Workload Generation for
Microprocessor Performance Evaluation

SPEC PhD Award (Invited Abstract)

Luk Van Ertvelde
Ghent University, Belgium

Ivertvel@elis.ugent.be

ABSTRACT

This PhD thesis [1], awarded with the SPEC Distinguished Dis-
sertation Award 2011, proposes and studies three workload gen-
eration and reduction techniques for microprocessor performance
evaluation. (1) The thesis proposes code mutation, a novel method-
ology for hiding proprietary information from computer programs
while maintaining representative behavior; code mutation enables
dissemination of proprietary applications as benchmarks to third
parties in both academia and industry. (2) It contributes to sam-
pled simulation by proposing NSL-BLRL, a novel warm-up tech-
nique that reduces simulation time by an order of magnitude over
state-of-the-art. (3) It presents a benchmark synthesis framework
for generating synthetic benchmarks from a set of desired program
statistics. The benchmarks are generated in a high-level program-
ming language, which enables both compiler and hardware explo-
ration.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: Modeling of computer
architecture; C.4 [Computer Systems Organization]: Performance
of Systems—~Modeling Techniques

General Terms

Design, Performance, Measurement, Experimentation

Keywords

Workload Characterization, Workload Generation, Sampled Simu-
lation

1. INTRODUCTION

Microprocessors have drastically advanced over the years, from
scalar in-order execution processors to complex superscalar out-
of-order and multi-core processors. The ever-increasing microar-
chitectural complexity necessitates benchmark programs to eval-
uate the performance of a new microprocessor, hence, organiza-
tions such as SPEC, EEMBC, etc., released standardized bench-
mark suites. Although this has streamlined the process of perfor-
mance evaluation, computer architects and engineers still face sev-
eral important benchmarking challenges.

1. Benchmarks should be representative for the (future) appli-
cations that are expected to run on the target computer sys-

Copyright is held by the author/owner(s).
ICPE’12, April 22-25, 2012, Boston, Massachusetts, USA
ACM 978-1-4503-1202-8/12/04.

Thesis Supervisor: Lieven Eeckhout
Ghent University, Belgium

leeckhou@elis.ugent.be

tem; however, it is not always possible to select a representa-
tive benchmark suite for at least three reasons. For one, stan-
dardized benchmark suites are typically derived from open-
source programs because industry hesitates to share propri-
etary applications, and open-source programs have the ad-
vantage that they are portable across different platforms. The
limitation though is that these benchmarks may not be rep-
resentative for the real-world applications of interest. Sec-
ondly, existing benchmark suites are often outdated because
the application space is constantly evolving and developing
new benchmark suites is extremely time-consuming and costly.
Finally, benchmarks are modeled after existing applications
that may be less relevant by the time the product hits the mar-
ket.

2. Coming up with a benchmark that is short-running yet repre-
sentative is another major challenge. Contemporary applica-
tion benchmark suites like SPEC CPU2006 execute trillions
of instructions in order to stress contemporary and future pro-
cessors in a meaningful way. If we also take into account that
during microarchitectural research a multitude of design al-
ternatives need to be evaluated, we easily end up with months
or even years of simulation time. This may stretch the time-
to-market of newly designed microprocessors. Hence, it is
infeasible to simulate entire application benchmarks using
detailed cycle-accurate simulators.

3. Finally, a benchmark should enable both (micro)architecture
and compiler research and development. Although exist-
ing benchmarks satisty this requirement, this is typically not
the case for workload generation techniques that reduce the
dynamic instruction count in order to address the simula-
tion challenge. These techniques often operate on binaries
which eliminates their utility for compiler exploration and
instruction-set architecture exploration.

2. CONTRIBUTIONS

This dissertation [1] proposes three novel benchmark generation
and reduction techniques to address the aforementioned challenges.
In particular, code mutation addresses the proprietary nature of ap-
plication codes; sampled simulation using NSL-BLRL reduces the
long simulation times of contemporary benchmarks; finally, bench-
mark synthesis reduces simulation time and hides proprietary infor-
mation in the reduced workloads.

2.1 Code Mutation

We first propose code mutation [2, 4] to stimulate sharing of pro-
prietary applications between third parties in academia and indus-
try. Code mutation is a novel methodology that mutates a propri-



etary application to complicate reverse engineering so that it can
be distributed as an application benchmark among several parties.
These benchmark mutants hide the functional semantics of propri-
etary applications while exhibiting similar performance character-
istics. We therefore exploit two observations: (i) miss events have
a dominant impact on performance on contemporary microproces-
sors, and (ii) many variables of contemporary applications exhibit
invariant behavior at run time. More specifically, we compute pro-
gram slices for memory access operations and/or control flow op-
erations trimmed through constant value and branch profiles. Sub-
sequently, we mutate the instructions not appearing in these slices
through binary rewriting. The end result is a benchmark mutant that
can serve as a proxy for the proprietary application during bench-
marking experiments by third parties.

Our experimental results using SPEC CPU2000 and MiBench
benchmarks show that code mutation is an effective approach that
mutates (i) up to 90% of the binary, (ii) up to 50% of the dynami-
cally executed instructions, and (iii) up to 35% of the at-run-time-
exposed inter-operation data dependencies. In addition, the perfor-
mance characteristics of the mutant are very similar to those of the
proprietary application across a wide range of microarchitectures
and hardware implementations.

Code mutation will mostly benefit companies that develop (em-
bedded) microarchitectures and companies that offer (in-house built)
services to remote customers. Such companies are reluctant to dis-
tribute their proprietary software. As an alternative, they can use
mutated benchmarks as proxies for their proprietary software to
help drive performance evaluation by third parties as well as guide
purchasing decisions of hardware infrastructure. Being able to gen-
erate representative benchmark mutants without revealing propri-
etary information can also be an encouragement for industry to
collaborate more closely with academia, i.e., it would make per-
formance evaluation in academia more realistic and therefore more
relevant for industry. Eventually, this may lead to more valuable re-
search directions. In addition, developing benchmarks is both hard
and time-consuming to do in academia, for which code mutation
may be a solution.

2.2 Sampled Simulation: NSL-BLRL

Code mutation conceals the intellectual property of an applica-
tion, but it does not lend itself to the generation of short-running
benchmarks. Sampled simulation on the other hand reduces the
simulation time of an application significantly. The key idea of
sampled simulation is to simulate only a small sample from a com-
plete benchmark execution in a detailed manner (a sample consists
of one or more sampling units). The performance bottleneck in
sampled simulation is the establishment of the microarchitecture
state (caches, branch predictor, etc.) at the beginning of each sam-
pling unit. The unknown microarchitecture starting image at the
beginning of a sampling unit is often referred to as the cold-start
problem.

We address the cold-start problem by proposing a new cache
warmup method, namely NSL-BLRL [5, 6] which builds on No-
State-Loss (NSL) and Boundary Line Reuse Latency (BLRL) for
minimizing the cost associated with cycle-accurate processor cache
hierarchy simulation in sampled simulation. The idea of NSL-
BLRL is to establish the cache state at the beginning of a sam-
pling unit using a checkpoint that stores a truncated NSL stream.
NSL scans the pre-sampling unit and records the last reference to
each unique memory location. This is called the least-recently used
(LRU) stream. This stream is then truncated to form the NSL-
BLRL warmup checkpoint by inspecting the sampling unit for de-

termining how far in the pre-sampling unit one needs to go back to
accurately warm up the cache state for the given sampling unit.

This approach yields several benefits over prior work: substan-
tial simulation speedups compared to BLRL (up to 1.4 x under fast-
forwarding and up to 14.9x under checkpointing) and significant
reductions in disk space requirements compared to NSL (on aver-
age 30%), for a selection of SPEC CPU2000 benchmarks.

2.3 HLL Benchmark Synthesis

Although code mutation can be used in combination with sam-
pled simulation to generate short-running workloads that can be
distributed to third parties without revealing intellectual property,
there are a number of limitations. The most important limitation is
that this approach operates at the assembly level, and as a result, it
cannot be used for compiler exploration and ISA exploration pur-
poses. We therefore propose a novel benchmark synthesis frame-
work that generates synthetic benchmarks in a high-level program-
ming language.

The benchmark synthesis framework [3, 4] aims at generating
small but representative benchmarks that can serve as proxies for
other applications without revealing proprietary information; and
because the benchmarks are generated in a high-level language,
they can be used to explore the architecture and compiler space.
The methodology to generate these benchmarks comprises two key
steps: (i) profiling a real-world (proprietary) application (that is
compiled at a low optimization level) to measure its execution char-
acteristics, and (ii) modeling these characteristics into a synthetic
benchmark clone. To capture a program’s control flow behavior in
a statistical way, we introduce a new structure: the Statistical Flow
Graph with Loop information (SFGL).

We demonstrate good correspondence between the synthetic and
original applications across instruction-set architectures, microar-
chitectures and compiler optimizations, and we point out the major
sources of error in the benchmark synthesis process. We verified
using software plagiarism detection tools that the synthetic bench-
mark clones indeed hide proprietary information from the original
applications.

We argue that our framework can be used for several applica-
tions: distributing synthetic benchmarks as proxies for proprietary
applications, drive architecture and compiler research and devel-
opment, speed up simulation, model emerging and hard-to-setup
workloads, and benchmark consolidation.

3. REFERENCES

[1] L. Van Ertvelde. Workload Generation for Microprocessor
Performance Evaluation. PhD thesis, Ghent University, Belgium,
2010.

[2] L. Van Ertvelde and L. Eeckhout. Dispersing proprietary applications
as benchmarks through code mutation. In The International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 201-210, 2008.

[3] L. Van Ertvelde and L. Eeckhout. Benchmark synthesis for
architecture and compiler exploration. In Proceedings of the IEEE
International Symposium on Workload Characterization (IISWC),
pages 106-116, 2010.

[4] L. Van Ertvelde and L. Eeckhout. Workload reduction and generation
techniques. IEEE Micro, 30(6):57-65, 2010.

[5] L. Van Ertvelde, F. Hellebaut, and L. Eeckhout. Accurate and efficient
cache warmup for sampled processor simulation through NSL-BLRL.
The Computer Journal, 51(2):192-206, 2008.

[6] L. Van Ertvelde, F. Hellebaut, L. Eeckhout, and K. De Bosschere.
NSL-BLRL: Efficient cache warmup for sampled processor
simulation. In Proceedings of the Annual Simulation Symposium
(ANSS), pages 168-177, 2006.



