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Abstract

We introduce a generalized Gaudin Lie algebra and a complete set of mutually commut-
ing quantum invariants allowing the derivation of several families of exactly solvable Hamil-
tonians. Different Hamiltonians correspond to different representations of the generators of the
algebra. The derived exactly-solvable generalized Gaudin models include the Hamiltonians of
Bardeen—Cooper—Schrieffer, Suhl-Matthias—Walker, Lipkin—-Meshkov—Glick, the generalized Dicke
and atom—molecule, the nuclear interacting boson model, a new exactly-solvable Kondo-like impu-
rity model, and many more that have negn exploited in the physics literature yet.
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1. Introduction

During last decade we have witnessed an smowrs progress both in low-temperature
experimental techniques and in the design and better characterization of novel materials
and cold atomic systems. These developments allow one to explore the quantum world
in a more fundamental way. In particular, sinogeractions between particle constituents
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can lead to unexpected phenomena, one would like to achieve sufficient degree of quan-
tum control to take advantage of it. Theoretical work on strongly coupled systems is
helping in this regard. For example, research on critical phenomena in quantum phase
transitions, where the Landau—Ginzburg paradigm of broken-symmetry phase transitions
does not apply, shows interesting scenarios. Such is the case of the recently proposed de-
confined quantum critical points where fractionalized excitations may emerge at criticality
with observable consequendé$. A crucial theoretical bottleneck, however, is the lack of
exactly-solvable interacting many-body models, since nonperturbative and nonlinear phe-
nomena play a relevant role.

The main goal of this paper is to introduce a generalization of the Gaudin al@@bpra
which we namegeneralized Gaudin algebréGGA), whose quantum invariants can be
exactly diagonalized and may be related to Hamian operators of eactly-solvable prob-
lems of interacting constituents. By exactly-solvable model we mean a model Hamiltonian
whose entire spectral problem is reduced t@kyebraic one (i.e., it is explicitly diagonal-
ized), a fact that is associated to the existenf a certain hidden symmetry in the model
under consideration. There are larger clas$étamiltonians characterized by exact solv-
ability of only certain part of their spectra; these are catjedsiexactlysolvable[3], and
ther—J, chain model is an exampld]. Clearly, exactly-solvable models may be used as a
starting point to construct many other quasiexactly solvable models.

As we will see, we have identified the main operator algebra underlying the integrabil-
ity and exact solvability of many well-known models, thus unifying their description in a
single algebraic framework. Simply diagonalizing the quantum invariants of the GGA is
sufficient to solve all those problems, which include the Bardeen—Cooper—Schrieffer (BCS)
[5], Suhl-Matthias—Walker (SMWg], Lipkin—-Meshkov—Glick (LMG)[7], generalized
Dicke (GD)[8], and many others of interest in condensed-matter, molecular, atomic and
nuclear physics. The basic point is that all these various models, which form the general
class ofXY Z Gaudin models, can be derived using different realizations of the generators
of the GGA. For example, the BCS model is obtained from the quantum invariants of the
GGA after representing their generators in terms of fermionic-pair realizations of the gen-
erators ofp, su2). A consequence of this unification is thewexactly-solvable models
can be realized after a proper representation of the GGA. For instance, one can write down
exactly-solvabl&SU(N) spin and mixed representation models, such as spin-fermion, spin-
boson or fermion—boson Hamiltonians.

We start by defining the GGA in Secti@ We show how theXY Z Gaudin equation
naturally emerges from the Jacobi identity for the generators of the GGA. We also intro-
duce the quantum invariants that will serve as the generating functions for all conserved
guantities of the generalized (integrabley Z Gaudin models.

In Section3 the XX Z Gaudin equation and the diagonalization of i& Z Gaudin
models are studied. We show a family of solutions of ¥ Z Gaudin equation, which
includes the well-known rational, trigonometric, hyperbd¢l0] and the new solution
found by Richardsoifil1] as especial limits. In particular, we show that the latter can be
considered as a reparametrization of the otheee. The main use of these solutions is to
design exactly-solvable Hamiltonians with a large set of free parameters, thus providing
additional freedom to tune interactions.
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Table 1

Exactly-solvable models (most of them discussed in thjsep) which are derived from different representations
of the generators of the generalized Gaudin algebra (Gl3ajJers to the number of copies of the algebra used to
write down the model. Notice that some models correspondixed algebraic representations of the generators
of the GGA. NotationF: fermionic, B: bosonic,S: spin,P: pseudospini4: Heisenberg—Weyl algebra

Gaudin algebra Representation | Model
XXX P, su2)-FP BCS Richardson
N Nuclear pairing
BCS (kt, —k|)
@) su2)-F-s N Particle-hole-like
@ sul, )-8 N B BCS
P su2) & su2) N Central spin
@Dysul, ) esul,l N B central spin
XXZ @D, su2)-FP 2 Suhl-Matthias—Walker

@, sul, 1)-B Lipkin-Meshkov-Glick

2 Interacting bosonigM1)
Two-Josephson-coupled BECs
P su2) @ hy N Generalized DickeF-atom—molecule
@Dsul, ) ®hy N B-atom—molecule
@) su2)-F-s @ su2) N Kondo-like impurity
D) ha®su2) N Special spin-boson
XYZ7Z @D, su2) N Generalized(Y Z Gaudin

In Sectiord we consider two possible realizations of the GGA in terms of the generators
of @, su2) and@, sul, 1) which allow us to construct (given the analytic properties of
the solutions of the Gaudin equation) gealeGaudin model Hamiltonians that will be
exploited in the rest of the paper. Clearly, from the oscillator realizatiocfu(2) and
P, sul, 1) in terms of canonical fermions and bosons, one can build several interesting
many-body Hamiltonians, including tilBCS, SMW, LMG, and GD. But one is not limited
to these oscillators realizations. Indeed, one can use, for inst8hka/) or hard-core
particles realizations to construct new exactly-solvable Hamiltorjie2is

Section$ and 6present applications of the algebraic framework to various well-known
models. They correspond to different realizations of the algedu@3 or su(1, 1) in terms
of canonical fermions or bosons (s&able 1. We start Sectiorb by solving the BCS
pairing models in an arbitrary basis and then focus on the analysis of the BCS Hamiltonian
in momentum space. We study, particularly, multiband pairing Hamiltonians such as the
SMW model which is of relevance for the description of two-gap superconductivity in
MgB,. In Section6, we analyze bosonic pairing models of interest in cold atom physics.
In particular, Sectior.3 concentrates on exactly-solvable two-level boson Hamiltonians,
which include the nuclear interacting boson model (IH448], the two Josephson-coupled
Bose—Einstein condensates (BECs) mdddl, and the LMG model. Most importantly,
we show that the LMG model, used for decades to study phase transitions in finite nuclei,
is exactly solvable.

One would like to understand what are the general differences between mean-field ap-
proximations to the(Y Z Gaudin models, and their exact solution. As we will see, for finite
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systems the distinction is evident and the character of the solutions of the two approaches
differs substantially. However, does the difference persist in the thermodynamic limit, i.e.,
the infinite (V — oo) system-size limit? Expectation values of certain observables (e.g.,
the BCS gap equation or the occupation numbers) will be identical, but other observables
may pick up the differences. A question that naturally arises concerns the critical behavior
of the XY Z Gaudin models. One would like to know, for example, what are their quantum
critical exponents. It turns out that for certain Gaudin models (e.g., the LMG and SMW
model of Eq(71)) the critical behavior is mean-fie[d5]. This is very simple to prove by
applying tools from Lie algebras and catastrophe theory, as developed by Glirt6prehe
general analysis is beyond the scope of the@népaper and will be presented in a separate
publication. Here, however, we will only analyze the quantum phase diagram of the BCS
model as a function of the interaction strength and show that the transition between the
superconducting and Fermi-liquid pes is Kosterlitz—Thouless-lij& 7], independently
of the space dimensionality of the lattice.

Mixing realizations and representations of the generators of the Gaudin algebra lead
to new exactly-solvable model3dble J). In Section7 we illustrate these ideas by solv-
ing three types of many-body models: the GD, an exactly-solvable Kondo-like, and a
spin-boson models. In this way, one finds the formal algebraic connection between these
different physical phenomena and BCS superconductivity. Se8tileals with differential
operator realizations of the Gaudin generators leading to quasiexactly solvable problems
in the continuum. Finally, we show iAppendix Athat the weak-coupling limit solutions
of the generalizeX X Z Gaudin models are given by the roots of Laguerre polynomials.

2. Generalized Gaudin algebras
2.1. Commutation relations

Let us introduce the GGA as the set of operat®$§ = S“(E,,)}, with k = x, y, z,
satisfying the commutation relations (f@y, # Ey)

[SK,S51=0
(S, ]Zl(YmES _mesg)

1
[52”, S =i(ZmeS), — YmeS}), @
[S%,. St1 =i (XmeSin — ZmeS)),

where X,y = X(Ep, E¢)y, Yo = Y(Ep, E¢), and Z,,y = Z(E,,, E;) are antisymmetric
(i.e., W(x,y) =—W(y,x)) complex functions of two arbitrary complex variablEg, E,
labelled by positive integers and¢, respectively. Equivalently, in terms of the= +, —, z
basis (and fo£,, # E;)

[SE,sF]=22V (S%, +S9),
[S,,. S/ 1=—2V (S, — SD), (2)
(S, SEl=+(V.5,SE — Z,uSE — V. ,SF),
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whereSE = s% +iS),, and V., = (X,u0 & Y,u¢)/2. (Notice thats,; ™ ands,; " are
non-commuting operators, unleXs,; = Y,,¢.)
The complex functionX,,¢, Y,,¢, andZ,,¢ are taken to have the limiting behavior

IimosX(x,x+8)=f(x), IimoaY(x,x+s)=g(x),
Iimosz(x,x+s) =h(x), (3

wheref(x), g(x), andh(x) are nonsingular functions. IndeeX, Y, and Z are complex
meromorphic functions having poles of order one. In particular, when= g(x) = h(x)
the above commutation relations, E¢fs), can be analytically continued to the case-= ¢
(i.e., E, — E;). For example,

[Sh.Sm] = Iimoi(Y(Em, En+8)S*(Em) — X(Ep, En 4 €)S*(Ey +¢))
E—>

o IS,
= —if(Ep) 35,
Then,
(S}, Sl 1=0,
(S}, Sl = —if(En) 572,
dst, 4)

(S, S%,1 = —if(Em)

3Em ’
[S5,. S5, 1= —if(En) 532

which together with Eqg1) form an infinite-dimensional Lie algebra.
From the Jacobi identities for the generators of this Lie algebra, for example

(S5 [Si> Se1] +[S0- [Sh- Snl] + [Sn- [Se: S2]] =0, (%)

we obtain, considering the antisymmetry of the functiehs’, Z, the Gaudin equations
[19]

ZmEXZn + an Yén + Xnm Ymé =0. (6)

Moreover, the relations (for any pair of indices ¢)
stz - Zr%zl =11, stz - Ynzzl =12 ()

also result from these identities, whdrg, are constants independent®f, andE,.
2.2. Quantum invariants
Let us introduce the generalized Gaudin field operators

1
H(E,) = H, =S"S* +SnSh + S5, = E(s;s,; +8,,S,, +255,S,), (8)
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which act on a carrier spad¢. These operators are not the Casimir operators of the GGA
since they do not commute with its generatdts, (% E)

[Hi, Sp1=£(V,h S S+ VST S5} — Zune (ST, Si, D,

[Hn,S1=V,5,(S}S,, —ShS) + V., (S{ Sy —SpSy),
where{A, B} = AB + BA is the anticommutator. A key property is that these field opera-
tors form a commutative family

therefore, they have a common set of eigenvectofg end consequently can be consid-
ered as a generating function for all conserved quantities of quantum integrable systems
which will be called generalized Y Z Gaudin models.

3. The XX Z Gaudin models

In the following we will concentrate on the diagonalization of & Z Gaudin models,
i.e., the cases whetk,,, = Y,,¢ [18]. As we will see in the applications, this is the most
relevant case from a physics standpoint, and the simpler mathematically since the Cartan—
Weyl basis is easily defined. The generalizéd Z models will be analyzed somewhere
else.

3.1. Solutions of th& X Z Gaudin equation

The Gaudin equatio(6) reduces to
ZmEXZn + anXEn + Xnm Xm[ =0. (10)

From this expression, together with the antisymmetry of the functioasd Z, one can
derive a parametrization for the coefficieats, and X, :

Xy = XineXmn Zoy = ZimnZme + X;%m B ZI%‘H’[ (11)
" Zme — Zmn ' " Zime — Zmn .

From the latter expression, aid, = —Z,,, it follows that

2 2 2 2
an - Zmn = Xm€ - Zm€ =T, (12)

with I a constant that is independent of any indices. Talip@s a reference parameter,
one can write down
Xy = XrtXem T A ZmZee
Zr@ - Zrn ZVE - Zrn
Then, the functionXy, and Z,,,, which satisfy the Gaudin equatio(f0), can be written
in terms of a limited set of parametersg, andz; as

2
J1+ 5121+ 512 1+ stety
Xim=g , Zin=8——"": (14)
ty — 1ty tg—1p

(13)
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with
r=sg®,  ti=-g/Zi, (15)

whereg is a real number angk| = 0 or 1. Taking the limitr, — #, = x, one finds the
limiting behavior defined in E(3) as

f(x) = g(x) = h(x) = g(1+ sx?). (16)

In all practical cases one can take the square roots in(Hh.to be real and positive
(normally any phase can be absorbed in the definition of the genegitoend S7).
Furthermore, the condition that the resultingetly-solvable Hamiltonians should be Her-
mitian leads in most cases to the condition that the paramEtarsls; be real. In this case
the parameter is either+1, —1 or 0.

This corresponds to the three cases discussed by GHL]in

(1) Rational I'=0,s =0,

X(esnn) =ZMe, M) =8 , (17)
Ne —1n
with z; = n;.
(2) Trigonometric I" > 0,s = +1,
XMemm) =8————,  Z(ne, na) =g COtne — 1nn), (18)
Sin(ne — 1)
with 7; = tan(n;).
(3) Hyperbolic I' < 0,s = —1,
X(ne, =g, Z(ne, = gcot — M), 19
(e, M) S — (ne, nn) = g coth(ng — ny) (19)

with #; = tanh(n;).

Note that for these three parametrizations one finds that the limiting behavior is given by

f(x) =g(x) =h(x) =g, (20)

and that the rational model corresponds to the lipi> 7, of both the trigonometric and
the hyperbolic model.
Recently, Richardson has proposed a new family of solutions, givghljy

14 20z¢ + Bz2/1+ 2z, + B22

X(z¢,zn) = ;
20 — Zn
1+ a(ze+2z0) +
Z(20,20) = (z¢ +zn) + Bzezn . (21)
¢ — 2n

Evaluating expression E@L2)for this parametrization, one finds theit= 8 — «2. Hence
depending on the sign & — «2, one finds that this solution might be expressed as a
reparametrization of the rationatigonometric or hyperbolic models.
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Another useful parametrization is given by

2cyc 2+C
X(e, ) =g5—s5,  Z(,ma) = 85—, (22)
Cop —Cy Cg —Cq

which can be derived from the hyperbolic parametrization(Eg), by takingc; = e”i.
3.2. Diagonalizing theX X Z Gaudin models

To define the representation (or carrier) spatef the generalized XZ GGA we
introduce the lowest-weight vect{@), such that,
S,,10)=0, $;,10) = F(En)|0) VEy,, (23)

with F(E,,) the lowest-weight function. Thus, the carrier spatés defined as the linear
span of the unnormalized vectors

{10),8710),87s710),...,87s5---S;10),...}. (24)

We want now to diagonalize the Gaudin field operators. Using @& turns out that
|0) is an eigenstate aff,,, with eigenvalue

wo(Ep) = F(Ep) — f(Ep) —— = F(Ew). (25)

To solve the general eigenvalue problem
Hpy|P) = w(En)|P), (26)

we propose the Bethe ansaff € Z*)
M
=[[si10=s{s3---s;10). (27)

and Eq.26)is equivalent to

(Him — @0(En))|@) = [ m,]_[s+}|0 (28)

Thus, the whole problem reduces to compute the commutator

whose action upon the stad@ can be written as

B M
Hm,l_[sz Z( [1 s*) Hp. S{]10)
L =1

0=1 \r(£0)

D -

C#n=1 \r(#¢L,n)
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which after some algebraic manipulations reduces to

M M
Z(r —2ZmF(En)+ ) ZmZZmn> 1)

=1 n(#0)=1
M M
+ZZ(szF(E£)+ > Xmezne)w;,,m (31)
=1 n(#£0)=1

with " given by

-1 M
b = (1'[ S;f)sﬁ,;( I1 s:)- (32)
n=1 n={+1

Equating to zero all the coefficients in front @ ,
equations

defines a set of nonlinear coupled
M
F(E)+ Y. Zw=0, (=1...M, (33)
n(£0)=1

termed Bethe’s equations, which determine the set of complex nurhBgis Once they
are solved, one uses these solutions to write down the eigenvalues

M M
w(Ey) =wo(Ey) + Z(F —2Zme F(Ep) + Z ZmZZmn)- (34)

(=1 n(£0)=1

4. Exactly-solvable models derived from the Gaudin algebra

Thus far, we have not assumed any special form for the generators of the GGA. Let
us consider now a possible realization in terms of generators dpf®i2) = su(2) &
sSu2) @ - - - ® su(2) algebra, which satisfy the relations

[T, s7]=28i57,  [S7. S ]=+8S", (35)
with (Sj+)T = Sj_. The set of indiceg will be denoted by the symbdl, whose cardinal is
N . Defining the following operators in terms of tdg, su2) generators,
1
SE=Y XuSE, sfnz—éjl—ZijSf, (36)
jeT jeT
one has a possible realization of the generators of the GGA1Eq.
In the XY Z case they are given by

S;:Zijij, S%:ZijSjy, th:—ZijSf. (37)

jeT jeT jeT
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Notice that thesu2) generators are not constrained to be in any particular irreducible
representation. In the = 1/2 case, the ellipti&(Y Z Gaudin model has been shown to be
exactly solvablg20,21] Note that for arbitrarys the model is still gquantum integrable as
shown in Eq(9).

Similarly, one can realize the generators of the GGA in terms of the generators of the
Lie algebradP, su(1, 1), homomorphic tap, su2), which satisfy

(K" K] =—28iK7,  [Ki K] =+8iK;", (38)

with (KJ*)T = K;", obtaining

Sh=Y XuwK', = S,=—)> Xu,K , S= —%1 — > ZniK.  (39)
jeT jeT jeT
For the sake of simplicity, we will proceeadith the Gaudin operators defined from
the ), su2) generators. Extension &), su(1, 1) is straightforward after application of
the non-unitary homomorphic mappingj, — S}, S,, — —S,,, S;, — S%,. It is easy to
check that the Gaudin field operators, &), are given by

Xoni Xmj (ot o - ¢t 1

Hy =Y ZnS+ > (Zmizmjsfsj“r T(Si S;THSTST) )+ > (0
ieT i,jeT

where we assume that,; = X (E,,, nj) andZ,,; = Z(E,,, ;). Bethe’s equations, E€33),

are given by

M
142) diZj+2 Y Zw=0 (=1...M, (41)
jeT n(£0)=1

whered; is the eigenvalue onZ(KjZ), ie., SjZ(KjZ)|O) = d;j|0). In the weakly interact-

ing limit the solutions of these equations are given by the roots of associated Laguerre
polynomials (sedppendix A). This establishes a one-to-one correspondence between the
eigenstates of the non-interacting and the weakly-interacting models, which proves that the
Bethe ansatz coverd| eigenstates and does not contain any spurious solutions for finite
values ofg.

In the strong interaction limiig — 400, some of the variables diverge to infinity, where
again they can be related to roots of the associated Laguerre polynomials, scaled with a
factor g. However, some of the roots can remain finite. These finite roots are equivalent
to the solutions for the Gaudin spin magngt8] and can be related to the elementary
excitations of the BCS-model in the canonical enserfit?¢.

From the analytic properties of the andZ function matricesf; # n;)

o miAm = ni)Aij, oy Cmidmi = ni)Zij,
L Ii
dE
% #Zmi =f(ni), (42)
JTl

I
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where[; is a contour in the compIeE plane encirclinggi. In this way, one can write
down the constants of motiaRy = f(n) fr T dEn IR, Rj]1=0,as

Ri=S+2 ) ( (s +S78")+ z.,szsj2>, (43)
JET (#D)
Ri=K{—2 Z ( (K"K + K K') = Zj KijZ), (44)
JET (#D)
for @, su2) andd, su(l, 1), respectively, with eigenvalues= ﬁ ¥ LEn o (Epm)
rizdi(1+222iz+2 > d,-zi,-). (45)
¢ JET (#D)
A class of Gaudin model Hamiltonians can be writterHgs= ) ; ¢i R;, i.e.,
. 8 S (ctom 1 amat) 4 9%
HG=Zs.Sf+ﬁ Y (Xi(STST +87ST) +22i57S7), (46)
i iLj(i#))
Hg = ZS.KZ — 2— Z (Xij (K;* K + K Kj") = 2Z;j K{ K{), (47)
LiG#)

for @, su2) and P, sul, 1), respectlvely In the equations aboeis an arbitrary real
number, X.J = (&i — &) Xij/ g, ZIJ (¢i — &) Zij/g are real symmetric matrix functions
(Xij = X (i, ny), Zij = Z(ni, nj)), andg = gN is ac-number of order of magnitude unity
because of thermodynamic stabilityasons. Notice that, sinegandn; are, in principle,
independent parameters, one may take aidwpnof this freedom to write down different
kinds of mode-dependent interactions (see Se@&idn Moreover,s; andn; must be cho-
sen real forHg to be Hermitian. Clearly, there are other classes of Gaudin models that
involve higher-order combinations of the integrals of motign

In the XXX Gaudin models one can consider a more general representation of the
Gaudin field operators in terms of the generator&)u(2) or P, su(l, 1)

_—1+me, AR y1+ZXm, 7,

jeT jeT
———11 D XuiSF (48)
jeT
St =i —ﬁ1+ZX iKY S) =i &E—ZX K
m 2 mj s m 2 mj i),
jeT jeT
———11 D XuKf (49)

jeT
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leading to the constants of motioB & (By, By, B;) is a vector with components that are
arbitraryc-numbers)

Ri=B-S§+2 Z XijSi - Sy, (50)
JeT ()
Ri=B-Ki— Y Xj(K'K +K K'—2KK), (51)
JET (#D)

from which new Gaudin model Hamiltonians charealized (e.g., central spin models).
Linear combinations of th&;’s will be used in the next sections to deriddferent
exactly-solvable model Hamiltonians. Diffetanodels result from using different realiza-
tions of su(2) (or su(1, 1)). In the following we will use (canonical) fermion and boson
realizations, though, one could have used many otfi2§ such asSU(N) spins or
hard-core particles, leading tewexactly-solvable problems all of them having the same
algebraic root. For example, f&U(2) in the spinS = 1 irreducible representation one can
write down Eq(46) (for the rational case) in terms sf(3) generators*’ (u, v =0, 1, 2)
in the fundamental representation[22]

Ho= Ya(si-s2)+ 3 (s - 5§, (52)
i i,j ()

whereJj; = (i — &) Xij/2, andS“* are the generators sfx3) in the conjugate represen-

tation.

5. @, su(2) fermionic representation models
5.1. BCS-like models

Not many models in condensed matter physics have attracted that much attention as
the Bardeen—Cooper—Schrieffer (BCS) model of superconducibjity remarkable phe-
nomenon discovered in 1911 by Galélolst and Kamerlingh Onng23], and which is
characterized by vanishing electricabistance and perfect diamagneti@#]. Soon after
the introduction of the BCS model in condensed matter, Bohr, Mottelson and Rbles
applied the BCS theory to the description of pairing correlations in finite nuclei. The BCS
or pairing Hamiltonian is given by

Hgcs = Z€|I’L| + Z gﬁf’/cltjcl%cl,?q/(,/. (53)

| lol'o’

The operatoz{; (c15) creates (destroys) a fermion in the sthte whereo is the third
projection of the internal spin degree of freeden refers to all other quantum numbers
needed to specify completely the state, ang: ) cﬂ;qo is a number operator. Though,

in principle, the statéo could be an arbitrary conjugate statedo(only a bijective rela-

tion between conjugate pairs is required), wi# vestrict here to time-reversal conjugate
pairs. Under time-reversal (effected by an antiunitary operator) the position operator stays
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unchanged while the (linear or angular) moruen or spin operators change sign. Thus,
the time-reversal transformation of single-particle states is specific to the choice of basis.
For example, the eigenstates of a generic angular momentum op&gritioelled ag jm),
transform as

|jm) = (=)™ j —m). (54)

Similarly, the time-reversal transformation of an annihilation operator in a basis of spin
and linear momentum ig; = (=1)S%c_k_s, While for a basis of spin and position
cis = cr5z = (=15 %¢r_,. For the sake of clarity, we will assume a position basis in the
following such that the time-reversal operation will be referred exclusively to the internal
spin part of the states, i.ey; = ci5.

The pairing Hamiltoniarf53) with uniform couplingSglfl’f’/ = g/4 has been solved ex-
actly in full generality by Richardson in a series of papers in the sif@igls This important
development escaped the attention of the condensed matter and nuclear physics commu-
nities until very recently, when the Richardson’s works were rediscovered in the study of
ultrasmall superconducting grains. In order to regain the exact solution we will now present
a specific representation of te&(2) generators in terms of fermions

1 o 1 1
TI+ = E ZCLCI-'—E = (T| ) N T|Z == E Zcﬂ;ckf - ZQ|a (55)
g o

where the operatozrl+ creates a pair of fermions in time-reversal states @ne- 27 + 1
is the degeneracy of the stdteelated to the pseudospin of the statét can be readily
verified that the three operato{rqi, 7} satisfy thesu(2) algebra(35).

The integrability of the BCS Hamiltoniafb3) was recently demonstrat¢@7]. It was
shown thatHgcs can be written as a linear combination of the integrals of motion of the
rational family withX; = Zjj = g/(si — ¢j) (17)

1 _
Hpcs = ZS|R| +C= ZS| <2T|Z + §Q|) + ng|+r|, . (56)
| |

I

The complete set of eigenstates of the pairing Hamiltonian are given by the product
wavefunction

M
1
— + + +_ +
|'I’>—n1;[15m|v), Sm—zlzxml'ﬁ —lem'ﬁ ) (57)

where|v) = |v1, v2, ..., vL), With L the total number of single particle states, is a state of
v unpaired fermionsy= )", vj) defined by

Ty =0, mlv)=wlv).

The quantum numbeis are often referred to as Seniority quantum numbers in the nuclear
physics literature.

The total number of particles i = 2M + v, with M the number of Cooper pairs. Each
eigenstaté57)is completely defined by a set & spectral parameters (pair energi€s)
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which are a particular solution of the Richardson’s equations

2, M 1
1 — - =0 58
+222|— s X L (58)
E(;ém):l
The eigenvalues of the BCS Hamiltonian are
L M
E:ZS|V|+ZEm. (59)
=1 m=1

One can easily relate the spectra of the repulsive Q) and attractiveg < 0) cases: if
one performs the following canonical particle—hole transformation

+
{ Cly = Clo (60)

+
Clo = Ciy>»

which is not a symmetry (although the interaction term is invaridiig)s(g) transforms
as

Hpcs(g) — ZQI&“I — Hpcs(—g), (61)
|

indicating the relation between the two spectra.

In recent years, the exact solution of the BCS Hamiltonian has been recovered in the
study of ultrasmall superconducting (for a review §28]). The specific Hamiltonian for
grains assumes a setbfequally spaced doubly-degenerate single particle states. Implying
that2) =2 ande) =1, with1 =1, 2, ..., L. The Richardson’s equatios8) reduce to

1~|—g22 —+2 Z 5 =0 (62)
0(£m)= 1

with v = 0, 1. The ground state for an even number of partiédles in the sector of no
broken pairsy; = 0 for all I, while for oddN, vy = 1 for| = (N + 1) /2 and zero otherwise.

In other words, the Fermi level is blocked by a single particle, excluding it from the active
space as can be seen from the second term i(@&). The additional gap at the Fermi
energy due to the blocking of this level is at the origin of the odd-even difference observed
in the tunnelling spectra of small grains. Theiéxd states of the model are either collective
states (pairing vibrations) within the same Seniority subsf#Jeor noncollective broken
pairs[29].

While this pairing model has found greatcsess describing the physics of ultrasmall
grains, it can be likewise applied to axially deformed nuclei with nonequally spaced single
particle levels. The reason that prevented its use in standard nuclear structure calculations
for so many years, was the lack of an efficient numerical procedure to sol\@Bdor
a large number of nonequally spaced levels. While in the equally-spaced case the method
proposed by RichardsdB0] allowed the treatment of systems with10® particles[31],
the singularities arising in the numericalutions of the equations with nonequally space
levels are difficult to treat. Recently, it hagen proposed a new numerical procedure to
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avoid the singularities which seems to be very promi§g&j, and it might open the scope
for applications to several quantum systems.

The original BCS model for superconductivi] was introduced in the context of bulk
metallic superconductors. In thicase, electrons (spin-d fermions) are confined in an
arbitrary dimensional box with periodic boungi@onditions with single-particle states of
the Bloch type. Pairing occurs in momentk¥space. For pairing in the singletwave
channel and Cooper pairs with zero momentik, —k|) the BCS Hamiltonian can be
written as (x, = clgck(, witho =1, |)

!/
Hpcs = ZEkanka +g Z Clz¢cik¢c*k’¢ck%

ko KK’
= Z[Sk(nkT +n_ky) — gnkrn—k |+ ¢ Z CETCimC—k’iCk’Tv (63)

where the prime in the first double sum means that the tdrmsk’ are omitted, and
c;(ra creates an electron with momentand spino. It has been assumed time-reversal

invariance, i.e.sxs = ek = ek. The relevansu2) algebra in this case is

_ 1
w=chely =) = Skt F oy =1, (64)
where 2 = 2, i.e., the single particle staté&st and —k| are degenerate. Howevei,
may, in principle, differ frome_x. The Hamiltonians of Eq$63) and (56)re dynamically

equivalent. To see this let us rewrite E§3)in terms of the pseudospin operators

Hacs = Z[sk (25i+1) —g(xf + 2(t|f)2)] +g Z T T (65)

It can be easily shown that the operatdrg z;, and Zk(r§)2 are conserved quantities,
i.e., commute withHgcs. Thus, up to an irrelevant global constant,

Hpcs =Y ex(2ri+1)+8 ) 1l (66)
k kK

which is clearly equivalent to E¢56). The eigenvalues of the BCS Hamiltonian, E8{3),
are given by Eq(59)where the parametefs,, are the solutions of the Richardson’s equa-
tions, Eq(58), with £2x = 2. One needs to take into account the fact that for éatiere is
a—k in those sums. Moreover, if the crgbhas space-inversion symmetiy= e_x. This
additional symmetry, which converts each saghrticle level into a four-fold degenerate
one, may have dramatic consequences. For example, the numerical solution for the ground
state in the BCS case is free of singularities due to the fact that the pair engjg@sne
in complex conjugate pairs for any value of the coupling streggth

In previous work[12], a gaugesSU(2) symmetry was identified. Th8U(2) symmetry
generators are the local operators

_\t 1
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BCS superconductor Fermi Liquid
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Fig. 1. Quantum phase diagram of the BCS niadea function of the interaction strengitin the thermodynamic,
N — o0, limit. The insets represent the single-particle occupation numpar each quantum phase. Notice that,
for positive g, the Fermi liquid quasipécle renormalization factoZ* is unity regardless of the magnitude of the
interaction.

which commute with the pseudosping, i.e., [SI’(‘, 7] =0, for u,v = +£, z. This sym-
metry amounts to the conservation of the charge parity per mode(lpfirk). In-
deed, this local symmetry is responsible for the Pauli blocking of the (unpair) singly-
occupied states. We would like to emphasize that all the symmetry analysis applied
to Eq. (63) is also applicable, after proper rewriting of the symmetry operators, to
Eq. (56).

It is interesting to analyze the quantum phase diagram of the BCS Hamiltéhign
as a function of the coupling strenggh= g N. To this end one needs to study the behavior
of the quantum correlations of the ground state in the thermodynamic limit. It has been
shown, under quite general assumptionst tha Bethe equations of the integrable BCS
Hamiltonian in the thermodynamic limit are the BCS equati®334] The condensation
energy for attractive pairing in this limit i€cong= —Z‘j’TDeZ/g’ whered is the mean level
spacing ¢ Vol~1) andwp is the Debye frequency cutoff. For repulsive pairifigyng= 0.
It turns out that there is a quantum phasesition between a BCS superconductor (broken
U (1) symmetry) and a Fermi liquid of a peculiar typezat 0 (se€Fig. 1). Itis important to
emphasize that the ground state energy has an essential singulgrtyQat, implying that
it is a continuous infinite-order (Kosterlitz—Thouless-I{i&]) quantum phase transition
but with a brokenU (1) symmetry. (Notice that this result is independent of the space-
dimensionality of the problem.) We have nuncaily solved the Bethe equations and found
that the Fermi liquid has quasiparticle renormalization fazZtbe= 1 independently of the
magnitude ofg; moreover, it displays enhanced supmnducting fluctuations but it is not a
superconductor. The fact that = 1 has been previously remarked®5] using functional
integrals.
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The exactly solvable Hamiltonian E@3) can be generalized to the case of multibands
in the following way

’
Hpcsn = Zﬂ?(”nk? +nn_ky) + Z gnn/CEchlqwCn/—k’¢cn’k’Ta (68)
nk nkn’k’

wheren represents the band indexk, = Clkacﬂkg’ andg, . = gnn- The prime in the
sum means that the ternis, k) = (v, k) are excluded. Global symmetries of the model
includetr? = Zn,k Toy andzw(rék)2 with 77, = %(”nkT +nn—k, —1). The localSU(2)
symmetry has as generators

_\t 1
Sak = Clmcnfki = (S) - Spk = 2kt = Mnky)- (69)

Clearly, the BCS Hamiltonian of E63)is a particular case of E¢68) for a single band
(n=1). Itis straightforward to see thalzcsy iS exactly solvable for interactions:

(1) gnw = Sungn (decoupled BCS bands);
(2) gnn = g (effective one-band BCS model).

For the particular case of two bands, the Hamiltonian equ#&G8)might be of interest
to describe the phenomenon of two-gap superconductivity recently observed in materials
like MgB,. We may consider here é&l(2); ® SU(2), structure, with eaclsU(2),, gen-
erated by the elements

+ _ A B, | '_

T = chmcn—m = (Tn ) , T = Z Tak:
k k

The case of two flat bands= —s& = slf with equal diagonal interaction terms, i.@11 =

g22, can be easily shown to be exactly solvable: by using the quantum invariants of the

X X7 Richardson—-Gaudin (RG) models

Xan _ _

Ro=ti 42 [0 g 4 ) + Zaris | 0
n'#n

it can be shown that the two-band pairing Hamiltonian is equivalent (up to an overall con-

stant) to

Hgcso =2¢(t5 —vf) + gua(v 1 + 1515 ) +g12(v) oy + 14 15). (71)
wheregi11 = 4eZ51 and g12 = 4¢ X1 are two arbitrary real numbers (with the parame-
trization of Eq.(14), g2, — g2, = (4eg)?s). To arrive to expressiofV'1) we have used the
Casimir invariants
1 _ 2
E(t‘jr" +r )+ () =s(s+1) (72)
together with the conservation of = 7; + 75 and(rf)2 + (ré)z. This is the Hamiltonian
originally proposed by Suhl, Matthias and Walk&} as an extension of the BCS model, to

include situations where the scattering between electrons from different bands contributes
substantially to the resistivity in the normal state.
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Table 2

Single-particle energies and degeneracies for the Tin isotopes ¥ th80-82 shell

s. p. level @2 97/2 S1/2 dz/2 h11/2

s. p. energy (MeV) 0.0 0.22 1.90 2.20 2.80
s. p. degeneracy 6 8 2 4 12
Table 3

Single-particle energies and degeneracies for electrons i @ $quare lattice

S. p. energy -4 -3 -2 -1 0 1 2 3 4
s. p. degeneracy 2 8 8 8 20 8 8 8 2

The (unnormalized) eigenstates@fcs, are given by (withry = —n andz; = 7)
Y1

1
w o+ r+) W, 73
| >_€|=|1<Ee 7 1 Ec—n 2 [v) ( )

where the spectral parametefs satisfy Bethe’s equationsl{ = d1 &+ dp, and 2/ =
v12) — $21(2)/2)

12d+ Eg — 2egd_(1+ sE?) M 11 SEE
8+77g il 2g > L + 2g¢ Z ﬁZQ (74)
EE_S n(#£0=1 t— En

The corresponding eigenvalues can be easily obtained from those of the integrals of motion.

More complex situations arise in the application of the BCS model to the spherical
nuclear shell model or to finite lattices. As an example in nuclear physics we will consider
the semi-magic Sn isotopes. These series of nuclei can be modelled by a set of valence
neutrons occupying the single-particle orbits in tie= 50—82 shell interacting with a
residual BCS Hamiltonian. Ifable 2we show the experimental single-particle energies
and the corresponding degeneracies in the spherical single-particle basis.

Richardson’s equations for this case have non-equally spaced levels and variable degen-
eracies. While the solution to this problem has been found using standard tecHB&jues
larger systems would require more sophisticated metf8]<o avoid the singularities.

A quite similar situation arises in solving the BCS Hamiltonian in finite two-
dimensional lattices of sizé x L [9]. The single particle energies in units of the hopping
matrix element are, = —2(cosk, + cosky), with k, =27n,/L and—L/2<n, < L/2.

Table 3shows the single particle energies and degeneracies for @ lattice.

Numerical applications of the RG models to fermionic problems in nuclear physics and
condensed matter have been concentratedeB@S5 Hamiltonian with uniform couplings.

The use of the hyperbolic model, a particular solution of ¥1Z generalized Gaudin
models, with non-uniform coupling strength has been suggested if3¥éfto describe
the physics of multigrain systems, though nagiical applications have been carried out
so far.

Another exactly-solvable model with a separable pairing interaction (SPI) was proposed
by Pan, Draayer and Ormaf#8]. The Hamiltonian has degenegaingle-particle energies
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but some structure in the pairing interaction

Hsp —SZHJ + Z g“’ajma maJ' 7Ai'm’ (75)

jj mm

with gj;r = gcjcj’. This model can be derived from the model of E46) using the para-

metrization of Eq(22) and takingsj = cjz. Inserting the number operator divided by the
number of particles and adjusting the interaction strength, one can cancel out the one-body
and two-body diagonal parts in the Hamiltonian.

Apart from its relevance in the nuclear shell model, the SPI model has also been used
in connection with atomic BEC|89] and for establishing variational lower bounds on the
energy of general two-body Hamiltoniaj#].

5.2. Particle—hole-like models

Itis clear that what is behind the exact solvability of these different models is a GGA
and the existence of certain quantum invariants. Different representations of the Gaudin
operators lead to different models but all of them with the same dynamics. In this section,
we continue withsu(2) fermionic representation models.

In previous section we have written down BCS-like models using@@) repre-
sentation in terms of pseudospinsWe have also seen that there is another fermionic
representation fosu(2) in terms of the generators of E(G7). The natural question that
arises is: can we write down sensible exactly solvable models of interacting fermions in
terms of thissu(2) representation? and the simple answer is yes.

The Lipkin—-Meshkov—Glick (LMG) mod€]Ir] was originally introduced to study phase
transitions in finite nuclei. The model considéeyvsfermions distributed in twaVv-fold
degenerate levels (termed upper and lowellshélhe latter are separated by an energy

gape

£ |4
Hivg = > ZUCIJCka + N Z CIGCI/JCkuJCk—a

ko kk'o
w Tt
+ ﬂ i%: Cko Ck/—o CK'o Ck—0 > (76)
o

with the quantum number = + labelling the level. In Eq(76) the interaction tern¥/
scatters a pair of particles across the Fermi level, i.e., it is a two particle—hole interaction,
while the termW exchange patrticles in the two levels. Upon introducing the collective
particle—hole operators

1
S+=ch+ck,= (Sf)T, St = EZGCIGCkm (77)
ko

k
which satisfy thesu2) commutation relations, E76) may be rewritten as

1% e W e
HLMGZSSZ+ﬁ(S+S++S S )+ﬁ(s+s +57851). (78)
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As defined by Eq(78), H_wvg is invariant under the inversion symmetry operatiothat
transformgS*, 7, $°) > (—S*, —§”, §%), and it also commutes with the (Casimir) oper-
atorS? = (St~ + S~5)/2+ (5%)2. Thus, Eq(78)is equivalent to
— Q2 v + ¢+ —q¢— w Z Q2 w 2
Hivg =¢S +2N(S ST+85757) 5SSt

The HamiltonianH g has a band matrix representation insa2) basis, and it can be
easily diagonalized for large values df. As such, the model has been used as a testing
ground for many-body approximations in neat physics. More recently, the simplicity
of the model and the fact that it can be interpreted as a Heisenberg chain with long range
exchange interactions, made it fashionable to study relations between entanglement and
guantum phase transitions.

We will show in Section6.3.2that the LMG model is exactly solvable. But before
consider the modified problem

(79)

£k w
Hp—h = Z ?Uclgcko' + ﬁ Z CIO—CI/_GCK/GCkf(T? (80)
ko kk'o

whereo = £+ may be now interpreted as a band index. Let us introduce the following
commutingsu(2) algebras

_\f 1
SE=cac=(5)" si= 5 (e = ). (81)
_\t 1
T = CII+C|I— =(r ). = E(nk+ +ng_ — 1), (82)
in terms of whichH,—+ can be written (up to an irrelevant constant) as
Z w + ¢o—
Hyn =Y exSi+ ~ >SS (83)
k Kk’

Hy— is dynamically equivalent té/gcs and, thus, it is also exactly solvable.

6. @, su(1, 1) bosonic representation models
6.1. Bosonic BCS-like models

The boson BCS or pairing Hamiltonian can be written in complete analogy to the
fermion case, Eq53), as

HBBCS = ZEH’H + % Zbrbl—-l—bpb|/, (84)
| 14

whereb;r (by) creates (destroys) a boson in the stagadn| = bITb| is the number operator.
For simplicity, we will consider here scalar bosons, but an arbitrary internal spin can be
easily taken into account as in the case of fermions. The laiseh short-hand notation
for a set of quantum numbers; for example, the states of a 3D isotropic harmonic oscillator
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potential are labelled by= (nim), wheren is the oscillator quantum numberjs the
orbital angular momentum and its third projection. In Eq(84) | refers to the time-
reversed state df Following (54) the time-reversed annihilation boson operatabjis=

bM = (_1)l_mbnl—m-

In the following we will be concerned witbpin scalar bosons, a possibility that cannot
be realized in fermionic models. It is worth emphasizing, however, that the exact solution
for boson systems can easily incorporate the spin degree of freedom (integer spin), and
there might be important applications for spinor BEHZE] not explored so far.

Once again, Richardso@d?2] determined the complete spectrum of the boson BCS
Hamiltonian of Eq.(84). This work also escaped the attention of the physics community
until very recently, when the model was shown to be quantum integf@hl&xactly-
solvable generalizations of the uniform pairing Hamiltonian were proposed and subse-
quently applied to various finite Bose systefd8,44] In analogy with the fermionic
systems presentation of previous sections, we will first introduce a specific representation
of thesu(1, 1) generators

K= %brb{ I %brb. + %9., (85)
where the operato!i(,+ creates a pair of fermions in time-reversal states@ng 2K + 1
is the degeneracy of the stdteelated to the pseudospiki. The operators of E85)
satisfy thesu(1, 1) commutation relations

The BCS HamiltoniarHggcs can be derived from the rational fami(7) as a linear
combination of the integrals of motion

1
Hpggcs = ZS|R| (8) +C= ZS| (ZKlz — §Q|> + gZKﬁKﬁ- (86)
| |

I

The complete set of eigenstates of this model are given by the product wavefunction

M
1
— + + +_ +
|w>_m|=|lsm|v), sm_§l XKt = §| 2L, K1 (87)

where|v) = |v1, v2, ..., vr), with L the total number of single particle states, is a state of
v unpaired bosons/(= Y, v) defined by

Krv)=0,  mv)=uv),

v are referred to the seniority quantum numbers.

The total number of particles i$ = 2M + v, with M the number of paired bosons. Each
eigenstaté¥) is completely defined by a set 81 spectral parameters (pair energiés)
which are a particular solution of the Richardson’s equations

L M
g 2| + 2y 1
1+ 2 E — —2g E — =0, (88)
2 = 2¢1 — Eyy tm=1 E, —E;
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and their eigenvalues are given by

L M
E:ZS|V|+ZEm. (89)
1=1 m=1

Hamiltonians constructed as general linear combinations of the integrals of motion
H =) _jaRi(n) have eigenvalueg = Z|L=1 e1(n + v;) wherer, is the eigenvalue of
the integral of motionR| [44].

6.2. Pairing Hamiltonians for bosons in confining traps

As an application of the boson rational family, we will consider the problem of a boson
system confined to a harmonic-oscillator trap and subject to boson pairing interactions
[43]. The pairing Hamiltonian with uniform couplings cannot describe the physics of a
trapped boson system, for the following reason. Looking back at the commutators of the
pair operators, Eq.38), we see that they are proportional to the degeneracy of thelstate
that appears inside the definition of the gener&tp(Eq. (85)). Thus, the matrix elements
of the pairing Hamiltonian between stateand!” will be proportional to,/2/£2. In a
3D harmonic oscillator witH = (nlm), the shell degeneracy i€ ~ n2. On the other
hand, the single-particle energies are- n. Thus, the net effect would be the scattering of
boson pairs to high-lying levels with greateppability than to low-lyng levels, producing
unphysical occupation numbers. This was precisely the behavior observed in a numerical
solution of Richardson’s equatiori88) for a system of 1000 bosons with an attractive
pairing strengthy [43].

We can use the freedom we have in choosing the paramgtergering in the defin-
ition of the R; operators to obtain a physically relevant exactly-solvable model. In order
to cancel out the unphysical dependence of the pair-coupling matrix elements on the de-
generacies, we choose thgés so thaty = (¢))3. The Hamiltonian, which is given by the
linear combination of the new,’s is

Hrg = ZZSIRI =C+ Zélm + Zg||’[K|+K|7 —mny], (90)
| | Y
where
C=}Z€|9|—}Zgw9|9v, B=ea— ) s,
2 4
| 11" V()
g 1
gr=o— = (91)
I 28|2~|—8|2,~|—8|8|/

The interaction in Eq(91) has the nice feature that its two-body matrix elements decrease
with the number of shells, as one would expigcgeneral. It has the particular property
that the interactions of the pair- and density-fluctuations are strictly the same but opposite
in sign. Taking into account thaj is proportional ton, the two-body matrix elements

in Eqg. (90) cancel out the dependence on the degeneracies in the effective pair-coupling
matrix elements. Thust+g should be more appropriate th&fsgcs when modelling a
harmonically-confined boson system with a pairing-like interaction.
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The spectrum offg can be obtained from the eigenvalugsf the associate®| op-
erators a¥ =2, g1, with the end result being

E:%Zﬂ.{h—%Zg“/9|9|/—2gz%. (92)
[ 1£l/ lp < P
(Note that the first two terms of E¢Q2) exactly cancel the constant textnin Eq. (90).)

We solved Richardson’s equations fHig for a system off = 500 boson pairs and
L =50 oscillator shells. In this case, the apation numbers display a reasonable phys-
ical pattern, with the occupancies decreasing monotonically with increasing single-boson
energy[43].

In the case ofepulsivepairing a highly unexpected feature was foyad]. For small
values ofg the system behaves as a normal BEC. At a critical value of the pairing strength
g. a second-order quantum phase transitates place. The new phase is characterized
by a fragmentation of the condensate with the two lowest states macroscopically occupied,
while the occupation of the other levels is negligible.

6.3. Exactly-solvable two-level boson Hamiltonians

The restriction of the bosonic RG models to two-levels comprises several well-known
guantum models. Among them we will discuss the interacting boson riiti®lethe LMG
model[7] and the two Josephson-coupled BECs Hamiltofildh Let us begin by defining
the two integrals of motion from the most genexat Z RG models

R, =K} — X13[KJ K, + K, K} | +2Z12K K},

Ry =K+ X12[KS K, + K K,[ | - 2Z12K; K, (93)
where the operators| are defined in Eqg85). From Eqs(93) we observe that the sum
gives the total number of bosons which is a conserved quantity. We are then left with one

independent quantum invariant, that we can take as the difference between the two integrals
of motion to define the Hamiltonian

Hgz =&(Rp — Ry)
=e(Kj — KZ) +2¢[X12(K K, + K, K;[) — 2Z12K K} ]. (94)
Using Eq.(85) we rewrite Hg; as

&
Hs = 5[(1= Z1224)ny — (1+ Z122y)na] + v > (bhbiaaaa +ajalbzbs)
o.p
+wnpn, + C, (95)

wherev = §X12 andw = —¢Z12 are two arbitrary real numbers, ahg(a;) creates a
boson in leveb(a) with an internal quantum numbgK«). As usual the bar in the internal
labels means a time-reversed state, &3¢, is the degeneracy of the level. The constant
termisC = %(Qb — R, — Z1282,82,). Using the parametrization of E(L4) (with 11 = —n
andr = 1), 42 — w? = sg2¢2, which can be positive, negative or zero depending upon
the choice of parameters.
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The (unnormalized) eigenstatesig, are given by

M

1 1
V) = K+ K+)v, 96
) 1'[<Ee+,7 5k )V (96)

=1
with spectral parameters satisfying Bethe’s equations

Qvd Ey+egd_(1+sE?) M 14SEE
B Ch2ge Y ﬁ:o, (97)
EE_S n(#£0)=1 L — Ln

whereds =d, £ dp, and 21,4y = vap) + $24»)/2. The corresponding eigenvalues can be
constructed from the integrals of motion eigenvalues as

M

Epy =4dadyw —ed— — 2y

=1

We will discuss next the application of the two-level RG bosonic models to three well-
known quantum models.

dvd_E¢ + egd(1+sE?)
El? — g2 '

(98)

6.3.1. The interacting boson model

The interacting boson model (IBM) has been a highly successful phenomenological
model to describe the collective properties of medium and heavy nuclei. The IBM captures
the collective dynamics of nuclear systems by representing correlated pairs of nucleons
with angular momentund by ideal bosons with the same angular momentum. In its sim-
plest version, known as IBM1, there is no distinction between protons and neutrons and
only angular momentuni, = 0(s) andL = 2(d) bosons are retained. The model has a
U (6) group structure and three possible dynamical symmetry limits representing well-
defined nuclear phases: th&5) symmetry for vibrational nuclei, th@ (6) symmetry for
y-unstable nuclei, and th8U(3) symmetry for axially deformed nuclei. In each of the
three limits the Hamiltonian can be expressed in terms of the Casimir operators of the
group decomposition chain. The three limits are then exactly solvable with analytic ex-
pressions for the eigenstates.

The transition fromlJ (5) to O (6) can be modelled by a boson paring Hamiltonian of
the form[44]

2
1—x T
HlBMl = x(nd - ns) + T E 2(d2;dﬁss + STSTdﬁdﬂ), (99)
==

whereN is the total number of bosons ards a parameter that interpolates between the
linear Casimir operator of/ (5), for x = 1, and the quadratic Casimir operator@f6),

for x = 0. The HamiltonianH,gy; can be derived from Eq95) by making the following
identificationsd =b,s =a, 2, =5,2,=1,6 =2x, w =0, andv = (1;,").

The transition from the spherical vibrational phas&¥%)) to the y-unstable deformed
phase was studied within the integrable model described by the Hamiltonian (3%q.
[45]. It was found a second order quantum phasesiteom for a critical value of the control
parametex. In fact this is a unique point of second order phase transitions in the complete
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parameter space of the most general IBM Hamiltonian. The second-order character of the
transition is related to quantum intedpility. The ground state eigenvalue Hfgy is an
analytic function of the control parameteand, though level crossings are allowed due to
guantum integrability, there are no level crossings in the low-energy spectrum.

6.3.2. The Lipkin—-Meshkov—Glick model

The LMG model has been extensively used decades to simulate the phase transi-
tion from spherical to deformed shapes in finite nuclei. As introduced in SebtRrit
is a schematic model describing the scattering of particle—hole pairs between two shells
of different parityo. Though it was known for a long time that the model was quantum
integrable, some analytic saions were found only quite recentl#6] using the algebraic
Bethe ansatz, after having mapped the model onto a Schwinger-boson representation. Here
we will show that the LMG model is exactly solvable: after a Schwinger-boson represen-
tation of angular momentum operators, we will map the LMG model onto the two-boson
integrable Hamiltonians of E¢95).

In the Schwinger mapping of the2) algebra the generators are expressed in terms of
two bosons: andb as

1 1
St =pTa= (S_)T, S = E(bTb — aTa) = E(nb —ng), (100)
with the constraint
2s=b"b+ata=np +n,. (101)

Inserting Eq(100)into Eq.(79) we obtain a Schwinger-boson representation of the LMG
Hamiltonian

w \% w
Hivg = NS + %(nb —ng) + ﬁ(bTbTaa + aTaTbb) + w "eha- (102)

We then recover the two-boson exactly solvable Hamiltonian of(&8) with £2;, =
2,=1,v=V/2N andw = W/N. In particular, the (unnormalized) eigenvectors and
eigenvalues off, g are

M, ot tpt
a'a b'b
¥)ive = ( + >|V), 103
LMG L[l Evn T Ei—n (103)
w
E\vc = Eg2 — 7 (104)

where Eg; is given in EQ.(98), and the spectral parametdts satisfy Eq.(97). Notice
that, for each sectos, the number of bosons that enter in the expression¥oryg is
constrained to be2=n, + ny.

We would like to emphasize that our expressions are compact forms valid for any arbi-
trary set of parameters in the Hamiltonian. In particular, they are valid for the parameter
rangeW? < V2, which corresponds to the solutions not found in R4&8]. Since we have
shown (using the weakly-interacting limit solutions) that this Bethe ansatz covers all pos-
sible eigenstates, it implies that the LMG is exactly solvable.
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6.3.3. Two coupled Bose—Einstein condensates

The Josephson effect, pretBd more than forty years afr], describes pair tunnelling
between two superconductors through an insulating junction. An analogous effect can be
realized with trapped ultracold bosonic gases in two different ways. In the first setup, two
atomic condensates in the same atomic state are separated by a controllable potential bar-
rier. In the second setup, atoms are condensed in two overlapping hyperfine states with an
exchange mixing interaction. Both systems are described by the Hamil{ddian

Hy = _% (cTa+ad'e) + % (cTec’e +d'aata), (105)

wherecTandd® are left or right trap boson creation operators, or they create bosons in
two different hyperfine states, depending upon the particular sé&yfs the Josephson
coupling exchanging bosons between the two states Farid the charging energy. This
Hamiltonian has been recently exactly solved using the algebraic Bethe pt8jatm fact,

it is no more than another form of the two-level boson pairing Hamiltonian of &5). It

can be easily recast in the two-level form after performing the unitary canonical transfor-
mation

1 1
c=—=(a—1ib), d=—(a+ib). 106
V2 V2 (106)
Eliminating irrelevant constant terms, the Josephson Hamiltonian can be rewritten as
E E
H; = Wj(nb —ng) — é(bTbTaa +ata’bb — anna), (107)

which can be easily related to the LMG Hamiltonidfiug, by choosing = 2E;/N,V =
—NE./4=—W. Therefore, the physics of the two coupled BECs is completely analogous
to that of the LMG model.

7. Mixing realizationsand representations of the Gaudin field operators

We have already mentioned that our scheme for generating completely integrable mod-
els relies on finding different representations of the GGA. So far, we have simply concen-
trated on exactly solvable models where every sisgi@) or su(1, 1) generator labelled
by an index in the seT is equivalently represented. We still have the freedom to mix the
representations of these generators and develop new exactly-solvable model Hamiltonians.
The fact that the tweu(2) realizations of EqY81) and (82)re mutually commuting was
also noted if37]. They called them the spin and the charge realizations, respectively. This
property implies that the elements of the spin and chatg®) algebras act on orthogo-
nal Hilbert spaces, allowing to define an integrable RG model in each space separately.
Thus, the following Hamiltoniaf37] was proposed to study the interplay between pairing
correlations and spin-exchange interactions

Hons =) &t + % Y (Ki(w' g+ g") +2Ziri g + WiiSi - 5p), (108)
i 1 ()
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where we can recognize the most genémtdgrable pairig Hamiltonian, Eq(46), with

an additional spin-exchange interaction, which is also integrable if the niétisderived

from the rational Gaudin family a®jj = }?i’j. The use of the rational family assures the
conservation of the total spin quantum number as well as the third component of the to-
tal spin. The model Hamiltonia#/,—s can still accommodate a linear term in the spin
variables representing a nonuniform magnetic field, or even more gexi&dl Gaudin
models can be implemented in the spin space at the cost of breaking the spin rotational
symmetry.

A numerical study of the interplay between pairing and exchange interactions in small
metallic dots has been carried out[#8] for systems with up to 30 levels. Even though
the model used was fully integrable, the numerical results were mostly obtained by large
scale diagonalization methods due to the complexity in solving the two sets of coupled
Richardson’s equations. The recentlgveloped numéral technique$32] to solve effi-
ciently these set of nonlinear equations maypttelextend these studies to larger grains.

The space orthogonality between the tetg2) fermionic realizations can also be ex-
ploited by defining different integrable models in the charge and spin sectors. For instance,
it would be possible to mix a RG integrable Hamiltonian in the charge space with a Heisen-
berg or Haldane—Shastry model in the spiacm By mixing differenrealizations of the
GGA, one can generate spin-fermion, spin-boson, or simply spin models with spins be-
longing to differentirreducible representations. It turns out that this mixing-representations
scheme might be useful to study decolmeeand dynamic phenomena in open quantum
systems where some degrees of freedom correspond to the system while the others (cou-
pled in a particular way to the system) represent the thermal bath. In the following we
illustrate these ideas starting with the generalized Dicke (GD) model Hamiltonian.

7.1. Generalized Dicke models

Generalizations of the Dicke model, solved by the algebraic Bethe ansatz, have been
reported in50,51] Here, following the GGA approach,ewill present a different gener-
alization of the Dicke moddgb2].

Starting from theXXZ RG models, we replace one of the(2) copies by a single
boson satisfying the Heisenberg—\Weyl algebra. This procedure can be rigorously followed
by expressing theu(2) generators in the Holstein—Primakoff representation as

btb 1t
St =/2Sb" [1— a5, = (%) Si= —So+b'b,

where we have distinguished the particular copg@®) by the label 057 (b) is the cre-

ation (annihilation) operator of a boson with, b] = 1, andSg is the magnitude of the
spin of this particular representation. Since the RG model is integrable for arbitrary spin
values we can then analyze the lirBg — oo, which implies the replacement

S§ =v/2s0b", Sy =+/2S0b.
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We will skip here the derivation of the new class of integrable spin-boson models that

can be found if52] and present the final form of the integrals of motion

Ro=wb'b+2) g8+ VY (b'S™ +b5),
j j

V2

[SS7 + 878" +25787]

—V(b'ST +bS) — 2687 (109)

It can be readily verified that the set of operators of H@89) are Hermitian, inde-
pendent, and mutually commuting. Therefore, they constitute a new class of integrable
spin-boson models. Though they have been derived from the trigonometric family of the
RG models, the set af operatorsR; are identical to the rational family of RG models,
except for the last two terms &i(2) which are essential for ensuring the commutation
with the new bosonic integral of motiaRy.

Any function of these operators defines an integrable Hamiltonian. In particular, we can
recognizeRp as a Dicke Hamiltonian describing the interactions of a multi-atom system
with a single-mode radiation field. Moreover, a linear combination involving the whole
set of integrals of motion, Eq$109), gives rise to more general integrable spin-boson
Hamiltonians.

Richardson’s ansatz for the common eigenstates of the integrals of motion is

|w>=]1£[<bT+zL:

a=1

1%
[ Sﬁ) |0), (110)

whereL is the total number adu(2) spins andV the total spin and third component of the
system. TheW spectral parametessg, are particular solutions of the set &f of nonlinear
coupled Richardson’s equations

w 1 \%4 Si 1
— = — Vg — — -V =0. 111
2V 2V Ve 2 ZI: 28i — Yy ﬁ%;) Yo — Y8 (1D

The corresponding expressions for the eigenvalues of(Eg9)are

"OZZYa —ZSJ'SJ',

o j

Si V2 Sj ) 1
i =—— 26 — — — 42V .
i 2 {Q)+ Ei 2 Z e + Za:ya —28i

e
A similar treatment can be developed for th&1, 1) case[52]. This case is relevant
for representing the interaction between bosonic atoms and dimer molecules. Note that the

appropriate Holstein—Primakoff representation forghe, 1) algebra is

[ bt
Kg = V/aKob!\[14 2.2 = (k5)".  Ki=Ko+b'b.
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7.2. An exactly-solvable Kondo-like impurity model

The effect of magnetic impurities in metals has been a subject of intense debate since the
early 1930s. In 1964 Kond®3] made significant progress by providing an explanation to
the problem of the resistance minimum (as a function of temperature) in some metals such
as Au. He recognized that the interaction of a single magnetic impurity with the conduction
electrons is well represented by the! exchange Hamiltonian

Hyq = Z Jkk/(SfcITck/i + S+C|I¢Ck/¢ + §* (CII¢CK’T - c;(rickfi)), (112)
Kk’

where %, §* are the spin operators representing the localized moment of magisifude
while cIJ creates a conduction electron with momentkirand spin projectior. This
type of interaction is characterized by terms in which the spin of the electron is flipped
upon scattering with the impurity and are essential to understand the logarithmic contribu-
tion to the resistivity, and thus, its minimum. The simplest Hamiltonian representing the
interaction of a localized moment with a lshaf itinerant electrons is the Kondo impurity
model

Hx = Zsknka + Hgg. (113)
k,o

It is important to emphasize that the ca&e- 1/2, Jiw = J/N, and linear (relativistic)
dispersion has been exactly solved by Andrei and Weigmann using the Bethe[&4atz

To find a new exactly-solvable single impurity Kondo-like model let us consider the RG
constants of motion, where the localized spin of magnisidesingled out

Ro=BS*+ ) (Xo (S~ +5*57) +2745°5), (114)
i
with electron spins given by

t Tt 1
ST =char=(5), S =350 —ny). (115)
As mentioned above the commutiag2) algebra
t ot \t 1
5 =eyey = () =50 4y -1, (116)

is a gauge symmetry dtp, thus one can write down the following exactly-solvable Gaudin
model

Hg = ZZSJ"L’J-Z + Ro
j

ZZSj(HjT + njy — 1)+ BS*?
j
+ Z(kal_(’ (Sfc;(rTckw + S+cl¢ck/¢) + J|<”|</SZ(C|I¢C|<’T — C|1¢ck’i))’ (117)
k,k’
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where
1 (k=K +_ 1 er t
Jew =NZ€’( "1 X0j (Zop). Cj"_ﬁzel ey, (118)
i k

is the Fourier-transformed electron operator.
To derive an exactly-solvable Kondo-like Hdtanian one considers the particular case
JkLk, = J XokSky’ andJk”k, = J Zokdyy in Hsg, and adds the conduction band term
Hok =Y _ eknks + BS*
k,o
+J Z(Xok(Sfc;(rTcm + S+C|I¢Ck¢) + Zok S? (cIJ(rTcM — CLCH)), (119)
k
since in this case commutes withRo. (Notice that the magnitude of the localized spin is
not restricted t&s = 1/2.) Both, a minimum in the electrical resistivity, and the formation
of a singlet resonance state characterize the Kondo physics. Clearly&irds transla-
tionally invariant the impurity contribution to the charge resistivity is zero. However, using
this model one may address the fundamental issue of the formation of the singlet state,
writing down a many-body state that captures the essence of the Kondo problem.
The (unnormalized)V -particles eigenstates éfsk are given by

M

vy =1] (XgoSJr +> XekCITCm) IFS), (120)
k

(=1

where|FS) is the tensor product of the stalte) = |v, -~ vk, ---) (0f v = >k vk paired
(vk = 2) fermions) with the remainingy — v fermions in a ferromagnetic state, and the
lowest-weight spin stat@) g

FS)=v) @[] cf, 10 ®I0)s, (121)
k

—_———
N—v

while E,’s satisfy the Bethe equations

M
B
o7 =doZoc + ) dkZke+ Y Zw, €=1...M, (122)
k n(£0)=1

and the energy eigenvalues are giveniyy=€ 0, 1, 2)

E=Z€kvk —i—do(B—i—ZJZZoe—i-ZJdeZok). (123)
k ¢ k
The case of zero magnetic fiel# & 0) corresponds to the Gaudin magnet.

Any set of parameter& o, Zok for which X3, — Z& = I" (see Eq(12)) leads to an
integrable exactly-solvable model. Particularly, the case of a spin-isotropic exchange inter-
action, i.e.,.Xok = Zok = 1/(no — nk), is of interest since the total spin is a good quantum
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number. It is easy to see that if the exchange coupling is antiferromagnetic/e-q,

no > nk, and B smaller than a critical value) a singlet Kondo many-body state emerges in
the problem. The emergence of this state is formally connected to BCS superconductivity,
and the connection is established through Bethe’s equations. In this way, fof, we

are rigorously connecting the Kondesonanceavith the Cooperesonanceroblems.

7.3. Exactly-solvable spin-boson models

The study of spin-boson systems, i.e., a single spin of magn&uitearly coupled to
a thermal bath represented by a set of harmonic oscillators, is of particular interest in the
theory of open quantum systems. These systems display important features of decoherence,
that is the dynamical loss of quantum cohebecause of the enviroramt. In this section
we will describe two interesting spin-boson models that are exactly-solvable.

Let us start from the constant of motid of Eq. (114)and add to it the total magneti-
zation symmetry

Hspr = (B +)$°+ Y Xq (S™S+5757)+ 2% Zg S°S7 + > St (124)
i i i

Following a similar procedure to the one illustrated in Seciidhwe represent theu(2)
spinss; (in the limit S, — oo) as

St=v2Seh|. ST =\2Subj,  ST=—-Sy+b/b,
and choose
2

E: 1
Xoi=gl1+-1), Zoi = —g.| —ei, 125
a=s(1+ ) Zo=-8 /50 (125)

with the resulting Hamiltonian (up to irrelevant constants)

Heor = BS*+ Y wblbj+ VY (S75] + 57h), (126)
i i
whereV = g./2Sp, andB = B+w, with B = B+V Zj &j. Notice that the localized spis)
may have arbitrary magnitude This model is known to be trivially solvable. Indeed, it is
a particular case of the Frohlich-like Hamiltonian describing a spin coupled to longitudinal
optical phonons

Hepr = BS*+y /b + Y (V'S7h +V;5¥hy), (127)
j j

which is diagonalized by first performing a unitary canonical mapping to new bosonic
modesy;

ai vy V2 vz - UN b1
as v; A2 Az -+ Aoy b
a3 | = | v A3z Asz --- Aszn b3 |, (128)
a vy Anz Ans - Ayn/ \bN
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where (4 = /37 1V I?)

Vi vl — 1— v} v
_ - Ai = 129
Vi A ii 1+ 01 s ij 1+v, ( )
yielding the Hamiltonian
Hgp1 = BS® + ZwajTaj + A(SfaI + S+al), (130)

J

representing, in the new basis, optical phonons effectively interacting with a single spin
through a single mode.

A more elaborate spin-boson model can be realized using the other constants of motion.
In this way the following model Hamiltonian results

Hso = BS*+ ) (b by = blbi) + VY (7] + SThy), (131)
N j
wheretjj = % with ¢; representing the parameters defining the model(E2p), and

xi the coefficients in the linear combination of the integrals of motion.
The eigenstates diy are

) = H(yav + Zb,—T>|0>,

o J

where the spectral parametegsare the solutions of the Bethe equations

20 1+ & ya YaYp
1—7Vya+v27—2v Yo = =0

P B VP T
and$2o = 2S + 1. The corresponding eigenvalues are
Qo G (xi —xj)sisj
Egqpp=—V -y =/
sh2 2 Z Vo 2 L appy
o JF#

8. Differential operator realizations: Schrddinger—Gaudin operators

So far we concentrated on discrete representations which led to various exactly solvable
lattice models. However, it is well-known that it is possible to realize representations of
Lie algebras in the form of differential operators. As we will see in this section these
representations will lead to models in the continuum. Basically we will generalize the
work pioneered by Ushveridze and oth{8k

Out of the many applications one can foresee we will concentrate on a single problem.
The problem consists of mapping exactly-solvable lattice models to their equivalent in the
continuum. Clearly, in general, the fudpectrum of the lattice will be embedded in the
spectrum of the continuum equivalent. For the sake of simplicity we will uséBhsu(2)
representation.
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To illustrate the procedure we will use the BCS pairing lattice model of &).which,
after realizing about its underlying algebraic structure, reads

HBCSZZZ{SkTé‘}‘gZTJTki. (132)
k Kk’
We wonder what the many-body problem in cgufiation space (a continuous manifold),
to which it maps onto, is. To this end, we will consider the corresporgli®) Lie algebra
of differential operators in the tensor product representation

T =2k,
T = —szZZk + 25k 0. (133)
Tf = —Sk + 2k, (134)

with Casimir operator? = 3(t 7. + 7 1) + 7878 = Sk(Sk + 1) and where it is as-
sumed that the differential generators act on polynomials in the varigblglsmaximum
order ZBy. In other words, the order of the polynomials depends upon the &lwé the
spin irreducible representation. In this differential operator representatiqi &2)can be
written

Hacs =2 ek(—Sk + 2kdz) + g ({ak}) Y (—2kd2 + 25kdy, ). (135)
k k
_ 1
Hecs = E + go({a}) ) 710 + A2+ V (1)), (136)
k

whereE = —23", &Sk, ¢({zk}) = Dy 2k, 2k = X2,

Py ((Sk + %) EkXk
Xk gyv({zk})

Notice that, in this languagd{scs represents a many-particle system igaugefield
subjected to a potentid.
In the casesy = 1/2, for all k’s (no unpair single-particle states)

Itk = 2k, Wk —1 (138)

and the representation space includes polyiatsrof degree at most 1 in each variable.
In the following we will simply concentrate on this case which corresponds to degeneracy
Qx = 2. Itis straightforward to prove that the ansatz wave function

'I/M({Sk}) = Z/ SkySkp * Sk (139)

), 4V ({xk}) = i (05 A) — A2, (137)

where the prime in the sum means tkat# ky # - - - # ky, and

2K
=k 140
Sk ZP—— (140)

is a solution of Eq(136). Interestingly, the functionr™ ({sx}) represents an elementary
symmetric function of ordeM. It turns out that these functions are the equivalent of the
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Richardson’s solutions in the continuum, i.e.,

HlI/M({sk} <E+ZE ) ({sx}). (141)

with the complex numberg,, satisfying Richardson’s equations

1
1+g228k_E +2g Z m_E =0. (142)
k e(#m)=1

9. Conclusions

The benefits of having exact solutions to problems involving strongly interacting many-
particle systems are difficult to overstate. New exactly(or quasiexactly)-solvable models
are always a unique tool to better understand physical phenomena characterized by non-
linear and nonperturbative effects. Moreover, exactly-solvable models are excellent testing
grounds for approximations to the many-body problem. In the present work we have ex-
plored a generalized Gaudin algebra, whose invariants provide the generating function for
integrable quantum Hamiltonians calléd Z Gaudin models. These quantum invariants
can be simultaneously diagonalized using the Bethe ansatz. Different representations of the
generators of the generalized Gaudin atgelealize many well-known physical Hamilto-
nians including the Bardeen—Cooper—Schrieffer, Suhl-Matthias—Walker, interacting boson
model of nuclei, Lipkin—-Meshkov—Glick, several BEC models, generalized Dicke, spin-
boson, a new Kondo-like, and many other models not yet exploited in the literature. In
this way, we have identified the underlying algebraic structure, thus providing a unifying
framework. An advantage of the Bethe ansatz for the Gaudin models is that the physical
interpretation of their eigenfunctions is sghtforward. The built-in correlation physics is
so transparent that they could have well been choseragvariational states.

An important question concerns the differences between mean-field approximations to
the eigenfunctions of the Gaudin models and their exact solutions in the thermodynamic
limit. Here, we briefly discussed issues related to the quantum critical behavior of these
models. In particular, we analyzed the natof the transition between the superconducting
and Fermi liquid phases in the BCS model. We concluded that it is of the Kosterlitz—
Thouless type independently of theege dimensionality of the lattice.

A number of applications have been presented with the intention of illustrating the vari-
ety of physics problems described by miaopic Hamiltonians which belong to the class
of XX Z Gaudin models. We have shown that the Lipkin—Meshkov—Glick model, widely
used in nuclear physics and, more recently,onrection with quantum information the-
ory, is exactly-solvable. Our proof seems to complete the work initiated in [R&f.to
the whole parameter spa@@cluding the secto? < V2). The exact solvability of the
two-level boson Hamiltonians given #1.3 comprises three important models, the LMG,
the IBM (describing the transition from th&(5) to the O (6) dynamical symmetries), and
the two Josephson-coupled BECs. All of them are, therefore, characterized by the same
physics.
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We have also shown that théY Z Gaudin equation, E{6), results from the use of the
Jacobi identities for the generators of the algebra, i.e., it is a property of the algebra. For
the XX Z case, we have derived a family of antisymmetric solutions which includes the
rational, trigonometric, hyperbolic, and Richardson’s solution as special cases. Indeed, we
have proved that the latter is a reparametrization of any of the other three.

Solving efficiently the nonlinear Bethe equations, which provide the necessary spectral
parameters, is an important technical issue. In this regard, knowing the strong- and weak-
coupling limits of those equations help to reduce the complexity of the task. In the strong-
interacting limit this analysis was previously done in R&b]. In Appendix Awe have
shown that the weakly-coupled limit solutions of the Bethe equations are given by the
roots of Laguerre polynomials, by transforrgithose equations into a generalized Stieltjes
equation. In this way, we proved that the Bethe ansatz encompasses all possible eigenstates,
and does not provide spurious solutions for finite couplings.

In this paper we concentrated on the spectrum and eigenfunctions of generalized Gaudin
models. Certain static correlators for the Gaudin magnet and the Richardson model were
studied in Refs[56—-58] Computation of correlation functions for the generalizedZ
Gaudin models, either static or dynamic, ciituge a more demanding task and is a subject
of future research.
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Appendix A. Theweakly interacting limit

The Bethe equations, E¢41), can be expressed in terms of the parametrization of
Eq.(14)as

1—2gs(ZjEde +M—1)

_I_
1+ ste2 8 Z
1eT n(£0)=1

=1,....M. (A1)

K_tn

In the limit g — O one recovers the noninteracting model, with the variaflesnverging
to the parameter values depending on the corresponding distribution of the particles or
spins. Therefore one can make the substitution

=1, + gx¢, (A.Z)
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wherej, is the index of the parameter value to whigltonverges. Then E@A.1) can be
rewritten up to first order ig as

24, 2 14 20ai
e - 2 (A.3)
e n.jn=je, n#t Xt = Xn 1+SI].(

with ¢, independent of the variables:

M
1+ 51,4 1+ 51,8,
a,= Yy q—2L4 Y @, 4N, -0, (A.4)
e T i b 1,
€T j#e n=LjnFe
and whereVj, is the number of variables that cluster around the parameter

Eqg. (A.3) can be transformed into@eneralized Stieltjes equati¢9], with the solu-
tions given by:

2
1+Stje

S R A.5
1+2gajgrl (A-5)

Xe =
where ther; are the roots of the associated Laguerre polynonﬂé,lswith k=2dj, —1
andN = Nj,. Note that the resulting values for the variablesre correct up to second
ordering:

f(5,)
1+ 2gaj,
The variables; will be real fordj, > 0 (with su(1, 1) realizations, typical for bosons),
while for dj, < 0 (with su2) realizations, typical for fermions) the variableswill come
in complex conjugated pairs, except for one real value in case of an odd number of variables
per cluster.

Because a polynomial of ord@f has a unique set a¥ roots, the weakly interacting
limit establishes a one-to-one mapping between the noninteracting solutions (defined by
the number of variables clustered around each paramgtand the solutions at finite
values ofg.

te=1f,+g 7. (A.6)
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