 Syntax of simple expressions and equational formulas

a. Syntax conventions

Wirth’s self-defining context-free grammar (CFG) — ASCII-oriented

syntax ::= { production }.
production ::= nonterminal "::=" regular "." .

regular ::= sequence { "|" sequence }.
sequence ::= item { item }.
item ::= nonterminal | terminal | "(" regular ")"

| "{" regular "}" | "[" regular "]".

terminal ::= """"character { character }"""".

Plus: our metalanguage conventions (not ASCII-oriented)

• Terminal symbols are indicated by an underscore (instead of Wirth’s quotes).

• Single quote marks denote strings written in compact form, omitting com-
mas and underscores. For instance, ‘cab’ stands for c, a, b.

• Special quote marks [[ ]] are similar, but allow for metavariables.
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b. Syntax of simple expressions

expression ::= variable | constant0 | application
application ::= (cop1 expression) | (expression cop2 expression)

The variables, constants (including 1- and 2-argument operators) are domain-
dependent. A simple example (arithmetic for natural numbers or integers:

variable ::= x | y | z cop1 ::= succ | pred

constant0 ::= a | b | c cop2 ::= + | ·

Alternative style (names E0 etc. for patterns are for easy reference)

Ev: [[v]] where v is a variable from V
E0: [[c]] where c is a constant from C0

E1: [[(φ e)]] where φ is an operator from C1 and e an expression
E2: [[(d ? e)]] where ? is an operator from C2 and d and e expressions

Observe the conventions: variable is a nonterminal, V the corresponding
syntactic category, v a typical element of V (always the same initial letter).
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c. Syntax of equational formulas [and a sneak preview of semantics]

formula ::= expression = expression

A sneak preview of semantics

• Informal

What does x + y mean? This clearly depends on x and y.

What does x + y = y + x mean? Usually the commutativity of +.

• Formal: denotation space D, interpretation: family k of three functions:
k0 ∈ C0 →D for the constants, k1 ∈ C1 →D→D for the one-place
operators, k2 ∈ C2 →D2 →D for the two-place operators.
Finally: state space S := V →D, meaning function E :E →S →D with

ref. image definition for E for any state s in S and any

Mv: E [[v]] s = s v variable v in V

M0: E [[c]] s = k0 c constant c in C0

M1: E [[(φ e)]] s = k1 φ (E e s) φ in C1 and e in E

M2: E [[(d ? e)]] s = k2 ? (E d s, E e s) ? in C2, d in E and e in E
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However:

ref. image definition for E for any state s in S and any

Mv: E [[v]] s = s v variable v in V

M0: E [[c]] s = k0 c constant c in C0

M1: E [[(φ e)]] s = k1 φ (E e s) φ in C1 and e in E
M2: E [[(d ? e)]] s = k2 ? (E d s, E e s) ? in C2, d in E and e in E

FORGET FORGET FORGET FORGET FORGET FORGET . . .

We want to calculate FORMALLY, that is: without thinking about meaning!

22



1.2 Formalizing substitution

a. Definition
We define a “postfix” operator [v := g] (written after its argument),
parametrized by variable w and expression g (both arbitrary),
with the intention that e[w := g] is the result of substituting g for w in e.

We do this by recursion on the structure of the argument expression.

ref. image definition for [w := g] for arbitrary

Sv: v[w := g] = (v = w) ? g [[v]] variable v in V
S0: c[w := g] = [[c]] constant c in C0

S1: (φ e)[w := g] = [[(φ e[w := g])]] φ in C1 and e in E
S2: (d ? e)[w := g] = [[(d[w := g] ? e[w := g])]] ? :C2, d :E and e :E

Legend for conditionals c ? b a (“if c then b else a”) is c ? e1 e0 = ec.

Remarks

• Straightforward extension to simultaneous substitution: [w′, w′′ := g′, g′′]

• Convention: often we write [wg for [w := g] (saves horizontal space).
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b. Example (detailed calculation)

(a · succ x + y)[x := z · b]
= 〈Normalize〉 ‘((a · (succ x)) + y)’[x := (z · b)]
= 〈Rule S2〉 [[((a · (succ x))[x := (z · b)] + y[x := (z · b)])]]
= 〈Rule S2〉 [[((a[x := (z · b)] · (succ x)[x := (z · b)]) + y[x := (z · b)])]]
= 〈Rule S1〉 [[((a[x := (z · b)] · (succ x[x := (z · b)])) + y[x := (z · b)])]]
= 〈Rule S0〉 [[((a · (succ x[x := (z · b)])) + y[x := (z · b)])]]
= 〈Rule SV〉 ‘((a · (succ (z · b))) + y)’
= 〈Opt. par.〉 ‘a · succ (z · b) + y’

Observe how the rules (repeated below) distribute s over the variables.

ref. image definition for [w := g] for arbitrary

Sv: v[w := g] = (v = w) ? g [[v]] variable v in V

S0: c[w := g] = [[c]] constant c in C0

S1: (φ e)[w := g] = [[(φ e[w := g])]] φ in C1 and e in E

S2: (d ? e)[w := g] = [[(d[w := g] ? e[w := g])]] ? :C2, d :E and e :E
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1.3 Formal calculation with equality

a. Formal deduction: general

An inference rule is a little table of the form

Prems
q

where Prems is a collection of formulas (the premisses)
and q is a formula (the conclusion or direct consequence).

It is used as follows. Given a collection Hpths (the hypotheses).
Then a formula q is a consequence of Hpths, written Hpths |− q, in case

• either q is a formula in the collection Hpths

• or q is the conclusion of an inference rule where the premisses are conse-
quences of Hpths

An axiom is a hypothesis expressly designated as such (i.e., as an axiom).
A theorem is a consequence of hypotheses that are axioms exclusively.
(Note: axioms are chosen s. t. they are valid in some useful intrerpretation.)
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b. Deduction with equality
The inference rules for equality are:

0. Instantiation (strict):
p

p[v := e]
(α)

1. Leibniz’s principle (non-strict): d′ = d′′

e[v := d′] = e[v := d′′]
(β)

2. Symmetry of equality (non-strict): e = e′

e′ = e
(γ)

3. Transitivity of equality (non-strict): e = e′, e′ = e′′

e = e′′
(δ)

Remarks

• An inference rule is strict if all of its premises must be theorems.
Example: instantiating the axiom x · y = y · x with [x, y := (a + b), −b]

• Reflexivity of = is captured by Leibniz (if v does not occur in e).
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c. Equational calculation: embedding the inference rules into the format

e0 = 〈justification0〉 e1

= 〈justification1〉 e1 and so on.

Using an inference rule with single premiss p and conclusion e′ = e′′ is written
e′ = 〈p〉 e′′, capturing each of the inference rules as follows.

(α) Instantiation Premiss p is a theorem of the form d′ = d′′, and hence the
conclusion p[v := e] is d′[v := e] = d′′[v := e] which has the form e′ = e′′.
Example: (a + b) · −b =〈x · y = y · x〉 −b · (a + b).

(β) Leibniz Premiss p, not necessarily a theorem, is of the form d′ = d′′ and
the conclusion e[v := d′] = e[v := d′′] is of the form e′ = e′′.
Example: if y = a · x, then we may write x + y =〈y = a · x〉 x + a · x.

(γ) Symmetry Premiss p, not necessarily a theorem, is of the form e′′ = e′.
However, this simple step is usually taken tacitly.

(δ) Transitivity has two equalities for premisses. It is used implicitly to justify
chaining e0 = e1 and e1 = e2 in the format shown to conclude e0 = e2.
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Additional conventions for making calculations even more succinct

• Tacit instantiation when using Leibniz’s principle: if the premiss d′ = d′′

in (β) is the instantiation of a theorem p, then we still write the deduction
step as e′ = 〈p〉 e′′, leaving the instantiation from p to d′ = d′′ implicit.
Example: x + z · (a + y) =〈x · y = y · x〉 x + (a + y) · z.

• Tacit use of symmetry when using Leibniz’s principle: if the sides of the
equality in the premiss of (β) are not in the desired order, they are swapped
tacitly, as expressed by metatheorem d′′ = d′ e[v := d′] = d[v := d′′].
Example: using y = a · x as a · x = y in x + a · x =〈y = a · x〉 x + y.

• Tacit use of symmetry in the entire calculation, viz., deducing ek = e0 to
deduce e0 = ek. This is helpful if the chain from ek to e0 is easier, which
is often the case when ek is “more structured” in some sense than e0.
For instance, proving x2 − y2 = (x + y) · (x − y) is easier starting from
the right (why?)
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2 Equational calculation: application examples

2.0 Axiomatic semantics of assignment in simple imperative languages

2.0.0 Syntax of a simple imperative language

2.0.1 Axiomatic semantics: Hoare style, Dijkstra style

2.0.2 Axiomatic semantics of assignment

2.1 Simple equational algebras

2.1.0 Some terminology about algebras

2.1.1 Proving properties for simple equational algebras

2.1.2 Applications in functional programming
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2.0 Axiomatic semantics of assignment in simple imperative languages

2.0.0 Syntax of a simple imperative language

program ::= declaration command .
command ::= elementary | structured .

elementary ::= assignment | skip.

assignment ::= variable := expression.
structured ::= composition | selection | repetition.

composition ::= command ; command .
selection ::= if expression then command else command fi.
repetition ::= while expression do command od.

expression ::= variable | constant | application.
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2.0.1 Axiomatic semantics: Hoare style, Dijkstra style

Let c be a command, a and p formulas (assertions).
A Hoare-triple or pre-post formula (“ppf”) is a formula of the form

{a} c {p}

Two formulations: partial or total correctness, with intuitive explanation:

• Partial correctness: if the state before execution of c satisfies a and execution
of c terminates, then the state after execution of c satisfies p.

• Total correctness: if the state before execution of c satisfies a, then execution
of c terminates and the state after execution of c satisfies p.

Reducing inference rules (in favour of axioms) makes the style more elegant.
Dijkstra’s weakest precondition for a given command c and postcondition p is written
wp c p, and is defined by two properties:

• It is a precondition, i.e., {wp c p} c {p}

• Any condition a satisfying {a} c {p} is as least as strong (wp c p � a).
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2.0.2 Axiomatic semantics of assignment

• Hoare and Dijkstra formulations

{p[v := e]} [[v := e]] {p} and wp [[v := e]] p = p[v := e].

Less confusing: {p[ve]} [[v := e]] {p} and wp [[v := e]] p = p[ve

• Intuitive engineering mechanics (rarely emphasized in the literature):

– Explicitly distinguish before and after, writing v and v′ respectively.

– Hence v′ satisfies the assertion p[vv′.

– Clearly, v′ depends on v as expressed by the equation v′ = e.

– An assertion for v is now derived via Leibniz: p[vv′ =〈v′ = e〉 p[ve.

Illustration: assignment x := x + 3, postcondition x = 7

– With explicit markings: x′ := x + 3 and x′ = 7

– This yields the equation 7 = x + 3, which is ‘x = 7’[xx+3.

– Solving for x yields x = 4.

33



• A simple example: swapping values

– In languages with multiple assignment: x, y := y, x
Proof: calculate the wp to establish the postcondition y, x = u, v.

wp ‘x, y := y, x’ ‘y, x = u, v’ = 〈Def. wp〉 ‘y, x = u, v’[x, y := y, x]
= 〈Rule Sv〉 ‘x, y = u, v’

– Without multiple assignment: t := x ; x := y ; y := t.
So now we must calculate wp ‘t := x ; x := y ; y := t’ ‘y, x = u, v’.
The composition rule in the calculation is wp [[c ; c′]] p = wp c (wp c′ p).

wp ‘t := x ; x := y ; y := t’ ‘y, x = u, v’
= 〈Composition〉 wp ‘t := x ; x := y’ (wp ‘y := t’ ‘y, x = u, v’)
= 〈Assignment〉 wp ‘t := x ; x := y’ ‘t, x = u, v’
= 〈Composition〉 wp ‘t := x’ (wp ‘x := y’ ‘t, x = u, v’)
= 〈Assignment〉 wp ‘t := x’ ‘t, y = u, v’
= 〈Assignment〉 ‘x, y = u, v’
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2.1 Simple equational algebras

2.1.0 Some terminology about algebras

Simple: only one kind (type) of expressions
Equational: axioms and theorems expressed as equalities
Concrete: pertaining to a specific class of objects (e.g. numbers, lists)
Abstract: (“default”) capturing common properties of concrete algebras
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2.1.1 Proving properties for simple equational algebras

a. Identity elements
Definitions

left identity constant l such that l · x = x is a theorem
right identity constant r such that x · r = x is a theorem
2-sided ident. constant e such that e · x = x and x · e = x are theorems

Note: an identity is often called a unit element (not be confused with a unit
in a ring, which is an element whose inverse is also in the ring).

A simple theorem If l is a left identity and r is a right identity, then l = r.
Proof:

l = 〈x · r = x with x := l〉 l · r
= 〈l · x = x with x := r〉 r

Note: in the proof, we made the substitution explicit (just for once).
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b. Extensionality: if δ x = σ x is a theorem for operators δ and σ, then δ = σ. A
metatheorem justifying this is that δ = σ does not yield more than δ x = σ x.

c. Associativity and inverses
Definitions If x · (y · z) = (x · y) · z is a theorem, then · is associative.
Let e be a 2-sided identity, then we define:

left inverse operator l such that l x · x = e is a theorem
right inverse operator r such that x · r x = e is a theorem
2-sided inverse oper. i such that i x · x = e and x · i x = e are theorems

A simple theorem If the operator · is associative and l is a left inverse
operator and r is a right inverse operator, then l = r. Proof:

l x = 〈x = x · e〉 l x · e
= 〈e = x · r x〉 l x · (x · r x)

= 〈Associat. ·〉 (l x · x) · r x
= 〈l x · x = e〉 e · r x

= 〈e · x = x〉 r x

Hence l = r by function extensionality.
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2.1.2 Applications in functional programming

a. General: most proofs about functional programs are based on equational ax-
ioms characterizing the functions of interest.
The simple proofs involve just equational calculation as shown for algebra.
More complicated/interesting cases involve induction (discussed later).
See e.g. Richard Bird, Introduction to Functional Programming using Haskell.
Prentice Hall, London (1998)

b. Specific: most functions and data structures in functional programming have
many useful equational algebraic properties. Some examples:

• The concatenation operator ++ for lists is associative and the empty list
ε is a two-sided identity element, since one can prove

x ++ (y ++ z) = (x ++ y) ++ z

x ++ ε = x = ε ++ x

• Bijective functions from a set onto itself form a group under composition.
More generally, our generic composition operator (◦) defined later satisfies
associativity f ◦ (g ◦h) = (f ◦ g) ◦h for arbitrary functions f , g, h.
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3 Point-wise and point-free styles of expression and calculation

3.0 Motivation

3.1 Lambda calculus as a model for handling dummies

3.1.0 “Inventing” lambda abstraction as a function interface

3.1.1 Syntax of “pure” lambda terms; bound and free variables

3.1.2 Designing axioms and substitution rules

3.1.3 Calculation rules and axiom variants

3.1.4 Practical calculation methods with shortcuts

3.1.5 Redexes and the Church-Rosser property

3.2 Combinator calculus as a point-free formalism

3.2.0 Syntax and calculation rules

3.2.1 Converting lambda terms into combinator terms
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3.0 Motivation

a. Common motivation

• Handling functions as “first-class” objects, in particular: allowing them as
function arguments, and allowing function applications as functions

• Contrasting point-wise and point-free calculation

b. Specific motivation for lambda calculus

• An interface for packaging expressions as functions

• A conceptual frame of reference for handling free and bound variables

• A basis for later extension with domain types, synthesizing common math-
ematical notation

• An archetype for point-wise calculation

c. Specific motivation for combinator calculus

• An archetype for point-free calculation
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3.1 Lambda calculus as a model for handling dummies

3.1.0 “Inventing” lambda abstraction as a function interface

a. Goals

• Denoting functions by anonymous expressions
For instance, succ 3 = 4 uses a function name (operator) succ.

• Encapsulating expressions as functions
For instance, x + y is not a function, e.g., (x + y) 6 is nonsense

b. Design considerations

• A typical function definition is an axiom of the form f v = e .
Example: foo x = 3 · x. This is standard in functional programming.

• Application to an expression is instantiation of this axiom:
(f v = e)[v := d] or, after elaboration, f d = e[v := d]

• Conclusion: any expression capturing f must mention both e and v.

c. Typical solution: f = λv.e . By Leibniz’s principle: (λv.e) d = e[v := d] .

(assuming f not in e). This becomes the basic axiom of lambda calculus.
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3.1.1 Syntax of “pure” lambda terms; bound and free variables

a. Syntax: the expressions are the (lambda) terms defined by the following CFG.

term ::= variable | (term term) | (λvariable.term)

Examples: x (xy) (λx.x) (λx.(λy.(x(yz))))

We write Λ for the syntactic category, L ..R as metavariables for terms, u, v,
w as metavariables for variables, C, D, I etc, as shorthands for certain terms.

b. Conventions for making certain parentheses and dots optional

• Optional: outer parentheses in (MN), and in (λv.M) if standing by itself
or as an abstrahend, e.g., λv.MN stands for λv.(MN), not (λv.M)N .

• Application “associates to the left”, e.g., (LMN) stands for ((LM)N).

• Nested abstractions may be merged by writing λu.λv.M as λuv.M .

So λx.y(λxy.xz(λz.xyz))yz is (λx.(((y(λx.(λy.((xz)(λz.((xy)z))))))y)z)).

c. Terminology: a form (MN) is an application and (λv.M) an abstraction. In
(λv.M), the λv. is the abstractor and M the abstrahend or the scope of λv.
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d. Bound and free variables

• Definitions

– Every occurrence of v in λv.M is called bound.

– Occurrences that are not bound are called free.

– A term without free variables is a closed term or a (lambda-)combinator.

– Bound variables are also called dummies.

• Examples

– In λx.y(λxy.xz(λz.xyz))yz number all occurrences from 0 to 11. The
only free occurrences are those of y and z in positions 1, 5, 10, 11.

– An operator ϕ giving the set of variables that occur free in a term:

ϕ [[v]] = ι v ϕ [[(MN)]] = ϕ M ∪ ϕN ϕ [[(λv.M)]] = (ϕ M) \ (ι v).

Legend: ι for singleton sets, ∪ for set union, \ for set difference.

– Typical (and important) combinators are λxyz.x(yz) and λxyz.xzy

and λx.(λy.x(yy))(λy.x(yy)), abbreviated C, T, Y respectively.
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3.1.2 Designing axioms and substitution rules

a. Basic goal: ensure correct generalization of (λv.e) d = e[v := d], i.e.,

Axiom, β-conversion: (λv.M) N = M [v := N ]

This requires defining M [v := N ] for lambda terms.

b. Pitfall to be avoided: “naive substitution”

(λxy.xy)yx = 〈Normalize〉 ((λx.(λy.xy))y)x
= 〈β-convers.〉 ((λy.xy)[x := y])x

= 〈Naive subst.〉 (λy.yy)x (wrong!)
= 〈β-convers.〉 (yy)[y := x]
= 〈Var. subst.〉 xx (expected: yx)

What happened? In (λx.(λy.xy))y, the last occurrence of y is free.
By the naive substitution in (λy.xy)[x := y] it becomes bound by λy.
This causes a “name clash” with other variables already bound by λy.
Such a clash would not happen in (λuv.uv)yx, which yields yx.
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c. Avoidance principle: choice of names for dummies is incidental.
Justification: function extensionality (if δ x = σ x is a theorem, then δ = σ).
Application to lambda terms: for “new” variable u (i.e., not already used)

(λv.M)N = 〈β-conversion〉 M [v := N ]

= 〈Remark below〉 M [v := u][u := N ]

= 〈β-conversion〉 (λu.M [v := u])N

Remark: this step assumes that substitution causes no other unwanted effects.
However, for the time being we do not assume extensionality, but define:

d. Definitive substitution rules

Svar: v[wL = (v = w) ?L [[v]]

Sapp: (MN)[wL = (M [wL N [wL)
Sabs: (λv.M)[wL = (λu.M [vu[

w
L) (new u)

Variant: (λv.M)[wL= (v = w) ? (λv.M) (v 6∈ ϕ L) ? (λv.M [wL) (λu.M [vu[
w
L),

checks for name clashes; if there are none, introducing new u is unnecessary.
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3.1.3 Calculation rules and axiom variants

a. The rules of equality: symmetry, transitivity and Leibniz’s principle:

M = N
N = M

L = M M = N
L = N

M = N
L[v := M ] = L[v := N ]

b. The proper axioms common to most variants of the lambda calculus

Axiom, β-conversion: (λv.M)N = M [vN
Axiom, α-conversion: (λv.M) = (λw.M [vw) provided w 6∈ ϕ M

Certain authors consider α-conversion subsumed by syntactic equality.

c. Specific additional axioms characterizing variants of the lambda calculus.

(i) Rule ξ: M = N
λv.M = λv.N

(note: extends Leibniz’s principle)

(ii) Rule η (or η-conversion): (λv.Mv) = M provided v 6∈ ϕ M

(iii) Rule ζ (or extensionality): Mv = Nv
M = N provided v 6∈ ϕ (M, N)

Note: given the rules in (a) and (b), rule ζ is equivalent to ξ and η combined.
Henceforth we assume all these rules.
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3.1.4 Practical calculation methods with shortcuts

a. Convention: we write M =β N for M =〈β-conversion & substitution〉 N etc.
Examples: (λxy.xy)z =β λy.zy and (λxy.xy)y =β λz.yz;
furthermore, (λxy.xy) =α λxz.xz and (λx.yzx) =η yz and λxy.xy =η λx.x.

b. Calculating with shortcuts (but always know what you are doing)

• Using naive substitution (λv.M)[wL= λv.M [wL provided choice of dummies
avoids clashes. Example: (λxz.xz)yx =β (λz.yz)x =β yx.

• When introducing metavariables, assume the denoted terms contain none
of the dummies present in the calculation. Example: (λxyz.x(yuz))LMN
=β (λyz.L(yuz))MN =β (λz.L(Muz))N =β L(MuN)

• In calculation with (lambda) combinators, use encapsulated properties.
Example: λxyz.x(yz), abbreviated C, has property CLMN = L(MN);
similarly, λxyz.xzy, abbreviated T, has property TLMN = LNM .
Note: in calculations, add metavariables as needed to enable properties.
Example: given CTT, enable CLMN = L(MN) by evaluating CTTL.
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c. Some often-used lambda combinators

Name Symbol Term Property

Composition C λxyz.x(yz) CLMN = L(MN)

Duplication D λx.xx DM = MM
Identity I λx.x IN = N

Constant K λxy.x KMN = M
Shuffle S λxyz.xz(yz) SLMN = LN(MN)

Transposition T λxyz.xzy TLMN = LNM

d. A calculation example: deriving a property of CTT

CTTLMN = 〈Prop. C〉 T(TL)MN
= 〈Prop. T〉 TLNM

= 〈Prop. T〉 LMN
= 〈Prop. I〉 ILMN

Hence, by extensionality (thrice), CTT = I.
Note: during the calculation, L, M , N were added one by one, as need arises.
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3.1.5 Redexes and the Church-Rosser property

a. Redexes

• A β-redex is a term of the form (λv.M)N . Example: (λxy.yx)(λx.y)

• A η-redex is a term of the form λv.Mv (met v 6∈ ϕ M).

• Warning example: λx.x(λy.y)x contains no redex.

b. Normal forms

• A βη-normal form (or simply normal form) is a term containing no redex.

• A term has a normal form if it can be reduced to a normal form. Examples:

– (λxyz.x(yz))(λx.y) has normal form λuz.y .

– λxyz.yxz has normal form λxy.yx .

– (λx.xx)(λx.xx) has no normal form.

c. Church-Rosser property: a term has at most one normal form.
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3.2 Combinator calculus as a point-free formalism

3.2.0 Syntax and calculation rules

a. Syntax (CFG): term ::= K | S | (term term)

Conventions: outer parentheses optional, application associates to the left.

b. The calculation rules are

• The rules for equality: symmetry, transitivity, “Leibniz”.
Since there are no variables, “Leibniz” is written M = N

LM = LN and M = N
ML = NL .

• The axioms: KLM = L and SPQR = PR(QR)

• Extensionality: if M and N satisfy ML = NL for any L, then M = N .

Calculation example: let M and N be arbitrary combinator terms, then

SKMN = 〈by S -axiom〉 KN(MN) = 〈by K -axiom〉 N

By extensionality, SKM is an identity operator. Abbreviation I :=SKK .
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3.2.1 Converting lambda terms into combinator terms

a. Method (Note: here combinators may mix with lambda terms: “Cλ-terms”).

• De-abstractor: for every v, we define a syntactic operator v̂ on Cλ-terms:

Argument term Definition Reference

Variable v itself: v̂v = I (Rule I)
Variable w (6= v): v̂w = Kv (Rule K’)
Constant c: v̂c = K c (Rule K”)
Application: v̂(MN) = S(v̂M)(v̂N) (Rule S)
Abstraction: v̂(λw.M) = v̂(ŵM) (Rule D)

Property (metatheorem): For any Cλ-term M , λv.M = v̂M .

• Shortcuts: for any Cλ-term M with v 6∈ ϕ M ,

v̂M = KM (Rule K),
v̂(Mv) = M (Rule η).

Rule K subsumes rules K’ and K”.

53



b. Example: converting T (namely, λxyz.xzy) into a combinator term T .

T = x̂ŷẑxzy by rule D. We start with ẑxzy separately, to avoid rewriting x̂ŷ.

x̂zy = 〈Rule S〉 S(ẑxz)(ẑy)

= 〈Rule η〉 Sx(ẑy)
= 〈Rule K〉 Sx(Ky)

ŷSx(Ky) = 〈Rule S〉 S(ŷSx)(ŷKy)

= 〈Rule η〉 S(ŷSx)K
= 〈Rule K〉 S(K (Sx))K

x̂S(K (Sx))K = 〈Rule S〉 S(x̂S(K (Sx)))(x̂K )

= 〈Rule S〉 S(S(x̂S)(x̂K (Sx)))(x̂K )
= 〈Rule K〉 S(S(KS)(x̂K (Sx)))(KK )

= 〈Rule S〉 S(S(KS)(S(x̂K )(x̂Sx)))(KK )
= 〈Rule η〉 S(S(KS)(S(x̂K )S))(KK )

= 〈Rule K〉 S(S(KS)(S(KK )S))(KK )

For uniformity, we use for v̂ and λv. the same conventions about parentheses.
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4 Point-wise and point-free styles: application examples

4.0 Motivation

4.1 The pure lambda calculus as a functional programming language

4.1.0 Principle and choice of representation

4.1.1 Example: deriving a lambda term for arithmetic from a specification

4.1.2 Lambda terms for arithmetic, logic and conditional expressions

4.1.3 Making things compete: a mechanism for recursion

4.2 Applications in various domains

4.2.0 Other applications in programming

4.2.1 Applications in classical mathematics

4.2.2 Applications in formal circuit description
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4.0 The pure lambda calculus as a functional programming language

4.0.0 Principle and choice of representation

a. Principle (Gödel): for classical computation, it suffices to consider some initial
functions (zero, successor, selection) on natural numbers and ways of combin-
ing functions (composition, primitive recursion amd bounded minimization).

b. Convention for representation of natural numbers:
representation operator ρ mapping numbers to lambda terms.

• Church numerals (elaborated here):

ρ n = λxy.xny

Notation: MnN is an abbreviation for a term defined recursively on the
syntax by M0N = N and Mn+1N = M(MnN) for all n in N.

Examples: ρ 0 = λxy.y ρ 1 = λxy.xy ρ 4 = λxy.x(x(x(xy))).

• Other representations (left as exercises)
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4.0.1 Example: deriving a lambda term for arithmetic from a specification

a. Successor function for natural numbers: succ n = n + 1.

b. Specification: we want a lambda combinator S+ that realizes succ in the sense
that it maps Church numerals to Church numerals and satisfies

S+ (ρ n) = ρ (succ n)

For instance, S+ (λxy.x(x(xy))) = λxy.x(x(x(xy)))

c. Calculational derivation (starting from the r.h.s. that contains known items)

ρ (succ n) = 〈succ n = n + 1〉 ρ (n + 1)
= 〈ρ n = λxy.xny〉 λxy.xn+1y

= 〈Mn+1N = M(MnN)〉 λxy.x(xny)
= 〈xny[x,y

M,N= MnN〉 λxy.x((λxy.xny)xy)

= 〈β-conversion〉 (λzxy.x(zxy))(λxy.xny)
= 〈ρ n = λxy.xny〉 (λzxy.x(zxy))(ρ n)

Conclusion: letting S+ :=λzxy.x(zxy) meets the specification.
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4.0.2 Lambda terms for arithmetic, logic and conditional expressions

a. A complete collection of arithmetic operators:

• Predecessor: P− :=λxyz.x(Qy)(Kz)I where Q :=λxyz.z(yx).
Difficult to design (and not unique), but easy to prove by induction.

• Addition A :=λxy.xS+y and multiplication M (similar) are easy to design.

b. Logical constants and conditional expressions (easy to design)

• Traditional representation: V :=K (“verum”) and F :=TK (“falsum”)
Negation: realized by T (obvious)
Conditional: realized by I since IVMN = M and IFMN = N

Zero test: Z := λx.x(λxyz.z)(λxy.x)

• Number representation: V := ρ 1 and F := ρ 0

Negation: Not :=λx.x(λxyz.z)(λxy.xy)
Conditional: Cnd :=λx.x(λxyz.y)(λxy.y)

Zero test Z :=λx.x(λxyz.z)(λxy.xy)
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4.0.3 Making things compete: a mechanism for recursion

a. Recursion is still missing. Consider the example

fac n = (n = 0) ? 1 fac (n − 1) · n

Transliterated into the functional programming language we have thus far:

FacN = Cnd(ZN)(ρ 1)(M(Fac(P−N))N) (1)

Problem: this yields no lambda term for Fac.

b. Solution (easily generalized): rewrite (1) as Fac N = HFac N with

HFN = Cnd(ZroN)(ρ 1)(M(F (P−N))N)

or, as a lambda term, H = λfn.Cnd(Zron)(ρ 1)(M(f(P−n))n).

A sufficient condition for Fac N = HFacN is that Fac satisfies Fac = HFac.

Observe that YH = H(YH) for any H (exercise).

Conclusion: Fac :=YH is a lambda term satisfying (1).

Note: if you simulate all this by a program, it actually works!
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4.1 Applications in various domains

4.1.0 Other applications in programming

a. In programming languages

Lambda abstraction is available in the functional programming language Haskell.

A kind of lambda notation (less powerful, no functionals) is available in LISP.

Backus’s FP is a point-free functional programming language (no variables)!

Lambda calculus is used for modelling language implementations

. . .

b. In the theory of programming

Variable binding, local variables, block structures etc. are best understood by
comparison (similarities, differences) with lambda calculus.

Lambda calculus plays an important role in formal semantics, type theory,
theory of computation etc.

The relational theory of data types of Backhouse et al. is point-free.
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4.1.1 Applications in classical mathematics

a. There is a point-free variant of axiomatic set theory (Tarski, Givant)

b. Lambda calculus formalizes bindings and handling clashes in integrals, e.g.,
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(∫ +∞

−∞
e−x2/2 · dx

)2

= 〈Def. square〉
(∫ +∞

−∞
e−x2/2 · dx

)
·
(∫ +∞

−∞
e−x2/2 · dx

)

= 〈Mul. const.〉
∫ +∞

−∞

(∫ +∞

−∞
e−x2/2 · dx

)
· e−x2/2 · dx

= 〈α-conversion〉
∫ +∞

−∞

(∫ +∞

−∞
e−y2/2 · dy

)
· e−x2/2 · dx

= 〈Mul. const.〉
∫ +∞

−∞

(∫ +∞

−∞
e−x2/2 · e−y2/2 · dy

)
· dx

= 〈Merging〉
∫ +∞

−∞

∫ +∞

−∞
e−(x2+y2)/2 · dy · dx

= 〈Polar coord.〉
∫ 2·π

0

∫ +∞

0
e−r2/2 · r · dr · dθ

= 〈Mul. const.〉
(∫ 2·π

0
dθ

)
·
(∫ +∞

−∞
e−r2/2 · r · dr

)

= 〈Integration〉 2 · π
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4.1.2 Applications in formal circuit description

a. To be completed

b. References given in situ
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5 Binary algebra and proposition calculus

5.0 Motivation

5.1 Binary Algebra

5.1.0 Binary Algebra as a restriction of minimax algebra

5.1.1 Relation to various other algebras and calculi

5.2 Axiomatic proposition calculus

5.2.0 Syntax and conventions

5.2.1 Implication: axioms, formal deduction: from classical to calculational

5.2.2 Negation: making proposition algebra complete

5.2.3 Quick calculation rules and proof techniques

5.2.4 Brief summary of derived operators and calculation rules

5.2.5 Some “wrap-up” remarks on calculational proposition logic
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5.3 Motivation

a. Proposition logic together with its extension, predicate logic, constitutes the
most general and versatile basis for natural and mathematical reasoning.

b. The chosen approach includes three additional “features”

• Link to real number arithmetic as binary algebra

• Logic formulated calculationally as in engineering mathematics

• Formal calculation rules for conditional expressions
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5.4 Binary Algebra

5.4.0 Binary Algebra as a restriction of minimax algebra

a. Minimax algebra: algebra of the least upper bound (∨) and greatest lower
bound (∧) operators over R′ := R ∪ {−∞, +∞}. One definition is

a∨ b ≤ c ≡ a ≤ c ∧ b ≤ c and c ≤ a∧ b ≡ c ≤ a ∧ c ≤ b

Here ≤ is a total ordering, yielding an explicit form a∧ b = (b ≤ a) ? b a
and laws that can be taken as alternative definitions

c ≤ a∨ b ≡ c ≤ a ∨ c ≤ b and a∨ b ≤ c ≡ a ≤ c ∧ b ≤ c

b. Typical properties/laws: (derivable by high school algebra, duality saving work)

• Laws among the ∨ and ∧ operators: commutativity a∨ b = b∨ a, associa-
tivity a∨ (b∨ c) = (a∨ b)∨ c, distributivity a∨ (b∧ c) = (a∨ b)∧ (a∨ c),
monotonicity a ≤ b ⇒ a∨ c ≤ b∨ c and so on, plus their duals.

• Combined with other arithmetic operators: rich algebra of laws, e.g., dis-
tributivity: a+(b∨ c) = (a+b)∨ (a+c) and a−(b∨ c) = (a−b)∧ (a−c).
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c. Binary algebra: algebra of ∨ and ∧ as restrictions of ∨ and ∧ to B := {0, 1}.

• Illustration for the 16 functions from B2 to B:

x, y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0,1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1,0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1,1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

B ∨− < > ≡/ ∧− ∧ ≡ 〉〉 ⇒ 〈〈 ⇐ ∨
R′ < > 6= ∧ = 〉〉 ≤ 〈〈 ≥ ∨

• Remark: ≡ is just the restriction of = to booleans, BUT:
Many advantages in keeping ≡ as a separate operator: fewer parentheses
(≡ lowest precedence), highlighting associativity of ≡ (not shared by =).

• All laws of minimax algebra particularize to laws over B, for instance,
a∨ b ≤ c ≡ a ≤ c ∧ b ≤ c and c ≤ a∧ b ≡ c ≤ a ∧ c ≤ b yield

a ∨ b ⇒ c ≡ (a ⇒ c) ∧ (b ⇒ c) and c ⇒ a ∧ b ≡ (c ⇒ a) ∧ (c ⇒ b)
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5.4.1 Relation to various other algebras and calculi

Here are some examples, that also justify explain our preference for B := {0, 1}.

• Fuzzy logic, usually defined on the interval [0, 1]. Basic operators are restric-
tions of ∨ and ∧ to [0, 1]. We define fuzzy predicates on a set X as functions
from X to [0, 1], with ordinary predicates (to {0, 1}) a simple limiting case.

• Ordinary arithmetic, with {0, 1} embedded in numbers without separate map-
ping. This proves especially useful in software specification and in word prob-
lems (examples later).

• Combinatorics, where a characteristic function “CP = 1 if P x, 0 otherwise” is
often introduced (admitting a regrettable design decision?) when calculations
threaten to become unwieldy. The choice {0, 1} obviates this.

• Modulo 2 arithmetic (as a Boolean ring or Galois field), as in coding theory.
The associativity of ≡ is counterintuitive for “logical equivalence” with truth
values, but is directly clear from the equality (a ≡ b) = (a ⊕ b) ⊕ 1, which
links it to modulo-2 arithmetic, where associativity of ⊕ is quite intuitive.
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5.5 Axiomatic proposition calculus

5.5.0 Syntax and conventions

a. The language follows the syntax of simple expressions

proposition ::= variable | constant | application
application ::= (cop1 proposition) | (proposition cop2 proposition)

b. Variables are chosen near the end of the alphabet, e.g., x, y, z.
Constants and the operators in applications will be introduced one at a time.
Lowercase letters around p, q, r are metavariables standing for propositions.

c. We start with implication (⇒) as the only propositional operator.

In p ⇒ q, we call p the antecedent and q the consequent. The rules for
reducing parentheses in expressions with ⇒ are the following.

• Outer parentheses may always be omitted.

• x ⇒ y ⇒ z stands for x ⇒ (y ⇒ z) (right associativity convention).
Warning: do not read x ⇒ y ⇒ z as (x ⇒ y) ⇒ z.
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5.5.1 Implication: axioms, formal deduction: from classical to calculational

a. Inference rule, axioms and deduction

• The rules for implication (recall: instantiation is strict)

Inference rule, Instantiation of theorems:
p

p[v := q]
(INS)

Inference rule, Modus Ponens:
p ⇒ q , p

q (MP)

Axioms, Weakening: x ⇒ y ⇒ x (W⇒)
(left) Distributivity: (x ⇒ y ⇒ z) ⇒ (x ⇒ y) ⇒ (x ⇒ z) (D⇒)

• Their use in deduction: if H is a collection of propositions (hypotheses),
we say that q is a consequence of H, written H q, if q is either

(i) an axiom, or (ii) a proposition in H, or

(iii) the conclusion of MP where the premisses are consequences of H.

If H is empty, we write q for H q, and q is a theorem. Being a theorem
or a consequence of the hypotheses is called the status of a proposition.
A (formal) proof or deduction is a record of how H q is established.
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b. Two classical formats for deduction

Chosen example: the theorem of reflexivity (R⇒), namely x ⇒ x

Proof in statement list style (the numbers are for reference)

0. INS D⇒ (x ⇒ (x ⇒ x) ⇒ x) ⇒ (x ⇒ x ⇒ x) ⇒ (x ⇒ x)
1. INS W⇒ x ⇒ (x ⇒ x) ⇒ x

2. MP 0, 1 (x ⇒ x ⇒ x) ⇒ (x ⇒ x)
3. INS W⇒ x ⇒ x ⇒ x
4. MP 2, 3 x ⇒ x

Proof in sequent style

(x⇒ y ⇒ z)⇒ (x⇒ y)⇒ x⇒ z
(x⇒ (x⇒ x)⇒ x)⇒ (x⇒ x⇒ x)⇒ x⇒ x

I
x⇒ y ⇒ x

x⇒ (x⇒ x)⇒ x
I

(x⇒ x⇒ x)⇒ x⇒ x
M

x⇒ y ⇒ x
x⇒ x⇒ x I

x⇒ x M
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c. Casting classical deduction in calculational style

• Remark: only as a temporary stepping stone

• Convention for chaining steps with modus ponens (which has 2 premisses):
make explicit which of p ⇒ q or p lies along the main line of reasoning

〈Deduction steps for p〉 p
⇓ 〈Justification for p ⇒ q〉 q

〈Steps for p ⇒ q〉 p ⇒ q
× 〈Justification for p〉 q

The justification in 〈 〉 is either a hypothesis or a theorem instance.

• Example: proving reflexivity x ⇒ x

〈W⇒〉 x ⇒ (x ⇒ x) ⇒ x
⇓ 〈D⇒〉 (x ⇒ x ⇒ x) ⇒ x ⇒ x

× 〈W⇒〉 x ⇒ x

• Next step: replace pseudo-calculational “labels” ⇓ and × by operators
in the language (here ⇒), as justified next.
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d. Making deduction with implication fully calculational

• Metatheorem, Transitivity (T⇒): p ⇒ q , q ⇒ r p ⇒ r . Proof:

〈W⇒〉 (q ⇒ r) ⇒ p ⇒ q ⇒ r
× 〈q ⇒ r〉 p ⇒ q ⇒ r

⇓ 〈D⇒〉 (p ⇒ q) ⇒ (p ⇒ r)
× 〈p ⇒ q〉 p ⇒ r

This subsumes ⇓ -steps since it justifies chaining of the form

p ⇒ 〈Justification for p ⇒ q〉 q
⇒ 〈Justification for q ⇒ r〉 r,

Example: x ⇒ y ⇒〈W⇒〉 z ⇒ x ⇒ y ⇒〈D⇒〉 (z ⇒ x) ⇒ (z ⇒ y),
proving (right) Monotonicity (M⇒): (x ⇒ y) ⇒ (z ⇒ x) ⇒ (z ⇒ y).

• Theorem, modus ponens as a formula (P⇒): x ⇒ (x ⇒ y) ⇒ y

This subsumes ×-steps since it justifies writing

p ⇒ q ⇒ 〈Justification for p〉 q
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e. Some representative calculation rules

Rules that prove often useful in practice are given a suggestive name.
This is a valuable mnemonic aid for becoming familiar with them.
The terminology is due to the “calculational school” (Dijkstra, Gries e.a.).

Name (rules for ⇒) Formula Ref.

Weakening x ⇒ y ⇒ x W⇒
Distributivity (left) (x ⇒ y ⇒ z) ⇒ (x ⇒ y) ⇒ (x ⇒ z) D⇒
Reflexivity x ⇒ x R⇒
Right monotonicity (x ⇒ y) ⇒ (z ⇒ x) ⇒ (z ⇒ y) RM⇒
MP as a formula x ⇒ (x ⇒ y) ⇒ y MP⇒
Shunting (x ⇒ y ⇒ z) ⇒ x ⇒ y ⇒ z SH⇒
Left Antimonotonicity (x ⇒ y) ⇒ (y ⇒ z) ⇒ (x ⇒ z) LA⇒

Metatheorems (following from RM and SA respectively)

Name of metatheorem Formulation Ref.

Weakening the Consequent p ⇒ q (r ⇒ p) ⇒ (r ⇒ q) (WC)
Strengthening the Antecedent p ⇒ q (q ⇒ r) ⇒ (p ⇒ r) (SA)
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f. A first proof shortcut: the deduction (meta)theorem

• Motivation: common practice in informal reasoning:
if asked to prove p ⇒ q, one assumes p (hypothesis) and deduces q.

The proof so given is a demonstration for p q, not one for p ⇒ q.
A proof for p ⇒ q is different and usually much longer.

• Significance of the deduction theorem: justification of this shortcut

– A demonstration for p q implies existence of one for p ⇒ q.

– More: the proof of the deduction theorem is constructive: an algo-
rithm for transforming a demonstration for p q into a one for p ⇒ q.

Proving p ⇒ q by deriving q from p is called assuming the antecedent.

• Formal statement

Deduction theorem: If H& p q then H p ⇒ q

– Convention: H& p is the collection H of hypotheses augmented by p.

– Converse of the deduction theorem: If H p ⇒ q then H& p q.
Proof: a deduction for H p ⇒ q is a deduction for H& p p ⇒ q.
Adding the single step × 〈p〉 q yields a deduction for H& p q.
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g. Introducing the truth constant

• Strictly speaking, no truth constant is needed: any theorem can serve.

Lemma: theorems as right zero and left identity for “⇒”.
Any theorem t has the following properties (exercise).

– Right zero: x ⇒ t. Also: t ⇒ (x ⇒ t) and (x ⇒ t) ⇒ t.

– Left identity: x ⇒ (t ⇒ x) and (t ⇒ x) ⇒ x.

• In view of the algebraic use of ⇒, we introduce the constant 1 by

Axiom, the truth constant: 1

Theorem: 1 as right zero and left identity for “⇒”

– Right zero: x ⇒ 1. Also: 1 ⇒ (x ⇒ 1) and (x ⇒ 1) ⇒ 1.

– Left identity: x ⇒ (1 ⇒ x) and (1 ⇒ x) ⇒ x.

Proof: direct consequences of the preceding lemma.
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Thus far, we addressed many technicalities to establish the formal proof style.
For the remainder, we leave the technicalities as exercises.
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5.5.2 Negation: making proposition algebra complete

a. Syntax and axiom: the negation operator ¬ is a 1-place function symbol, with

Axiom, Contrapositive: (¬x ⇒ ¬ y) ⇒ y ⇒ x (CP⇒)

b. Some initial theorems and their proofs

• Theorem, Contradictory antecedents: ¬x ⇒ x ⇒ y (CA⇒)

Proof: on sight. Corollary: (meta), contradictory hypotheses: p ,¬ p q

• Theorem, Skew idempotency of “⇒”: (¬x ⇒ x) ⇒ x (SI⇒)

Proof: subtle; start by instantiating (CA⇒) as ¬x ⇒ x ⇒ ¬ (¬x ⇒ x).

¬x ⇒ x ⇒ ¬ (¬x ⇒ x)

⇒ 〈LD⇒〉 (¬x ⇒ x) ⇒ ¬x ⇒ ¬ (¬x ⇒ x)

⇒ 〈WC by CP⇒〉 (¬x ⇒ x) ⇒ (¬x ⇒ x) ⇒ x

⇒ 〈AB⇒〉 (¬x ⇒ x) ⇒ x

After this, all further theorems are relatively straightforward.
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c. Some important calculation rules for negation

• Convention: (¬0 p) stands for p and (¬n+1 p) for ¬ (¬n p).
This avoids accumulation of parentheses as in ¬ (¬ (¬ p)).

• Most frequently useful rules

Name (rules for ¬/⇒) Formula Ref.

Contrapositive (¬x ⇒ ¬ y) ⇒ y ⇒ x CP⇒
Contradictory antecedents ¬x ⇒ x ⇒ y CA⇒
Skew idempotency of “⇒” (¬x ⇒ x) ⇒ x SI⇒
Double negation ¬2 x ⇒ x and x ⇒ ¬2 x DN
Contrapositive Reversed (x ⇒ y) ⇒ (¬ y ⇒ ¬x) CPR
Contrapositive Strengthened (¬x ⇒ ¬ y) ⇒ (¬x ⇒ y) ⇒ x CPS
Dilemma (¬x ⇒ y) ⇒ (x ⇒ y) ⇒ y DIL
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d. Introducing the falsehood constant

Axiom, the falsehood constant: ¬ 0

Some simple properties:

• 0 ⇒ x

• (x ⇒ 0) ⇒ ¬x and ¬x ⇒ (x ⇒ 0)

• 1 ⇒ ¬ 0 and ¬ 1 ⇒ 0
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5.5.3 Quick calculation rules and proof techniques

a. Case analysis

• Lemma, Binary cases: for any proposition p and variable v,

– (0-case) ¬ v ⇒ p[v0 ⇒ p and ¬ v ⇒ p ⇒ p[v0
– (1-case) v ⇒ p[v1 ⇒ p and v ⇒ p ⇒ p[v1

Proof: structural induction (discussed later)

• Lemma, Case analysis: for any proposition p and variable v,

p[v0 ⇒ p[v1 ⇒ p and, equivalently, p[v0 & p[v1 p

Significance: to prove or verify p, it suffices proving p[v0 and p[v1.
After a little practice, this can be done by inspectionor head calculation.

b. An implicative variant of a theorem (presented later) attributed to Shannon:
Shannon expansion with implication: for any proposition p and variable v,

Accumulation: (¬ v ⇒ p[v0) ⇒ (v ⇒ p[v1) ⇒ p
Weakening: p ⇒ ¬ v ⇒ p[v0 and p ⇒ v ⇒ p[v1
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c. Summary of quick proof techniques

• Assuming the antecedent: to prove p ⇒ q, assume p and deduce q.
Warning: p is normally not a theorem: hence may not be instantiated.

• Case analysis: to prove p, prove p[v1 and p[v0. Note: choosing v well can
significantly reduce the effort. The method can be used recursively.

• Proof by negation: to prove p, prove ¬ p ⇒ 0.
Classical variant: ‘reductio ad absurdum’: to prove ¬ p, prove p ⇒ 0.

• Proof by contradiction: to prove p, assume ¬ p and deduce p.
Justification: the deduction theorem, (¬ p ⇒ p) ⇒ p, and (MP).
Warning A degraded ‘junkyard’ version to be avoided: to prove p,
some people assume ¬ p and prove p without even using the assumption.
Many uniqueness proofs fall into this category.
Introducing assumptions that are not used makes an intellectual junkyard.

• Proof by contrapositive: to prove p ⇒ q, prove ¬ q ⇒ ¬ p.

The justification of most of these proof techniques helps finding ‘direct’ proof.
It may also indicate the way to shorter proofs.
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5.5.4 Brief summary of derived operators and calculation rules

a. Logical equivalence, with symbol ≡ (lowest precedence) and Axioms:

Antisymmetry of ⇒: (x ⇒ y) ⇒ (y ⇒ x) ⇒ (x ≡ y) (AS⇒)
Weakening of ≡: (x ≡ y) ⇒ x ⇒ y and (x ≡ y) ⇒ y ⇒ x (W≡)

Theorem Given p, q, let s be specified by p ⇒ q ⇒ s and s ⇒ p and s ⇒ q.
Then s :=¬ (p ⇒ ¬ q) satisfies the spec, and any solution s′ satisfies s ≡ s′.

Main property of ≡: logical equivalence is propositional equality

• It is an equivalence relation

Reflexivity: x ≡ x (R≡)
Symmetry: (x ≡ y) ⇒ (y ≡ x) (S≡)
Transitivity: (x ≡ y) ⇒ (y ≡ z) ⇒ (x ≡ z) (T≡)

• It obeys Leibniz’s principle:

Leibniz: (x ≡ y) ⇒ (p[vx ≡ p[vy) (L≡)
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Some earlier theorems in equational form

Name Formula Ref.

Shunting with “⇒” x ⇒ y ⇒ z ≡ y ⇒ x ⇒ z ESH⇒
Contrapositive (x ⇒ y) ≡ (¬ y ⇒ ¬x) ECP⇒
Left identity for “⇒” 1 ⇒ x ≡ x LE⇒
Right negator for “⇒” x ⇒ 0 ≡ ¬x RN⇒
Identity for “≡” (1 ≡ x) ≡ x E≡
Negator for “≡” (0 ≡ x) ≡ ¬x N≡
Double negation (equationally) ¬2 x ≡ x EDN
Negation of the constants ¬ 0 ≡ 1 and ¬ 1 ≡ 0

Some new theorems about ≡

Semidistributivity ¬/≡ ¬ (x ≡ y) ≡ (¬x ≡ y) SD¬/⇒
Associativity of ≡ ((x ≡ y) ≡ z) ≡ (x ≡ (y ≡ z)) A≡
Shannon by equivalence p ≡ ¬x ⇒ p[x0 ≡ x ⇒ p[x1
Left distributivity ⇒/≡ z ⇒ (x ≡ y) ≡ z ⇒ x ≡ z ⇒ y LD⇒/≡
Right skew distrib. ⇒/≡ (x ≡ y) ⇒ z ≡ x ⇒ z ≡ ¬ y ⇒ z SD⇒/≡

86



b. Propositional inequality with symbol ≡/ and axiom

Axiom, propositional inequality: (x ≡/ y) ≡ ¬ (x ≡ y)

Via the properties of ≡, one quickly deduces the following algebraic laws

Name Formula Ref.

Irreflexivity ¬ (x ≡/ x) IR≡/
Symmetry (x ≡/ y) ≡ (y ≡/ x) S≡/
Associativity: ((x ≡/ y) ≡/ z) ≡ (x ≡/ (y ≡/ z)) A≡/
Mutual associativity ((x ≡/ y) ≡ z) ≡ (x ≡/ (y ≡ z)) MA≡//≡
Mutual interchangeability: x ≡/ y ≡ z ≡ x ≡ y ≡/ z MI≡//≡

A formula with (only) ≡ and ≡/ depends only on even/odd number of occurrences.
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c. Disjunction (∨) and conjunction (∧)

• These operators have highest precedence. An equational axiomatization is:

Axiom, Disjunction: x ∨ y ≡ ¬x ⇒ y
Axiom, Conjunction: x ∧ y ≡ ¬ (x ⇒ ¬ y)

• An immediate consequence (using EDN) is the following theorem (De Morgan)

¬ (x ∨ y) ≡ ¬x ∧ ¬ y ¬ (x ∧ y) ≡ ¬x ∧ ¬ y (DM)

• There are dozens of other useful theorems about conjunction and disjunction.
Most are well-known, being formally identical to those from switching algebra.
Example: proposition calculus constitutes a Boolean algebra w.r.t. ∨ and ∧.

• Others are unknown in switching algebra but very useful in calculation, e.g.,

Theorem, Shunting ∧ and ⇒: x ∧ y ⇒ z ≡ x ⇒ y ⇒ z (SH∧)

Caution: with emphasizing parentheses, ((x ∧ y) ⇒ z) ≡ (x ⇒ (y ⇒ z)).
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5.5.5 Some “wrap-up” remarks on calculational proposition logic

a. Chaining calculation steps In chained calculations, we can mix ≡ with ⇒:

r ⇒ 〈r ⇒ p〉 p p ≡ 〈p ≡ q〉 q

≡ 〈p ≡ q〉 q ⇒ 〈q ⇒ s〉 s

Convention, an operator used as a calculation link has lowest precedence.
In principle, no ambiguity since recognizable by the presence of 〈 〉.
In practice: a source of errors for the unwary. Example:

p ⇒ q ⇒ 〈p ⇒ q ⇒ r〉 r Wrong!

or, more insidiously,

s ⇒ p ⇒ q ⇒ 〈WC by p ⇒ q ⇒ r〉 s ⇒ r. Wrong!
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b. From propositional equality to equality in general

• The laws for general equality (re)formulated as axioms using implication

Reflexivity: x = x (R=)
Symmetry: x = y ⇒ y = x (S=)
Transitivity: x = y ⇒ y = z ⇒ x = z (T=)
“Leibniz”: x = y ⇒ e[zx= e[zy (L=)

• Propositional equality as equality

x = y ≡ x ≡ y

In general context: assumes x and y boolean.

90



Next section

0. Introduction: motivation and approach
1. Simple expressions and equational calculation
2. Equational calculation: application examples
3. Point-wise and point-free styles of expression and calculation
4. Point-wise and point-free styles: application examples
5. Binary algebra and proposition calculus: calculation rules

6. Binary algebra and proposition calculus: application examples

7. Sets and functions: equality and calculation
8. Functional Predicate Calculus: calculating with quantifiers
9. Functional Predicate Calculus: application examples

10. Well-foundedness, induction principles and application examples
11. Funmath: unifying continuous and discrete mathematics
12. Generic Functionals: definitions
13. Various examples in continuous and discrete systems modelling
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6 Binary algebra and proposition calculus: applications

6.0 Calculating with conditional expressions, formally

6.0.0 Outline of the enabling context

6.0.1 Conditionals as binary indexing: definition and calculation rules

6.1 Formal description of combinational circuits

6.1.0 A minimal formal syntax for circuit description

6.1.1 System semantics

6.1.2 Specifications and realizations

6.2 Formalizing and solving unparametrized word problems

6.2.0 Formalizing simple word problems

6.2.1 Solving simple word problems

6.2.2 Additional examples
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6.0 Calculating with conditional expressions, formally

6.0.0 Outline of the enabling context

Design decisions making the approach described here possible.

a. Defining tuples as functions that take natural numbers as arguments in the
sense that, for instance

(a, b, c) 0 = a and (a, b, c) 1 = b and (a, b, c) 2 = c

b. Embedding propositional calculus in arithmetic, treating the propositional con-
stants 0 and 1 as numbers.

c. Using the generic functionals function composition (◦) and transposition (—U):

(f ◦ g) x = f (g x) and fUy x = f x y

Remark: we ignore types for the time being (types give rise to later variants).
Observe the analogy with the lambda combinators:

C := λfxy.f(xy) and T :=λfxy.fyx
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6.0.1 Conditionals as binary indexing: definition and calculation rules

a. Syntax and axiom: the general form is c ? b a; furthermore,

Axiom for conditionals: c ? b a = (a, b) c

b. Deriving calculation rules using the distributivity laws for —U and ◦:

(f, g, h)Ux = f x, g x, h x and f ◦ (x, y, z) = f x, f y, f z.

Theorem, distributivity laws for conditionals:

(c ? f g) x = c ? f x g x and f (c ? x y) = c ? f x f y.

Proof: given for one variant only, the other being very similar.

(c ? f g) x = 〈Def. conditional〉 (g, f) c x

= 〈Def. transposition〉 (g, f)Ux c

= 〈Distributivity —U〉 (g x, f x) c

= 〈Def. conditional〉 c ? f x g x.
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c. Particular case where a and b (and, of course, c) are all binary:

c ? b a ≡ (c ⇒ b) ∧ (¬ c ⇒ a)

Proof:

c ? b a ≡ 〈Def. cond.〉 (a, b) c

≡ 〈Shannon〉 (c ∧ (a, b) 1)∨ (¬ c ∧ (a, b) 0)

≡ 〈Def. tuples〉 (c ∧ b) ∨ (¬ c ∧ a)

≡ 〈Binary alg.〉 (¬ c ∨ b) ∧ (c ∨ a)

≡ 〈Defin. ⇒〉 (c ⇒ b) ∧ (¬ c ⇒ a)

d. Finally, since predicates are functions and (z =) is a predicate,

z = (c ? x y) ≡ (c ⇒ z = x) ∧ (¬ c ⇒ z = y)

Proof:

z = (c ? x y) ≡ 〈Distributivity〉 c ? (z = x) (z = y)

≡ 〈Preceding law〉 (c ⇒ z = x) ∧ (¬ c ⇒ z = y)

These laws are all one ever needs for working with conditionals!
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6.1 Formal description of combinational circuits

6.1.0 A minimal formal syntax for circuit description

a. Language of circuit descriptions CD The sentences are nonempty lists of
statements of the form v = e, separated by semicolons (;). To such a primary
list can be added an optional secondary list (same syntax) preceded by where.

Here v is an identifier and e an expression with prefix operators (AND , OR,
etc.) with one or more operands, and single-operand prefix operators (NOT ).

Abbreviation conventions (variadic notation)

a ∧ b ∧ c abbreviates AND (a, b, c),

a ∧ (b ∧ c) abbreviates AND (a,AND (b, c)),

¬ (a ∧ ¬ b) abbreviates NOT (AND (a,NOT b)).

b. Examples

z = (x ∧ ¬ s) ∨ (y ∧ s) ; s = u ∧ v

c = a ∧ b ; s = θ ∨ π where θ = a ∧ φ ; π = b ∧ ω ; φ = ¬ b ; ω = ¬ a
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6.1.1 System semantics

a. Principle: multiple interpretations for the same formal description

b. Structural semantics expresses connectivity

• Operators “are” devices

• Identifiers “are” nodes; those at the l.h.s of = are connected to the output
of the device at the r.h.s., and are circuit outputs if in the priomary list

• Outputs of applications in argument positions are anonymous nodes.

Example

c = a ∧ b ; s = θ ∨ π where θ = a ∧ φ ; π = b ∧ ¬ a ; φ = ¬ b

Circuit outputs: c and s. Internal nodes: θ, π, φ. Anonymous: output of ¬ a.

c. Behavioural semantics expresses behaviour. Several kinds, e.g.,

• Static behaviour: simply interpret the circuit as propositional equations

• Dynamic behaviour: again various kinds (beyond proposition calculus).
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Example of various interpretations: for the operators AND , OR, NAND , XOR,
we show the structural and the the static behavioural interpretations

AND OR NAND XOR�
�

�
�f

x y x ∧ y x y x ∨ y x y x∧−y x y x ⊕ y
0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0 1 1 0

More on system semantics (dynamic behaviour, unidirectional analog circuits)

• R. T. Boute, ”System semantics and formal circuit description”, IEEE Trans-
actions on Circuits and Systems, CAS–33, No. 12, pp. 1219–1231, (Dec 1986)

• R. T. Boute, ”System Semantics: Principles, Applications and Implementa-
tion”, ACM Trans. Prog. Lang. and Syst., 10, No. 1, pp. 118–155, (1988)
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6.1.2 Specifications and realizations

a. Convention: Ĉ is the (static) behavioural interpretation of circuit C.

b. Specification: informally, a specification is a boolean expression S character-
izing all acceptable states in the (static) behaviour.
Formally: circuit C satisfies specification S iff Ĉ ⇒ S.

c. Examples: consider the following four specifications.

(a) (z ≡ x ∧ y) ∨ (z ⊕ x)

(b) z ⇒ x

(c) (z ≡ x) ∨ (z ≡ ¬x)

(d) (z ≡ x) ∧ (z ≡ ¬x)

Then
(a) can be realized by several circuits, including z = x ∧ y and z = ¬x.
(b) can be realized by several circuits, including z = 0 and z = x.
(c) can be realized by any circuit.
(d) can be realized by no circuit.
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6.2 Calculating with conditional expressions, formally

6.2.0 Formalizing simple word problems

a. Terminology Word problem: a problem stated in words to be solved by logic.
Unparametrized: pertaining to a finite, fixed number of objects.

b. Examples

• Pure logical examples:

This statement is false

Here is another one:

Exactly one of these two statements is false.
Both of these two statements are false.

• A variant of a riddle from Shakespeare’s “The Merchant of Venice” [Gries]

The key to Portia’s heart is hidden in one of two caskets: a golden
one bearing the inscription “The key is not in here”, and a silver
one with the inscription “Exactly one of the inscriptions on these
caskets is true”. Question: where is the key?
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c. Formalization

• Principle (outline): replace atomic substatements by variables and trans-
late the connectives into logical symbols according to the following table

if a then b a ⇒ b

a only if b a ⇒ b
a if b a ⇐ b
a and b a ∧ b

a or b a ∨ b
etc.

In statements referencing themselves or each other regarding truthfulness,
referenced statements are substatements and hence designated by a vari-
able, resulting in x ≡ contents of x.

• Example A: “This statement is false” becomes x ≡ ¬x.

• Example B: the pair of statements “Exactly one of these two statements
is true.” and “Both of these two statements are true.”
becomes (x ≡ x ⊕ y) ∧ (y ≡ x ∧ y).
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6.2.1 Solving simple word problems

a. Principle: consider the formalized information as equations, with unknowns as
specified in the question of the problem statement.

Observation: solutions may be nonexistent or not unique, as in basic algebra:

0 solutions 1 solution many solutions

3 · x + 2 · y = 7 3 · x + 2 · y = 7 3 · x + 2 · y = 7
6 · x + 4 · y = 5 6 · x + 2 · y = 10 6 · x + 4 · y = 14

b. Examples (for A and B the questions are implicitly: “What gives?”)

• Example A: x ≡ ¬x clearly has no solution since x ≡ ¬x ≡ 0.

• Example B: (x ≡ x ⊕ y) ∧ (y ≡ x ∧ y) is solved for x and y as follows.

x ≡ x ⊕ y ≡ 〈x ⊕ y ≡ x ≡/ y〉 x ≡ (x ≡/ y)

≡ 〈Assoc., x ≡ x〉 1 ≡/ y

So y ≡ 0 regardless of x. Clearly, y ≡ 0 also satisfies y ≡ x ∧ y, again
regardless of x. Hence there are 2 solutions: x, y := 0, 0 and x, y := 1, 0.
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6.2.2 Additional Examples

• Example C: variant of a riddle from Shakespeare’s “The Merchant of Venice”

The key to Portia’s heart is in one of two caskets: a golden one
with the inscription “The key is not in here”, and a silver one saying
“Exactly one of the inscriptions is true”. Question: where is the key?

Formalizing the information: assuming gc and sc represent the fact that the
key is in the golden/silver casket, whereas g and s represent the inscriptions,

(gc ⊕ sc) ∧ (g ≡ ¬ gc) ∧ (s ≡ g ⊕ s).

Solution: answering “Question: where is the key?” means finding gc and sc
satisfying the equation. With the insight that s ≡ g ⊕ s carries the essence,

s ≡ g ⊕ s ≡ 〈As xmpl C〉 g ≡ 0
≡ 〈g ≡ ¬ gc〉 gc

Checking whether this satisfies gc ⊕ sc is evident and also yields ¬ sc.
Hence the key should be in the golden casket.
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• Example D (first of two problems due to Johnnson-Laird)

One of the following assertions is true about a particular hand of
cards, and one of them is false about the same hand of cards.

If there is a king in the hand, then there is an ace in the hand.
If there isn’t a king in the hand, then there is an ace in the hand.

What follows?

Formalizing the information Two equivalent forms, with evident conventions:

(k ⇒ a) ⊕ (¬ k ⇒ a) or, equivalently, (k ⇒ a) + (¬ k ⇒ a) = 1

Solution: answering “What follows?” means finding all k and a satisfying the
equation. Let us use the second form, p := (k ⇒ a) + (¬ k ⇒ a) = 1

p ≡ 〈Shannon theorem〉 (¬ a ∧ p[a0) ∨ (a ∧ p[a1)

≡ 〈Subst., rules ⇒〉 (¬ a ∧ ¬ k + k = 1) ∨ (a ∧ 1 + 1 = 1)
≡ 〈1 + 1 6= 1〉 ¬ a ∧ ¬ k + k = 1

≡ 〈¬ k + k = 1〉 ¬ a

Hence there are two solutions: k, a := 0, 0 and k, a := 1, 0
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• Example E:

Only one of the following is true about a particular hand of cards:
There is a king in the hand, or an ace, or both.
There is a queen in the hand, or an ace, or both.
There is a jack in the hand, or a ten, or both.

Is is possible that there is an ace in the hand?

Formalizing the information: with self-explanatory conventions,

(k ∨ a) + (q ∨ a) + (j ∨ t) = 1

Solution: answering the question “Is is possible that there is an ace in the
hand?” amounts to determining whether there are solutions with a ≡ 1.
Applying Shannon’s theorem to the equation yields ¬ a ∧ k + q + (j ∨ t) = 1.
Even simpler: assuming a = 1 yields 1 + 1 + (j ∨ t) = 1, which is 0.

Problems D and E are due to Johnson-Laird and used in his research on the psychol-
ogy of logic: http://www.princeton.edu/˜psych/PsychSite/fac phil.html
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Next section

0. Introduction: motivation and approach
1. Simple expressions and equational calculation
2. Equational calculation: application examples
3. Point-wise and point-free styles of expression and calculation
4. Point-wise and point-free styles: application examples
5. Binary algebra and proposition calculus: calculation rules
6. Binary algebra and proposition calculus: application examples

7. Sets and functions: equality and calculation

8. Functional Predicate Calculus: calculating with quantifiers
9. Functional Predicate Calculus: application examples

10. Well-foundedness, induction principles and application examples
11. Funmath: unifying continuous and discrete mathematics
12. Generic Functionals: definitions
13. Various examples in continuous and discrete systems modelling
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7 Sets and functions, equality

7.0 Motivation

7.1 Calculating with sets, formally

7.1.0 Rationale of the formulation

7.1.1 Equality for sets

7.1.2 Set expressions, operators and calculation rules

7.2 Calculating with functions, formally

7.2.0 Rationale of the formulation

7.2.1 Equality for functions

7.2.2 Function expressions, operators and calculation rules

7.3 Generic functionals, a sneak preview

7.3.0 Principle

7.3.1 Some generic functionals (only as needed for point-free predicate calculus)
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7.0 Motivation

a. General (in the context of mathematics and computing)

• Thus far in this tutorial, formulations were either untyped (lambda calcu-
lus) or implicitly singly typed (simple algebras, proposition algebra)

• In the practice of mathematics, sets are ubiquitous

• In declarative formalisms, sets provide flxible typing

• Functions are perhaps the most powerful single concept in mathematics.
Arguably also in computing: power/elegance of functional programming

b. Specific (in the context of a functional formalism, as considered here)

• Functions are a fundamental concept (not identified with sets of pairs)

• Sets are extremely useful for defining function domains

• The functional predicate calculus is based on predicates as functions

• The “reach” of quantification is captured by function domains.
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7.1 Calculating with sets, formally

7.1.0 Rationale of the formalization

a. Relation to axiomatizations

• Intuitive notion of sets assumed known

• The approach is aimed at formal calculation with sets

• Largely independent of particular axiomatizations (portability)

b. Set membership as the basic set operator

• Syntax: e ∈ X with (normally)
e any expression, X a set expression (introduced soon)

• Examples: (p ∧ q) ∈ B π/2 ∈ R f ++ g ∈×(F ++ G)

Note: (e ∈ X) ∈ B for any e and X

• Warning: never overload the relational operator ∈ with binding. So,

∀x ∈ X . p and {x ∈ X | p} and
∑

n ∈ N . 1/n2 are bad syntax.

Correct will be: ∀x :X . p and {x :X | p} and
∑

n : N . 1/n2, shown later.
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7.1.1 Equality for sets

Henceforth, X, Y , etc. are metasymbols for set expressions, unless stated otherwise.

a. Leibniz’s principle e = e′ ⇒ d[ve= d[ve′ as the universal guideline

• Particularization to sets d = e ⇒ (d ∈ X ≡ e ∈ X) but, more relevant,

X = Y ⇒ (x ∈ X ≡ x ∈ Y )

• By (WC⇒): (p ⇒ X = Y ) ⇒ p ⇒ (x ∈ X ≡ x ∈ Y )

b. Set extensionality as the converse of Leibniz’s principle for sets

Inference rule (strict):
p ⇒ (x ∈ X ≡ y ∈ Y )

p ⇒ X = Y (x a new variable)

Role of p is proof-technical: the deduction theorem and chaining calculations

p ⇒ 〈Calculations〉 x ∈ X ≡ x ∈ Y
⇒ 〈Extensionality〉 X = Y

Warning: such a proof is for p ⇒ X = Y , not (x ∈ X ≡ x ∈ Y ) ⇒ X = Y .
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7.1.2 Set expressions, operators and their calculation rules

a. Set symbols (constants): B (binary), N (natural), Z (integer), etc.

Empty set ∅, with axiom x 6∈ ∅, abbreviating ¬ (x ∈ ∅)

b. Operators and axioms (defined by reduction to proposition calculus)

• Singleton set injector ι with axiom x ∈ ι y ≡ x = y

We do not use { } for singletons, but for a more useful purpose.

• Function range R, or synonym { } (axioms later). Property (proof later)

e ∈ {v :X | p} ≡ e ∈ X ∧ p[ve provided x 6∈ ϕ X

• Combining operators: ∪ (union), ∩ (intersection), \ (difference). Axioms

x ∈ X ∪ Y ≡ x ∈ X ∨ x ∈ Y
x ∈ X ∩ Y ≡ x ∈ X ∧ x ∈ Y

x ∈ X \Y ≡ x ∈ X ∧ x 6∈ Y

• Relational operator: subset (⊆). Axiom: X ⊆ Y ≡ Y = X ∪ Y
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7.2 Calculating with functions, formally

7.2.0 Rationale of the formulation

a. Relation to axiomatizations: a function is not a set of pairs, which no more
than a set-theoretical representation called the graph of the function.

b. A function is defined by its domain (argument type) and its mapping, usually

A domain axiom of the form D f = X or x ∈ D f ≡ p (f 6∈ ϕ p)
A mapping axiom of the form x ∈ D f ⇒ q

Existence and uniqueness are proof obligations (trivial for explicit mappings).

c. Example: the function double can be defined by a domain axiom D double = Z
together with a mapping axiom n ∈ D double ⇒ double n = 2 · n.

d. Example: the function halve can be defined by

• Domain axiom D halve = {n : Z | n/2 ∈ Z}
Equivalently: n ∈ D halve ≡ n ∈ Z ∧ n/2 ∈ Z

• Mapping axiom n ∈ D halve ⇒ halve n = n/2
Equivalently (implicit): n ∈ D halve ⇒ n = double (halve n)

112



7.2.1 Equality for functions

Henceforth, f , g, etc. are metasymbols for functions, unless stated otherwise.

a. Leibniz’s principle particularizes to x = y ⇒ f x = f y; more relevant:
f = g ⇒ f x = g x and f = g ⇒ D f = D g. With “guards” for arguments

f = g ⇒ D f = D g ∧ (x ∈ D f ∧ x ∈ D g ⇒ f x = g x) (2)

By (WC⇒): (p ⇒ f = g) ⇒ p ⇒ D f = D g ∧ (x ∈ D f ∩D g ⇒ f x = g x)

b. Function extensionality as the converse of Leibniz’s principle: with new x,

(strict inf. rule)
p ⇒ D f = D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x)

p ⇒ f = g
(3)

Role of p is proof-technical, esp. chaining calculations

p ⇒ 〈Calculations〉 D f = D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x)
⇒ 〈Extensionality〉 f = g

Warning: such a proof is for p ⇒ f = g
not for D f = D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x) ⇒ f = g.
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7.2.2 Function expressions, operators and their calculation rules

a. Four kinds of function expressions: functions as more than first-class objects

• Two kinds already introduced for simple expressions:
Identifiers (variables, constants) and Applications(e.g., f

−
and f ◦ g).

• Two new kinds, fully completing our language syntax (nothing more!)

– Tuplings of the form e, e′, e′′; domain axiom: D (e, e′, e′′) = {0, 1, 2},
mapping: (e, e′, e′′) 0 = e and (e, e′, e′′) 1 = e′ and (e, e′, e′′) 2 = e′′.

– Abstractions of the form (assuming v 6∈ ϕ X)

v : X ∧. p . e

v is a variable, X a set expression, p a proposition, e any expression.
The filter ∧. p is optional, and v : X . e stands for v :X ∧. 1 . e.

Domain axiom: d ∈ D (v : X ∧. p . e) ≡ d ∈ X ∧ p[vd (4)
Mapping axiom: d ∈ D (v : X ∧. p . e) ⇒ (v :X ∧. p . e) d = e[vd (5)

Substitution rules are entirely analogous to those of lambda calculus.
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b. Some examples regarding abstraction

• Consider n : Z∧. n ≥ 0 . 2 · n The domain axiom yields

m ∈ D (n : Z∧. n ≥ 0 . 2 · n) ≡ 〈Domain axm〉 m ∈ Z ∧ (n ≥ 0)[nm
≡ 〈Substitution〉 m ∈ Z ∧ m ≥ 0
≡ 〈Definition N〉 m ∈ N

Hence D (n : Z∧. n ≥ 0 . 2 · n) = N by set extensionality.
If x + y ∈ D (n : Z∧. n ≥ 0 . 2 · n) or, equivalently, x + y ∈ N,

(n : Z∧. n ≥ 0 . 2 · n) (x + y) = 〈Mapping axm〉 (2 · n)[nx+y

= 〈Substitution〉 2 · (x + y)

• Similarly, double = n : Z . 2 · n and halve = n : Z∧. n/2 ∈ Z . n/2

• Defining the constant function definer (•) by

X • e = v :X . e, assuming v 6∈ ϕ e (6)

and the empty function ε and the single point function definer 7→ by

ε := ∅ • e and x 7→ y = ι x • y (7)
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c. Remark Abstractions look unlike common mathematics. Yet, we shall show
their use in synthesizing traditional notations in a formally correct and more
general way, while preserving easily recognizable form and meaning .

For instance,
∑

n :S . n2 will denote the sum of all n2 as n “ranges” over S.
What used to be vague intuitive notions will acquire formal calculation rules.

d. Instantiating function equality with f := v : X ∧. p . d and g := v : Y ∧. q . e yields:

Theorem, equality for abstractions

By Leibniz: (v :X ∧. p . d) = (v :Y ∧. q . e)
⇒ (v ∈ X ∧ p ≡ v ∈ Y ∧ q) ∧ (v ∈ X ∧ p ⇒ d = e)

By extensionality: (v ∈ X ∧ p ≡ v ∈ Y ∧ q) ∧ (v ∈ X ∧ p ⇒ d = e)

(v : X ∧. p . d) = (v ∈ Y ∧. q . e)

The extensionality part can itself be made clearer by factorizing it as follows

Extensionality, domain part:
v ∈ X ∧ p ≡ v ∈ Y ∧ q (v :X ∧. p . e) = (v :Y ∧. q . e)

Extensionality, mapping part:
v ∈ X ∧ p ⇒ d = e (v :X ∧. p . d) = (v :X ∧. p . e)
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e. Operators for functions

• Terminology: an operator is an identifier for a function.
A functional or higher-order function is a function over functions.

• Rough classification of functionals

– Generic functionals take arbitrary functions as arguments.
They are extensively discussed in later “chapters”.

– Specialized functionals introduced in particular subject areas.

Remark: In the sequel, we shall occasionally write
T for the type (or set) universe,
F for the function universe
U for the universe.

Various axiomatizations (e.g., Foster) support universal sets (without paradoxes).
We leave the choice open, and just assume T , F and U to be “well-behaved”, i.e.,
containing no elements leading to contradictions.

That non-well-behaved sets are excluded is illustrated by the Russell set R defined
by R = {X :T | X 6∈ X}, hence X ∈ R ≡ X ∈ T ∧X 6∈ X. Instantiation X :=R
yields the equation R ∈ R ≡ R ∈ T ∧ R 6∈ R whose only solution implies R 6∈ T .
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7.3 Generic functionals, a sneak preview

7.3.0 Principle

a. Motivation: twofold

• In a functional formalism (as used here), well-designed functionals can be
shared by considerably more mathematical objects than usual.

• Supporting point-free formulations and smooth conversion between point-
wise and point-free formulations.

b. Shortcoming of similar operators in traditional mathematics: restrictions on
the arguments, e.g.,

• The usual f ◦ g requires R g ⊆ D f , in which case D (f ◦ g) = D g

• The usual f− requires f injective, in which case D f− = R f

c. Approach used here: no restrictions on the arguments, but refine domain of the
result function such that its mapping definition does not contain out-of-domain
applications for values in this domain (guarded)
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7.3.1 Some generic functionals (only as needed for point-free predicate calculus)

a. Filtering operators (infix)

↓ Set filtering X ↓ P = {x :X ∩ D P | P x} (8)
↓ Function filtering f ↓ P = x ∈ D f ∩ D P ∧. P x . f x (9)
e Function restriction f eX = f ↓ (X • 1) = x :D f ∩ X . f x (10)

Restriction is the familiar(coarser) variant of ↓. Shorthand: de for d ↓ e.

b. Function composition (—◦—): g ◦ f = x :D f ∧. f x ∈ D g . g (f x) (11)

c. Direct extension extends operators over a set X to X-valued functions.

— Monadic g f = x :D f ∧. f x ∈ D g . g (f x) so g f = g ◦ f (12)
—̂ Dyadic f ?̂ g = x :D f ∩ D g ∧. (f x, g x) ∈ D (?) . (f x) ? (g x)(13)
↼
— Left f

↼
? e = f ?̂ (D f • e) (14)

⇀
— Right e

⇀
? f = (D f • e) ?̂ f (15)

Legend: arbitrary one-argument function g (prefix), two-argument ? (infix).
Note, e.g., D (f ?̂ g) = {x :D f ∩ D g | (f x, g x) ∈ D (?)}
and x ∈ D (f ?̂ g) ⇒ (f ?̂ g) x = (f x) ? (g x) (less compact).
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8 Functional Predicate Calculus: calculating with quantifiers

8.0 Deriving basic calculation rules and metatheorems

8.0.0 Predicates and quantifiers

8.0.1 Introductory application to function equality and function types

8.0.2 Direct consequences of the axioms and the duality principle

8.0.3 Some distributivity and monotonicity rules

8.0.4 Case analysis, generalized Shannon expansion and distributivity rules

8.0.5 Instantiation, generalization and their use in proving equational laws

8.0.6 Direct consequences of the axioms and the duality principle
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8.1 Expanding the toolkit of calculation rules

8.1.0 Abstractions synthesizing common notations

8.1.1 Selected rules for ∀

8.1.2 The one-point rule

8.1.3 Swapping quantifiers/dummies and function comprehension

8.1.4 Useful quick calculation techniques

8.1.5 Two final remarks
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8.0 Deriving basic calculation rules and metatheorems

8.0.0 Predicates and quantifiers

a. Definition: a predicate is any function P satisfying x ∈ D P ⇒ P x ∈ B.

b. Definition: the quantifiers ∀ and ∃ are predicates over predicates defined by

Axioms: ∀P ≡ P = D P • 1 and ∃P ≡ P 6= D P • 0 (16)

Legend: read ∀P as “everywhere P” and ∃P as “somewhere P”.

c. Remarks

• Simple definition, intuitively clear to engineers/applied mathematicians.

• Calculation rules equally obvious, but derived axiomatically in a moment.

• Point-free style for clarity; familiar forms by taking x :X . p for P , as in

∀x :X . p, read: “all x in X satisfy p”,

∃x :X . p, read: “some x in X satisfy p”.
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8.0.1 Introductory application to function equality and function types

a. Function equality is pivotal in the quantifier axioms (16).
Conversely, (16) can unite Leibniz (2) and extensionality (3) for functions.

Theorem, Function equality: f = g ≡ D f = D g ∧ ∀ (f =̂ g) (17)

Proof: we show (⇒); the second step 〈Weakening〉 is just for saving space.

f = g ⇒ 〈Lbnz. (2)〉 D f = D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x)
⇒ 〈Weakening〉 x ∈ D f ∩ D g ⇒ f x = g x
≡ 〈p ≡ (p ≡ 1)〉 x ∈ D f ∩ D g ⇒ (f x = g x) = 1

≡ 〈̂ (13), • (6)〉 x ∈ D (f =̂ g) ⇒ (f =̂ g) x = (D (f =̂ g) • 1) x
⇒ 〈Extens. (3)〉 (f =̂ g) = D (f =̂ g) • 1

≡ 〈Axiom ∀ (16)〉 ∀ (f =̂ g)

Step 〈Extens. (3)〉 tacitly used D h = D h ∩ D ((D h) • 1). Restoring equality
D f = D g discarded by weakening yields f = g ⇒ D f = D g ∧ ∀ (f =̂ g).

Proving (⇐) is the symmetric counterpart (exercise).
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b. Our function concept has no (unique) codomain associated with it.

Yet, we can specify an approximation or restriction on the images.

Two familiar operators for expressing function types (i.e., sets of functions)
are formalized here; more refined alternatives are shown later.

→ function arrow f ∈ X →Y ≡ D f = X ∧ ∀x :D f . f x ∈ Y (18)
→/ partial arrow f ∈ X →/ Y ≡ D f ⊆ X ∧ ∀x :D f . f x ∈ Y (19)

Note: Functions of type X →/ Y are often called “partial”. This is a misnomer:
they are proper functions, the type just specifies the domain more loosely.

In fact, here are some simple relationships.

• X →/ Y =
⋃

(S :P X . S →Y )

• |X →/ Y | =
∑

(k : 0 ..n . (n
k) · mk) = (m + 1)n = |X → (Y ∪ ι )|

for finite X and Y with n := |X| and m := |Y |, since |X →Y | = mn.

125



8.0.2 Direct consequences of the axioms and the duality principle

a. Elementary properties by “head calculation”

• For constant predicates: ∀ (X • 1) ≡ 1 and ∃ (X • 0) ≡ 0 (by (6, 16))

• For the empty predicate: ∀ ε ≡ 1 and ∃ ε ≡ 0 (since ε = ∅ • 1 = ∅ • 0)

b. Theorem, Duality: ∀ (¬P ) ≡ (¬∃) P (20)

proof:

∀ (¬P ) ≡ 〈Def. ∀ (16), Lemma a (21)〉 ¬P = D P • 1
≡ 〈Lemma b (22)〉 P = ¬ (D P • 1)
≡ 〈Lemma c (23), 1 ∈ D¬ 〉 P = D P • (¬ 1)

≡ 〈¬ 1 = 0, definition ∃ (16)〉 ¬ (∃P )
≡ 〈Defin. and ∃P ∈ D¬ 〉 ¬∃P

The lemmata used are stated below, their proofs are routine.

Lemma a D (¬P ) = D P (21)

Lemma b: ¬P = Q ≡ P = ¬Q (22)

Lemma c: x ∈ D g ⇒ g (X • x) = g ◦ (X • x) = X • (g x) (23)
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8.0.3 Some distributivity and monotonicity rules

a. Theorem, Collecting ∀/∧: ∀P ∧ ∀Q ⇒ ∀ (P ∧̂ Q) (24)

Proof: ∀P ∧ ∀Q
≡〈Defin. ∀〉 P = D P • 1 ∧ Q = DQ • 1

⇒〈Leibniz〉 ∀ (P ∧̂ Q) ≡ ∀ (D P • 1 ∧̂ DQ • 1)
≡〈Defin. ̂〉 ∀ (P ∧̂ Q) ≡ ∀x :D P ∩ DQ . (DP • 1) x ∧ (DQ • 1) x

≡〈Defin. •)〉 ∀ (P ∧̂ Q) ≡ ∀x :D P ∩ DQ . 1 ∧ 1
≡〈∀ (X • 1)〉 ∀ (P ∧̂ Q) ≡ 1

Here is a summary of similar theorems , dual theorems and corollaries.

Theorem, Collecting ∀/∧: ∀P ∧ ∀Q ⇒ ∀ (P ∧̂ Q)

Theorem, Splitting ∀/∧: D P = DQ ⇒ ∀ (P ∧̂ Q) ⇒ ∀P ∧ ∀Q
Theorem, Distributivity ∀/∧: D P = DQ ⇒ (∀ (P ∧̂ Q) ≡ ∀P ∧ ∀Q)

Theorem, Collecting ∃/∨: D P = DQ ⇒ ∃P ∨ ∃Q ⇒ ∃ (P ∨̂ Q)
Theorem, Splitting ∃/∨: ∃ (P ∨̂ Q) ⇒ ∃P ∨ ∃Q

Theorem, Distributivity ∃/∨: D P = DQ ⇒ (∃ (P ∨̂ Q) ≡ ∃P ∨ ∃Q)
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b. Properties for equal predicates; monotonicity rules

Equal pred. \∀: D P = DQ ⇒ ∀ (P ≡̂ Q) ⇒ (∀P ≡ ∀Q) (25)
Equal pred. \∃: D P = DQ ⇒ ∀ (P ≡̂ Q) ⇒ (∃P ≡ ∃Q) (26)
Monotony ∀/⇒: DQ ⊆ D P ⇒ ∀ (P ⇒̂ Q) ⇒ (∀P ⇒ ∀Q) (27)
Monotony ∃/⇒: D P ⊆ DQ ⇒ ∀ (P ⇒̂ Q) ⇒ (∃P ⇒ ∃Q) (28)

• Proof outlines (intended as exercises with hints):

– (25) and (26): function equality (17), Leibniz, (T⇒), or monotony.

– (27): shunting ∀ (P ⇒̂ Q) and ∀P , expanding ∀P by (16), Leibniz.

– (28): from (27) via contrapositivity and duality.

• Importance: crucial in chaining proof steps:

∀ (P ⇒̂ Q) justifies ∀P ⇒ ∀Q and ∃P ⇒ ∃Q

provided the corresponding set inclusion for the domains holds.
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c. Constant predicates, general form

We saw ∀ (X • 1) ≡ 1 and ∃ (X • 0) ≡ 0. How about ∀ (X • 0) and ∃ (X • 1)?
Beware of immature intuition! Formal proof to the rescue, develop intuition!

Theorem, Constant Predicate under ∀ ∀ (X • p) ≡ X = ∅ ∨ p (29)

Proof: ∀ (X • p) ≡〈Def. ∀ and •〉 X • p = X • 1
⇒〈Leibniz (2)〉 x ∈ X ⇒ (X • p) x = (X • 1) x
≡〈Definition •〉 x ∈ X ⇒ p = 1

≡〈Prop. calc.〉 (x ∈ X ≡ 0) ∨ p
≡〈x ∈ ∅ ≡ 0〉 (x ∈ X ≡ x ∈ ∅) ∨ p

⇒〈Set extensionality〉 X = ∅ ∨ p

X = ∅ ∨ p ≡〈p = 1 ≡ p〉 X = ∅ ∨ p = 1
⇒〈Leibniz (L=)〉 (X • p = X • 1 ≡ ∅ • p = ∅ • 1) ∨ X • p = X • 1

≡〈∅ • p = ∅ • x〉 X • p = X • 1 ∨ X • p = X • 1
≡〈Idempot. ∨〉 X • p = X • 1

≡〈Axm. ∀ (16)〉 ∀ (X • p)

So ∀ ε ≡ 1 and ∀ (X • 1) ≡ 1 and ∀ (X • 0) ≡ X = ∅. Dual: ∃ (X • p) ≡
X 6= ∅ ∧ p, so ∃ ε ≡ 0 and ∃ (X • 0) ≡ 0 and ∃ (X • 1) ≡ X 6= ∅.
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8.0.4 Case analysis, generalized Shannon expansion and distributivity rules

a. Recall propositional metatheorems: (i) case analysis pv
0∧pv

1 ⇒ p (or pv
0, p

v
1 |− p),

(ii) Shannon, e.g., p ≡ (v ⇒ pv
1)∧ (¬ v ⇒ pv

0) and p ≡ (v∧ pv
1)∨ (¬ v∧ pv

0).
We want this power for predicate calculus.

b. A little technicality: for expression e and variable v, let Dv
e denote the domain.

Informal definition: largest X s.t. d ∈ X ⇒ (ev
d only in-domain applications)

Lemma, Case analysis: If B ⊆ Dv
P and v ∈ B then

∀P v
0 ∧ ∀P v

1 ⇒ ∀P (30)

c. Theorem, Shannon expansion If B ⊆ Dv
P and v ∈ B then

∀P ≡ (v ⇒ ∀P v
1 ) ∧ (¬ v ⇒ ∀P v

0 )
∀P ≡ (v ∨ ∀P v

0 ) ∧ (¬ v ∨ ∀P v
1 )

∀P ≡ (v ∧ ∀P v
1 ) ∨ (¬ v ∧ ∀P v

0 )

(31)

and other variants. Proofs by case analysis.
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d. Application examples: Distributivity and pseudodistributivity theorems

Left distributivity ⇒/∀: p ⇒ ∀P ≡ ∀ (p
⇀⇒ P ) (32)

Right distributivity ⇒/∃: ∃P ⇒ p ≡ ∀ (P
↼⇒ p) (33)

Distributivity of ∨/∀: p ∨ ∀P ≡ ∀ (p
⇀∨ P ) (34)

Pseudodistributivity ∧/∀: (p ∧ ∀P ) ∨ D P = ∅ ≡ ∀ (p
⇀∧ P ) (35)

Proof: exercises

e. Clearly, theorems, (30) and (31) also hold if ∀ is replaced everywhere by ∃.

This yields a collection of similar laws, also obtainable by duality.

Examples:

Left pseudodistr. ⇒/∃: (p ⇒ ∃P ) ∧ D P 6= ∅ ≡ ∃ (p
⇀⇒ P )

Right pseudodist. ⇒/∀: (∀P ⇒ p) ∧ D P 6= ∅ ≡ ∃ (P
↼⇒ p)

Pseudodistribut. ∨/∃: (p ∨ ∃P ) ∧ D P 6= ∅ ≡ ∃ (p
⇀∨ P )

Distributivity of ∧/∃: p ∧ ∃P ≡ ∃ (p
⇀∧ P )
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8.0.5 Instantiation, generalization and their use in proving equational laws

a. Theorem, Instantiation and Generalization (note: (37), assumes new v)

Instantiation: ∀P ⇒ e ∈ D P ⇒ P e (36)
Generalization: p ⇒ v ∈ D P ⇒ P v p ⇒ ∀P (37)

Proofs: in (2) and (3), let f :=P and g :=D P • 1, then apply (6) and (16).

b. Metatheorem, ∀-introduction/removal again assuming new v,

p ⇒ ∀P is a theorem iff p ⇒ v ∈ D P ⇒ P v is a theorem. (38)

Significance: for p = 1, this reflects typical implicit use of generalization:
to prove ∀P , prove v ∈ D P ⇒ P v, or assume v ∈ D P and prove P v.

c. Metatheorem, Witness assuming new v

∃P ⇒ p is a theorem iff v ∈ D P ⇒ P v ⇒ p is a theorem. (39)

Significance: this formalizes the following well-known informal proof scheme:
to prove ∃P ⇒ p, “take” a v in D P s.t. P v (the “witness”) and prove p.
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d. We allow weaving generalization (37) into a calculation chain as follows.

Metatheorem, generalization of the consequent : assuming new v,

p ⇒ 〈Calculation to v ∈ D P ⇒ P v〉 v ∈ D P ⇒ P v

⇒ 〈Generalizing the consequent〉 ∀P
(40)

Expected warning: this proof is for p ⇒ ∀P , not (v ∈ D P ⇒ P v) ⇒ ∀P .
We use it only for deriving calculation rules; it is rarely (if ever) needed beyond.

e. Application example: proving a very important theorem.

Theorem, Trading under ∀: ∀PQ ≡ ∀ (Q ⇒̂ P ) (41)

Proof: We show (⇒), the reverse being analogous.

∀PQ ⇒ 〈Instantiation (36)〉 v ∈ D (PQ) ⇒ PQ v
≡ 〈Definition ↓ (81)〉 v ∈ D P ∩ DQ ∧ Q v ⇒ P v

≡ 〈Shunting ∧ to ⇒〉 v ∈ D P ∩ DQ ⇒ Q v ⇒ P v
≡ 〈Axiom ̂, remark〉 v ∈ D (Q ⇒̂ P ) ⇒ (Q ⇒̂ P ) v

⇒ 〈Gen. conseq. (40)〉 ∀ (Q ⇒̂ P )

The remark in question is v ∈ D P ∩ DQ ⇒ (Q v, P v) ∈ D (⇒).
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f. Remarks

• Reversion principle: any proof starting with instantiation, continuing
with equivalences (≡) only, and concluding with generalization of the
consequent, can be reversed trivially, so the reverse proof can be omitted.

• The dual of trading under ∀, viz., ∀PQ ≡ ∀ (Q ⇒̂ P ), is the following

Theorem, Trading under ∃: ∃PQ ≡ ∃ (Q ∧̂ P ) (42)

Proof: Observinfing software reuse and the algebraic style, we use (41).

∃PQ ≡ 〈Duality (20)〉 ¬ ∀ (¬PQ)
≡ 〈¬PQ = (¬P )Q〉 ¬ ∀ (¬P )Q

≡ 〈Trading ∀ (41)〉 ¬ ∀ (Q ⇒̂ ¬P )
≡ 〈q ⇒ p ≡ ¬ q ∨ p〉 ¬ ∀ (¬Q ∨̂ ¬P )

≡ 〈De Morgan〉 ¬ ∀ (¬ (Q ∧̂ P ))
≡ 〈Duality (20)〉 ∃ (Q ∧̂ P )

Note: direct extensions of propositional operators are simple counterparts of
the basic rules. Hence we use the latter in the justification brackets.
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8.1 Expanding the toolkit of calculation rules

8.1.0 Abstractions synthesizing common notations

a. Abstractions are useful for synthesizing or “repairing” common notations.

Example: let R := v : X . r and P := v :X . p in the trading theorems (41, 42)

∀ (v :X ∧. r . p) ≡ ∀ (v : X . r ⇒ p)
∃ (v :X ∧. r . p) ≡ ∃ (v : X . r ∧ p).

(43)

For readers not yet fully comfortable with direct extensions: a direct proof for
(43) instead of presenting it an instance of the general formulation (41).

∀ (v : X ∧. r . p)

⇒ 〈Instantiation (36)〉 v ∈ D (v :X ∧. r . p) ⇒ (v : X ∧. r . p) v
≡ 〈Abstraction (4), (5)〉 v ∈ X ∧ r ⇒ p

≡ 〈Shunting ∧ to ⇒〉 v ∈ X ⇒ r ⇒ p
⇒ 〈Gen. conseq. (40)〉 ∀ (v :X . r ⇒ p)

The converse follows from the reversion principle.
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b. Further example: summary of some selected axioms and theorems

Table for ∀ General form Form with P := v :X . p and v 6∈ ϕ q

Definition ∀P ≡ P = D P • 1 ∀ (v :X . p) ≡ (v : X . p) = (v :X . 1)

Instantiation ∀P ⇒ e ∈ D P ⇒ P e ∀ (v : X . p) ⇒ e ∈ X ⇒ p[ve
Generalization v ∈ D P ⇒ P v ∀P v ∈ X ⇒ p ∀ (v : X . p)

L-dstr. ⇒/∀ ∀ (q
⇀⇒ P ) ≡ q ⇒ ∀P ∀ (v : X . q ⇒ p) ≡ q ⇒ ∀ (v : X . p)

Table for ∃ General form Form with P := v : X . p and v 6∈ ϕ q

Definition ∃P ≡ P 6= D P • 0 ∃ (v :X . p) ≡ (v :X . p) 6= (v : X . 0)
∃-introduction e ∈ D P ⇒ P e ⇒ ∃P e ∈ X ⇒ p[ve ⇒ ∃ (v :X . p)

Distrib. ∃/∧ ∃ (q
⇀∧ P ) ≡ q ∧ ∃P ∃ (v : X . q ∧ p) ≡ q ∧ ∃ (v :X . p)

R-dstr. ⇒/∃ ∀ (P
↼⇒ q) ≡ ∃P ⇒ q ∀ (v :X . p ⇒ q) ≡ ∃ (v :X . p) ⇒ q

The general form is the point-free one; the pointwise variants are instantiations.
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8.1.1 Selected rules for ∀

a. A few more important rules in algebraic style.

Legend: P and Q: predicates; R: higher-order predicate (function such that
R v is a predicate for any v in DR): S: relation (predicate on pairs).

The currying operator —C transforms any function f with domain of the form
X ×Y into a higher-order function fC defined by fC = v : X . y :Y . f (v, y).

Merge rule: P c©Q ⇒ ∀ (P ∪· Q) = ∀P ∧ ∀Q
Transposition: ∀ (∀ ◦R) = ∀ (∀ ◦RT)

Nesting: ∀S = ∀ (∀ ◦SC)
Composition rule: ∀P ≡ ∀ (P ◦ f) provided D P ⊆ R f
One-point rule: ∀P=e ≡ e ∈ D P ⇒ P e

The range operator R, defined by y ∈ R f ≡ ∃x :D f . f x = y, will be
discussed later. Some (but not all) proofs will also appear when appropriate.

137



b. Similar rules using dummies.

Legend: p, q and r: B-valued expressions.
Assume the usual restrictions on types and free occurrences are satisfied.

Domain split: ∀ (x :X ∪ Y . p) ≡ ∀ (x :X . p) ∧ ∀ (x :Y . p)
Dummy swap: ∀ (x :X . ∀ y : Y . p) ≡ ∀ (y :Y . ∀x :X . p)

Nesting: ∀ ((x, y) :X ×Y . p) ≡ ∀ (x :X . ∀ y :Y . p)
Dummy change: ∀ (y :Y . p) ≡ ∀ (x :D f . p[yf x) if y ∈ Y ≡ ∃x :D f . f x = y

One-point rule: ∀ (x :X ∧. x = e . p) ≡ e ∈ X ⇒ p[xe
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8.1.2 The one-point rule

a. Significance: largely ignored by theoreticians, very often useful in practice.
Also: instantiation (∀P ⇒ e ∈ D P ⇒ P e) has the same r.h.s., but the
one-point rule is an equivalence, hence stronger. The proof is also instructive

b. Theorem, One-point rule: ∀P=e ≡ e ∈ D P ⇒ P e (44)

Proof We use mutual implication. For brevity, let X stand for D P in

∀P=e

≡ 〈Filter, trading〉 ∀x :X . x = e ⇒ P x

⇒ 〈Instant. x := e〉 e ∈ X ⇒ P e

1 ≡ 〈Leibniz (2)〉 ∀x :X . x = e ⇒ (x ∈ X ⇒ P x ≡ e ∈ X ⇒ P e)

≡ 〈1 ⇒ p ≡ p〉 ∀x :X . x = e ⇒ (P x ≡ e ∈ X ⇒ P e)
⇒ 〈Weakening〉 ∀x :X . x = e ⇒ (e ∈ X ⇒ P e) ⇒ P x

≡ 〈Shunting〉 ∀x :X . (e ∈ X ⇒ P e) ⇒ x = e ⇒ P x
≡ 〈L-dstr. ⇒/∀〉 (e ∈ X ⇒ P e) ⇒ ∀x :X . x = e ⇒ P x

≡ 〈Filter, trading〉 (e ∈ X ⇒ P e) ⇒ ∀P=e.
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c. Final remarks on the one-point rule

• Point-free and pointwise forms for ∀:

∀P=e ≡ e ∈ D P ⇒ P e

∀ (x :X . x = e ⇒ p) ≡ e ∈ X ⇒ p[xe

• Duals for ∃ (both styles):

∃P=e ≡ e ∈ D P ∧ P e

∃ (x :X . x = e ∧ p) ≡ e ∈ X ∧ p[xe

• Investigating what happens when implication in x = e ⇒ P x is reversed
yields a one-directional variant (better a half pint than an empty cup).

Theorem, Half-pint rule:

∀ (x :D P . P x ⇒ x = e) ⇒ ∃P ⇒ P e
(45)

Hint for proof: start with Leibniz and weakening to x = e ⇒ P x ⇒ P e.
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8.1.3 Swapping quantifiers/dummies and function comprehension

a. A simple swapping rule (“homogeneous” = same kind of quantifier)

Theorem, Homogeneous swapping:

∀ (x :X . ∀ y : Y . p) ≡ ∀ (y : Y . ∀x :X . p)
∃ (x :X . ∃ y : Y . p) ≡ ∃ (y : Y . ∃x :X . p)

(46)

b. Heterogeneous swapping: this is less evident, and direction-dependent

Theorem, Moving ∀ outside ∃:
∃ (y :Y . ∀x :X . p) ⇒ ∀ (x :X . ∃ y :Y . p)

(47)

Proof: subtle but easy with Gries’s hint: to prove p ⇒ q, prove p ∨ q ≡ q.

The converse (moving ∃ outside ∀) is not a theorem but an axiom

Axiom, function comprehension:

∀ (x :X . ∃ y : Y . p) ⇒ ∃ f :X →Y . ∀x :X . p[yf x.
(48)

The other direction (⇐) is easy to prove.
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8.1.4 Useful quick calculation techniques

a. Motivation We have derived the rules that are most needed in practice, giving
them suggestive mnemonic names for easy reference (as in Dijkstra, Gries e.a.).
These names prove extremely valuable in becoming conversant with the rules!

However, no list of rules is complete or always at hand. Fortunately, there are:

b. Some quick calculation techniques (brief overview)

• Case analysis (30) and Shannon’s theorem (31) are very effective.

• Spot-checking plausibility with proposition pairs. Principle: tuples are
functions; for propositional p and q, the pair p, q is a predicate and

∀ (p, q) ≡ p ∧ q and ∃ (p, q) ≡ p ∨ q. (49)

Plausibility of formulas involving a predicate P can be quickly tested for
the special case D P = B, for which ∀P = P 0∧P 1 and ∃P = P 0∨P 1.

Warning: in spot-checking, D P = ∅ must not be overlooked.

Note: all rules derived in our formalism are “robust” w.r.t. the empty domain.
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c. Example of spot-checking with pairs: let the “DUT” be the rather non-intuitive

∀ (x :D P . P x ⇒ p) ≡ ∃ (x :D P . P x) ⇒ p assuming new x

For D P = B the DUT yields ∀ (x : B . (P0, P1) x ⇒ p) ≡ ∃ (P0, P1) ⇒ p or

(P0 ⇒ p) ∧ (P1 ⇒ p) ≡ P0 ∨ P1 ⇒ p

which is clear on sight (proposition algebra, case analysis) and boosts intuition.

Check for the empty domain: 1 ≡ 0 ⇒ p, which is correct.

d. Another example of spot-checking the empty domain: the similar conjecture

∀ (x :D P . P x ∧ p) ≡ ∀ (x :D P . P x) ∧ p Wrong!

holds for pairs (exercise) but in general only only insofar as D P 6= ∅.
If D P = ∅, we obtain 1 ≡ 1 ∧ p, making p = 0 a counterexample.

Note: all rules derived in our formalism are “robust” w.r.t. the empty domain.
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8.1.5 Two final remarks

a. An important style issue

By now, we have factored out derivations which themselves were not always
equational (separating ≡ in ⇒ and ⇐, the “mutual implication” rule).

The resulting calculation rules are equational, and are mostly used as such
in applications. Separating ≡ in ⇒ and ⇐ is needed rarely, and poor style
otherwise, except when the two directions have interesting distinct side results.

b. Omitting universal quantification

In applications, generalization is often used (implicitly) to avoid carrying around
outermost universal quantification and bindings in every calculation step.

Implicit quantification by generalization must be used with care: leaving uni-
versal quantifiers implicit is a major source of errors in inductive proofs.
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Next section

0. Introduction: motivation and approach
1. Simple expressions and equational calculation
2. Equational calculation: application examples
3. Point-wise and point-free styles of expression and calculation
4. Point-wise and point-free styles: application examples
5. Binary algebra and proposition calculus: calculation rules
6. Binary algebra and proposition calculus: application examples
7. Sets and functions: equality and calculation
8. Functional Predicate Calculus: calculating with quantifiers

9. Functional Predicate Calculus: application examples

10. Well-foundedness, induction principles and application examples
11. Funmath: unifying continuous and discrete mathematics
12. Generic Functionals: definitions
13. Various examples in continuous and discrete systems modelling
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9 Functional Predicate Calculus: application examples

9.0 Endogenous application examples

9.0.0 The empty domain issue: “Andrew’s challenge” revisited

9.0.1 The function range, with an application to set comprehension

9.1 Exogenous application examples

9.1.0 Limits in mathematical analysis

9.1.1 Adherence as a predicate transformer

9.1.2 Calculating with properties and operators regarding orderings

9.1.3 A case study: when is a greatest lower bound a least element?
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9.0 Endogenous application examples

9.0.0 The empty domain issue: “Andrew’s challenge” revisited

a. Introduction: terminology and problem statement

• Informal language with quantifiers: “the variable ‘ranges’ over ...” (range?).
Here: not part of the quantifier but exactly the domain of the argument.
Example: in ∀P it is D P . The principle is called “Domain modulation”.

• Problem: other quantifier calculi handle the empty domain poorly

• Example: Andrew’s challenge (name given by Gries) is proving

((∃x∀y : p.x ≡ p.y) ≡ ((∃x : q.x) ≡ ((∀y : p.y))) ≡
((∃x∀y : q.x ≡ q.y) ≡ ((∃x : p.x) ≡ ((∀y : q.y)))

(notation from source) or, by (A≡) and (C≡), proving
Ap ≡ Aq where Ap ≡ (∃x∀y : p.x ≡ p.y) ≡ (∃x : p.x) ≡ (∀y : p.y)

Sufficient: prove Ap for arbitrary p.
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b. Existing proofs for Ap, i.e.,

∃x∀y : p.x ≡ p.y) ≡ (∃x : p.x) ≡ (∀y : p.y)

• Gries’s proof: easily found on the web

• Dijkstra EWD 1247, “Beware of the empty range”

Most instructive, but needs case analysis for empty/nonempty domain

• R. Joshi, K. S. Namjoshi in EWD 1249, “Andrew’s Challenge once more”

Avoids case analysis by not using rules that differ for the empty domain

Remark: the latter proofs use ad hoc abbreviations

[t] ≡ 〈∀x :: t.x〉 and 〈t〉 ≡ 〈∃x :: t.x〉

Obviated in our formalism by point-free style, since ∀ and ∃ are functions and
P = x :D P . P x, hence ∀P ≡ ∀x :D P . P x and ∃P ≡ ∃x :D P . P x.
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c. Our variant of the EWD 1249 proof: letting X :=D P ,

∃x :X . ∀ y :X . P x ≡ P y

≡〈Mutual implic.〉 ∃x :X . ∀ y : X . (P x ⇒ P y) ∧ (P y ⇒ P x)
≡〈Distribut. ∀/∧〉 ∃x :X . ∀ (y :X . P x ⇒ P y) ∧ ∀ (y :X . P y ⇒ P x)
≡〈Lft distr. ⇒/∀〉 ∃x :X . (P x ⇒ ∀P ) ∧ ∀ (y :X . P y ⇒ P x)

≡〈Rght dst. ⇒/∃〉 ∃x :X . (P x ⇒ ∀P ) ∧ (∃P ⇒ P x)
≡〈Property below〉 ∃x :X . (P x ∧ ∀P ) ∨ ¬ (∃P ∨ P x)

≡〈Distribut. ∃/∨〉 ∃ (x :X . P x ∧ ∀P ) ∨ ∃ (x :X .¬ (∃P ∨ P x))
≡〈Dual ∀/∃ (20)〉 ∃ (x :X . P x ∧ ∀P ) ∨ ¬ (∀x :X . ∃P ∨ P x)

≡〈Distribut. ∨/∀〉 ∃ (x :X . P x ∧ ∀P ) ∨ ¬ (∃P ∨ ∀P )
≡〈Distribut. ∧/∃〉 (∃P ∧ ∀P ) ∨ ¬ (∃P ∨ ∀P )

≡〈Property below〉 (∃P ⇒ ∀P ) ∧ (∀P ⇒ ∃P )
≡〈Mutual implic.〉 ∃P ≡ ∀P

Referenced property: (p ⇒ q) ∧ (r ⇒ p) ≡ (p ∧ q) ∨ ¬ (r ∨ p) .

Proof: on sight, using Shannon.
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d. Our proof from lemmata for another, more important property

• Our proof for ∃P ≡ ∀P ≡ ∃x :D P . ∀ y :D P . P x ≡ P y is

∃P ≡ ∀P ≡ 〈Mut. implic.〉 (∀P ⇒ ∃P ) ∧ (∃P ⇒ ∀P )
≡ 〈Lemma a, b〉 D P 6= ∅ ∧ con P
≡ 〈Lemma c〉 ∃x :D P . ∀ y :D P . P x ≡ P y

Here are the lemmata

Lemma a: ∀P ⇒ ∃P ≡ D P 6= ∅
Lemma b: ∃P ⇒ ∀P ≡ con P
Lemma c: D f 6= ∅ ∧ con f ≡ ∃x :D f . ∀ y :D f . f x = f y

• Context: con is defined by con f ≡ ∀x :D f . ∀ y :D f . f x = f y

We wanted to prove the Constant Function Theorem

Theorem: con f ≡ D f = ∅ ∨ ∃x :D f . f = D f • f x.

This is a consequence of Lemma c (exercise).
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• Proofs of the lemmata

Lemma a: ∀P ⇒ ∃P ≡ D P 6= ∅ Proof:

∀P ⇒ ∃P ≡ 〈From ⇒ to ∨〉 ¬∀P ∨ ∃P

≡ 〈Duality (20)〉 ∃ (¬P ) ∨ ∃P
≡ 〈Distrib. ∃/∨〉 ∃ (¬P ∨̂ P )

≡ 〈Excl. middle〉 ∃ (D P • 1)
≡ 〈Const. pred.〉 D P 6= ∅

Lemma b: ∃P ⇒ ∀P ≡ con P Proof:

∃P ⇒ ∀P
≡ 〈Rght-dst. ⇒/∃〉 ∀x :D P . P x ⇒ ∀P

≡ 〈Left-dstr. ⇒/∀〉 ∀x :D P . ∀ y :D P . P x ⇒ P y
≡ 〈Remark below〉 ∀x :D P . ∀ y :D P . P x ≡ P y

≡ 〈Definition con〉 conP

Remark: uneventful proof steps not written out are: duplicate by idem-
potency of ∧; rename dummies x, y := y, x and swap ∀’s in one copy;
combine copies by (D ∀/∧), and obtain P x ≡ P y by mutual implication.
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Lemma c: D f 6= ∅ ∧ con f ≡ ∃x :D f . ∀ y :D f . f x = f y Proof:

∃x :D f . ∀ y :D f . f x = f y

≡ 〈Idempot. ∧〉 ∃x :D f . ∀ (y :D f . f x = f y) ∧ ∀ (z :D f . f x = f z)
≡ 〈Distrib. ∧/∀〉 ∃x :D f . ∀ (y :D f . f x = f y ∧ ∀ z :D f . f x = f z)
≡ 〈Distrib. ∧/∀〉 ∃x :D f . ∀ y :D f . ∀ z :D f . f x = f y ∧ f x = f z

⇒ 〈Transitiv. =〉 ∃x :D f . ∀ y :D f . ∀ z :D f . f y = f z
≡ 〈Definit. con〉 ∃x :D f . con f

≡ 〈Const. pred.〉 D f 6= ∅ ∧ con f

D f 6= ∅ ∧ con f
≡ 〈Definit. con〉 D f 6= ∅ ∧ ∀x :D f . ∀ y :D f . f x = f y

⇒ 〈Weakening a〉 ∃x :D f . ∀ y :D f . f x = f y

The weakening of lemma a is D P 6= ∅ ⇒ ∀P ⇒ ∃P ,
hence D P 6= ∅ ∧ ∀P ⇒ ∃P .
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9.0.1 The function range, with an application to set comprehension

The function range

a. Axiomatic definition of the function range operator R

Axiom, Function Range: e ∈ R f ≡ ∃ (x :D f . f x = e) (50)

Equivalently, in point-free style: e ∈ R f ≡ ∃ (f
↼
= e).

Examples: proving ∀x :D f . f x ∈ R f and R f ⊆ Y ≡ ∀x :D f . f x ∈ Y ,
given that ⊆ is defined by Z ⊆ Y ≡ ∀ z :Z . z ∈ Y (exercises).

Consequence for the function arrow: f ∈ X →Y ≡ D f = X ∧R f ⊆ Y .

b. A very useful theorem (point-free variant of “change of quantified variables”).

Theorem, Composition rule

for ∀: ∀P ⇒ ∀ (P ◦ f) and D P ⊆ R f ⇒ ∀ (P ◦ f) ⇒ ∀P (51)
for ∃: ∃ (P ◦ f) ⇒ ∃P and D P ⊆ R f ⇒ ∃P ⇒ ∃ (P ◦ f) (52)

Proof: We prove the part for ∀, the rest follows by duality.
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Proof for (i) ∀P ⇒ ∀ (P ◦ f) and (ii) D P ⊆ R f ⇒ (∀ (P ◦ f) ≡ ∀P )

We preserve equivalence as long as possible, factoring out a common part.

∀ (P ◦ f) ≡ 〈Definition ◦〉 ∀x :D f ∧. f x ∈ D P . P (f x)

≡ 〈Trading sub ∀〉 ∀x :D f . f x ∈ D P ⇒ P (f x)
≡ 〈One-point rule〉 ∀x :D f . ∀ y :D P . y = f x ⇒ P y

≡ 〈Swap under ∀〉 ∀ y :D P . ∀x :D f . y = f x ⇒ P y
≡ 〈R-dstr. ⇒/∃〉 ∀ y :D P . ∃ (x :D f . y = f x) ⇒ P y

≡ 〈Definition R〉 ∀ y :D P . y ∈ R f ⇒ P y

Hence ∀ (P ◦ f) ≡ ∀ y :D P . y ∈ R f ⇒ P y.

Proof for part (i)

∀ (P ◦ f) ≡ 〈Common part〉 ∀ y :D P . y ∈ R f ⇒ P y

⇐ 〈p ⇒ q ⇒ p〉 ∀ y :D P . P y

Proof for part (ii): assume D P ⊆ R f , that is: ∀ y :D P . y ∈ R f .

∀ (P ◦ f) ≡ 〈Common part〉 ∀ y :D P . y ∈ R f ⇒ P y
≡ 〈Assumption〉 ∀ y :D P . P y
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c. Remarks on the point-wise form of the composition theorem (51)

• D P ⊆ R f ⇒ (∀ (P ◦ f) ≡ ∀P ) can be written

∀ (y : Y . P y) ≡ ∀x :X . P (f x)

provided Y ⊆ D P and X ⊆ D f and Y = R (f eX)

• Another form is the “dummy change” rule

∀ (y : Y . p) ≡ ∀ (x :X . p[yf x)

provided Y ⊆ Dy
p and X ⊆ D f and Y = R (f eX).
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Set comprehension with proper bindings and calculation rules

a. Convention: we introduce {—} as an operator fully interchangeable with R .

Immediate consequences:

• Formalizes familiar expressions with their expected meaning but without
their defects (ambiguity, no formal calculation rules).

Examples: {2, 3, 5} and Even = {m : Z . 2 · m}
Notes: tuples are functions, so {e, e′, e′′} denotes a set by its elements.
Also, k ∈ {m : Z . 2 · m} ≡ ∃m : Z . k = 2 · m by the range axiom (50).

• The only “custom” to be discarded is using {} for singletons.

No loss: preservation would violate Leibniz’s principle, e.g.,
f = a, b ⇒ {f} = {a, b}.

Note: f = a, b ⇒ {f} = {a, b} is fully consistent in our formalism. Yet:

• To avoid baffling the uninitiated: write R f , not {f}, if f is an operator.

For singleton sets, always use ι, as in ι 3.
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b. Convention (to cover common forms, without flaws) variants for abstraction

e | x :X stands for x :X . e

x :X | p stands for x :X ∧. p . x

Immediate consequences

• Formalizes expressions like {2 · m | m : Z} and {m : N | m < n}.
• Now binding is always trouble-free, even in examples such as (exercise)

{n : Z | n ∈ Even} = {n :Even | n ∈ Z}
{n ∈ Z | n :Even} 6= {n ∈ Even | n : Z}

• All calculation rules follow from predicate calculus by the axiom for R.

• A frequent pattern is captured by the following property

Theorem, Set comprehension: e ∈ {x :X | p} ≡ e ∈ X ∧ p[xe (53)

Proof: e ∈ {x :X ∧. p . x} ≡ 〈Function range (50)〉 ∃x :X ∧. p . x = e
≡〈Trading, one-pt rule〉 e ∈ X ∧ p[xe
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c. A few other calculation examples.

Seeing {n : Z | n/2 ∈ Z} or {n : Z | ∃m : Z . 2 · m = n} or {2 · m | m : Z}
as equivalent expressions for the set of even numbers may seem “obvious”.
However, in a formal setting a proof is required. It is also quite illustrative.

k ∈ {n : Z | n/2 ∈ Z}
≡ 〈Comprehension (53)〉 k ∈ Z ∧ k/2 ∈ Z
≡ 〈One-point rule for ∃〉 k ∈ Z ∧ ∃m : Z . m = k/2
≡ 〈m = k/2 ≡ 2 · m = k〉 k ∈ Z ∧ ∃m : Z . 2 · m = k (*)
≡ 〈Comprehension (53)〉 k ∈ {n : Z | ∃m : Z . n = 2 · m}

k ∈ {n : Z | n/2 ∈ Z}
≡ 〈From (*), distr. ∧/∃〉 ∃m : Z . 2 · m = k ∧ k ∈ Z
≡ 〈m ∈ Z ⇒ 2 · m ∈ Z〉 ∃m : Z . 2 · m = k

≡ 〈Function range (50)〉 k ∈ {m : Z . 2 · m}

Note that m = k/2 ≡ k = 2 · m holds in the context k ∈ Z ∧ m ∈ Z.
Technicality: in our calculus, all expressions are “guarded”.
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A similar but subtler example (also used later): the correspondence between

• the set {n− | n : N 6=0} and

• the predicate P : R→B with P x ≡ x 6= 0 ∧ x− ∈ N

Assume —− : R 6=0 →R 6=0 and property x ∈ R 6=0 ⇒ (x−)− = x

for the multiplicative inverse.

Calculation:

x ∈ {n− | n : N 6=0}
≡ 〈Function range (50)〉 ∃n : N 6=0 . x = n−

≡ 〈n ∈ R 6=0 ⇒ n− ∈ R 6=0〉 ∃n : N 6=0 . x = n− ∧ n− ∈ R 6=0

≡ 〈e = e′ ∧ p[ve ≡ e = e′ ∧ p[ve′〉 ∃n : N 6=0 . x = n− ∧ x ∈ R 6=0

≡ 〈Leibniz (⇔), stated prop.〉 ∃n : N 6=0 . x− = n ∧ x ∈ R 6=0

≡ 〈One-point rule for ∃〉 x ∈ R 6=0 ∧ x− ∈ N 6=0

≡ 〈a ∈ N 6=0 ≡ a ∈ N ∧ a 6= 0〉 x ∈ R 6=0 ∧ x− ∈ N ∧ x− 6= 0
≡ 〈x ∈ R 6=0 ⇒ x− 6= 0〉 x ∈ R ∧ x 6= 0 ∧ x− ∈ N
≡ 〈Definition of P 〉 x ∈ D P ∧ P x
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9.1 Exogenous application examples

9.1.0 Limits in mathematical analysis

“The notation of elementary school arithmetic, which nowadays everyone

takes for granted, took centuries to develop. There was an intermediate
stage called syncopation, using abbreviations for the words for addition,

square, root, etc. For example Rafael Bombelli (c. 1560) would write

R. c. L. 2 p. di m. 11 L for our 3
√

2 + 11i.

Many professional mathematicians to this day use the quantifiers (∀,∃)
in a similar fashion,

∃δ > 0 s.t. |f(x) − f(x0)| < ε if |x − x0| < δ, for all ε > 0,

in spite of the efforts of [Frege, Peano, Russell] [. . .]. Even now, mathe-
matics students are expected to learn complicated (ε-δ)-proofs in analy-

sis with no help in understanding the logical structure of the arguments.
Examiners fully deserve the garbage that they get in return.”

(P. Taylor, “Practical Foundations of Mathematics”)
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a. Preliminary concept: adherence [Lang], here presented formally.

Definition, Adherence (as a set transformer):

def Ad :P R→P R with v ∈ Ad S ≡ ∀ ε : R>0 . ∃x :S . |x − v| < ε (54)

b. Limits: a typical informal definition

Let S be a set of numbers and a be adherent to S. Let f be a function
defined on S. We shall say that the limit of f(x) as x approaches a

exists, if there exists a number L having the following property. Given ε,
there exists a number δ > 0 such that for all x ∈ S satisfying |x − a| < δ

we have |f(x) − L| < ε. If that is the case, we write

lim
x → a
x ∈ S

f(x) = L.

Serge Lang, Undergraduate Analysis
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c. Limits: a typical informal proof

Proposition 2.1. Let S be a set of numbers, and assume that a is
adherent to S. Let S ′ be a subset of S, and assume that a is also adherent

to S ′. Let f be a function defined on S.
If lim

x → a
x ∈ S

f(x) exists, then lim
x → a
x ∈ S′

f(x) also exists, and those limits are equal.

In particular, if the limit exists, it is unique.

Proof. Let L be the first limit. Given ε, there exists δ such that
whenever x ∈ S and |x− a| < δ we have |f(x)−L| < ε/2. This applies a

fortiori when x ∈ S ′, so that L is also the limit for x ∈ S ′. If M is also
a limit, there exists δ1 such that whenever x ∈ S and |x − a| < δ1 then
|f(x) − M | < ε/2. If |x − a| < min(δ, δ1) and x ∈ S, then

|L − M | ≤ |L − f(x)| + |f(x)− M | <
ε

2
+

ε

2
= ε.

Hence |L−M | is less than any ε, and it follows that |L−M | = 0, whence

L = M .”
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d. Critique of the informal treatment

• Obvious critique: see quotation from Taylor: obscures proof structure

• Additionally: the poor custom, often found in many mathematics texts,
of writing an equality when the underlying concept is actually a relation.

Example here: writing lim
x → a
x ∈ S

f(x) = L before uniqueness is proven.

Danger: confuses the argument and is error-prone.

E.g., it suggests fallacious uniqueness proofs like:

Let L and M satisfy lim
x → a
x ∈ S

f(x) = L and lim
x → a
x ∈ S

f(x) = M ,

then L = M by transitivity. Wrong!

Such flaws are avoided simply by a proper relational formulation, which natu-
rally arises in a formal setting.
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e. A proper formalization

Define a relation islimf (parametrized by any function f : R→/ R)
between R and the set of points adherent to D f , that is:

islimf ∈ R×Ad (D f)→B and, for the mapping,
L islimf a
≡ ∀ ε : R>0 . ∃ δ : R>0 . ∀x :D f . |x − a| < δ ⇒ |f x − L| < ε (55)

Affix convention chosen s.t. L islimf a is read “L is a limit for f in a”.

Domain modulation (via D f) subsumes S in the conventional formulation.

f. “Proposition 2.1”, formalized

Theorem: for any function f : R→/ R, any subset S of D f and any
a adherent to S,
(i) ∃ (L : R . L islimf a) ⇒ ∃ (L : R . L islimf eS a),
(ii) ∀L : R . ∀M : R . L islimf a ∧ M islimf eS a ⇒ L = M .
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Remark: one must first prove a ∈ Ad (D f) and a ∈ Ad (D f eS) to ensure
that the image definition of islim holds for all expressions of interest.

This proof, and the proof of (i), are routine applications of monotonicity.
As a hint for (i), first prove ∀L : R . L islimf a ⇒ L islimf eS a.

The calculational proof of (ii) is very interesting: (a) clear explicit structure,
(b) role of adherence, not even mentioned in the conventional proof, emerges.

Here is the proof: for arbitrary a in Ad S, L and M in R, and using the
abbreviation b R δ ≡ ∀x :S . |x − a| < δ ⇒ |f x − b| < ε (given a and ε),

L islimf a ∧ M islimf eS a
⇒ 〈Hint given for (i)〉 L islimf eS a ∧ M islimf eS a
≡ 〈(55), D (f eS) = S〉 ∀ (ε : R>0 . ∃ δ : R>0 . L R δ) ∧ ∀ (ε : R>0 . ∃ δ : R>0 . M R δ)
≡ 〈Distributivity ∀/∧〉 ∀ ε : R>0 . ∃ (δ : R>0 . L R δ) ∧ ∃ (δ : R>0 . M R δ)
≡ 〈Rename, dstr. ∧/∃〉 ∀ ε : R>0 . ∃ δ : R>0 . ∃ δ′ : R>0 . L R δ ∧ M R δ′

⇒ 〈Closeness lemma〉 ∀ ε : R>0 . ∃ δ : R>0 . ∃ δ′ : R>0 . a ∈ Ad S ⇒ |L − M | < 2 · ε
≡ 〈Hypoth. a ∈ Ad S〉 ∀ ε : R>0 . ∃ δ : R>0 . ∃ δ′ : R>0 . |L − M | < 2 · ε
≡ 〈Const. pred. sub ∃〉 ∀ ε : R>0 . |L − M | < 2 · ε
≡ 〈Vanishing lemma〉 L − M = 0
≡ 〈Leibniz, group +〉 L = M
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For the sake of completeness, here are the auxiliary lemmata.

Closeness lemma: L R δ ∧ M R δ′ ⇒ a ∈ Ad S ⇒ |L − M | < 2 · ε
Proof:

L R δ ∧ M R δ′

≡ 〈Expanding b R δ〉 ∀ (x : S . |x − a| < δ ⇒ |f x − L| < ε) ∧
∀ (x : S . |x − a| < δ′ ⇒ |f x − M | < ε)

≡ 〈Distributiv. ∀/∧〉 ∀ x : S . (|x − a| < δ ⇒ |f x − L| < ε)
∧ (|x − a| < δ′ ⇒ |f x − M | < ε)

⇒ 〈Monotonic. ∧/⇒〉 ∀ x : S . |x − a| < δ ∧ |x − a| < δ′

⇒ |f x − L| < ε ∧ |f x − M | < ε
≡ 〈Def. ∧, |−x| = |x|〉 ∀ x : S . |x − a| < δ ∧ δ′ ⇒ |L − f x| < ε ∧ |f x − M | < ε
⇒ 〈Monotonic. +/<〉 ∀ x : S . |x − a| < δ ∧ δ′ ⇒ |L − f x| + |f x − M | < 2 · ε
⇒ 〈Triangle inequal.〉 ∀ x : S . |x − a| < δ ∧ δ′ ⇒ |L − M | < 2 · ε
≡ 〈R-distribut. ⇒/∃〉 ∃ (x : S . |x − a| < δ ∧ δ′) ⇒ |L − M | < 2 · ε
⇒ 〈Def. Ad, δ ∧ δ′ > 0〉 a ∈ Ad S ⇒ |L − M | < 2 · ε
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The vanishing lemma formalizes and generalizes the intuitive argument “Hence
|L − M | is less than any ε, and it follows that |L − M | = 0”.

Vanishing lemma: ∀ c : R>0 . ∀x : R . ∀ (ε : R>0 . |x| < c · ε) ⇒ x = 0

Proof: for any c : R>0 and x : R,

∀ ε : R>0 . |x| < c · ε
≡ 〈Trading under ∀〉 ∀ ε : R . ε > 0 ⇒ |x| < c · ε
⇒ 〈Instant. ε := |x|/c〉 |x|/c ∈ R ⇒ |x|/c > 0 ⇒ |x| < c · |x|/c
≡ 〈Assump., arithm.〉 |x| > 0 ⇒ |x| < |x|
≡ 〈y = y ⇒ ¬ (y < y)〉 ¬ (|x| > 0)
≡ 〈¬ (|x| > 0) ≡ x = 0〉 x = 0

Note how the calculational style exposes hidden facts, mostly coinciding with
the axioms of a norm [Lang]: for real a and vectors x, y (numbers for 1D)

(i) 0 ≤ |x| and |x| = 0 ≡ x = 0,

(ii) |a · x| = |a| · |x|,
(iii) |x + y| ≤ |x| + |y|.
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g. Wrapping up the limit example

• The limit operator lim: for any argument f : R→/ R, lim f is defined by

Definition: lim f ∈ {a : Ad (D f) | ∃ b : R . b islimf a}→R
∀ a :D (lim f) . (limf a) islimf a (56)

• Well-definedness follows from function comprehension and uniqueness.

• Observations

– lim is a functional, not an ad hoc abstractor

– It supports point-free expressions like lim f a.

– Domain modulation covers left, right and two-sided limits, e.g., given

def f : R→R with f x = (x ≥ 0) ? 0 x + 1

we have lim f<0 0 = 1 and lim f≥0 0 = 0, whereas 0 6∈ D (limf≤0).

– Conventional notations by macros from lim, e.g., for real expression e,
lim
x→ a

e stands for lim (x : R . e) a and

lim
x→

<
a
e stands for lim (x :R<a . e) a
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9.1.1 Adherence as a predicate transformer

a. Purpose: show analogy with formulations and reasoning in computer science.

Other advantage: predicate expressions more compact than set expressions

Principle: P X is isomorphic to X →B.

b. Alternative definition of adherence

Definition, Adherence (as a predicate transformer):

def ad : (R→B)→ (R→B) with
ad P v ≡ ∀ ε : R>0 . ∃x : RP . |x − v| < ε (57)

c. Illustration: usual concepts of open and closed sets as predicates on predicates.

def open : (R→B)→B with
open P ≡ ∀ v : RP . ∃ ε : R>0 . ∀x : R . |x − v| < ε ⇒ P x

def closed : (R→B)→B with closedP ≡ open (¬P )

give rise to interesting theorems exposing the relationship with adherence.
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• Lemma: ∀P : R→B . ∀ v : R . P v ⇒ ad P v

Proof: easy.

• Theorem, Closure property: closedP ≡ ad P = P

Proof:

closed P
≡ 〈Definit. closed〉 ∀ v : R¬P . ∃ ε : R>0 . ∀ x : R . |x − v| < ε ⇒ ¬P x
≡ 〈Trading sub ∀〉 ∀ v : R .¬P v ⇒ ∃ ε : R>0 . ∀ x : R . |x − v| < ε ⇒ ¬P x
≡ 〈Contrapositive〉 ∀ v : R .¬∃ (ε : R>0 . ∀ x : R . P x ⇒ ¬ (|x − v| < ε)) ⇒ P v
≡ 〈Duality, twice〉 ∀ v : R . ∀ (ε : R>0 . ∃ x : R . P x ∧ |x − v| < ε) ⇒ P v
≡ 〈Definition ad〉 ∀ v : R . adP v ⇒ P v
≡ 〈P v ⇒ adP v〉 ∀ v : R . adP v ≡ P v
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• Theorem, Idempotency of adherence: ad ◦ ad = ad

Proof: by function equality and the definition of ◦,
proving ad (adP ) v ≡ ad P v for arbitrary v : R suffices.

Instantiating P v ⇒ ad P v yields ad P v ⇒ ad (adP ) v.

For the converse,

ad (adP ) v
≡ 〈Definition ad〉 ∀ ε : R>0 . ∃ x : Rad P . |x − v| < ε
≡ 〈Trading sub ∃〉 ∀ ε : R>0 . ∃ x : R . adP x ∧ |x − v| < ε
≡ 〈Definition ad〉 ∀ ε : R>0 . ∃ x : R . ∀ (ε :R . ∃ z : RP . |z − x| < ε) ∧ |x − v| < ε
⇒ 〈Instantiation〉 ∀ ε : R>0 . ∃ x : R . ∃ (z : RP . |z − x| < ε) ∧ |x − v| < ε
≡ 〈Distrib. ∧/∃〉 ∀ ε : R>0 . ∃ x : R . ∃ z : RP . |z − x| < ε ∧ |x − v| < ε
≡ 〈Monot. +/<〉 ∀ ε : R>0 . ∃ x : R . ∃ z : RP . |z − x| + |x − v| < 2 · ε
⇒ 〈Triangle ineq.〉 ∀ ε : R>0 . ∃ x : R . ∃ z : RP . |z − v| < 2 · ε
≡ 〈Dummy swap〉 ∀ ε : R>0 . ∃ z : RP . ∃ x : R . |z − v| < 2 · ε
≡ 〈Const. pred.〉 ∀ ε : R>0 . ∃ z : RP . |z − v| < 2 · ε
≡ 〈Dummy chng.〉 ∀ ε : R>0 . ∃ z : RP . |z − v| < ε
≡ 〈Definition ad〉 adP v.
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9.1.2 Calculating with properties and operators regarding orderings

a. Conventions and definitions predX := X →B and relX := X2 →B
Potential properties over relX , formalizing each by a predicate P : relX →B.

Characteristic P Image, i.e., P R ≡ formula below

reflexive Refl ∀x : X . x R x
irreflexive Irfl ∀x : X .¬ (x Rx)
symmetric Symm ∀ (x, y) :X2 . x R y ⇒ y R x

asymmetric Asym ∀ (x, y) :X2 . x R y ⇒ ¬ (y R x)
antisymmetric Ants ∀ (x, y) :X2 . x R y ⇒ y R x ⇒ x = y

transitive Trns ∀ (x, y, z) :X3 . x R y ⇒ y R z ⇒ x R z
total Totl ∀ (x, y) :X2 . x R y ∨ y R x

equivalence EQ Trns R ∧ Refl R ∧ SymmR

preorder PR Trns R ∧ Refl R
partial order PO PR R ∧ Ants R

total order TO PO R ∧ TotlR
quasi order QO Trns R ∧ IrflR (also called strict p.o.)
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b. Two formulations for extremal elements (note: we write ≺ rather than R)

• Chracterization by set-oriented formulation of type relX →X ×P X →B
Example: ismin— with x ismin≺ S ≡ x ∈ S ∧ ∀ y : X . y ≺ x ⇒ y 6∈ S

• Chracterization by predicate transformers of type relX → predX → predX

Name Symbol Type: relX → predX → predX . Image: below

Lower bound lb lb≺ P x ≡ ∀ y : X . P y ⇒ x ≺ y
Least lst lst≺ P x ≡ P x ∧ lbP x

Minimal min min≺ P x ≡ P x ∧ ∀ y : X . y ≺ x ⇒ ¬ (P y)

Upper bound ub ub≺ P x ≡ ∀ y : X . P y ⇒ y ≺ x

Greatest gst gst≺ P x ≡ P x ∧ ub P x
Maximal max max≺ P x ≡ P x ∧ ∀ y : X . x ≺ y ⇒ ¬ (P y)

Least ub lub lub≺ = lst≺ ◦ ub≺
Greatest lb glb glb≺ = gst≺ ◦ lb≺

This is the preferred formulation, used henceforth.
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c. Familiarization properties (avoiding wrong connotations)

No element can be both minimal and least:

¬ (min≺ P x ∧ lst≺ P x)

Reflexivity precludes minimal elements:

Refl (≺) ⇒ ¬ (min≺ P x)

However, it is easy to show

min≺ = lst≺

given the relation transformer

— : relX → relX with x ≺ y ≡ ¬ (y ≺ x)

Example: if X is the set N of natural numbers with ≤, then min< = lst≤ .
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d. Calculational reasoning about extremal elements

Definition, monotonicity:

A predicate P : predX is monotonic w.r.t. a relation —≺— : relX iff
∀ (x, y) :X2 . x ≺ y ⇒ P x ⇒ P y (58)

Theorem, properties of extremal elements:

For any —≺— : relX and P : predX ,
(a) If ≺ is reflexive, then ∀ (y : X . x ≺ y ⇒ P y) ⇒ P x
(b) If ≺ is transitive, then ub≺ P is monotonic w.r.t. ≺
(c) If P is monotonic w.r.t. ≺, then

lst≺ P x ≡ P x ∧ ∀ (y :X . P y ≡ x ≺ y)
(d) If ≺ is reflexive and transitive, then

lub≺ P x ≡ ∀ (y : X . ub P y ≡ x ≺ y)
(e) If ≺ is antisymmetric, then

lst≺ P x ∧ lst≺ P y ⇒ x = y (uniqueness). (59)

Replacing lb by ub and so on yields complementary theorems (straightforward).
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Proof (or outline). For (a), instantiate the antecedent with y := x.

For (b), assume ≺ transitive and prove x ≺ y ⇒ ub≺ P x ⇒ ub≺ P y shunted.

ub≺ P x ⇒ 〈p ⇒ q ⇒ p〉 x ≺ y ⇒ ub≺ P x
≡ 〈Definition ub〉 x ≺ y ⇒ ∀ z : X . P z ⇒ z ≺ x ∧ 1

≡ 〈p ⇒ e[v1= e[vp〉 x ≺ y ⇒ ∀ z : X . P z ⇒ z ≺ x ∧ x ≺ y

⇒ 〈Transitiv. ≺〉 x ≺ y ⇒ ∀ z : X . P z ⇒ z ≺ y

≡ 〈Definition ub〉 x ≺ y ⇒ ub≺ P y

For (c), assume P monotonic and calculate lst≺ P x

lst≺ P x
≡ 〈Defin. lst, lb〉 P x ∧ ∀ y : X . P y ⇒ x ≺ y
≡ 〈Modus Pon.〉 P x ∧ (P x ⇒ ∀ y : X . P y ⇒ x ≺ y)
≡ 〈L-dstr. ⇒/∀〉 P x ∧ ∀ y : X . P x ⇒ P y ⇒ x ≺ y
≡ 〈Monoton. P 〉 P x ∧ ∀ y : X . (P x ⇒ P y ⇒ x ≺ y) ∧ (P x ⇒ x ≺ y ⇒ P y)
≡ 〈L-dstr. ⇒/∧〉 P x ∧ ∀ y : X . P x ⇒ (P y ⇒ x ≺ y) ∧ (x ≺ y ⇒ P y)
≡ 〈Mut. implic.〉 P x ∧ ∀ y : X . P x ⇒ (P y ≡ x ≺ y)
≡ 〈L-dstr. ⇒/∀〉 P x ∧ (P x ⇒ ∀ y : X . P y ≡ x ≺ y)
≡ 〈Modus Pon.〉 P x ∧ ∀ (y : X . P y ≡ x ≺ y)
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Proofs (continued)

(d) is a direct consequence from the preceding parts.

(e) is proven in a simple but very typical way.

lst≺ P x ∧ lst≺ P y
≡ 〈Defin. lst, lb〉 P x ∧ ∀ (y :X . P y ⇒ x ≺ y) ∧ P y ∧ ∀ (x :X . P x ⇒ y ≺ x)
⇒ 〈Instantiation〉 P x ∧ (P y ⇒ x ≺ y) ∧ P y ∧ (P x ⇒ y ≺ x)
≡ 〈Rearranging〉 P x ∧ (P x ⇒ y ≺ x) ∧ P y ∧ (P y ⇒ x ≺ y)
≡ 〈Modus Pon.〉 P x ∧ y ≺ x ∧ P y ∧ x ≺ y
⇒ 〈Weakening〉 y ≺ x ∧ x ≺ y
⇒ 〈Antisymm.〉 x = y

Remark: as we did for limits, we use the predicate transformers to define functionals
(and ) mapping X-valued functions to the glb (and lub) of their range, for

cases where existence and uniqueness are satisfied. The predicate used is then the
range predicate R— : (Y →X)→X →B is defined by Rf x ≡ x ∈ R f .

Infix operators like are defined by variadic application: x y = (x, y).

Observe how predicate calculus enhances similarity with the proofs about analysis
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9.1.3 A case study: when is a greatest lower bound a least element?

a. Purpose: show how the formal rules help where semantic intuition lacks.

General orderings are rather abstract, examples are difficult to construct, and
may also have hidden properties not covered by the assumptions.

Original motivation: in a minitheory for recursion.

• The greatest lower bound operator ∧| , defined as the particularization of
to R′ := R ∪ {−∞, +∞} with ordering ≤, is important in analysis.

• The recursion theory required least elements of nonempty subsets of N.
For these, it appears “intuitively obvious” that both concepts coincide.

-
0 elements →

↓ least elementt t t t
d d d d d d ← lower bounds N

Is this really obvious? The diagram gives no clue as to which axioms
of N,≤ are involved, and so is useless for generalization. Formal study
exposes the properties of natural numbers used and show generalizations.
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b. The linear diagram suggests totality is the key.
This is misleading: R is totally ordered, yet

P : R→B with ∀x :D P . P x ≡ x 6= 0 ∧ x− ∈ N

has g.l.b. 0 but no least element. To show this, we prove lb≤ P x ⇒ x ≤ 0 by
contrapositivity, and also prove the converse. For any x : R,

0 < x
≡ 〈Type −; by def.: a ≤ dae〉 0 < x− < (dx−e + 1) ∧ (dx−e + 1) ∈ N
≡ 〈0 < a < b ≡ 0 < b− < a−〉 0 < (dx−e + 1)− < x ∧ (dx−e + 1) ∈ N
⇒ 〈∃-intr.: y := (dx−e + 1)−〉 ∃ y : R . y 6= 0 ∧ y− ∈ N ∧ y < x

≡ 〈Dual, ¬ (y < x) ≡ x ≤ y〉 ¬ (∀ y : R . y 6= 0 ∧ y− ∈ N ⇒ x ≤ y
≡ 〈Definitions of P and lb〉 ¬ (lb≤ P x)

x ≤ 0
≡ 〈∀ y : R . P y ⇒ 0 < y〉 ∀ y : R . P y ⇒ 0 < y ∧ x ≤ 0

⇒ 〈Trans. <, weaken conseq.〉 ∀ y : R . P y ⇒ x ≤ y

Hence lb≤ P x ≡ x ≤ 0. Using this to prove ¬ (lst≤ P x) is straightforward.
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c. Certain theorems needed for N with ≤ required no assumptions. Examples:

Theorem, Quantified shunting:

for any P :X →B, Q :Y →B, —R— :X ×Y →B,
∀ (x :X . P x ⇒ ∀ (y :Y . Q y ⇒ x R y))

≡ ∀ (y : Y . Q y ⇒ ∀ (x :X . P x ⇒ x R y))

Proof: by left distributivity of ⇒/∀, shunting and dummy swap.

Lemma: ∀x :X . P x ⇒ ∀ y : X . lb≺ P y ⇒ y ≺ x

Hint: weaken ∀x :X . lb≺ P x ≡ ∀ y : X . P y ⇒ x ≺ y from ≡ to ⇒.

Theorem, least elements as g.l.b.s: lst≺ P x ≡ P x ∧ glb≺ P x.

Proof:

lst≺ P x

≡ 〈lst, lemma〉 P x ∧ lb≺ P x ∧ (P x ⇒ ∀ y :X . lb≺ P y ⇒ y ≺ x)

≡ 〈Mod. Pon.〉 P x ∧ lb≺ P x ∧ ∀ y : X . lb≺ P y ⇒ y ≺ x

≡ 〈Defin. glb〉 P x ∧ glb≺ P x
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d. Theorem, g.l.b.s as least elements (for N): glb≤ P n ⇒ lst≤ P n

Proof: with abbreviations L for lb≤ P and K for lst≤ P and I for glb≤ P ,

I n ⇒ 〈Weakening〉 ∀m : N . L m ⇒ m ≤ n
≡ 〈Contraposit〉 ∀m : N . n < m ⇒ ¬L m

≡ 〈Definition L〉 ∀m : N . n < m ⇒ ¬∀ k : N . P k ⇒ m ≤ k
≡ 〈Duality ∀/∃〉 ∀m : N . n < m ⇒ ∃ k : N . P k ∧ k < m

⇒ 〈Weakening〉 ∀m : N . n < m ⇒ ∃P
≡ 〈R-dstr. ⇒/∃〉 ∃ (m : N . n < m) ⇒ ∃P

≡ 〈Property α〉 ∃P
⇒ 〈Property β〉 ∃K

I n ≡ 〈I n ⇒ ∃K〉 ∃K ∧ I n
⇒ 〈Property γ〉 ∃K ∧ ∀m : N . I m ⇒ m = n

⇒ 〈K n ⇒ I n〉 ∃K ∧ ∀m : N . K m ⇒ m = n
⇒ 〈Half-pt. rule〉 K n

Property α is ∀n : N . ∃m : N . n < m (weak).
Property β is well-foundedness: ∀P : N→B . ∃P ⇒ ∃ (lst≤ P ).
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Property γ is (Antisymmetry ≤), hence ∀n : N . I n ⇒ ∀m : N . I m ⇒ m = n.
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Next section

0. Introduction: motivation and approach
1. Simple expressions and equational calculation
2. Equational calculation: application examples
3. Point-wise and point-free styles of expression and calculation
4. Point-wise and point-free styles: application examples
5. Binary algebra and proposition calculus: calculation rules
6. Binary algebra and proposition calculus: application examples
7. Sets and functions: equality and calculation
8. Functional Predicate Calculus: calculating with quantifiers
9. Functional Predicate Calculus: application examples

10. Well-foundedness, induction principles and application examples

11. Funmath: unifying continuous and discrete mathematics
12. Generic Functionals: definitions
13. Various examples in continuous and discrete systems modelling
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10 Well-foundedness, induction principles and applications

10.0 Induction over the natural numbers

10.1 Induction and well-founded relations

10.2 Application: inductive definitions over natural numbers

10.3 Application: inductive definitions over other structures

(in a later version)

10.4 Application: inductive reasoning about programs
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10.0 Induction over the natural numbers

a. Induction over natural numbers as transitivity and modus ponens
Let ≺ be a transitive relation on A and f : N→A satisfy

∀n : N . f n ≺ f (n + 1) (60)

Theorems f 0 ≺ f 1, f 1 ≺ f 2 until f n ≺ f (n+1) are instantiations of (60).
They imply f 0 ≺ f (n + 1) by transitivity and MP, yielding the expectation

∀ (n : N . f n ≺ f (n + 1)) ⇒ ∀ (n : N . f 0 ≺ f (n + 1)) (61)

Proof depends on axiomatization N. If f is real-valued and ≺ is the usual ≤,

∀ (n : N . f n ≤ f (n + 1)) ⇒ ∀ (n : N . f 0 ≤ f (n + 1))

Specializing f to a B-valued function (predicate) P : N→B, and ≤ to ⇒

∀ (n : N . P n ⇒ P (n + 1)) ⇒ ∀ (n : N . P 0 ⇒ P (n + 1))

or, by the rules of the predicate calculus (exercise),

∀ (n : N . P n ⇒ P (n + 1)) ⇒ P 0 ⇒ ∀P (62)
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b. Weak induction over natural numbers
The preceding formula (62) yields the familiar weak induction principle

P 0 ∧ ∀ (n : N . P n ⇒ P (n + 1)) ≡ ∀P (63)

Note that ∀P ≡ ∀n : N . P n since P = n : N . P n.

Proof pattern: proving ∀P is equivalent to proving

• (BC) Base case: prove P 0

• (IC) Inductive case: prove ∀ (n : N . P n ⇒ P (n + 1)).

In practice, the proof of (IC) is further (often tacitly) reduced in two stages.

(i) To prove (IC), prove n ∈ N ⇒ P n ⇒ P (n + 1), generalize implicitly.

(ii) To prove n ∈ N ⇒ P n ⇒ P (n + 1) assume the antecedents n ∈ N and
P n (induction hypothesis, IH) and prove P (n + 1) (induction step, IS).
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c. Illustration by a classical “textbook example”

Theorem: ∀n : N .
∑

(i : n . 2 · i + 1) = n2

Proof: let P : N→B with P n ≡
∑

(i : n . 2 · i + 1) = n2 and prove ∀P .

• (BC) Proving P 0 , i.e.,
∑

(i : 0 . 2 · i + 1) = 02

∑
(i : 0 . 2 · i + 1) = 〈Empty rule〉 0

= 〈Arithmetic〉 02

• (IC) First method: by proving P n ⇒ P (n + 1) for arbitrary n : N

P n

≡ 〈Def. P 〉
∑

(i : n . 2 · i + 1) = n2

⇒ 〈Leibniz〉
∑

(i : n . 2 · i + 1) + 2 · n + 1 = n2 + 2 · n + 1
≡ 〈Domain split〉

∑
(i : (n + 1) . 2 · i + 1) = n2 + 2 · n + 1

≡ 〈Arithmetic〉
∑

(i : (n + 1) . 2 · i + 1) = (n + 1)2

≡ 〈Def. P 〉 P (n + 1)
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Remarks:

• Domain split is the formula (derived from the axioms for
∑

)

∑
(i : 0 ..n . f i) =

∑
(i : 0 ..n − 1 . f i) + f n

for any numeric function f satisfying 0 ..n ⊆ D f .

• The second proof for P n ⇒ P (n + 1) uses the deduction theorem

(IH) Assume P n, i.e.,
∑

(i : n . 2 · i + 1) = n2

(IS) Proof of P (n + 1), i.e.,
∑

(i : (n + 1) . 2 · i + 1) = (n + 1)2

∑
(i : (n + 1) . 2 · i + 1)

= 〈Domain split〉
∑

(i : n . 2 · i + 1) + 2 · n + 1
= 〈IH〉 n2 + 2 · n + 1

= 〈Arithmetic〉 (n + 1)2

Note that the IH is P n, certainly not P n ≡
∑

(i : n . 2 · i + 1) = n2,
which trivially holds by virtue of the definition of P .
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d. Warning

• When proving P n ⇒ P (n + 1) by assuming P n and proving P (n + 1),

P n is not a theorem, and hence may not be instantiated

This is the most frequent mistake made by students in proofs by induction.

• Instantiation may be useful in case several quantified variables are involved.

Applying induction principle to one variable may suffice, but requires care.

• Method: to prove ∀ (m, n) : N2 . Q (m, n) for given Q : N2 →B, define

P : N→B with P n ≡ ∀m : N . Q (m, n)

and prove ∀P by proving P 0 and P n ⇒ P (n + 1) for arbitrary n : N.

The (IH) is P n is ∀m : N . Q (m, n), allowing instantiation of m, not n.

• Safeguard: always explicitly introduce a predicate, with all quantifiers.

Mention instantiatiions and generalizations explicitly.
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e. Illustration: proving a property of the Fibonacci numbers

Given def F— : N→N with F0 = 0 ∧ F1 = 1 ∧ Fn+2 = Fn+1 + Fn

To prove Fm+n+1 = Fm+1 · Fn+1 + Fm · Fn for any m and n in N,

we define P : N→B with P n ≡ ∀m : N . Fm+n+1 = Fm+1 · Fn+1 + Fm · Fn

and prove ∀P by induction.

• (BC) Proof of P 0, i.e., ∀m : N . Fm+1 = Fm+1 · F1 + Fm · F0 (easy)

• (IC) Assume P n, i.e., ∀m : N . Fm+n+1 = Fm+1 · Fn+1 + Fm · Fn (IH)

Prove P (n + 1), i.e., ∀m : N . Fm+(n+1)+1 = Fm+1 · F(n+1)+1 + Fm · Fn+1

For armitrary m : N, calculate Fm+(n+1)+1.

Fm+(n+1)+1 = 〈Assoc. +〉 F(m+1)+n+1

= 〈Instant. IH〉 Fm+2 · Fn+1 + Fm+1 · Fn

= 〈Def. F〉 (Fm+1 + Fm) · Fn+1 + Fm+1 · Fn

= 〈Arithmetic〉 Fm+1 · (Fn+1 + Fn) + Fm · Fn+1

= 〈Def. F〉 Fm+1 · Fn+2 + Fm · Fn+1
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f. Strong induction over natural numbers

∀ (n : N . ∀ (i : n . P i) ⇒ P n) ≡ ∀P (64)

No separate base case since P 0 is already implied by the l.h.s.:

∀ (n : N . ∀ (i : n . P i) ⇒ P n)

⇒ 〈Instantiation n := 0〉 ∀ (i : 0 . P i) ⇒ P 0
≡ 〈Empty rule〉 1 ⇒ P 0

≡ 〈Left identity ⇒〉 P 0,

which allows rewriting the basic form (64) as follows (exercise).

P 0 ∧ ∀ (n : N . ∀ (i : 0 ..n . P i) ⇒ P (n + 1)) ≡ ∀P (65)

Form (65) is useful when a base case is appropriate for some reason.

Usually it is more elegant to avoid a separate base case, and directly use (64).
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10.1 Induction and well-founded relations

10.1.0 Conventions and definitions

a. Shorthands auxiliary operators (the first row: for for any set X)

predX = X →B and relX = X2 →B (66)
def Pred :=

⋃
X : T . predX and def Rel :=

⋃
X :T . relX (67)

Observe that any R : Rel satisfies tgt R = src R.

b. Formulations with sets versus predicates

The formulations are fully equivalent. Switching between formulations:

def set— : T 3X → predX →P X with setX P = {x :X | P x} (68)
def prd— :T 3X →P X → predX with prdX S x ≡ x ∈ S (69)

Given set X, setX ∈ predX →P X, maps predicates on X to subsets of X,
whereas prdX ∈ P X → predX is the inverse (proof: exercise).

Sets are more common, predicates are more calculationally convenient.
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c. Relations and extremal elements

Formulation in set-oriented style.

Definition, minimal and least elements of a relation (70)

Let — ≺ — :Rel and X := src (≺). For any subset S of X and any x in X,

• x is minimal in S iff x belongs to S and every y in X satisfying y ≺ x
does not belong to S. Formally

x ismin≺ S ≡ x ∈ S ∧ ∀ y :X . y ≺ x ⇒ y 6∈ S

• x is a lower bound for S iff all elements y of S satisfy x ≺ y. Formally:

x islb≺ S ≡ ∀ y : S . x ≺ y

• x is a least element of S iff x is in S and is a lower bound for S:

x isleast≺ S ≡ x ∈ S ∧ x islb≺ S

The type of these operators is (exercise) Rel 3 R→ src R×P (srcR)→B .
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More elegant is the following formulation based on predicate transformers

Definition, minimal and least elements of a relation

Let — ≺ — :Rel and X := src (≺). For any predicate P on X and x in X,

• x is minimal for P iff x satisfies P and every y : X satisfying y ≺ x does
not satisfy P . Formally

min≺ P x ≡ P x ∧ ∀ y :X . y ≺ x ⇒ ¬ (P y)

• x is a lower bound for P iff x ≺ y for all elements y : X satisfying P :

lb≺ P x ≡ ∀ y : X . P y ⇒ x ≺ y

• x is a least element for P iff x satisfies P and is a lower bound for P :

lst≺ P x ≡ P x ∧ lbP x

Here the type of all operators is Rel 3R→ predsrc R → predsrc R .
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10.1.1 Well-foundedness and supporting induction

a. Definition, Well-foundedness (71)

A relation ≺ :X2 →B is well-founded iff every nonempty subset of X has a
minimal element.

WF (≺) ≡ ∀S :P X . S 6= ∅ ⇒ ∃x :X . x ismin≺ S

b. Definition, Supporting induction (72)

A relation ≺ :X2 →B supports induction iff SI (≺), wwith definition

SI (≺) ≡ ∀P : predX . ∀ (x :X . ∀ (y :X≺x . P y) ⇒ P x) ⇒ ∀x :X . P x

c. Theorem, Equivalence of WF and SI : WF (≺) ≡ SI (≺) (73)

Proof: next slide
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WF (≺)
≡ 〈Definition WF (71) and S 6= ∅ ≡ ∃x : S . 1〉

∀S :P X . ∃ (x :S . 1) ⇒ ∃ (x :X . x ismin≺ S)
≡ 〈S = X ∩ S, trading〉

∀S :P X . ∃ (x :X . x ∈ S) ⇒ ∃ (x :X . x ismin≺ S)
≡ 〈Definition ismin (70)〉

∀S :P X . ∃ (x :X . x ∈ S) ⇒ ∃ (x :X . x ∈ S ∧ ∀ y :X . y ≺ x ⇒ y 6∈ S)
≡ 〈p ⇒ q ≡ ¬ q ⇒ ¬ p〉

∀S :P X .¬ (∃x :X . x ∈ S ∧ ∀ y :X . y ≺ x ⇒ y 6∈ S) ⇒ ¬ (∃x :X . x ∈ S)

≡ 〈Duality ∀/∃, De Morgan〉
∀S :P X . ∀ (x :X . x 6∈ S ∨ ¬ (∀ y : X . y ≺ x ⇒ y 6∈ S)) ⇒ ∀x : X . x 6∈ S

≡ 〈∨ to ⇒, i.e., a ∨ ¬ b ≡ b ⇒ a〉
∀S :P X . ∀ (x :X . ∀ (y : X . y ≺ x ⇒ y 6∈ S) ⇒ x 6∈ S) ⇒ ∀x :X . x 6∈ S

≡ 〈Change of variables: S = {x :X | ¬ (P x)} and P x ≡ x 6∈ S〉
∀P :X →B . ∀ (x :X . ∀ (y : X . y ≺ x ⇒ P y) ⇒ P x) ⇒ ∀x :X . P x

≡ 〈Trading, def. SI (72)〉
SI (≺)
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10.1.2 Particular instances of well-founded induction

a. Induction over N Here we prove earlier principles axiomatically.

One of the axioms for natural numbers is:

Every nonempty subset of N has a least element under ≤.

Equivalently, every nonempty subset of N has a minimal element under <.

Strong induction over N follows by instantiating (73) with < for ≺

∀ (n : N . P n) ≡ ∀ (n : N . ∀ (m : N . m < n ⇒ P m) ⇒ P n)

Weak induction over N can be obtained in two ways.

• By proving that the relation ≺ defined by m ≺ n ≡ m + 1 = n is well-
founded, and deducing from the general form in (72) that

∀ (n : N . P n) ≡ P 0 ∧ ∀ (n : N . P n ⇒ P (n + 1)).

• By showing weak induction to be logically equivalent to strong induction.
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b. Structural induction

• Over sequences: list prefix is well-founded and yields

Theorem, structural induction for lists:

for any set A and any P : A∗→B,
∀ (x :A∗ . P x) ≡ P ε ∧ ∀ (x :A∗ . P x ⇒ ∀ a : A . P (a >−x)) (74)

Suffices for proving most properties about functional programs with lists.

• Other example: structural induction over expressions

Theorem, structural induction over expressions (75)

Given the grammar

expression ::= constant | variable | application | abstraction.

application ::= (expression expression) | (expression cop ′′ expression).

abstraction ::= (λvariable.expression).

generating the principal syntactic category E of expressions, and the aux-
iliary categories C, V defined separately in the usual way.
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Theorem, structural induction over expressions, continuation

Then, for any predicate P :E →B on expressions, the following induction
principle holds.

∀ (e :E . P e) ≡
∀ (c : C . P c) ∧ ∀ (v : V . P v) ∧
∀ (e, e′) :E2 . P e ∧ P e′ ⇒ P [[(e e′)]] ∧

∀ (? :C ′′ . P [[(e ? e′)]]) ∧
∀ (v :V . P [[(λv.e)]])

The proof of this theorem is rather detailed.

When using this theorem for an inductive proof, the obligations can be
arranged in the familiar way.

(BC) Base case: prove P [[c]] and P [[v]] ;

(IC) Inductive case: assuming P e′ and P e (induction hypothesis),

prove P [[(e e′)]] and P [[(e ? e′)]] and P [[(λv.e)]] (induction step).
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10.2 Application: inductive definitions over natural numbers

10.2.0 Principle

A general form of a recursive definition for functions over natural numbers:
given a : A and g : N→A→A,

def f— : N→A with f0 = a ∧ ∀n : N . fn+1 = g n fn (76)

Equivalently (equivalence proof left as an exercise)

def f— : N→A with fn = (n = 0) ? a g (n − 1) fn−1 (77)

A first simple example: the sum of the n first natural numbers can be defined as

def snat : N→N with snat 0 = 0 ∧ ∀n : N . snat (n + 1) = n + snat n.

It is left as an easy exercise to prove by induction that

snat n = n·(n−1)
2 and snat n =

∑
(i : n . i).
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10.2.1 Another example

The n-fold composition f ↑n (or fn) of a function f :A→A is defined by

f 0 = idA and ∀n : N . fn+1 = fn ◦ f (78)

Example theorem: for any f :A→A, ∀n : N . ∀m : N . fm+n = fm ◦ fn

Proof: defining P : N→B with P n = ∀m : N . fm+n = fm ◦ fn we prove ∀P

(BC) Proof of P 0 , i.e., ∀ (m : N . fm+0 = fm ◦ f 0) (easy)

(IC) Proof of P n ⇒ P (n + 1) : we assume P n (IH)

and prove P (n + 1), i.e., ∀m : N . fm+(n+1) = fm ◦ fn+1. For any m : N,

fm+(n+1) = 〈Assoc. +〉 f (m+n)+1

= 〈Defin. fn〉 f (m+n) ◦ f
= 〈Ind. Hyp.〉 (fm ◦ fn) ◦ f

= 〈Assoc. ◦〉 fm ◦ (fn ◦ f)

= 〈Defin. fn〉 fm ◦ f (n+1)
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10.2.2 Higher-order recursion on natural numbers

a. Preamble: useful auxiliary operator obviating ellipsis: listto ...
Not defined here. Property: for any integers m and n satisfying m ≤ n,

(m ...n) ∈ (n − m)→Z and ∀ i :D (m ...n) . (m ...n) i = m + i

Examples: 3 ... 7 = 3, 4, 5, 6. Instead of xm, xm+1, . . . , xn−1 we write x ◦m ...n,
and instead of xm + xm+1 + · · · + xn−1 we write

∑
(x ◦m ...n).

b. Higher order recursion

Typical case: f n depends not on f (n− 1) only but also on preceding values.

The general form of a k-th order recursive definition is

def f— : N→A with f<k = a ∧ ∀n : N . fn+k = g n (f ◦ (n ...n + k)) (79)

where a— :Ak and g : N→Ak are assumend given. Equivalently (exercise!),

def f— : N→A with fn = (n < k) ? an g (n − k) (f ◦ (n − k ...n))

where a— :Ak and g : N→Ak are assumend given.
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c. Example of 2nd order recursion: defining the Fibonacci function.

def F— : N→N with Fn = (n < 2) ?n Fn−1 + Fn−2

d. Transformation to a first order recursive definition on k-tuples Let

def F— : N→Ak with Fn i = fn+i,

then F satisfies the recursion equation

∀n : N . Fn = (n = 0) ? a G (n − 1) Fn−1

where G is related to g by

def G : N→Ak →Ak with G n x i = (i < k − 1) ?x (i + 1) g n x

The proof is left as an excercise in formal derivation. Clearly fn = Fn 0 .
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e. Application to the Fibonacci numbers yields Fn = (Fn, Fn+1) and hence

Fn = (n = 0) ? (0, 1) G (n − 1) Fn−1

G n x i = (i < 1) ? x (i + 1)
∑

x

The definition for G can be rewritten G n x i = (i = 0) ?x 1 x 0 + x 1 or

G n x = x ·
(

0 1

1 1

)

Since G n x does not depend on n, clearly

Fn = F0 ·
(

0 1

1 1

)n

=
(

0 1
)
·
(

0 1

1 1

)n

which is an explicit solution without irrational numbers. Observe that
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(
0 1
1 1

)2

=

(
1 1
1 2

) (
0 1
1 1

)3

=

(
1 2
2 3

) (
0 1
1 1

)4

=

(
2 3
3 5

)
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10.3 Application: inductive definitions over other structures

THIS SECTION TO BE COMPLETED IN A LATER VERSION
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10.4 Application: inductive reasoning about programs

For programs expressed in a functional language (e.g., Haskell), the framework
developed thus far suffices, and examples of inductive reasoning will be found in
the exercises.

Programs expressed in imperative languages require develop some additional
theory in our framework (denotational semantics, axiomatic semantics).
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Next section

0. Introduction: motivation and approach
1. Simple expressions and equational calculation
2. Equational calculation: application examples
3. Point-wise and point-free styles of expression and calculation
4. Point-wise and point-free styles: application examples
5. Binary algebra and proposition calculus: calculation rules
6. Binary algebra and proposition calculus: application examples
7. Sets and functions: equality and calculation
8. Functional Predicate Calculus: calculating with quantifiers
9. Functional Predicate Calculus: application examples

10. Well-foundedness, induction principles and application examples

11. Funmath: unifying continuous and discrete mathematics

12. Generic Functionals: definitions
13. Various examples in continuous and discrete systems modelling
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11 Funmath: unifying continuous and discrete mathematics

11.0 Motivation: functional mathematics as the unifying principle

11.1 Syntax: the four basic constructs

11.2 Pragmatics: elastic and variadic operators

11.3 Formal calculation: calculational logic and generic functionals
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11.0 Motivation: functional mathematics as the unifying principle

• Principle: (re)defining mathematical objects, whenever feasible, as functions.
Remark: found especially advantageous where this is not yet a commonplace

• Epistemological advantages

– Conceptual: uniformity in treatment while respecting essential differences

– Practical: sharing general-purpose (generic) operators over functions

• Example: sequences (generic for tuples, lists, etc., “homogeneous” or not)

– Why this example? “interface” between discrete and continuous math

– Wide ramifications: (also in the design of mathematical software)

∗ Removal of all conventions having poor calculational properties
Worst kind of violation: against Leibniz’s principle. Example: ellipsis

a0 + a1 + · · · + a7 where ai = i2 yields 0 + 1 + · · · + 49

∗ Replacement by well-defined operators and algebraic calculation rules
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• Notational ramifications of “functional mathematics”

– Entire notational framework needs/uses only four constructs:

identifier function application abstraction tuple denotation

n, succ, +, ∀ f n, x + y, ∀x : X . p x :X ∧. p . e a, b, c

– Properties:

∗ Synthesizes common conventions, minus ambiguities/inconsistencies

∗ Adds forms of expression (e.g., point-free) and precise calculation rules

– Case example: the function range operator R
∗ Common practice: overloaded use of ∈ for binding, e.g., ∀x ∈ X . p

Problem: {m ∈ N | m < n} and {2 ·m | m ∈ N} may seem harmless,
but: what about {x ∈ X | x ∈ Y }? Is it X ∩ Y or a subset of B?

∗ Solution: range operator with axiom y ∈ R f ≡ ∃x :D f . y = f x.

∗ Equivalent symbol: {—}. Application to tuples and abstractions yields
familiar form and meaning. Examples: {a, b, c} and {n : Z . 2 · n}

∗ Using x :X | p as syntactic sugar for x :X ∧. p . x does the same for
expressions like {m : N | m < n}.
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• Benefits to mathematical practice

– Uniformly unambiguous and consistent conventions

– Extreme simplicity: only 4 constructs, no ad hoc notations

– Formal calculation rules, convenient for everyday practice

• Benefits to programming (Reynolds):

In designing a programming language, the central problem is to
organize a variety of concepts in a way which exhibits uniformity
and generality. Substantial leverage can be gained in attacking
this problem if the concepts can be defined concisely within a
framework which has already proven its ability to impose uniformity
and generality upon a wide variety of mathematics
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11.1 Syntax: the four basic constructs

We have already seen all of them. Here are some additional remarks

a. Identifier: any (string of) symbol(s) except markers, parentheses, keywords.

• Markers are: binding colon (.), filter mark (∧. ), abstraction dot (.)
Keywords are: def, spec, where.

• Identifiers are introduced by bindings of the form i :X ∧. p

Here i may be a list of identifiers. The filter ∧. p (or with p) is optional

Example: n : N and n : Z∧. n ≥ 0 are interchangeable.

• Constants are identifiers introduced by definitions, of the form def binding

Example: def roto : R≥0 with roto2 = 2 .

The scope is global . Existence and uniqueness are proof obligations.

• These obligations do not apply to specifications, of the form spec binding .

• Well-established symbols (e.g., B, ⇒, R, +,
√

) are predefined constants.
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b. Abstractions are of the form binding . expression

The identifiers introduced are variables, with scope limited to the abstraction.

An abstraction denotes a function: writing f for v : X ∧. p . e,

• the domain axiom is d ∈ D f ≡ d ∈ X ∧ p[vd and

• the mapping axiom is d ∈ D f ⇒ f d = e[vd .

Here e[vd is e with d substituted for v. Example: n : Z . 2 · n.

c. Tupling is of the form e, e′, e′′ (any length, say, n)

Tupling enotes a function with

• domain 0..n − 1 , e,g., D (e, e′, e′′) = 0..2

• mapping as in (e, e′, e′′) 0 = e and (e, e′, e′′) 1 = e′ and (e, e′, e′′) 2 = e′′
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d. Function application has the form f e in the default prefix syntax.

A function identifier is called operator

For an operator, other conventions can be specified by dashes in its binding,
e.g., — ? — for infix.

Prefix has precedence over infix.

Parentheses are used for overriding precedence rules, never as an operator.

Special forms:

• Partial application: if ? is an infix operator, then (a?) and (?b) satisfy
(a?) b = a ? b = (?b) a.

• Variadic application, of the form e ? e′ ? e′′ ? e′′′ , is explained soon.
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Macros can define shorthands or sugaring in terms of the basic syntax
Very few are needed.

• Shorthands are de for d ↑ e (exponent) and de for d ↓ e (filtering).

• Sugaring macros are

e | v : X ∧. p for v : X ∧. p . e and v :X | p for v :X ∧. p . v

v := e for v : ι e , using the singleton set injector ι; axiom: d ∈ ι e ≡ d = e.

X 3x→Y for ×x :X . Y , explained later
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11.2 Pragmatics: elastic and variadic operators

a. Elastic operators

• Principle: functionals replacing the common ad hoc abstractors, e.g.,

∀x :X
∑

n
i=m lim

x→a
.

Together with function abstraction, they yield familiar expressions

∀x :X . P x
∑

i :m .. n . xi lim (x :R . f x) a

For less casual “users”, they also yield point-free forms such as

∀P
∑

x lim f a

and direct applicability to sequences (tuples, lists etc.)

∀ (x, y) = x ∧ y
∑

(x, y) = x + y

Example: ∀x : R . x2 ≥ 0 obtains familiar form and meaning,
but also a novel decomposition: ∀ and x : R . x2 ≥ 0 are both functions.

• General importance Same functionals for point-free and point-wise style.
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b. Some observations

• Examples of definitions:

– Quantifiers: ∀P ≡ P = D P • 1

– Summation:
∑

ε = 0
∑

(a 7→ c) = c
∑

(f ∪· g) =
∑

f +
∑

g (80)
for any a, any numeric c and any number-valued functions f and g
with finite nonintersecting (but otherwise arbitrary) domains.

Note: (80) shows
∑

to be a merge homomorphism, a generalization of
the well-known h (x ++ y) = h x ⊕ h y for data structures x and y.

• Subsumes the “Eindhoven notation” Q x : P.x : f.x .
Advantages of lastic operators:

– More general underlying different principle and design

– Support also the point-free style

– No algebraic restrictions (associativity, commutativity etc.)
R. Backhouse also noted that certain restrictions are unnecessary;
elastic operators go further

– Not restricted to discrete math (useful in mathematical analysis).
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c. Variadic operators, elastic extensions and variadic shorthand

• Variadic operator: elastic operator with meaningful restriction to sequences

• Elastic extension of an infix operator ?:

– Definition: any elastic operator F satisfying

F (x, y) = x ? y

– Examples:

∀ (x, y) ≡ x ∧ y and
∑

(x, y) = x + y

– Important: not unique, leaving room for judicious design
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• Variadic shorthand:

– Definition: argument/operator alternation

x ? y ? z denoting F (x, y, z)

– Examples: x ∧ y ∧ z ≡ ∀ (x, y, z) and x + y + z =
∑

(x, y, z)

More interesting: with predicates con (constant) and inj (injective),

x = y = z ≡ con (x, y, z)
x 6= y 6= z ≡ inj (x, y, z).

Gives x 6= y 6= z useful meaning (impossible with “old” conventions).

– Choice of F for commonly used ?: conservative.
Example: for associative ?, require that the restriction of F to lists is
a list homomorphism, i.e., for any lists x and y in D F ,

F (x ++ y) = F x ? F y
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11.3 Formal calculation: calculational logic and generic functionals

a. Calculational logic: in the chapters on proposition and predicate calculus

b. Generic functionals: in the next chapter
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1. Simple expressions and equational calculation
2. Equational calculation: application examples
3. Point-wise and point-free styles of expression and calculation
4. Point-wise and point-free styles: application examples
5. Binary algebra and proposition calculus: calculation rules
6. Binary algebra and proposition calculus: application examples
7. Sets and functions: equality and calculation
8. Functional Predicate Calculus: calculating with quantifiers
9. Functional Predicate Calculus: application examples

10. Well-foundedness, induction principles and application examples
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12 Generic Functionals: definitions

12.0 Design criteria and method for generic functionals

12.1 Functionals designed generically

12.2 Elastic extensions for generic operators

12.3 A generic functional refining function types
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12.0 Design criteria and method for generic functionals

• Reason for making fuctionals generic: in functional mathematics, they
become shared by many more kinds of objects than usual.

• Shortcomings of traditional operators: restrictions on the arguments, e.g.,

– the usual f ◦ g requires R g ⊆ D f , in which case D (f ◦ g) = D g

– the usual f− requires f injective, in which case D f− = R f

• Approach used here:

– No restrictions on the argument function(s)

– Instead, refine domain of the result function (say, f) via its domain axiom
x ∈ D f ≡ x ∈ X∧p ensuring that, in the mapping axiom x ∈ D f ⇒ q,
q does not contain out-of-domain applications in case x ∈ D f (guarded)

– Conservational, i.e.,
For previously known functionals, if the traditional restriction on the ar-
gument is satisfied anyway, the generalization yields the “usual” case.
For new functionals (extension, transposition, merge etc.): design freedom
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12.1 Functionals designed generically

• Filtering (↓) Function filtering generalizes η-conversion f = x :D f . f x:
for any function f and predicate P ,

f ↓ P = x :D f ∩ D P ∧. P x . f x (81)

Set filtering: x ∈ X ↓ P ≡ x ∈ X ∩ P ∧ P x .

Shorthand: ab for a ↓ b, yielding convenient abbreviations like f<n and R≥0.

• Function restriction ( e ): the usual domain restriction:

f eX = f ↓ (X • 1). (82)

• Composition (◦) generalizes traditional composition:
for any functions f and g (without restriction),

x ∈ D (f ◦ g) ≡ x ∈ D g ∧ g x ∈ D f

x ∈ D (f ◦ g) ⇒ (f ◦ g) x = f (g x).

Conservational: if the traditional R g ⊆ D f is satisfied, then D (f ◦ g) = D g.
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• Inversion (—−) For any function f ,

D f− = Bran f and x ∈ Bdom f ⇒ f
−

(f x) = x. (83)

For Bdom (bijectivity domain) and Bran (bijectivity range):

Bdom f = {x :D f | ∀x′ :D f . f x′ = f x ⇒ x′ = x}
Bran f = {f x | x : Bdom f}. (84)

Note that, if the traditional injectivity condition is satisfied, D f− = R f .

• Dispatching (&) and parallel (‖) For any functions f and g,

D (f & g) = D f ∩ D g x ∈ D (f & g) ⇒ (f & g) x = f x, g x
D (f ‖ g) = D f ×D g x ∈ D (f ‖ g) ⇒ (f ‖ g) (x, y) = f x, g y

(85)
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• (Duplex) direct extension (—̂) For any infix operator ?, functions f , g,

x ∈ D (f ?̂ g) ≡ x ∈ D f ∩ D g ∧ (f x, g x) ∈ D (?)
x ∈ D (f ?̂ g) ⇒ (f ?̂ g) x = f x ? g x.

(86)

Equivalently, f ?̂ g = x :D f ∩ D g ∧. (f x, g x) ∈ D (?) . f x ? g x .

If x ∈ D f ∩ D g ⇒ (f x, g x) ∈ D (?) then f ?̂ g = x :D f ∩ D g . f x ? g x.

Example: equality : (f =̂ g) = x :D f ∩ D g . f x = g x

Half direct extension: for any function f and any x,

f
↼
? x = f ?̂ D f • x and x

⇀
? f = D f • x ?̂ f.

Simplex direct extension (—): recall f g = f ◦ g .
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• Function override (<© and >©) For funcs. f and g, g <© f = f >© g and

D (f >© g) = D f ∪ D g
x ∈ D (f >© g) ⇒ (f >© g) x = x ∈ D f ? f x g x

• Function merge (∪· ) For any functions f and g,

x ∈ D (f ∪· g) ≡ x ∈ D f ∪ D g ∧ (x ∈ D f ∩ D g ⇒ f x = g x)
x ∈ D (f ∪· g) ⇒ (f ∪· g) x = x ∈ D f ? f x g x.

• Relational functionals: compatibility ( c©), subfunction (⊆)

f c© g ≡ f eD g = g eD f

f ⊆ g ≡ f = g eD f.

Examples of typical algebraic properties

– f ⊆ g ≡ D f ⊆ D g ∧ f c© g and f c© g ⇒ f >© g = f ∪· g = f <© g

– ⊆ is a partial order (reflexive, antisymmetric, transitive)

– For equality: f c© g ≡ ∀ (f =̂ g) and f = g ≡ D f = D g ∧ f c© g .
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12.2 Elastic extensions for generic operators

• Function transposition (—T) The image definition is fTy x = f x y .

Making —T generic requires decision about D fT for any function family f .

– Intersecting variant (—T ) Motivation:
<

g f = g ◦ fT uses intersection.
This suggests taking D fT =

⋂
x :D f .D (f x) or D fT =

⋂
(D ◦ f)

Hence we define

fT = y :
⋂

(D ◦ f) . x :D f . f x y (87)

or, with separate axioms,

D fT =
⋂

x :D f .D (f x)

y ∈ D fT ⇒ D (fTy) = D f ∧ (x ∈ D (fTy) ⇒ fTy x = f x y)

229



– Uniting variant (—U), taking D fU =
⋃

(D ◦ f).

Here the design criterion, leads to defining

fU = y :
⋃

(D ◦ f) . x :D f ∧. y ∈ D (f x) . f x y (88)

or, with separate axioms,

D fU =
⋃

x :D f .D (f x)
y ∈ D fU ⇒ D (fUy) = {x :D f | y ∈ D (f x)}

∧ (x ∈ D (fUy) ⇒ fUy x = f x y)

– Variadic shorthand Observation: (g & h) x i = (g, h) i x for i : {0, 1}.
Design decision:

f & g& h = (f, g, h)T
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• Elastic parallel (‖) For any function family F and function f ,

‖F f = x :D F ∩ D f ∧. f x ∈ D (F x) . F x (f x) (89)

This can be seen as a typed variant of the well-known S-combinator.

• Elastic merge For any function family f ,

y ∈ D (
⋃
· f) ≡

y ∈
⋃

(D◦ f) ∧ ∀ (x, x′) : (D f)2 . y ∈ D (f x) ∩ D (f x′) ⇒ f x y = f x′ y
y ∈ D (

⋃
· f) ⇒ ∀ x :D f . y ∈ D (f x) ⇒

⋃
· f y = f x y

(90)

Interesting examples: for any function g,

g =
⋃
· x :D g . x 7→ g x and g− =

⋃
· x :D g . g x 7→x

Illustrates how the generic design criterion leads to fine operator intermeshing.

• Elastic compatibility For any function family f

c© f ≡ ∀ (x, y) : (D f)2 . f x c© f y (91)

In general, ∪· is not associative, but c© (f, g, h) ⇒ (f ∪· g)∪· h = f ∪· (g ∪· h).
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12.3 A generic functional refining function types

• Coarse typing: the function arrow defined by

f ∈ X →Y ≡ D f = X ∧R f ⊆ Y

• The function approximation paradigm for range refinement

– Purpose: formalizing tolerances for functions

– Principle: tolerance function T specifies for every domain value x the set
T x of allowable values. Note: D T serves as the domain specification.

Formalized: a function f meets tolerance T iff

D f = D T ∧ (x ∈ D f ∩ D T ⇒ f x ∈ T x).
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– Pictorial representation (example: radio frequency filter characteristic).
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D f = D T ∧ (x ∈ D f ∩ D T ⇒ f x ∈ T x)
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– Generalized Functional Cartesian Product ×: for any family T of sets,

f ∈×T ≡ D f = D T ∧ ∀x :D f ∩ D T . f x ∈ T x (92)

Immediate properties of (??):

a. Function equality f = g ≡ D f = D g ∧ ∀x :D f ∩ D g . f x = g x
yields the “exact approximation”

f = g ≡ f ∈×(ι ◦ g)

b. (Semi-)pointfree form:

×T = {f :D T →
⋃

T | ∀ (f ∈̂ T}
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– Commonly used conventions as particularizations

∗ The usual Cartesian product for a pair of sets A, B is defined by

(a, b) ∈ A×B ≡ a ∈ A ∧ b ∈ B

Letting T := A, B in (??), calculation yields

×(A, B) = A×B

If A 6= ∅ and B 6= ∅, then ×−(A×B) 0 = A and ×−(A×B) 1 = B.
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∗ Dependent types: letting T := a : A . Ba,

×(a : A . Ba) = {f :A→
⋃

(a :A . Ba) | ∀ a : A . f a ∈ Ba}

Convenient shorthand: A 3 a→Ba for ×a : A . Ba Examples:

· Clearer chained dependencies, e.g., A 3 a→Ba 3 b→Ca,b .

· Types for generic operators. Let F and T be the function and type
universes and fam defined by f ∈ fam Y ≡ R f ⊆ Y ,

( ◦ ) ∈ F2 3 (f, g)→{x :D g | g x ∈ D f}→R f

( T ) ∈ fam F 3 f →
⋂

(D ◦ f)→D f 3x→R (f x).
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13 Various examples in continuous and discrete systems modelling

13.0 Introduction: role of generic functionals

13.1 Origin: deriving data flow circuits from specifications
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13.4 Overloading and polymorphism

13.5 Formal semantics (from conventional languages to LabVIEW)
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13.7 Final considerations
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13.0 Introduction: role of generic functionals

13.0.0 Sequences as functions: inheriting the generic functionals

• Intuitively evident: (a, b, c) 0 = a and (a, b, c) 1 = b etc., yet:

– traditionally handled as entirely or subtly distinct from functions,

– in the few exceptions, functional properties left unexploited.

• Examples of (underexploited) functional properties of sequences

– Function inverse: (a, b, c, d)− c = 2 (provided c 6∈ {a, b, d})

– Composition: (0, 3, 5, 7) ◦ (2, 3, 1) = 5, 7, 3 and f ◦ (x, y) = f x, f y

– Transposition: (f, g)Tx = f x, g x

• Not obtainable by the usual formal treatments of lists, e.g.,

– recursive definition: [] is a list and, if x is a list, so is cons a x

– index function separate: ind (cons a x) (n + 1) = ind x n e.g.,

in Haskell: ind [a:x] 0 = a and ind [a:x] (n + 1) = x n
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13.0.1 Function(al)s for sequences (“user library”)

• Domain specification: “block”

n = {k : N | k < n} for n : N or n :=∞

• Length: # #x = n ≡ D x = n, equivalently: #x = − (D x)

• Prefix (>−) and concatenation (++) characterized by domain and mapping:

# (a >−x) = # x + 1 i ∈ D (a >−x) ⇒ (i = 0) ? a x (i − 1)

# (x ++ y) = # x + # y i ∈ D (x ++ y) ⇒ (i < #x) ? x i y (i − # x)

• Shift: σ characterized by domain and mapping: for nonempty x,

# (σ x) = #x − 1 i ∈ D (σ x) ⇒ σ x i = x (i + 1)

• The usual induction principle is a theorem (not an axiom)

∀ (x :A∗ . P x) ≡ P ε ∧ ∀ (x :A∗ . P x ⇒ ∀ a : A . P (a >−x))
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13.1 Origin: deriving data flow circuits from specifications

13.1.0 Motivation for showing this topic: a practical need for point-free formulations

• Point-free formulations traditionally seen as only relevant to pure theory.

Any (general) practical formalism needs both point-wise and point-free style.

• Example: signal flow systems: assemblies of interconnected components.
Dynamical behavior modelled by functionals from input to output signals.

Here taken as an opportunity to introduce “embryonic” generic functionals,
i.e., arising in a specialized context, to be made generic later for general use.

Extra feature: LabVIEW (a graphical language) taken as an opportunity for

– Presenting a language with uncommon yet interesting semantics

– Using it as one of the application examples of our approach
(functional description of the semantics using generic functionals)

• Time is not structural
Hence transformational design = elimination of the time variable

This was the example area from which our entire formalism emerged.
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13.1.1 Basic building blocks for the example

• Memoryless devices realizing arithmetic operations

– Sum (product, ...) of signals x and y modelled as (x +̂ y) t = x t + y t

– Explicit direct extension operator —̂ (in engineering often left implicit)

“Textbook” form

x

y

@@

��
����
+ x +̂ y LabVIEW

����

HHHH+

• Memory devices: latches (discrete case), integrators (continuous case)

Da x n = (n = 0) ? a x (n − 1) or, without time variable, Da x = a >−x

“Textbook” form

-a >−x
Da

-x

LabVIEW

5 4- - -xa a >−x
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13.1.2 A transformational design example

a. From specification to realization

• Recursive specification: given set A and a :A and g :A→A,

def f : N→A with f n = (n = 0) ? a g (f (n − 1)) (93)

• Calculational transformation into the fixpoint equation f = (Da ◦ g ) f

f n = 〈Def. f〉 (n = 0) ? a g (f (n − 1))
= 〈Def. ◦ 〉 (n = 0) ? a (g ◦ f) (n − 1)

= 〈Def. D〉 Da (g ◦ f) n
= 〈Def. — 〉 Da (g f) n

= 〈Def. ◦ 〉 (Da ◦ g ) f n,

b. Functionals introduced (types omitted; designed during the generification)

• Function composition: ◦, with mapping (f ◦ g) x = f (g x)

• Direct extension (1 argument): — , with mapping g x = g ◦x
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c. Structural interpretations of composition and the fixpoint equation

• Structural interpretations of composition: (a) cascading; (b) replication

- g - h -

(a) h ◦ g

-

x

- f

f

f x1

-

f x0

- f ◦x

(b)

Example property: h ◦ g = h ◦ g (proof: exercise)

• Immediate structural solution for the fixpoint equation f = (Da ◦ g ) f

Block diagram

-
f

Da
-g-

LabVIEW

n

a 5 4

f<n

N

i
����

HHHH
���
HHH

����

HHHHg

In LabVIEW: extra parameter to obtain prefix of finite length n.
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13.1.3 More on the role of generic functionals

a. A third operator: transposition (already shown: composition, extension)

• Purpose: swapping the arguments of a functional: fTy x = f x y

Nomenclature obviously borrowed from matrix theory

• Structural interpretations:

(a) From a family of signals to a tuple-valued signal,

(b) Signal fanout

f
s s s s s s ss s s s s s ss s s s s s s

t -

fT ss
s

ss
s

ss
s

ss
s

ss
s

ss
s

ss
s

(a)

-

x

- f1

f0

f1 x

-

f0 x

- fTx

(b)

• Subsumes the zip operator from functional programming

zip[[a,b,c],[a’,b’,c’]] = [[a,a’],[b,b’],[c,c’]]

assuming lists are functions, and up to currying.
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b. Calculating with transposition, composition and direct extension

• Duality composition – transposition: assuming x not free in M ,

M ◦ (λx.N) = λx.MN and (λx.N)TM = λx.NM.

Also: f ◦ (x, y, z) = f x, f y, f z and (f, g, h)Tx = f x, g x, h x

• Generalizing direct extension to an arbitrary number of arguments:

(f ?̂ f ′) x = f x ? f ′ x

= (?) (f x, f ′ x)
= (?) ((f, f ′)Tx)

= ((?) ◦ (f, f ′))Tx

(hints added orally) hence f ?̂ f ′ = (?) ◦ (f, f ′)T by extensionality.

Therefore we define the generalized direct extension operator
<

— by

<

g h = g ◦hT (94)

for any function g and any family h of functions.
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13.2 Applications in functional programming

Principle: defining objects as functions makes them inherit all generic operators.
Moreover, by doing so, nothing is lost (expression styles, calculation rules).

a. Sequences as functions with basic concatenation operator ++

x ++ y = i : (#x + # y) . (i < #x) ?x i y (i − # x) (95)

together with the emty function/sequence ε and the singleton injector τ

τ x = 0 7→x (96)

• Sufficient for derived operators, e.g., prefix >− and postfix −<

a >−x = τ a ++ x and x−< a = x ++ τ a

• Supports existing reasonings, e.g., induction: for any predicate P : A∗→B,

∀P ≡ P ε ∧ ∀x :A∗ . P x ⇒ ∀ a : A . P (a >−x).

Similarly for infinite structures and coinduction.
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b. Application of generic functionals to sequences

• Interesting applications of composition and transposition Examples:

– (0, 3, 5, 7) ◦ (2, 3, 1) = 5, 7, 3 and (0, 3, 5, 7) ◦ (2, 3, 5) = 5, 7 .

– f ◦ (x, y) = f x, f y subsumes map f [x, y] = [f x, f y] .

– ((a, b, c), (a′, b′, c′))T = ((a, a′), (b, b′), (c, c′)) subsumes

zip [[a,b,c],[a’,b’,c’]] = [[a,a’],[b,b’],[c,c’]]

• Sequences have inverses Example: (3, 3, 7)− 7 = 2

• Some operators over sequences have inverses e.g., >−− (a >−x) = a, x

Application example: head x = >−− x 0 for any nonempty sequence x.

• Pattern matching as equational definition using function inverses

Recursive definitions like f (a >−x) = h (a, f x): just covered.

Generalization: definition format f (g (x, y)) = e (x, y) .

Application of f to an actual parameter z satisfies f z = e (g− z 0, g− z 1)

for any z in the bijectivity range of g. (also: complex numbers, signals)
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c. Transposition in functional languages

Defining transposition is usually possible for the special case A→ (B →C) .

Given a function f satisfying f ∈ A→ (B →C) , the transpose satisfies

fT ∈ B → (A→C)

and has property (fT )T = f .

d. Direct extension hasmany application opportunities.

Example (sequences): direct extension as a pairwise map:

direx(∗)[[a, b, c], [a′, b′, c′]] = [a ∗ a′, b ∗ b′, c ∗ c′]
Equivalently: direx(∗) = (map(∗)) . zip

More generally, for generic functionals,

(?̂) = (?) ◦ (&)
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13.3 Aggregate data types and structures

a. Pascal-like records (ubiquitous in programs) How making them functional?

• Well-known approach: selector functions matching the field labels.
(e.g., Haskell)

Problem: records themselves as arguments, not functions.

• Preferred alternative: generalized functional cartesian product ×: records
as functions, domain: set of field labels from an enumeration type. E.g.,

Person :=×(name 7→A∗∪· age 7→N),

Then person :Person satisfies person name ∈ A∗ and person age ∈ N .

• Syntactic sugar:

record : fam (famT )→P F with recordF = ×(
⋃
· F )

Now we can write

Person := record (name 7→A∗, age 7→N)
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b. More about the funcart operator ×
• “Workhorse” for typing all structures unified by functional mathematics.

– Recall A→B = ×(A • B) and A×B = ×(A, B)

– Array types: for set A and n : N ∪ ι∞, define

A ↑n = n→A

with shorthand An. This is the n-fold Cartesian product, since

A ↑n = ×( n • A)

– List types complete the functional unification of aggregates:

A∗ =
⋃

n : N . An
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• × Is a genuine functional, not an ad hoc abstractor

This yields many useful algebraic properties. Most noteworthy: inverse.

– Choice axiom ×T 6= ∅ ≡ ∀x :D T . T x 6= ∅ characterizes Bdom×

– If ×T 6= ∅ , then ×− (×T ) = T

– Example: if A 6= ∅ and B 6= ∅, then ×− (A×B) = A, B , hence

×−(A×B) 0 = A and ×−(A×B) 1 = B

– Explicit image definition: for any nonempty S in the range of ×,

×− S = x :Dom S . {f x | f : S} (97)

where Dom S is the common domain of the functions in S

extracted, e.g., by Dom S =
⋂

f :S .D f =
⋂

(D eS) .
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c. Other structures are also defined as functions.

• Example: trees are functions whose domains are branching structures,
i.e., sets of sequences describing the path from the root to a leaf.

– Covers any branch labeling, e.g., for binary tree: subset of B∗.

– Classes of trees: specified by restrictions on the branching structures.

– The ×operator can even specify types for leaves individually.

• Aggregates (as functions) inherit elastic operators for suitable arguments.
Example:

∑
s sums the “elements” of any number-valued structure s.

• Generic functionals are inherited whatever the image type.
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d. Important for structures: direct extension

• Dijkstra considers all operators implicitly extended to “structures”

– Without elaborating the domain (is fixed: the program state space).

– Even for equality, which becomes a pointwise instead of an “overall”
characteristic.

• LabVIEW building blocks are similarly extended (called polymorphism).

• Our view

– Implicit extensions are convenient in a particular area of discourse

– Broader application range needs finer tuning offered by an explicit
generic operator ( , ̂ or <).
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13.4 Overloading and polymorphism

• Terminology

– Overloading: using identifier for designating “different” objects.
Polymorphism: different argument types, formally same image definition.

– In Haskell: called ad hoc and ad hoc polymorphism respectively.

– Considering general overloading also suffices for covering polymorphism.

• Two main issues in overloading an operator:

– Disambiguation of application to all possible arguments

– Refined typing: reflecting relation between argument and result type

Covered respectively by:

– Ensuring that different functions denoted by the operator are compatible
in the sense of the generic c©-operator.

– A suitable type operator whose design is discussed next.
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• Option: overloading by explicit parametrization Trivial with ×.
Example: binary addition function adding two binary words of equal length.

def binadd— :×n : N . (Bn)2 →Bn+1 with binaddn (x, y) = . . .

Only the type is relevant. Note: binaddn ∈ (Bn)2 →Bn+1 for any n : N.

• Option: overloading without auxiliary parameter

– Requirement: operator ⊗ with properties exemplified for binadd by

def binadd :⊗n : N . (Bn)2 →Bn+1 with binadd (x, y) = . . .

∗ Note that n : N . (Bn)2 →Bn+1 is a family of function types.

∗ Domain of binadd is
⋃

n : N . (Bn)2, and the type is/should be
⋃

(n : N . (Bn)2) 3 (x, y)→B#x+1

∗ This information must be obtainable from ⊗n : N . (Bn)2 →Bn+1 .
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– An interesting design satisfying the requirement

∗ Consider binadd as a merge of functions of type (Bn)2 →Bn+1

(one for each n).

The family of functions merged is taken from ×n : N . (Bn)2 →Bn+1

Requirement: compatibility
(trivially satisfied in this example because of nonintersecting domains).

∗ Generalization to arbitrary function type family: yields the desired
function type merge (⊗) operator

def ⊗ : fam (P F)→P F with ⊗F = {
⋃
· f | f : (×F ) c©}

Note: this is not the original form [Van den Beuken], the latter used
a non-generic merge to enforce compatibility implicitly.

∗ Applications for other purposes than polymorphism shown later.

257



• Use in a (declarative) language context Incremental definition:

– Regular definitions: def x :X with px allow only one definition for x.

– Overloaded operator definitions: defo drops this condition but
requires that, for any collection of definitions of the form

defo f : Fi with Pi f

(for i in some index set I at the meta-level, but the same f),
the derived collection of definitions

def gi : Fi with Pi gi

is compatible: c© i : I . gi (satisfied trivially for nonintersecting domains).

Then the given collection defines an operator

f :⊗ i : I . Fi with f =
⋃
· i : I . gi
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• A rough analogy with Haskell

Illustrated by an example from A Gentle Introduction to Hashell 98 :

class Eq a where (==) :: a -> a -> Bool

instance Eq Integer where x == y = x ‘integerEq‘ y

instance Eq Float where x == y = x ‘floatEq‘ y

This is approximately (and up to currying) rendered by

def Eq :T →P F with Eq X = X2 →B
defo---==--- :Eq Integer with x == y ≡ x integerEq y
defo---==--- :Eq Float with x == y ≡ xfloatEq y.

The type of == is Eq Integer ⊗ Eq Float and, nonintersecting domains en-

suring compatibility, (==) = (integerEq)∪· (floatEq) .

An essential difference is that Haskell attaches operators to a class.
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13.5 Formal semantics (from conventional languages to LabVIEW)

a. Expressing abstract syntax (Unification of Meyer’s ad hoc conventions)

• For aggregate constructs and list productions: functional record and ∗.
This is ×actually: recordF = ×(

⋃
· F ) and A∗ =

⋃
n : N .×( n • A).

• For choice productions needing disjoint union: generic elastic -operator
For any family F of types,

F =
⋃

x :D F . {x 7→ y | y :F x} (98)

Idea: analogy with
⋃

F =
⋃

(x :D F . F x) =
⋃

x :D F . {y | y :F x}.
Remarks

– Variadic: A | B = (A, B) = {0 7→ a | a :A} ∪ {1 7→ b | b :B}
– Using i 7→ y rather than the common i, y yields more uniformity.

Same three type operators can describe directory and file structures.

– For program semantics, disjoint union is often “overengineering”.
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• Typical examples: (with field labels from an enumeration type)

def Program := record (declarations 7→Dlist , body 7→ Instruction)
def Dlist :=D∗

def D := record (v 7→Variable, t 7→Type)
def Instruction := Skip ∪ Assignment ∪ Compound∪ etc.

A few items are left undefined here (easily inferred).

• If disjoint union wanted:

Skip | Assignment | Compound | etc.

• Instances of programs, declarations, etc. can be defined as

def p :Program with p = declarations 7→ dl ∪· body 7→ instr
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b. Semantics “Functionalizing” Meyer’s formulation using generic functionals.

Example: for static semantics, validity of declaration lists (no double declara-
tions) and the variable inventory are expressed by

def Vdcl :Dlist →B with Vdcl dl = inj (dlTv)

def Var :Dlist →P Variable with Var dl = R (dlT v)

The type map of a valid declaration list (mapping variables to their types) is

def typmap :DlistV dcl 3 dl →Var dl →Tval with

typmap dl = tval ◦ (dlT t) ◦ (dlT v)−

Equivalently, typmap dl =
⋃
· d :R dl . d v 7→ tval (d t) .

A type map can be used as a context parameter for expressing validity of
expressions and instructions, shown next.
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c. Semantics (continuation) How function merge (
⋃
· ) obviates case expressions

Example: type (Texp) and type correctness (Vexp) of expressions. Assume

def Expr :=Constant ∪ Variable ∪ Applic
def Constant := IntCons ∪ BoolCons

def Applic := record (op 7→Oper , term 7→Expr , term ′ 7→Expr)

Letting Tmap :=
⋃

dl :DlistV dcl . typmap dl and Tval := {it , bt , ut}, define

def Texp :Tmap →Expr →Tval with

Texp tm = (c : IntCons . it)∪· (c :BoolCons . bt)
∪· (v :Variable . ut) <© tm
∪· (a :Applic . (a op ∈ Arith op) ? it bt)

def Vexp :Tmap →Expr →Bwith

Vexp tm = (c :Constant . 1)∪· (v :Variable . v ∈ D tm)
∪· (a :Applic .Vexp tm (a term) ∧ Vexp tm (a term ′)∧

Texp tm (a term) = Texp tm (a term ′)
= (a op ∈ Bool op) ? bt it))
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d. Semantics of data flow languages

• Already shown: Generic operators for calculations interconnects.

• Semantics: some time ago for Silage (textual), now LabVIEW (graphical)
Example: LabVIEW block Build Array It is generic: configuration parame-
trizable by menu selection (number and kind of input: element or array).

x3

x2

x1

x0

barc x

c = 0, 0, 1, 0

We formalize the configuration by a list in B+ (0 = element, 1 = array)

Semantics example: bar 0,0,1,0 (a, b, (c, d), e) = a, b, c, d, e

Type expression: B+ 3 c→×(i :D c . (V, V ∗) (c i))→V ∗ (base type V )

Image definition: bar c x = ++ i :D c . (τ (x i), x i) (c i) . Point-free form:

def bar— : B+ 3 c→⊗V :T .×((V, V ∗) ◦ c)→V ∗ with
bar c = ++ ◦ ‖ ((τ, id) ◦ c).
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13.6 Relational databases in functional style

a. Database system = storing information + convenient user interface
Presentation: offering precisely the information wanted as “virtual tables”.

Code Name Instructor Prerequisites

CS100 Basic Mathematics for CS R. Barns none
MA115 Introduction to Probability K. Jason MA100
CS300 Formal Methods in Engineering R. Barns CS100, EE150
· · · · · · · · ·

b. Relational database presents the tables as relations.

• Traditional view: rows as tuples (and tuples not seen as functions).
Problem: access only by separate indexing function using numbers.
Patch: “grafting” attribute names for column headings.
Disadvantages: model not purely relational, operators on tables ad hoc.

• Functional view; the table rows as records using recordF = ×(
⋃
· F )

Advantage: embedding in general framework, inheriting algebraic proper-
ties and generic operators.
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c. Relational databases as sets of functions using recordF = ×(
⋃
· F )

Example: the table representing General Course Information

Code Name Instructor Prerequisites

CS100 Basic Mathematics for CS R. Barns none
MA115 Introduction to Probability K. Jason MA100
CS300 Formal Methods in Engineering R. Barns CS100, EE150
· · · · · · · · ·

is declared as GCI :P CID , a set of Course Information Descriptors with

def CID := record (code 7→Code, name 7→A∗, inst 7→ Staff , prrq 7→Code∗)

d. Access to a database: done by suitably formulated queries, such as
(a) Who is the instructor for CS300?
(b) At what time is K. Jason normally teaching a course?
(c) Which courses is R. Barns teaching in the Spring Quarter?

The first query suggests a virtual subtable of GCI
The second requires joining table GCI with a time table.
All require selecting relevant rows.

266



e. Formalizing queries
Basic elements of any query language for handling virtual tables:

selection, projection and natural join [Gries].
Our generic functionals provide this functionality. Convention: record type R.

• Selection (σ) selects in any table S :P R those records satisfying P :R→B.

Solution: set filtering σ (S, P ) = S ↓ P .

Example: GCI ↓ (r :CID . r code = CS300) selects the row pertaining

to question (a), “Who is the instructor for CS300?”.

• Projection (π) yields in any S :P R columns with field names in a set F .

Solution: restriction π (S, F ) = {r eF | r :S} .

Example: π (GCI , {code, inst}) selects the columns for question (a) and

π (GCI ↓ (r :CID . r code = CS300), ι inst) reflects the entire question.
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• Join (on) combines tables S, T by uniting the field name sets, rejecting
records whose contents for common field names disagree.

Solution: S on T = {s∪· t | (s, t) : S ×T ∧. s c© t} (function type merge!)

Example: GCI on CS combines table GCI with the course schedule
table CS (e.g., as below) in the desired manner for answering questions

(b) “At what time is K. Jason normally teaching a course?”
(c) “Which courses is R. Barns teaching in the Spring Quarter?.

Code Semester Day Time Location

CS100 Autumn TTh 10:00 Eng. Bldg. 3.11
MA115 Autumn MWF 9:00 Pólya Auditorium
CS300 Spring TTh 11:00 Eng. Bldg. 1.20
· · · · · · · · · · · · · · ·
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f. Algebraic remarks about function type merge

• Note that S on T = S ⊗ T .

• Note also the compatibility property:

f c© g ∧ (f ∪· g) c©h ≡ f c© g ∧ f c©h ∧ g c©h

and similarly (by symmetry),

(g c©h) ∧ f c© (g∪· h) ≡ g c©h ∧ f c© g ∧ f c©h

This can be used to show

c© (f, g, h) ⇒ (f ∪· g)∪· h = f ∪· (g ∪· h)

Hence, although ∪· is not associative, ⊗ (and hence on) is associative.
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13.7 Final considerations

• Sobering thought: even in “functional” programming languages, the most-
often used data structures (lists, tuples, etc.) are not functions!
Usual reason: restrictions imposed by the implementation

• Observations:

– Implementation principles and techniques evolve in time

– Functional view is “downward compatible” with existing definitions

– Hence this view can still be exploited in reasoning about programs!

• Example (suggested by Steven Johnson). An interleaving variant of zip is

zap [a : x] [b : y] = a : b : zap x y (99)

(intended for infinite sequences). Task: prove that

map f (zap x y) = zap (map f x) (map f y) (100)

This is usually done by co-induction. Alternative: proving it as an instance of
a more general property of generic functionals.
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• Elaboration

Recall def. (??), i.e., zap (a >−x) (b >− y) = a >− b >− zap x y

To prove: (??), i.e., map f (zap x y) = zap (map f x) (map f y)

Note: infinite sequences “are” functions with domain N

– “Quickie” proof for (??) By induction on N, (??) becomes

zap x y (2 · n) = x n and zap x y (2 · n + 1) = y n

So (??) follows by the laws for ◦ since map f x = f ◦x = f x.
Yet: uses a domain variable and case distinction (even, odd argument).

– Proof from general properties Via zap x y n = (x n
2 , y

n−1
2 ) (n † 2),

zap x y = ‖ (x ◦α, y ◦ β)Uγ (101)

where α : {2 · n | n : N}→N with α n = n/2

and β : {2 · n + 1 | n : N}→N with β n = (n − 1)/2,

and γ : N→B with γ n = n † 2.
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– Here we prove map f (zap x y) = zap (map f x) (map f y) (??)

from zap x y = ‖ (x ◦α, y ◦ β)Uγ (??) using the following property of
the generic functionals: for any function f and function family F

f (‖FU) = ‖ ( f F )U (102)

Proof:

map f (zap x y) = 〈map f = f , (??)〉 f (‖ (x ◦α, y ◦ β)Uγ)

= 〈f (g x) = f g x〉 f (‖ (x ◦α, y ◦β)U) γ

= 〈Theorem (??)〉 ‖ ( f (x ◦α, y ◦β))U γ

= 〈f (x, y) = f x, f y〉 ‖ (f (x ◦α), f (y ◦ β))U γ

= 〈f (g ◦h) = f g ◦h〉 ‖ (f x ◦α, f y ◦β)U γ

= 〈map f = f , (??)〉 zap (map f x) (map f y)

Remark: more important than the proof of theorem (??) itself is establishing
theorem (??) as a functional generalization thereof.
Also, the fact that defining sequences as functions allows handling “sequences
with holes” (such as x ◦α and y ◦ β) effortlessly may also prove useful.
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13.8 Conclusion

• Small collection of functionals directly useful in a wide range of applications,
from continuous mathematics to programming

• Generic nature and (hence) wide coverage depend on two elements:

– Unifying view on objects by (re)defining them as functions

– Judicious specification of the domains for the ‘results’ of by the functionals.

Additional benefits: point-free style, useful algebraic rules for calculation

• Examples shown for mathematics of software engineering (predicate calculus),
aspects of programming languages (formal semantics and unifying design) and
quite different application areas (data flow systems and relational data bases).

Not shown here (yet interesting): examples in non-discrete mathematics.

• Valuable side-effect for organizing human knowledge: exploiting similarities
between disparate fields, reducing conceptual and notational overhead, and
making the transition easier by capturing analogies formally.
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