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Abstract. Fuzzy answer set programming (FASP) is a generaliza-
tion of answer set programming (ASP) in which propositions are al-
lowed to be graded. Little is known about the computational com-
plexity of FASP and almost no techniques are available to compute
the answer sets of a FASP program. In this paper, we first present
an overview of previous results on the computational complexity
of FASP under Łukasiewicz semantics, after which we show NP-
completeness for normal and disjunctive FASP programs. Moreover,
for this type of FASP programs we will show a reduction to bilevel
linear programming, thus opening the door to practical applications.

1 INTRODUCTION
Answer set programming (ASP) [1] is a form of declarative pro-
gramming that can be used to model combinatorial search problems.
Specifically, a search problem is translated into a disjunctive ASP
program, i.e. a set of rules of the form

r : a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck,

with ai, bj , cl literals (atoms or negated atoms) or constants (“true”
or “false”) and “not” the negation-as-failure operator. Thus, in ASP
there are two types of negation: classical or strong negation “¬” and
negation-as-failure “not”. The intuitive difference is that ¬a is true
when ¬a can be derived, whereas not a is true if a cannot be derived.
Rule r indicates that whenever the body b1 ∧ . . . ∧ bm ∧ not c1 ∧
. . . ∧ not ck holds, that the head a1 ∨ . . . ∨ an should hold as well.
For example, consider the following ASP program P .

r1 : light ← power, not broken
r2 : power ← 1

Rule r1 informally means that we can conclude that the light is on
if there is no reason to think that the lamp is broken and if we can
establish that the power is on. A rule such as r2 is called a fact; the
head is unconditionally true. Given such a program, the idea is to
find a minimal set of literals that can be derived from the program.
These “answer sets” then correspond to the solutions of the original
search problem. For example, {light, power} is an answer set of P .
Note that “power” should be an element of each answer set of P .
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If the head of each rule consists of exactly one literal, the program
is called normal. If, in addition, a normal program does not contain
“not” nor “¬”, it is called simple.

Given a disjunctive ASP program P and a literal l, we are inter-
ested in the following three decision problems.

1. Existence: Does P have an answer set?
2. Set-membership: Does there exist an answer set I of P such that
l ∈ I?

3. Set-entailment: Does l ∈ I hold for each answer set I of P ?

A summary of the complexity for these decision problems is given
in Table 1.

Table 1. Complexity of inference in ASP [1, 16]

existence set-membership set-entailment
simple in P in P in P
normal NP-complete NP-complete coNP-complete

disjunctive ΣP
2 -complete ΣP

2 -complete ΠP
2 -complete

Recall that ΠP
2 = coΣP

2 , where ΣP
2 -membership means that the

problem can be solved in polynomial time on a non-deterministic
machine using an NP oracle.

Although ASP allows us to model combinatorial optimization
problems in a concise and declarative manner, it is not directly suit-
able for expressing problems with continuous domains. Fuzzy an-
swer set programming (FASP) (e.g. [20, 32]) is a generalization of
ASP based on fuzzy logics [19] that is capable of modeling contin-
uous systems by using an infinite number of truth values that corre-
spond to intensities of properties. A (general) FASP program is set
of rules of the form

r : g(a1, . . . , an)← f(b1, . . . , bm, not c1, . . . , not ck),

with ai, bj , cl literals (atoms or negated atoms) or constants c (with
c ∈ [0, 1]∩Q) and “not” the negation-as-failure operator, and where
f and g correspond to applications of fuzzy logical disjunctions and
conjunctions. Rule r now intuitively means that the truth value of the
head must be greater or equal than the truth value of the body. For
example, consider the following program P :

r1 : open ← not closed
r2 : closed ← not open

The properties “open” and “closed” can be given a value in [0, 1]
depending on the extent, e.g. the angle, to which a door is opened
resp. closed. The rule r1 intuitively means that the door is open to
a degree greater or equal than the extent to which the door is not
closed. Rule r2 implies the opposite property.



In recent years, a variety of approaches to FASP have been pro-
posed (e.g. [13, 21, 23, 28, 29, 30]). The main differences are the
type of connectives that are allowed, the truth lattices that are used,
the definition of a model of a program and the way that partial satis-
faction of rules is handled. Note that FASP is not used to deal with
uncertainty, but with partial truth. See [15] for a discussion on the dif-
ference between these two concepts. To deal with uncertainty, ASP
can be extended with possibility theory (e.g. [6]) or with probability
theory (e.g. [2]). Still, FASP is sometimes useful as a vehicle to sim-
ulate probabilistic or possibilistic extensions of ASP, as its ability to
model continuity can be used to manipulate certainty degrees [6, 14].

In particular, in this paper we are interested in disjunctive FASP
programs, i.e. FASP programs with rules of the form

a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ . . . bm ⊗ not c1 ⊗ . . .⊗ not ck,

where ⊕ and ⊗ are respectively the Łukasiewicz disjunction and
the Łukasiewicz conjunction and where ← is interpreted by the
Łukasiewicz implicator (see Section 2.2). Other types of programs
of interest are normal FASP programs, i.e. disjunctive FASP pro-
grams in which each rule has exactly one literal in the head, and
simple FASP programs, i.e. normal FASP programs that do not con-
tain “not” nor “¬”.

Łukasiewicz logic is often used in applications because it pre-
serves many desirable properties from classical logic. It is closely
related to mixed integer programming, as was first shown by Mc-
Naughton [24] in a non-constructive way. Later, Hähnle [18] gave a
concrete, semantics-preserving, translation from a set of formulas in
Łukasiewicz logic into a mixed integer program. Checking the satis-
fiability of a Łukasiewicz logic formula thus essentially corresponds
to checking the feasibility of a mixed integer program.

By construction, FASP relates to Łukasiewicz logic as ASP does
to classical logic. For Łukasiewicz logic, satisfiability is an NP-
complete problem [25]. Since satisfiability has the same complex-
ity for classical logic, one would expect ASP and FASP to have the
same complexity as well. In the case of probabilistic ASP, the com-
plexity of the existence problem has been shown to be ΣP

2 -complete
[22]. On the other hand, it does not necessarily need to hold that
the computational complexity remains the same, for instance in the
case of description logics. There are fuzzy description logics that,
unlike the classical case, do not have the finite model property under
Łukasiewicz logic or under product logic [9] and there are descrip-
tion logics that are undecidable under Łukasiewicz logic [11]. In a
previous paper [7] we showed ΣP

2 -completeness for general FASP
programs under Łukasiewicz semantics for the set-membership prob-
lem “Given a program P , a value λ ∈ [0, 1] ∩ Q and a literal l. Is
there an answer set I of P such that I(l) ≥ λ?”. However, for dis-
junctive FASP programs we were able to show NP-membership; a
lower complexity than for the corresponding class of ASP programs.
In this paper, we will extend the results from [7] by showing NP-
completeness for normal and disjunctive FASP programs. Moreover,
we will provide an implementation into bilevel linear programming.
This result can be used as a basis to built solvers for FASP.

Intuitively, in a bilevel linear programming problem there are two
agents: the leader and the follower. The leader goes first and attempts
to optimize his/her objective function. The follower observes this and
makes his/her decision. Since it caught the attention in the 1970s,
there have been many algorithms proposed for solving bilevel lin-
ear programming problems (e.g. [4, 10, 27]). A popular way to solve
such a problem, e.g. in [4], is to translate the bilevel linear program-
ming problem into a nonlinear programming problem using Kuhn-
Tucker constraints. This new program is a standard mathematical

program and relatively easy to solve because all but one constraint
is linear. In a later study [5], an implicit approach to satisfying the
nonlinear complementary constraint was proposed, which proved to
be more efficient than the known strategies.

The paper is structured as follows. In Section 2 we provide the
necessary background on ASP, Łukasiewicz logic and FASP. In Sec-
tion 3 we will discuss previous results about the computational com-
plexity of FASP. In Sections 4 and 5 we will derive new complexity
results for disjunctive FASP programs, and in Section 6 we provide
an implementation using bilevel linear programming for this class of
programs. Finally, we present some conluding remarks in Section 7.

2 BACKGROUND
2.1 Answer set programming (ASP)
A disjunctive ASP program is a finite set of rules of the form

r : a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bm ∧ not c1 ∧ . . . ∧ not ck,

with ai, bj , cl literals (atoms a or negated atoms ¬a) and/or the con-
stants 1 (true) or 0 (false) with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and
l ∈ {1, . . . , k}. The operator “not” is the negation-as-failure oper-
ator. Intuitively, the expression not a is true if there is no proof that
supports a. On the other hand, ¬a is essentially seen as a new literal,
which has no connection to a, except for the fact that answer sets
containing both a and ¬a will be designated as inconsistent. If l is a
literal, then we define ¬l := ¬a if l = a with a an atom and ¬l := a
if l = ¬a with a an atom.

We refer to the rule by its label r. The expression a1 ∨ . . .∨ an is
called the head rh of r and b1∧ . . .∧bm∧not c1∧ . . .∧not ck is the
body rb of r. In ASP, a rule of the form “0← a”, i.e. a constraint, is
usually written as “← a” and a rule of the form “a← 1”, i.e. a fact,
as “a←”.

Different classes of ASP programs are often considered, depend-
ing on the type of rules that they contain. If P does not contain rules
with negation-as-failure, it is called a positive (disjunctive) ASP pro-
gram. If each rule in P has exactly one literal in the head, it is called
a normal ASP program. If P is a normal ASP program that is posi-
tive, it is called a definite ASP program. A definite ASP program not
containing strong negation is called a simple ASP program.

An interpretation I of P is any consistent set of literals I ⊆ LP

with
LP = {l | l literal in P} ∪ {¬l | l literal in P}

and where we say that I is consistent if for no literal l in LP we
have that l ∈ I and ¬l ∈ I . The set of interpretations I ⊆ LP will
be denoted by P(LP ). A literal l is true w.r.t. I , denoted as I |= l,
if l ∈ I . An interpretation I ∈ P(LP ) can be extended to rules as
follows:

• I |= 1, I 2 0,
• I |= not l iff I 2 l,
• I |= (α ∧ β) iff I |= α and I |= β,
• I |= (α ∨ β) iff I |= α or I |= β,
• I |= (α← β) iff I |= α or I 2 β.

with l a literal and α and β relevant expressions.
An interpretation I ∈ P(LP ) is called a model of a disjunctive

ASP program P if I |= r for each rule r ∈ P . A model I of P is
minimal if there exists no model J of P such that J ⊂ I , i.e. J ⊆ I
and J 6= I . An interpretation I ∈ P(LP ) is called an answer set of
a positive disjunctive ASP program P if it is a minimal model of P .
Note that a simple ASP program P has exactly one answer set.



To define the semantics for disjunctive ASP programs P that are
not positive, one starts from a candidate answer set I ∈ P(LP ) and
computes the Gelfond-Lifschitz reduct P I [17] by removing all rules
in P that contain expressions of the form not l with l ∈ I and re-
moving all expressions of the form not l in the remaining rules. An
interpretation I ∈ P(LP ) is called an answer set of P if it is an
answer set of the positive program P I .

Example 1. Consider the normal ASP program P

b ← not a
a ← not b

with a and b atoms. For an interpretation I1 = {a}, we have that
P I1 is equal to

a ←

Since I1 is a minimal model of P I1 , we conclude that I1 is an answer
set of P . Similar, I2 = {b} is also an answer set of P . One can easily
check that these are the only answer sets.

Remark 1. Note that an interpretation I ∈ P(LP ) can be seen as
a mapping I : LP → {0, 1} where I(l) = 1 if l ∈ I and I(l) = 0 if
l /∈ I .

Remark 2. A disjunctive ASP program P with strong negation can
be translated to a disjunctive ASP program P ′ without strong nega-
tion, by replacing each literal of the form ¬a with a new atom a′ and
adding the constraint← a ∧ a′. An interpretation I ∈ P(LP ) is an
answer set of P iff there exists an answer set I ′ ∈ P(LP ′) of P ′

such that I(c) = I ′(c) and I(¬c) = I ′(c′) for each atom c ∈ LP .

2.2 Łukasiewicz logic
Fuzzy logics [19] form a class of logics whose semantics are based
on truth degrees taken from the unit interval [0, 1]. Łukasiewicz logic
is a particular type of fuzzy logic that is often used in applications
since it preserves many properties from classical logic.

In this paper, we will consider formulas built from a set of atoms
A, constants c for each element c ∈ [0, 1] ∩ Q and the connectives
conjunction ⊗, disjunction ⊕, negation ∼ and implication →. The
semantics of this logic are defined as follows. A fuzzy interpretation
is a mapping I : A→ [0, 1] that can be extended to arbitrary formu-
las as follows;

• [c]I = c,
• [α⊗ β]I = max([α]I + [β]I − 1, 0),
• [α⊕ β]I = min([α]I + [β]I , 1),
• [α→ β]I = min(1− [α]I + [β]I , 1) and
• [∼ α]I = 1− [α]I .

for a constant c and α and β formulas. The set of all fuzzy interpre-
tations C → [0, 1] with C an arbitrary set will be written as F(C).
We say that I ∈ F(A) is a fuzzy model of a set of formulas B if
[α]I = 1 for each α ∈ B. For I1, I2 ∈ F(A) we write I1 ≤ I2 if
I1(a) ≤ I2(a) for each a ∈ A. A fuzzy model I of a set of formu-
las B is called a minimal fuzzy model if there does not exist a fuzzy
model J of B such that J < I , i.e. J ≤ I and J 6= I .

2.3 Fuzzy answer set programming (FASP)
We now recall a fuzzy version of ASP based on [20], combining ASP
(Section 2.1) and Łukasiewicz logic (Section 2.2).

A general FASP program (under Łukasiewicz semantics) is a finite
set of rules of the form

r : g(a1, . . . , an)← f(b1, . . . , bm, not c1, . . . , not ck),

with ai, bj , cl literals (atoms a or negated atoms ¬a) and/or the con-
stants c (where c ∈ [0, 1]∩Q) with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}
and l ∈ {1, . . . , k} and “not” the negation-as-failure operator. The
connectives f and g are compositions of the Łukasiewicz connectives
⊗ and ⊕. As for ASP, ¬a is essentially seen as a new literal, which
has no connection to a, except for the fact that answer sets containing
both a and ¬a “to a sufficiently high degree” will be designated as
inconsistent. If l is a literal, then we define ¬l := ¬a if l = a with a
an atom and ¬l := a if l = ¬a with a an atom.

We refer to the rule by its label r and g(a1, . . . , an) is called
the head rh of r and f(b1, . . . , bm, not c1, . . . , not ck) is called the
body rb of r. Rules of the form c ← α with c a constant are called
constraints. As for ASP, we will consider several classes of FASP
programs. FASP programs without negation-as-failure are called
positive FASP programs. FASP programs only containing rules of
the form

a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck

are called disjunctive FASP programs. If a disjunctive FASP has ex-
actly one literal in the head of each rule, it is called normal and if a
normal FASP program is positive and does not contain strong nega-
tion, it is called simple.

A consistent fuzzy interpretation I of a FASP program P is any
element of F(LP ) such that I(l) + I(¬l) ≤ 1 for each l ∈ LP with

LP = {l | l literal in P} ∪ {¬l | l literal in P}.

A fuzzy interpretation I ∈ F(LP ) is extended to rules as follows:

• [c]I = c
• [not l]I = 1− I(l)
• [f(α, β)]I = f([α]I , [β]I) where f is a prefixnotation for⊗ or⊕

and f is the corresponding function defined on [0, 1] (see Section
2.2)

• [α← β]I = min(1− [α]I + [β]I , 1)

with c a constant, l a literal and α and β relevant expressions.
A fuzzy interpretation I ∈ F(LP ) is a fuzzy model of a FASP

program P if [r]I = 1 for each rule r ∈ P . For I1, I2 ∈ F(LP ) we
write I1 ≤ I2 iff I1(l) ≤ I2(l) for each l ∈ LP . A fuzzy model I of
P is a minimal fuzzy model if there exists no model J of P such that
J < I , i.e. J ≤ I and J 6= I . A fuzzy interpretation I ∈ F(LP )
is called an answer set of a positive FASP program P if it is a min-
imal fuzzy model of P . Remark that a positive FASP program can
have none, one or several answer sets [31]. However, similar as for
ASP, a simple FASP program has exactly one answer set which coin-
cides with the least fixpoint of the immediate consequence operator
ΠP [13]. This operator maps fuzzy interpretations to fuzzy interpre-
tations and is defined as

ΠP (I)(a) = sup{[rb]I | (a← rb) ∈ P},

for an atom a ∈ LP and I ∈ F(LP ). For programs that are not
positive, a generalization of the Gelfond-Lifschitz reduct [20] is used.
In particular, for a program P and a fuzzy interpretation I ∈ F(LP )
the reductP I ofP w.r.t. I is obtained by replacing in each rule r ∈ P
all expressions of the form not l by the interpretation [not l]I ; we
denote the resulting rule by rI . This new program P I = {rI | r ∈
P} is a positive FASP program and I is called an answer set of P if
I is an answer set of P I .



Example 2. Consider the normal FASP program P

b ← not a
a ← not b

with a and b atoms. We show that for each x ∈ [0, 1], Mx with
Mx(a) = x and Mx(b) = 1 − x is an answer set of P . We first
compute the reduct PMx :

b ← 1− x
a ← x

The minimal model of PMx is then exactly Mx. Note that there are
infinitely many answer sets.

Remark 3. Note that [0← a⊗a′]I = 1 iff I(a)+I(a′) ≤ 1. Hence,
a FASP program P with strong negation can be translated to a FASP
program P ′ without strong negation by replacing each literal of the
form ¬a by a new atom a′ and adding the constraint 0← a⊗ a′. An
interpretation I ∈ F(LP ) is an answer set of a FASP program P iff
there exists an answer set I ′ ∈ F(LP ′) of P ′ such that I(c) = I ′(c)
and I(¬c) = I ′(c′) for each atom c ∈ LP .

The following lemma is easily shown from the above definitions.

Lemma 1. Let P be a FASP program such that P = P1 ∪ C where
C is a set of constraints in P and I ∈ F(LP). It holds that I is an
answer set of P iff I is an answer set of P1 and I is a fuzzy model of
C.

Remark 4. In Lemma 1, the interpretation I : LP → [0, 1] is a
model of P1 if [r]I = 1 for each r ∈ P1 and I(l) ∈ [0, 1] for
l /∈ LP1 .

3 Complexity of FASP
In this section, we will recall some existing results about the com-
putational complexity of FASP. In particular, we will consider the
following decision problem. Given a general FASP program P , a lit-
eral l ∈ LP and a value λl ∈ [0, 1] ∩ Q, is there an answer set I of
P such that I(l) ≥ λl? We will refer to this decision problem as the
set-membership problem.

For the computational complexity of the set-membership problem
for general FASP programs, i.e. programs containing rules of the
form

r : g(a1, . . . , an)← f(b1, . . . , bm, not c1, . . . , not ck),

where f and g are arbitrary compositions of the Łukasiewicz con-
nectives⊗ and⊕, one can show ΣP

2 -completeness. Indeed, from the
complexity of fuzzy equilibrium logic [26], it follows that the set-
membership problem for general FASP programs under Łukasiewicz
semantics is in ΣP

2 . To show hardness, disjunctive ASP, which is ΣP
2 -

hard [16] can be reduced to general FASP by replacing the classical
connectives by the corresponding Łukasiewicz connectives and by
adding for each literal l in P the rule l ← l ⊕ l to ensure that the
truth value of l is either 0 or 1. In [8], for programs with exactly one
atom in the head of each rule and no “¬” or “not“ we could only
show coNP-membership. However, for some subclasses of this type
of programs we could show P-membership. For example for pro-
grams having only disjunctions in the bodies of rules. We refer to [8]
for an extensive overview.

Some previous results for the complexity of the set-membership
problem for disjunctive FASP can be found in Table 2. In the next

section we will extend these results by showing NP-completeness
for normal and disjunctive FASP programs, even if constraints and
strong negation are not allowed. We will also present results for other
decision problems.

Table 2. Complexity of the set-membership problem for disjunctive FASP
[7]

set-membership
simple in P
normal in NP

disjunctive in NP

4 NP-completeness of disjunctive FASP
In this section we will investigate the complexity of important deci-
sion problems for disjunctive FASP, i.e. the class of FASP programs
that are sets of rules of the form

a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm ⊗ not c1 ⊗ . . .⊗ not ck

with ai, bj , cl literals (atoms a or negated atoms ¬a) and/or the con-
stants c (where c ∈ [0, 1]∩Q) with i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}
and l ∈ {1, . . . , k}.

Given a (disjunctive) FASP program P , a literal l ∈ LP and a
value λl ∈ [0, 1] ∩ Q, we are interested in the following decision
problems.

1. Existence: Does there exist an answer set I of P ?
2. Set-membership: Does there exist an answer set I of P such that
I(l) ≥ λl?

3. Set-entailment: Is I(l) ≥ λl for each answer set I of P ?

Remark that these decision problems are generalizations of the
ones for ASP for which the complexity is given in Table 1. As we
have already pointed out in the introduction, one would expect ASP
and FASP to have the same computational complexity since FASP
relates to Łukasiewicz logic as ASP does to classical logic and the
complexity of all the main reasoning tasks in Łukasiewicz logic is
as in classical propositional logic. However, as will be proved in this
section, the computational complexity for disjunctive FASP turns out
to be lower than the one for disjunctive ASP.

We will first show that set-membership for disjunctive FASP is
NP-complete. We will do this by showing NP-membership in Propo-
sition 1 and by showing in Proposition 2 that it is already NP-hard
for a subclass of disjunctive FASP. Next, in Propositions 3 and 4, we
derive resp. NP-completeness and coNP-completeness for resp. the
existence and the set-entailment problem for this particular subclass.
The proofs of these propositions can then be used to show resp. NP-
completeness and coNP-completeness for resp. the existence and the
set-entailment problem for disjunctive FASP.

Proposition 1. Set-membership for disjunctive FASP is in NP.

Proof. From the analysis of the geometrical structure underlying
fuzzy equilibrium models [26], it follows that a FASP program P
has an answer set I such that I(l) ≥ λl iff there is such an answer
set that can be encoded using a polynomial number of bits.

Given a disjunctive program P and an answer set I; we check in
polynomial time that I is an answer set of P . Note that checking if
I(l) ≥ λl for a literal l can be done in constant time. By definition,
we need to check that I is a minimal fuzzy model of P I and that for



each l ∈ LP we have I(l) + I(¬l) ≤ 1. The latter is straightfor-
ward. To check whether I is a fuzzy model of P I , one can use linear
programming. Indeed for a rule r : a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm
in P I , seen as a Łukasiewicz formula, we have that

[b1 ⊗ . . .⊗ bm → a1 ⊕ . . .⊕ an]I = 1
⇔ [(∼ b1)⊕ . . .⊕ (∼ bm)⊕ a1 ⊕ . . .⊕ an]I = 1
⇔ I(∼ b1) + . . .+ I(∼ bm) + I(a1) + . . .+ I(an) ≥ 1
⇔ 1− I(b1) + . . .+ 1− I(bm) + I(a1) + . . .+ I(an) ≥ 1

Hence, to check whether I is a fuzzy model of P I we use the
following linear program M . The function to be minimized is the
sum

∑
a∈P I a of all literals in P I and the constraints in M are the

following. For each literal a ∈ LP I we have 0 ≤ a ≤ 1 and a ≤
I(a) and for each rule

r : a1 ⊕ . . .⊕ an ← b1 ⊗ . . .⊗ bm

in P I we have

1 ≤ 1− b1 + . . .+ 1− bm + a1 + . . .+ an

or equivalently

1−m ≤ −b1 − . . .− bm + a1 + . . .+ an.

IfM has as solution I(a) for each literal a, then I is a minimal fuzzy
model.

Next, to obtain NP-completeness for the set-membership problem,
we prove that it is NP-hard by showing a reduction from 3SAT, which
is NP-complete [12], to disjunctive FASP. 3SAT is a decision prob-
lem whose instances are Boolean expressions written in conjunctive
normal form with 3 variables in each clause, i.e. expressions of the
form

(a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (an1 ∨ an2 ∨ an3),

where each aij is an atom or a negated atom, i.e. a literal. The prob-
lem consists of deciding whether there is a consistent assignment of
“true” and “false” to the literals such that the whole expression eval-
uates to “true”.

Proposition 2. Set-membership for normal FASP is NP-hard if con-
straints are allowed.

Proof. Consider an arbitrary instance

(a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (an1 ∨ an2 ∨ an3)

of 3SAT. We will refer to this expression by α. We translate each
clause ai1 ∨ ai2 ∨ ai3 to the rule

0← ¬ai1 ⊗ ¬ai2 ⊗ ¬ai3 (1)

and for each literal x in α we add the rules

¬x← notx (2)

x← not(¬x) (3)

x′ ← x (4)

x′ ← ¬x (5)

0← not(x′) (6)

where x′ is a fresh atom not used in α. We denote the resulting FASP
program by P .

1. First suppose that I is an answer set of P . By Lemma 1 we know
that I is an answer set of P1 and a fuzzy model of C where P1 is
the set of all rules in P of the form (2)-(5) and C is the set of all
constraints of the form (1) and (6).
Since I is a minimal fuzzy model of (P1)I we know that for each
literal x it holds that I(x) = 1 − I(¬x) by rules (2) and (3) and
I(x′) = max(I(x), I(¬x)) by rules (4) and (5). Since I must be
a fuzzy model of the constraints in C, it follows that 1− I(x′) =
0 by rule (6). If I(x′) = I(x), then I(x) = 1 and I(¬x) =
0. Otherwise, if I(x′) = I(¬x), then I(¬x) = 1 and I(x) =
0. Hence, I is a Boolean interpretation. Since it also holds that
I(x)+I(¬x) ≤ 1 it is not possible that I(x) = 1 and I(¬x) = 1.
Hence I is consistent.
Let us define the assignment G as follows. For each literal x in
α we have G(x) = “true” if I(x) = 1 and G(x) = “false” if
I(x) = 0. We check that this assignment evaluates α to “true”.
This follows easily by the following equations:

[¬ai1 ⊗ ¬ai2 ⊗ ¬ai3 → 0]I = 1
⇔ [0⊕ ∼ (¬ai1 ⊗ ¬ai2 ⊗ ¬ai3)]I = 1
⇔ [0⊕ ∼ (¬ai1)⊕ ∼ (¬ai2)⊕ ∼ (¬ai3)]I = 1
⇔ 0 + 1− I(¬ai1) + 1− I(¬ai2) + 1− I(¬ai3) ≥ 1

Since for I it holds that I(x) = 1 − I(¬x) for each literal x, we
obtain that

[¬ai1 ⊗ ¬ai2 ⊗ ¬ai3 → 0]I = 1
⇔ I(ai1) + I(ai2) + I(ai3) ≥ 1

Because I is a Boolean interpretation, it must hold that I(aij) = 1
for at least one literal aij in each clause. Hence, G is an assign-
ment that evaluates each clause ai1∨ai2∨ai3, and thus the whole
expression α, to “true”.

2. Now suppose that P has no answer set. We need to show that there
is no assignment of the literals such that expression α evaluates to
“true”. We will show this by contraposition.
Consider an assignment G such that each clause ai1 ∨ ai2 ∨ ai3
evaluates to “true”. We define a fuzzy interpretation in F(LP )
by I(x) = 1 if G(x) = “true”, I(x) = 0 if G(x) = “false”,
I(¬x) = 1 − I(x) and I(x′) = max(I(x), I(¬x)). We show
that I is an answer set of P , or by Lemma 1 that it is a minimal
fuzzy model of (P1)I and a fuzzy model ofC. It is clear that I is a
fuzzy model of (P1)I . Now suppose there exists a fuzzy model J
of (P1)I such that J < I . Since I is such that I(¬x) + I(x) = 1,
by the rules

¬x ← notx
x ← not(¬x)

in P1 it follows that

J(¬x) ≥ [notx]I = 1− I(x) = I(¬x) ≥ J(¬x)

and

J(x) ≥ [not(¬x)]I = 1− I(¬x) = I(x) ≥ J(x).

Hence we have for each literal x that J(x) = I(x) and J(¬x) =
I(¬x). Since J < I , there must exist a literal x such that J(x′) <
I(x′) which implies by the rules

x′ ← x
x′ ← ¬x

in P1 that

I(x′) > J(x′) ≥ I(x) and I(x′) > J(x′) ≥ I(¬x).



This is impossible since either I(x) = 1 or I(¬x) = 1 and then
I(x′) > 1.
It remains to be shown that I is a fuzzy model of C. Since
I(x′) = max(I(x), I(¬x)) = 1 we have that I models the rule
0← not(x′) for each literal x. As before, we obtain

[0← ¬(ai1)⊗ ¬(ai2)⊗ ¬(ai3)]I = 1
⇔ I(ai1) + I(ai2) + I(ai3) ≥ 1

Since each clause ai1 ∨ ai2 ∨ ai3 is satisfied by G, we know that
for least one aij it must hold that I(aij) = 1. Hence I(ai1) +
I(ai2) + I(ai3) ≥ 1.

Corollary 1. Set-membership for normal FASP, if constraints are
allowed, is NP-complete.

Corollary 2. Set-membership for disjunctive FASP is NP-complete.

Proof. Follows by the reduction in the proof of Proposition 2.

Proposition 3. Existence for normal FASP, if constraints are al-
lowed, is NP-complete.

Proof. The same proof as for Proposition 1 can be used to show NP-
membership and the proof for NP-hardness is entirely analogue to
the proof for Proposition 2.

Corollary 3. Existence for disjunctive FASP is NP-complete

Proof. Follows by the proof of Proposition 3.

Proposition 4. Set-entailment for normal FASP, if constraints are
allowed, is coNP-complete.

Proof. Let us denote normal FASP for which constraits are allowed
by the term “extended normal FASP”.

1. One can show that the complementary decision problem, i.e.
“Given an extended normal FASP program P , a literal l ∈ LP

and a value λl ∈ [0, 1] ∩ Q; is there an answer set I of P such
that I(l) < λl?” is in NP by adjusting the proof of Proposition 1;
it now has to be checked whether I(l) < λl instead of I(l) ≥ λl.
This shows coNP-membership.

2. To show coNP-hardness, we reduce the NP-hard problem “exis-
tence” to the complement of the set-entailment problem. Consider
an extended normal FASP program P . Define P ′ = P ∪{a← a}
with a a fresh atom. Note that I is an answer set of P iff I ′ with
I ′(a) = 0 and I ′(x) = I(x) otherwise is an answer set I ′ of P ′.
If there exists an answer set I ′ of P ′ such that I ′(a) < 0.5, then
I = I ′|LP

is an answer set of P . If there does not exist an answer
set I ′ of P ′ such that I ′(a) < 0.5, then P has no answer sets
since for each answer set I ′ it must hold that I ′(a) = 0. Hence P
has an answer set iff it is not the case that all answer sets I ′ of P ′

are such that I ′(a) ≥ 0.5.

Corollary 4. Set-entailment for disjunctive FASP is coNP-complete.

Proof. Follows by the proof of Proposition 4.

A summary of these results can be found in Table 3.

5 COMPLEXITY OF DISJUNCTIVE FASP
PROGRAMS WITHOUT STRONG
NEGATION OR CONSTRAINTS

In this section we will investigate the complexity of the set-
membership for disjunctive FASP if strong negation and constraints
are not allowed and show that it remains NP-complete. Moreover,
we will proof that for normal FASP, even if strong negation is not
allowed, it is also NP-complete.

First, we provide a lemma that enables us to simulate constraints
of a FASP program. In this lemma we will use the notation f|A to
denote the function that is the restriction of f : B → C to the
domain A ⊆ B.

Lemma 2. Consider a FASP program P = P1 ∪ C where P1 is a
FASP program and C is a set of constraints of the form 0 ← α. Let
P ′ = P1 ∪ C′ ∪ {z ← not y} where z and y are fresh atoms and
C′ = {y ← α | (0← α) ∈ C}.

A fuzzy interpretation I ∈ F(LP ) is an answer set of P iff there
exists an answer set I ′ ∈ F(LP ′) such that I ′|LP

= I and I ′(z) ≥
1.

Proof. 1. Suppose that I ∈ F(LP ) is an answer set of P . Define
I ′ ∈ F(LP ′) as I ′(a) = I(a) if a ∈ LP , I ′(z) = 1 and I ′(y) =
0. We show that I ′ is an answer set of P ′.
First, we prove that I ′ is a fuzzy model of P ′ and thus of (P ′)I

′
.

Clearly, I ′ is a fuzzy model of P1 and it models the rule z ←
not y. If y ← α is a rule in C′, then by assumption we have that
I = I ′|LP

models the rule 0 ← α. Thus [0 ← α]I′ = 1 and
[α]I′ = 0 = I ′(y). Hence I ′ models y ← α.
Next, we show that I ′ is a minimal fuzzy model of (P ′)I

′
. Sup-

pose there exists a fuzzy model J ′ ∈ F(LP ′) of (P ′)I
′

such
that J ′ ≤ I ′. We show that J = J ′|LP

is a fuzzy model of P I .
Clearly, J is a fuzzy model of (P1)I . Since J ′ ≤ I ′ we have
that J ′(y) ≤ I ′(y) = 0, thus given a rule r : 0 ← α in C
we have that for the corresponding rule y ← α in C′ it holds
that 0 = J ′(y) ≥ [αI ]J , with αI the reduct of the expression α
w.r.t. I . Hence [rI ]J = 1. Because I is a minimal fuzzy model
of P I , it follows that I = J . As mentioned before, we have
J ′(y) = I ′(y) and since [z ← [not y]I′ ]J′ = 1, we also have
J ′(z) ≥ 1 − I ′(y) = I ′(z) ≥ J ′(z). Hence I ′ = J ′, which
shows that I ′ is a minimal fuzzy model of (P ′)I

′
.

2. Suppose that I ′ ∈ F(LP ′) is an answer set of P ′ such that
I ′(z) = 1. We show that I = I ′|LP

is an answer set of P . By
Lemma 1 it is sufficient to show that I is an answer set of P1 and
a fuzzy model of C.
First, we show that I is a fuzzy model of C. Since I ′ is a minimal
fuzzy model of (P ′)I

′
, it must hold that I ′(z) = 1 − I ′(y) and

thus that I ′(y) = 0. Given a rule r : 0 ← α in C we have that
for the corresponding rule y ← α in C′ it holds that 0 = I ′(y) ≥
[α]I′ , and thus [r]I = 1.
Next, note that I is a fuzzy model of (P1)I since I ′ is a fuzzy
model of (P1)I

′
. Now suppose there exists a fuzzy model J ∈

F(LP1) of (P1)I such that J ≤ I . Define J ′ ∈ F(LP ′) as fol-
lows: J ′(a) = J(a) if a ∈ LP , J ′(y) = 0 and J ′(z) = 1. We
show that J ′ is a fuzzy model of (P ′)I

′
. By assumption, J ′ is

a fuzzy model of (P1)I
′
. For the rule r : z ← not y in P ′ we

have J ′(z) = 1 = I ′(z) ≥ [not y]I′ , hence J ′ models rI . Fi-
nally, given a rule r : y ← α in C′ we have for the corresponding
rule 0 ← α in C that J ′(y) = 0 ≥ [αI′ ]J′ . Hence J ′ models
rI

′
. Since J ′ ≤ I ′ and I ′ is a minimal fuzzy model of (P ′)I

′
it



Table 3. Complexity of inference in disjunctive FASP

existence set-membership set-entailment
disjunctive FASP NP-complete NP-complete coNP-complete

normal FASP, if constraints are allowed NP-complete NP-complete coNP-complete

follows that J ′ = I ′ and thus J = I .

We use this lemma to show a variation of the reduction proposed
in the proof of Proposition 2.

Proposition 5. Set-membership for normal FASP is NP-hard.

Proof. Consider an arbitrary instance

(a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (an1 ∨ an2 ∨ an3)

of 3SAT. We will refer to this expression by α. As shown in the proof
op Proposition 2, α is satisfied by an assigment G iff the propo-
sitional interpretation I , with I(x) = 1 if G(x) = “true” and
I(x) = 0 if G(x) = “false” is an answer set of P with P the
program obtained by translating each clause ai1 ∨ ai2 ∨ ai3 (see the
proof of Proposition 2).

By Remark 3 it follows that P can be rewritten to a disjunctive
FASP P ′ without strong negation and in which the head contains
exactly one atom or the constant 0 such that there is a one-on-one
correspondence between the answer sets. By Lemma 2, it follows that
we can define a disjunctive FASP program P ′′ such that the answer
sets of P ′ correspond to the answer sets of P ′′ for which a certain
atom has at least truth value 1.

Corollary 5. Set-membership for normal FASP is NP-complete, even
is strong negation is not allowed.

Proof. Follows by the reduction in the proof of Proposition 5.

Corollary 6. Set-membership for disjunctive FASP programs is NP-
complete, even if constraints and strong negation are not allowed.

Proof. Follows by the reduction in the proof of Proposition 5.

A summary of these results can be found in Table 4.

6 Reduction to bilevel linear programming

In this section, we will show that we can translate disjunctive FASP
programs into bilevel linear programs such that all solutions of the
bilevel linear program are answer sets and if there are no solutions,
then there are no answer sets. Bilevel linear programming problems
are optimization problems in which the set of all variables is divided
into two sets X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Each
possibility of assignments to the variables will be denoted by the
vector x = (x1, . . . , xn) for X and by the vector y = (y1, . . . , yn)
for Y .

Intuitively, there are two agents, a leader who is responsible for
the variables in X and a follower responsible for the variables in Y .
Each vector y has to be chosen by the follower in function of the
choice by the leader x as an optimal solution of the so-called lower
level problem or the follower’s problem. Knowing this reaction, the
leader then wants to optimize his objective function in the so-called
upper level problem or the leader’s problem.

In a bilevel linear program all objective functions and constraints
are linear. In particular, the type of bilevel linear programming prob-
lem in which we are interested is given by Bard [3]:

arg minx c1x + d1y
s.t. A1x +B1y ≤ b1

arg miny c2x + d2y
s.t. A2x +B2y ≤ b2

where c1, c2 ∈ Rn, d1, d2 ∈ Rm, b1 ∈ Rp, b2 ∈ Rq , A1 ∈ Rp×n,
B1 ∈ Rp×m, A2 ∈ Rq×n and B2 ∈ Rq×m.

Now consider a disjunctive FASP program P . We will translate P
to a bilevel linear programQ such that the solutions ofQ correspond
to the answer sets of P . By definition I is an answer set of P iff
I is an answer set of P I . Informally, a guess I needs to be made
first and then it has to be checked whether this guess corresponds to
an answer set of P . If LP = {a1, . . . , an}, then we will define the
vector a = (a1, . . . , an) and the vector a′ = (a′1, . . . , a

′
n) where

each a′i intuitively corresponds to a guess for ai. For each such guess
I , I(ai) = a′i, we want to check if it is a minimal fuzzy model of
P I . Note that P I is a positive FASP program in which each rule is
of the form

r : l1 ⊕ . . .⊕ ln ← x1 ⊗ . . .⊗ xm, (7)

with li, xj literals and/or constants. Similar to a previous calculation
in Proposition 2, if a fuzzy interpretation J ∈ F(LP ) is a model of
r, then it must hold that

J(l1) + . . .+ J(ln) ≥ J(x1) + . . .+ J(xm)− (m− 1).

Thus for each rule r ∈ P I we have a constraint x1 + . . . + xm −
m+ 1 ≤ l1 + . . .+ ln.

Hence, for each guess a′, i.e. an interpretation I , we check if
there is a minimal model J of P I such that J(ai) ≤ I(ai) = a′i
by minimizing all elements in the vector a subject to the constraints
arising from P I . This is the follower’s problem. Finally, the guess is
chosen such that the differences between J(ai) and a′i are as small
as possible. This can be done by minimizing the function

∑n
i=1(a′i−

ai). If this sum is equal to 0, we have found a answer set. If this sum
is not equal to 0, there cannot be an answer set.

More structured, we have

arg mina′
∑n

i=1(a′i − ai)
s.t. arg mina

∑n
i=1 ai

s.t. ai + ¬ai ≤ 1,
0 ≤ ai ≤ 1, ai ≤ a′i and∑m

j=1 xj −m+ 1 ≤
∑n

i=1 li for each rule (7)

with m,n ∈ N in the reduct w.r.t. a′

Remark 5. A similar construction can be used if ASP is combined
with other fuzzy logics, e.g. product logic, but the resulting bilevel
program will not necessarily be linear.

7 CONCLUSIONS
We have analyzed the computational complexity of FASP under
Łukasiewicz semantics. In particular, when restricting to disjunc-
tions in the head of rules and conjunctions in the bodies of rules,



Table 4. Complexity of the set-membership problem for disjunctive FASP

set-membership
normal FASP, even if strong negation is not allowed NP-complete

disjunctive FASP, even if constraints and strong negation are not allowed NP-complete

i.e. disjunctive FASP programs, NP-completeness was shown, which
stands in contrast with the fact that disjunctive ASP is ΣP

2 -complete.
This results even holds when restricting to disjunctive FASP with-
out strong negation and with exactly one literal in the head of each
rule. Hence, allowing disjunctions in the head has no influence on the
computational complexity. Given that we have not been able to show
NP-membership for normal FASP programs in which both conjunc-
tion and disjunction are allowed in the bodies of rules, it is tempting
to speculate that, unlike in the classical case, allowing disjunction in
the body affects the computational complexity, whereas allowing it
in the head does not. Finally, we have proposed an implementation
of disjunctive FASP using bilevel linear programming which opens
the door to practical applications.
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