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Abstract

We introduce a generalized Gaudin Lie algebra and a complete set of mutually co
ing quantum invariants allowing the derivation of several families of exactly solvable H
tonians. Different Hamiltonians correspond to different representations of the generators
algebra. The derived exactly-solvable generalized Gaudin models include the Hamiltoni
Bardeen–Cooper–Schrieffer, Suhl–Matthias–Walker, Lipkin–Meshkov–Glick, the generalized
and atom–molecule, the nuclear interacting boson model, a new exactly-solvable Kondo-like
rity model, and many more that have not been exploited in the physics literature yet.
 2004 Elsevier B.V. All rights reserved.

PACS:02.30.Ik; 03.65.Fd; 21.60.Fw; 74.20.Fg; 75.10.Jm

1. Introduction

During last decade we have witnessed an enormous progress both in low-temperatu
experimental techniques and in the design and better characterization of novel m
and cold atomic systems. These developments allow one to explore the quantum
in a more fundamental way. In particular, sinceinteractions between particle constitue
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can lead to unexpected phenomena, one would like to achieve sufficient degree o
tum control to take advantage of it. Theoretical work on strongly coupled syste
helping in this regard. For example, research on critical phenomena in quantum
transitions, where the Landau–Ginzburg paradigm of broken-symmetry phase tran
does not apply, shows interesting scenarios. Such is the case of the recently propo
confined quantum critical points where fractionalized excitations may emerge at criti
with observable consequences[1]. A crucial theoretical bottleneck, however, is the lack
exactly-solvable interacting many-body models, since nonperturbative and nonlinea
nomena play a relevant role.

The main goal of this paper is to introduce a generalization of the Gaudin algeb[2],
which we namegeneralized Gaudin algebra(GGA), whose quantum invariants can
exactly diagonalized and may be related to Hamiltonian operators of exactly-solvable prob
lems of interacting constituents. By exactly-solvable model we mean a model Hamilt
whose entire spectral problem is reduced to analgebraic one (i.e., it is explicitly diagona
ized), a fact that is associated to the existence of a certain hidden symmetry in the mod
under consideration. There are larger classes of Hamiltonians characterized by exact so
ability of only certain part of their spectra; these are calledquasiexactlysolvable[3], and
thet–Jz chain model is an example[4]. Clearly, exactly-solvable models may be used a
starting point to construct many other quasiexactly solvable models.

As we will see, we have identified the main operator algebra underlying the integ
ity and exact solvability of many well-known models, thus unifying their description
single algebraic framework. Simply diagonalizing the quantum invariants of the GG
sufficient to solve all those problems, which include the Bardeen–Cooper–Schrieffer
[5], Suhl–Matthias–Walker (SMW)[6], Lipkin–Meshkov–Glick (LMG)[7], generalized
Dicke (GD) [8], and many others of interest in condensed-matter, molecular, atomi
nuclear physics. The basic point is that all these various models, which form the g
class ofXYZ Gaudin models, can be derived using different realizations of the gene
of the GGA. For example, the BCS model is obtained from the quantum invariants
GGA after representing their generators in terms of fermionic-pair realizations of the
erators of

⊕
l su(2). A consequence of this unification is thatnewexactly-solvable model

can be realized after a proper representation of the GGA. For instance, one can writ
exactly-solvableSU(N) spin and mixed representation models, such as spin-fermion,
boson or fermion–boson Hamiltonians.

We start by defining the GGA in Section2. We show how theXYZ Gaudin equation
naturally emerges from the Jacobi identity for the generators of the GGA. We also
duce the quantum invariants that will serve as the generating functions for all cons
quantities of the generalized (integrable)XYZ Gaudin models.

In Section3 the XXZ Gaudin equation and the diagonalization of theXXZ Gaudin
models are studied. We show a family of solutions of theXXZ Gaudin equation, which
includes the well-known rational, trigonometric, hyperbolic[9,10] and the new solution
found by Richardson[11] as especial limits. In particular, we show that the latter can
considered as a reparametrization of the other three. The main use of these solutions is

design exactly-solvable Hamiltonians with a large set of free parameters, thus providing
additional freedom to tune interactions.
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Table 1
Exactly-solvable models (most of them discussed in this paper) which are derived from different representatio
of the generators of the generalized Gaudin algebra (GGA).l refers to the number of copies of the algebra use
write down the model. Notice that some models correspond tomixed algebraic representations of the genera
of the GGA. Notation:F: fermionic,B: bosonic,S: spin,P: pseudospin,h4: Heisenberg–Weyl algebra

Gaudin algebra Representation l Model

XXX
⊕

l su(2)-F–P BCS Richardson
N Nuclear pairing

BCS(k↑,−k↓)⊕
l su(2)-F–S N Particle–hole-like⊕
l su(1,1)-B N B BCS⊕
l su(2) ⊕ su(2) N Central spin⊕
l su(1,1) ⊕ su(1,1) N B central spin

XXZ
⊕

l su(2)-F–P 2 Suhl–Matthias–Walker⊕
l su(1,1)-B Lipkin–Meshkov–Glick

2 Interacting boson (IBM1)
Two-Josephson-coupled BECs⊕

l su(2) ⊕ h4 N Generalized Dicke,F-atom–molecule⊕
l su(1,1) ⊕ h4 N B-atom–molecule⊕
l su(2)-F–S ⊕ su(2) N Kondo-like impurity⊕
l h4 ⊕ su(2) N Special spin-boson

XYZ
⊕

l su(2) N GeneralizedXYZ Gaudin

In Section4 we consider two possible realizations of the GGA in terms of the gener
of

⊕
l su(2) and

⊕
l su(1,1) which allow us to construct (given the analytic properties

the solutions of the Gaudin equation) general Gaudin model Hamiltonians that will b
exploited in the rest of the paper. Clearly, from the oscillator realizations of

⊕
l su(2) and⊕

l su(1,1) in terms of canonical fermions and bosons, one can build several intere
many-body Hamiltonians, including theBCS, SMW, LMG, and GD. But one is not limite
to these oscillators realizations. Indeed, one can use, for instance,SU(N) or hard-core
particles realizations to construct new exactly-solvable Hamiltonians[12].

Sections5 and 6present applications of the algebraic framework to various well-kn
models. They correspond to different realizations of the algebrassu(2) or su(1,1) in terms
of canonical fermions or bosons (seeTable 1). We start Section5 by solving the BCS
pairing models in an arbitrary basis and then focus on the analysis of the BCS Hamil
in momentum space. We study, particularly, multiband pairing Hamiltonians such a
SMW model which is of relevance for the description of two-gap superconductivi
MgB2. In Section6, we analyze bosonic pairing models of interest in cold atom phy
In particular, Section6.3 concentrates on exactly-solvable two-level boson Hamiltoni
which include the nuclear interacting boson model (IBM)[13], the two Josephson-couple
Bose–Einstein condensates (BECs) model[14], and the LMG model. Most importantly
we show that the LMG model, used for decades to study phase transitions in finite n
is exactly solvable.
One would like to understand what are the general differences between mean-field ap-
proximations to theXYZ Gaudin models, and their exact solution. As we will see, for finite
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systems the distinction is evident and the character of the solutions of the two appr
differs substantially. However, does the difference persist in the thermodynamic limi
the infinite (N → ∞) system-size limit? Expectation values of certain observables
the BCS gap equation or the occupation numbers) will be identical, but other obser
may pick up the differences. A question that naturally arises concerns the critical be
of theXYZ Gaudin models. One would like to know, for example, what are their quan
critical exponents. It turns out that for certain Gaudin models (e.g., the LMG and S
model of Eq.(71)) the critical behavior is mean-field[15]. This is very simple to prove b
applying tools from Lie algebras and catastrophe theory, as developed by Gilmore[16]. The
general analysis is beyond the scope of the present paper and will be presented in a sepa
publication. Here, however, we will only analyze the quantum phase diagram of the
model as a function of the interaction strength and show that the transition betwe
superconducting and Fermi-liquid phases is Kosterlitz–Thouless-like[17], independently
of the space dimensionality of the lattice.

Mixing realizations and representations of the generators of the Gaudin algebr
to new exactly-solvable models (Table 1). In Section7 we illustrate these ideas by sol
ing three types of many-body models: the GD, an exactly-solvable Kondo-like, a
spin-boson models. In this way, one finds the formal algebraic connection between
different physical phenomena and BCS superconductivity. Section8 deals with differentia
operator realizations of the Gaudin generators leading to quasiexactly solvable pro
in the continuum. Finally, we show inAppendix Athat the weak-coupling limit solution
of the generalizedXXZ Gaudin models are given by the roots of Laguerre polynomia

2. Generalized Gaudin algebras

2.1. Commutation relations

Let us introduce the GGA as the set of operators{Sκ
m ≡ Sκ(Em)}, with κ = x, y, z,

satisfying the commutation relations (forEm �= E�)

(1)




[Sκ
m,Sκ

� ] = 0,

[Sx
m,S

y

� ] = i(Ym�Sz
m − Xm�Sz

�),

[Sy
m,Sz

�] = i(Zm�Sx
m − Ym�Sx

� ),

[Sz
m,Sx

� ] = i(Xm�Sy
m − Zm�Sy

� ),

whereXm� = X(Em,E�), Ym� = Y (Em,E�), andZm� = Z(Em,E�) are antisymmetric
(i.e.,W(x,y) = −W(y,x)) complex functions of two arbitrary complex variablesEm,E�

labelled by positive integersm and�, respectively. Equivalently, in terms of theκ = +,−, z

basis (and forEm �= E�)

(2)

 [S±
m,S±

� ] = ±2V −
m�(S

z
m + Sz

�),

[S−,S+] = −2V + (Sz − Sz),
 m � m� m �

[Sz
m,S±

� ] = ±(V +
m�S±

m − Zm�S±
� − V −

m�S∓
m),
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whereS±
m = Sx

m ± iSy
m, andV ±

m� = (Xm� ± Ym�)/2. (Notice thatS+(−)
m and S+(−)

� are
non-commuting operators, unlessXm� = Ym�.)

The complex functionsXm�,Ym�, andZm� are taken to have the limiting behavior

lim
ε→0

εX(x, x + ε) = f(x), lim
ε→0

εY (x, x + ε) = g(x),

(3)lim
ε→0

εZ(x, x + ε) = h(x),

wheref(x), g(x), andh(x) are nonsingular functions. Indeed,X,Y , andZ are complex
meromorphic functions having poles of order one. In particular, whenf(x) = g(x) = h(x)

the above commutation relations, Eqs.(1), can be analytically continued to the casem = �

(i.e.,Em → E�). For example,[
Sx

m,S
y
m

] = lim
ε→0

i
(
Y (Em,Em + ε)Sz(Em) − X(Em,Em + ε)Sz(Em + ε)

)
= −if(Em)

∂Sz
m

∂Em
.

Then,

(4)




[Sκ
m,Sκ

m] = 0,

[Sx
m,Sy

m] = −if(Em)
∂Sz

m

∂Em
,

[Sy
m,Sz

m] = −if(Em)
∂Sx

m

∂Em
,

[Sz
m,Sx

m] = −if(Em)
∂S

y
m

∂Em
,

which together with Eqs.(1) form an infinite-dimensional Lie algebra.
From the Jacobi identities for the generators of this Lie algebra, for example

(5)
[
Sx

n,
[
Sx

m,Sy

�

]] + [
Sy

� ,
[
Sx

n,Sx
m

]] + [
Sx

m,
[
Sy

� ,Sx
n

]] = 0,

we obtain, considering the antisymmetry of the functionsX,Y,Z, the Gaudin equation
[19]

(6)Zm�X�n + ZnmY�n + XnmYm� = 0.

Moreover, the relations (for any pair of indicesm, �)

(7)X2
m� − Z2

m� = Γ1, X2
m� − Y 2

m� = Γ2

also result from these identities, whereΓ1,2 are constants independent ofEm andE�.

2.2. Quantum invariants

Let us introduce the generalized Gaudin field operators
(8)H(Em) ≡ Hm = Sx
mSx

m + S
y
mS

y
m + Sz

mSz
m = 1

2

(
S+

mS−
m + S−

mS+
m + 2Sz

mSz
m

)
,
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which act on a carrier spaceH. These operators are not the Casimir operators of the G
since they do not commute with its generators (Em �= E�){

[Hm,S±
� ] = ±(V +

m�{S±
m,Sz

�} + V −
m�{S∓

m,Sz
�} − Zm�{S±

� ,Sz
m}),

[Hm,Sz
�] = V +

m�(S
+
� S−

m − S+
mS−

� ) + V −
m�(S

+
� S+

m − S−
mS−

� ),

where{Â, B̂} = ÂB̂ + B̂Â is the anticommutator. A key property is that these field op
tors form a commutative family

(9)[Hm,H�] = 0,

therefore, they have a common set of eigenvectors inH and consequently can be cons
ered as a generating function for all conserved quantities of quantum integrable s
which will be called generalizedXYZ Gaudin models.

3. The XXZ Gaudin models

In the following we will concentrate on the diagonalization of theXXZ Gaudin models
i.e., the cases whereXm� = Ym� [18]. As we will see in the applications, this is the mo
relevant case from a physics standpoint, and the simpler mathematically since the C
Weyl basis is easily defined. The generalizedXYZ models will be analyzed somewhe
else.

3.1. Solutions of theXXZ Gaudin equation

The Gaudin equation(6) reduces to

(10)Zm�X�n + ZnmX�n + XnmXm� = 0.

From this expression, together with the antisymmetry of the functionsX andZ, one can
derive a parametrization for the coefficientsZ�n andX�n:

(11)X�n = Xm�Xmn

Zm� − Zmn

, Z�n = ZmnZm� + X2
mn − Z2

mn

Zm� − Zmn

.

From the latter expression, andZ�n = −Zn�, it follows that

(12)X2
mn − Z2

mn = X2
m� − Z2

m� = Γ,

with Γ a constant that is independent of any indices. TakingEr as a reference paramet
one can write down

(13)X�n = Xr�Xrn

Zr� − Zrn

, Z�n = Γ + ZrnZr�

Zr� − Zrn

.

Then, the functionsX�n andZ�n, which satisfy the Gaudin equations(10), can be written
in terms of a limited set of parameterss, g, andti as√

2
√

(14)X�n = g
1+ st� 1+ st2

n

t� − tn
, Z�n = g

1+ st�tn

t� − tn
,
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with

(15)Γ = sg2, ti = −g/Zri,

whereg is a real number and|s| = 0 or 1. Taking the limitt� → tn = x, one finds the
limiting behavior defined in Eq.(3) as

(16)f(x) = g(x) = h(x) = g
(
1+ sx2).

In all practical cases one can take the square roots in Eq.(14) to be real and positive
(normally any phase can be absorbed in the definition of the generatorsS+ and S−).
Furthermore, the condition that the resulting exactly-solvable Hamiltonians should be He
mitian leads in most cases to the condition that the parametersΓ andti be real. In this cas
the parameters is either+1,−1 or 0.

This corresponds to the three cases discussed by Gaudin[19]:

(1) Rational: Γ = 0, s = 0,

(17)X(η�, ηn) = Z(η�, ηn) = g
1

η� − ηn

,

with ti = ηi .
(2) Trigonometric: Γ > 0, s = +1,

(18)X(η�, ηn) = g
1

sin(η� − ηn)
, Z(η�, ηn) = g cot(η� − ηn),

with ti = tan(ηi).
(3) Hyperbolic: Γ < 0, s = −1,

(19)X(η�, ηn) = g
1

sinh(η� − ηn)
, Z(η�, ηn) = g coth(η� − ηn),

with ti = tanh(ηi).

Note that for these three parametrizations one finds that the limiting behavior is give

(20)f(x) = g(x) = h(x) = g,

and that the rational model corresponds to the limitη� → ηn of both the trigonometric an
the hyperbolic model.

Recently, Richardson has proposed a new family of solutions, given by[11]

X(z�, zn) =
√

1+ 2αz� + βz2
�

√
1+ 2αzn + βz2

n

z� − zn

,

(21)Z(z�, zn) = 1+ α(z� + zn) + βz�zn

z� − zn

.

Evaluating expression Eq.(12) for this parametrization, one finds thatΓ = β − α2. Hence

depending on the sign ofβ − α2, one finds that this solution might be expressed as a
reparametrization of the rational,trigonometric or hyperbolic models.
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Another useful parametrization is given by

(22)X(η�, ηn) = g
2c�cn

c2
� − c2

n

, Z(η�, ηn) = g
c2
� + c2

n

c2
� − c2

n

,

which can be derived from the hyperbolic parametrization, Eq.(19), by takingci = eηi .

3.2. Diagonalizing theXXZ Gaudin models

To define the representation (or carrier) spaceH of the generalizedXXZ GGA we
introduce the lowest-weight vector|0〉, such that,

(23)S−
m|0〉 = 0, Sz

m|0〉 = F(Em)|0〉 ∀Em,

with F(Em) the lowest-weight function. Thus, the carrier spaceH is defined as the linea
span of the unnormalized vectors

(24)
{|0〉,S+

1 |0〉,S+
1 S+

2 |0〉, . . . ,S+
1 S+

2 · · ·S+
m|0〉, . . .}.

We want now to diagonalize the Gaudin field operators. Using Eqs.(4) it turns out that
|0〉 is an eigenstate ofHm with eigenvalue

(25)ω0(Em) = F 2(Em) − f(Em)
∂

∂Em

F(Em).

To solve the general eigenvalue problem

(26)Hm|Φ〉 = ω(Em)|Φ〉,
we propose the Bethe ansatz (M ∈ Z

+)

(27)|Φ〉 =
M∏

�=1

S+
� |0〉 = S+

1 S+
2 · · ·S+

M |0〉,

and Eq.(26) is equivalent to

(28)
(
Hm − ω0(Em)

)|Φ〉 =
[
Hm,

M∏
�=1

S+
�

]
|0〉.

Thus, the whole problem reduces to compute the commutator

(29)

[
Hm,

M∏
�=1

S+
�

]
=

M∑
�=1

((
�−1∏
n=1

S+
n

)[
Hm,S+

�

]( M∏
n=�+1

S+
n

))

whose action upon the state|0〉 can be written as[
Hm,

M∏
�=1

S+
�

]
|0〉 =

M∑
�=1

(
M∏

r( �=�)

S+
r

)[
Hm,S+

�

]|0〉

1 M∑ (
M∏ )[[ ] ]
(30)+
2

� �=n=1 r( �=�,n)

S+
r Hm,S+

� ,S+
n |0〉
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which after some algebraic manipulations reduces to

M∑
�=1

(
Γ − 2Zm�F(Em) +

M∑
n( �=�)=1

Zm�Zmn

)
|Φ〉

(31)+ 2
M∑

�=1

(
Xm�F(E�) +

M∑
n( �=�)=1

Xm�Zn�

)
Ψ̂ +

�m|0〉,

with Ψ̂ +
�m given by

(32)Ψ̂ +
�m =

(
�−1∏
n=1

S+
n

)
S+

m

(
M∏

n=�+1

S+
n

)
.

Equating to zero all the coefficients in front ofΨ̂ +
�m, defines a set of nonlinear coupl

equations

(33)F(E�) +
M∑

n( �=�)=1

Zn� = 0, � = 1, . . . ,M,

termed Bethe’s equations, which determine the set of complex numbers{Em}. Once they
are solved, one uses these solutions to write down the eigenvalues

(34)ω(Em) = ω0(Em) +
M∑

�=1

(
Γ − 2Zm�F(Em) +

M∑
n( �=�)=1

Zm�Zmn

)
.

4. Exactly-solvable models derived from the Gaudin algebra

Thus far, we have not assumed any special form for the generators of the GG
us consider now a possible realization in terms of generators of the

⊕
l su(2) = su(2) ⊕

su(2) ⊕ · · · ⊕ su(2) algebra, which satisfy the relations

(35)
[
S+

i , S−
j

] = 2δijS
z
j ,

[
Sz

i , S
±
j

] = ±δijS
±
j ,

with (S+
j )† = S−

j . The set of indicesj will be denoted by the symbolT , whose cardinal is
NT . Defining the following operators in terms of the

⊕
l su(2) generators,

(36)S±
m =

∑
j∈T

XmjS
±
j , Sz

m = −1

2
1 −

∑
j∈T

ZmjS
z
j ,

one has a possible realization of the generators of the GGA, Eq.(1).
In theXYZ case they are given by

x
∑

x y
∑

y z
∑

z
 (37)Sm =
j∈T

XmjSj , Sm =
j∈T

YmjSj , Sm = −
j∈T

ZmjSj .
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Notice that thesu(2) generators are not constrained to be in any particular irredu
representation. In theS = 1/2 case, the ellipticXYZ Gaudin model has been shown to
exactly solvable[20,21]. Note that for arbitraryS the model is still quantum integrable
shown in Eq.(9).

Similarly, one can realize the generators of the GGA in terms of the generators
Lie algebra

⊕
l su(1,1), homomorphic to

⊕
l su(2), which satisfy

(38)
[
K+

i ,K−
j

] = −2δijK
z
j ,

[
Kz

i ,K±
j

] = ±δijK
±
j ,

with (K+
j )† = K−

j , obtaining

(39)S+
m =

∑
j∈T

XmjK
+
j , S−

m = −
∑
j∈T

XmjK
−
j , Sz

m = −1

2
1 −

∑
j∈T

ZmjK
z
j .

For the sake of simplicity, we will proceedwith the Gaudin operators defined fro
the

⊕
l su(2) generators. Extension to

⊕
l su(1,1) is straightforward after application o

the non-unitary homomorphic mapping:S+
m → S+

m, S−
m → −S−

m, Sz
m → Sz

m. It is easy to
check that the Gaudin field operators, Eq.(8), are given by

(40)Hm =
∑
i∈T

ZmiS
z
i +

∑
i,j∈T

(
ZmiZmjS

z
i Sz

j + XmiXmj

2

(
S+

i S−
j + S−

i S+
j

))+ 1

4
,

where we assume thatXmi = X(Em,ηi) andZmi = Z(Em,ηi). Bethe’s equations, Eq.(33),
are given by

(41)1+ 2
∑
j∈T

djZ�j + 2
M∑

n( �=�)=1

Z�n = 0, � = 1, . . . ,M,

wheredj is the eigenvalue ofSz
j (K

z
j ), i.e., Sz

j (K
z
j )|0〉 = dj|0〉. In the weakly interact

ing limit the solutions of these equations are given by the roots of associated La
polynomials (seeAppendix A). This establishes a one-to-one correspondence betwee
eigenstates of the non-interacting and the weakly-interacting models, which proves t
Bethe ansatz coversall eigenstates and does not contain any spurious solutions for
values ofg.

In the strong interaction limit,g → ±∞, some of the variables diverge to infinity, whe
again they can be related to roots of the associated Laguerre polynomials, scaled
factor g. However, some of the roots can remain finite. These finite roots are equi
to the solutions for the Gaudin spin magnets[19] and can be related to the element
excitations of the BCS-model in the canonical ensemble[22].

From the analytic properties of theX andZ function matrices (ηi �= ηj)∮
Γi

dEm

2πi
XmiXmj = f(ηi)Xij,

∮
Γi

dEm

2πi
ZmiZmj = f(ηi)Zij,

(42)
∮

dEm
Zmi = f(ηi),
Γi

2πi
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whereΓi is a contour in the complex-Em plane encirclingηi. In this way, one can write
down the constants of motionRi = 1

f(ηi)

∮
Γi

dEm

2πi
Hm, [Ri,Rj] = 0, as

(43)Ri = Sz
i + 2

∑
j∈T ( �=i)

(
Xij

2

(
S+

i S−
j + S−

i S+
j

) + ZijS
z
i S

z
j

)
,

(44)Ri = Kz
i − 2

∑
j∈T ( �=i)

(
Xij

2

(
K+

i K−
j + K−

i K+
j

)− ZijK
z
i Kz

j

)
,

for
⊕

l su(2) and
⊕

l su(1,1), respectively, with eigenvaluesri = 1
f(ηi)

∮
Γi

dEm

2πi
ω(Em)

(45)ri = di

(
1+ 2

∑
�

Zi� + 2
∑

j∈T ( �=i)

djZij

)
.

A class of Gaudin model Hamiltonians can be written asHG = ∑
i εiRi, i.e.,

(46)HG =
∑

i

εiS
z
i + g̃

2N

∑
i,j(i �=j)

(
X̃ij

(
S+

i S−
j + S−

i S+
j

) + 2Z̃ijS
z
i S

z
j

)
,

(47)HG =
∑

i

εiK
z
i − g̃

2N

∑
i,j(i �=j)

(
X̃ij

(
K+

i K−
j + K−

i K+
j

) − 2Z̃ijK
z
i Kz

j

)
,

for
⊕

l su(2) and
⊕

l su(1,1), respectively. In the equations aboveεi is an arbitrary rea
number,X̃ij = (εi − εj)Xij/g, Z̃ij = (εi − εj)Zij/g are real symmetric matrix function
(Xij = X(ηi, ηj),Zij = Z(ηi, ηj)), andg̃ = gN is ac-number of order of magnitude unit
because of thermodynamic stabilityreasons. Notice that, sinceεi andηi are, in principle,
independent parameters, one may take advantage of this freedom to write down differe
kinds of mode-dependent interactions (see Section6.2). Moreover,εi andηi must be cho-
sen real forHG to be Hermitian. Clearly, there are other classes of Gaudin models
involve higher-order combinations of the integrals of motionRi.

In the XXX Gaudin models one can consider a more general representation
Gaudin field operators in terms of the generators of

⊕
l su(2) or

⊕
l su(1,1)

Sx
m = Bx

2
1 +

∑
j∈T

XmjS
x
j , Sy

m = By

2
1 +

∑
j∈T

XmjS
y

j ,

(48)Sz
m = −Bz

2
1 −

∑
j∈T

XmjS
z
j ,

Sx
m = i

(
−By

2
1 +

∑
j∈T

XmjK
y

j

)
, Sy

m = i

(
Bx

2
1 −

∑
j∈T

XmjK
x
j

)
,

z Bz
∑

z
 (49)Sm = −
2

1 −
j∈T

XmjKj ,
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leading to the constants of motion (B = (Bx,By,Bz) is a vector with components that a
arbitraryc-numbers)

(50)Ri = B · Si + 2
∑

j∈T ( �=i)

XijSi · Sj,

(51)Ri = B · Ki −
∑

j∈T ( �=i)

Xij
(
K+

i K−
j + K−

i K+
j − 2Kz

i Kz
j

)
,

from which new Gaudin model Hamiltonians canbe realized (e.g., central spin models)
Linear combinations of theRi’s will be used in the next sections to derivedifferent

exactly-solvable model Hamiltonians. Different models result from using different realiz
tions of su(2) (or su(1,1)). In the following we will use (canonical) fermion and bos
realizations, though, one could have used many others[12], such asSU(N) spins or
hard-core particles, leading tonewexactly-solvable problems all of them having the sa
algebraic root. For example, forSU(2) in the spinS = 1 irreducible representation one c
write down Eq.(46)(for the rational case) in terms ofsu(3) generatorsSµν (µ,ν = 0,1,2)
in the fundamental representation as[12]

(52)HG =
∑

i

εi
(
S11

i − S22
i

) +
∑

i,j(i �=j)

Jij
(
Sµν

i Sνµ

j − Sµν

i S̃νµ

j

)
,

whereJij = (εi − εj)Xij/2, andS̃νµ are the generators ofsu(3) in the conjugate represe
tation.

5.
⊕

l su(2) fermionic representation models

5.1. BCS-like models

Not many models in condensed matter physics have attracted that much atten
the Bardeen–Cooper–Schrieffer (BCS) model of superconductivity[5], a remarkable phe
nomenon discovered in 1911 by Gilles Holst and Kamerlingh Onnes[23], and which is
characterized by vanishing electricalresistance and perfect diamagnetism[24]. Soon after
the introduction of the BCS model in condensed matter, Bohr, Mottelson and Pine[25]
applied the BCS theory to the description of pairing correlations in finite nuclei. The
or pairing Hamiltonian is given by

(53)HBCS =
∑

l

εlnl +
∑

lσ l′σ ′
gσσ ′

ll′ c
†
lσ c

†
lσ

cl′σ ′cl′σ ′ .

The operatorc†
lσ (clσ ) creates (destroys) a fermion in the statelσ , whereσ is the third

projection of the internal spin degree of freedomS, l refers to all other quantum numbe
needed to specify completely the state, andnl = ∑

σ c
†
lσ clσ is a number operator. Thoug

in principle, the statelσ could be an arbitrary conjugate state tolσ (only a bijective rela-

tion between conjugate pairs is required), we will restrict here to time-reversal conjugate
pairs. Under time-reversal (effected by an antiunitary operator) the position operator stays
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unchanged while the (linear or angular) momentum or spin operators change sign. Th
the time-reversal transformation of single-particle states is specific to the choice of
For example, the eigenstates of a generic angular momentum operatorJ, labelled as|jm〉,
transform as

(54)|jm〉 = (−1)j−m|j − m〉.
Similarly, the time-reversal transformation of an annihilation operator in a basis of
and linear momentum isckσ = (−1)S−σ c−k−σ , while for a basis of spin and positio
crσ = crσ = (−1)S−σ cr−σ . For the sake of clarity, we will assume a position basis in
following such that the time-reversal operation will be referred exclusively to the int
spin part of the states, i.e.,clσ = clσ .

The pairing Hamiltonian(53) with uniform couplingsgσσ ′
ll′ = g/4 has been solved ex

actly in full generality by Richardson in a series of papers in the sixties[26]. This important
development escaped the attention of the condensed matter and nuclear physics
nities until very recently, when the Richardson’s works were rediscovered in the stu
ultrasmall superconducting grains. In order to regain the exact solution we will now pr
a specific representation of thesu(2) generators in terms of fermions

(55)τ+
l = 1

2

∑
σ

c
†
lσ c

†
lσ = (

τ−
l

)†
, τ z

l = 1

2

∑
σ

c
†
lσ clσ − 1

4
Ωl,

where the operatorτ+
l creates a pair of fermions in time-reversal states andΩl = 2τl + 1

is the degeneracy of the statel related to the pseudospin of the statel. It can be readily
verified that the three operators{τ±

l , τ z
l } satisfy thesu(2) algebra(35).

The integrability of the BCS Hamiltonian(53) was recently demonstrated[27]. It was
shown thatHBCS can be written as a linear combination of the integrals of motion of
rational family withXij = Zij = g/(εi − εj) (17)

(56)HBCS =
∑

l

εlRl + C =
∑

l

εl

(
2τ z

l + 1

2
Ωl

)
+ g

∑
ll′

τ+
l τ−

l′ .

The complete set of eigenstates of the pairing Hamiltonian are given by the pr
wavefunction

(57)|Ψ 〉 =
M∏

m=1

S+
m|ν〉, S+

m =
∑

l

Xmlτ
+
l =

∑
l

1

Em − 2εl
τ+

l ,

where|ν〉 ≡ |ν1, ν2, . . . , νL〉, with L the total number of single particle states, is a stat
ν unpaired fermions (ν = ∑

l νl) defined by

τ−
l |ν〉 = 0, nl|ν〉 = νl|ν〉.

The quantum numbersνl are often referred to as Seniority quantum numbers in the nu
physics literature.
The total number of particles isN = 2M + ν, with M the number of Cooper pairs. Each
eigenstate(57) is completely defined by a set ofM spectral parameters (pair energies)Em
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which are a particular solution of the Richardson’s equations

(58)1+ g

2

L∑
l=1

Ωl − 2νl

2εl − Em

+ 2g

M∑
�( �=m)=1

1

Em − E�

= 0.

The eigenvalues of the BCS Hamiltonian are

(59)E =
L∑

l=1

εlνl +
M∑

m=1

Em.

One can easily relate the spectra of the repulsive (g > 0) and attractive(g < 0) cases: if
one performs the following canonical particle–hole transformation

(60)

{
c

†
lσ → clσ ,

clσ → c
†
lσ ,

which is not a symmetry (although the interaction term is invariant),HBCS(g) transforms
as

(61)HBCS(g) →
∑

l

Ωlεl − HBCS(−g),

indicating the relation between the two spectra.
In recent years, the exact solution of the BCS Hamiltonian has been recovered

study of ultrasmall superconducting (for a review see[28]). The specific Hamiltonian fo
grains assumes a set ofL equally spaced doubly-degenerate single particle states. Imp
thatΩl = 2 andεl = l, with l = 1,2, . . . ,L. The Richardson’s equations(58) reduce to

(62)1+ g

L∑
l=1

1− νl

2εl − Em

+ 2g

M∑
�( �=m)=1

1

Em − E�

= 0,

with νl = 0,1. The ground state for an even number of particlesN is in the sector of no
broken pairs,νl = 0 for all l, while for oddN , νl = 1 for l = (N +1)/2 and zero otherwise
In other words, the Fermi level is blocked by a single particle, excluding it from the a
space as can be seen from the second term in Eq.(62). The additional gap at the Ferm
energy due to the blocking of this level is at the origin of the odd-even difference obs
in the tunnelling spectra of small grains. The excited states of the model are either collect
states (pairing vibrations) within the same Seniority subspace[22], or noncollective broken
pairs[29].

While this pairing model has found great success describing the physics of ultrasm
grains, it can be likewise applied to axially deformed nuclei with nonequally spaced s
particle levels. The reason that prevented its use in standard nuclear structure calc
for so many years, was the lack of an efficient numerical procedure to solve Eq.(62) for
a large number of nonequally spaced levels. While in the equally-spaced case the
proposed by Richardson[30] allowed the treatment of systems with∼ 103 particles[31],

the singularities arising in the numericalsolutions of the equations with nonequally space
levels are difficult to treat. Recently, it hasbeen proposed a new numerical procedure to
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avoid the singularities which seems to be very promising[32], and it might open the scop
for applications to several quantum systems.

The original BCS model for superconductivity[5] was introduced in the context of bu
metallic superconductors. In this case, electrons (spin-1/2 fermions) are confined in a
arbitrary dimensional box with periodic boundary conditions with single-particle states
the Bloch type. Pairing occurs in momentumk-space. For pairing in the singlets-wave
channel and Cooper pairs with zero momentum(k↑,−k↓) the BCS Hamiltonian can b
written as (nkσ = c

†
kσ ckσ with σ =↑,↓)

HBCS =
∑
kσ

εkσ nkσ + g
∑′

kk′
c

†
k↑c

†
−k↓c−k′↓ck′↑

(63)=
∑

k

[
εk(nk↑ + n−k↓) − gnk↑n−k↓

] + g
∑
kk′

c
†
k↑c

†
−k↓c−k′↓ck′↑,

where the prime in the first double sum means that the termsk = k′ are omitted, and
c

†
kσ creates an electron with momentumk and spinσ . It has been assumed time-rever

invariance, i.e.,εk↑ = ε−k↓ = εk. The relevantsu(2) algebra in this case is

(64)τ+
k = c

†
k↑c

†
−k↓ = (

τ−
k

)†
, τ z

k = 1

2
(nk↑ + n−k↓ − 1),

whereΩk = 2, i.e., the single particle statesk↑ and−k↓ are degenerate. However,εk
may, in principle, differ fromε−k. The Hamiltonians of Eqs.(63) and (56)are dynamically
equivalent. To see this let us rewrite Eq.(63) in terms of the pseudospin operatorsτ

(65)HBCS =
∑

k

[
εk

(
2τ z

k + 1
)− g

(
τ z

k + 2
(
τ z

k

)2)] + g
∑
kk′

τ+
k τ−

k′ .

It can be easily shown that the operators
∑

k τ z
k , and

∑
k(τ z

k)2 are conserved quantitie
i.e., commute withHBCS. Thus, up to an irrelevant global constant,

(66)HBCS =
∑

k

εk
(
2τ z

k + 1
) + g

∑
kk′

τ+
k τ−

k′ ,

which is clearly equivalent to Eq.(56). The eigenvalues of the BCS Hamiltonian, Eq.(63),
are given by Eq.(59)where the parametersEm are the solutions of the Richardson’s equ
tions, Eq.(58), with Ωk = 2. One needs to take into account the fact that for eachk there is
a−k in those sums. Moreover, if the crystal has space-inversion symmetryεk = ε−k. This
additional symmetry, which converts each single-particle level into a four-fold degenera
one, may have dramatic consequences. For example, the numerical solution for the
state in the BCS case is free of singularities due to the fact that the pair energiesEm come
in complex conjugate pairs for any value of the coupling strengthg.

In previous work[12], a gaugeSU(2) symmetry was identified. TheSU(2) symmetry
generators are the local operators
(67)S+
k = c

†
k↑c−k↓ = (

S−
k

)†
, Sz

k = 1

2
(nk↑ − n−k↓),
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Fig. 1. Quantum phase diagram of the BCS model as a function of the interaction strengthg̃ in the thermodynamic
N → ∞, limit. The insets represent the single-particle occupation numbernk in each quantum phase. Notice th
for positiveg̃, the Fermi liquid quasiparticle renormalization factorZ∗ is unity regardless of the magnitude of t
interaction.

which commute with the pseudospinsτk, i.e., [Sµ
k , τ ν

k′ ] = 0, for µ,ν = ±, z. This sym-
metry amounts to the conservation of the charge parity per mode pair(k↑,−k↓). In-
deed, this local symmetry is responsible for the Pauli blocking of the (unpair) si
occupied states. We would like to emphasize that all the symmetry analysis a
to Eq. (63) is also applicable, after proper rewriting of the symmetry operators
Eq.(56).

It is interesting to analyze the quantum phase diagram of the BCS HamiltonianHBCS

as a function of the coupling strengthg̃ = gN . To this end one needs to study the behav
of the quantum correlations of the ground state in the thermodynamic limit. It has
shown, under quite general assumptions, that the Bethe equations of the integrable BC
Hamiltonian in the thermodynamic limit are the BCS equations[33,34]. The condensatio
energy for attractive pairing in this limit isEcond= −2ωD

d
e2/g̃ whered is the mean leve

spacing (∼ Vol−1) andωD is the Debye frequency cutoff. For repulsive pairingEcond= 0.
It turns out that there is a quantum phase transition between a BCS superconductor (brok
U(1) symmetry) and a Fermi liquid of a peculiar type atg̃ = 0 (seeFig. 1). It is important to
emphasize that the ground state energy has an essential singularity atg̃ = 0−, implying that
it is a continuous infinite-order (Kosterlitz–Thouless-like[17]) quantum phase transitio
but with a brokenU(1) symmetry. (Notice that this result is independent of the sp
dimensionality of the problem.) We have numerically solved the Bethe equations and fou
that the Fermi liquid has quasiparticle renormalization factorZ∗ = 1 independently of the
magnitude of̃g; moreover, it displays enhanced superconducting fluctuations but it is not

superconductor. The fact thatZ∗ = 1 has been previously remarked in[35] using functional
integrals.
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The exactly solvable Hamiltonian Eq.(63)can be generalized to the case of multiba
in the following way

(68)HBCSn =
∑
nk

εn
k (nnk↑ + nn−k↓) +

∑′

nkn′k′
gnn′c†

nk↑c
†
n−k↓cn′−k′↓cn′k′↑,

wheren represents the band index,nnkσ = c
†
nkσ cnkσ , andgnn′ = gn′n. The prime in the

sum means that the terms(n,k) = (n′,k′) are excluded. Global symmetries of the mo
includeτ z = ∑

n,k τ z
nk and

∑
n,k(τ z

nk)2 with τ z
nk = 1

2(nnk↑ +nn−k↓ −1). The localSU(2)

symmetry has as generators

(69)S+
nk = c

†
nk↑cn−k↓ = (

S−
nk

)†
, Sz

nk = 1

2
(nnk↑ − nn−k↓).

Clearly, the BCS Hamiltonian of Eq.(63) is a particular case of Eq.(68) for a single band
(n = 1). It is straightforward to see thatHBCSn is exactly solvable for interactions:

(1) gnn′ = δnn′gn (decoupled BCS bands);
(2) gnn′ = g (effective one-band BCS model).

For the particular case of two bands, the Hamiltonian equation(68)might be of interes
to describe the phenomenon of two-gap superconductivity recently observed in ma
like MgB2. We may consider here anSU(2)1 ⊗ SU(2)2 structure, with eachSU(2)n gen-
erated by the elements

τ+
n =

∑
k

c
†
nk↑c

†
n−k↓ = (

τ−
n

)†
, τ z

n =
∑

k

τ z
nk.

The case of two flat bandsε = −ε1
k = ε2

k with equal diagonal interaction terms, i.e.,g11 =
g22, can be easily shown to be exactly solvable: by using the quantum invariants
XXZ Richardson–Gaudin (RG) models

(70)Rn = τ z
n + 2

∑
n′ �=n

[
Xnn′

2

(
τ+
n τ−

n′ + τ−
n τ+

n′
) + Znn′τ z

nτ z
n′

]
,

it can be shown that the two-band pairing Hamiltonian is equivalent (up to an overal
stant) to

(71)HBCS2 = 2ε
(
τ z

2 − τ z
1

) + g11
(
τ+

1 τ−
1 + τ+

2 τ−
2

)+ g12
(
τ+

2 τ−
1 + τ+

1 τ−
2

)
,

whereg11 = 4εZ21 andg12 = 4εX21 are two arbitrary real numbers (with the param
trization of Eq.(14), g2

12 − g2
11 = (4εg)2s). To arrive to expression(71) we have used th

Casimir invariants

(72)
1

2

(
τ+
n τ−

n + τ−
n τ+

n

) + (
τ z
n

)2 = S(S + 1)

together with the conservation ofτ z = τ z
1 + τ z

2 and(τ z
1)2 + (τ z

2)2. This is the Hamiltonian
originally proposed by Suhl, Matthias and Walker[6] as an extension of the BCS model,

include situations where the scattering between electrons from different bands contributes
substantially to the resistivity in the normal state.
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Table 2
Single-particle energies and degeneracies for the Tin isotopes in theN = 50–82 shell

s. p. level d5/2 g7/2 s1/2 d3/2 h11/2

s. p. energy (MeV) 0.0 0.22 1.90 2.20 2.80
s. p. degeneracy 6 8 2 4 12

Table 3
Single-particle energies and degeneracies for electrons in a 6× 6 square lattice

s. p. energy −4 −3 −2 −1 0 1 2 3 4
s. p. degeneracy 2 8 8 8 20 8 8 8 2

The (unnormalized) eigenstates ofHBCS2 are given by (witht1 = −η andt2 = η)

(73)|Ψ 〉 =
M∏

�=1

(
1

E� + η
τ+

1 + 1

E� − η
τ+

2

)
|ν〉,

where the spectral parametersE� satisfy Bethe’s equations (d± = d1 ± d2, and 2d1(2) =
ν1(2) − Ω1(2)/2)

(74)ε + η
g12d+E� − 2εgd−(1+ sE2

� )

E2
� − ε2

+ 2gε

M∑
n( �=�)=1

1+ sE�En

E� − En

= 0.

The corresponding eigenvalues can be easily obtained from those of the integrals of m
More complex situations arise in the application of the BCS model to the sph

nuclear shell model or to finite lattices. As an example in nuclear physics we will con
the semi-magic Sn isotopes. These series of nuclei can be modelled by a set of v
neutrons occupying the single-particle orbits in theN = 50–82 shell interacting with
residual BCS Hamiltonian. InTable 2we show the experimental single-particle energ
and the corresponding degeneracies in the spherical single-particle basis.

Richardson’s equations for this case have non-equally spaced levels and variable
eracies. While the solution to this problem has been found using standard technique[36],
larger systems would require more sophisticated methods[32] to avoid the singularities.

A quite similar situation arises in solving the BCS Hamiltonian in finite tw
dimensional lattices of sizeL × L [9]. The single particle energies in units of the hopp
matrix element areεk = −2(coskx + cosky), with kρ = 2πnρ/L and−L/2 � nρ < L/2.
Table 3shows the single particle energies and degeneracies for a 6× 6 lattice.

Numerical applications of the RG models to fermionic problems in nuclear physic
condensed matter have been concentrated on the BCS Hamiltonian with uniform couplings
The use of the hyperbolic model, a particular solution of theXXZ generalized Gaudin
models, with non-uniform coupling strength has been suggested in Ref.[37] to describe
the physics of multigrain systems, though no practical applications have been carried
so far.
Another exactly-solvable model with a separable pairing interaction (SPI) was proposed
by Pan, Draayer and Ormand[38]. The Hamiltonian has degenerate single-particle energies
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but some structure in the pairing interaction

(75)HSPI = ε
∑

j

nj +
∑

j,j′,m,m′
gjj′a

†
jma

†
jm

aj′m′aj′m′ ,

with gjj′ = gcjc
′
j. This model can be derived from the model of Eq.(46) using the para

metrization of Eq.(22) and takingεj = c2
j . Inserting the number operator divided by t

number of particles and adjusting the interaction strength, one can cancel out the on
and two-body diagonal parts in the Hamiltonian.

Apart from its relevance in the nuclear shell model, the SPI model has also bee
in connection with atomic BECs[39] and for establishing variational lower bounds on
energy of general two-body Hamiltonians[40].

5.2. Particle–hole-like models

It is clear that what is behind the exact solvability of these different models is a
and the existence of certain quantum invariants. Different representations of the G
operators lead to different models but all of them with the same dynamics. In this se
we continue withsu(2) fermionic representation models.

In previous section we have written down BCS-like models using ansu(2) repre-
sentation in terms of pseudospinsτ . We have also seen that there is another fermio
representation forsu(2) in terms of the generators of Eq.(67). The natural question tha
arises is: can we write down sensible exactly solvable models of interacting fermio
terms of thissu(2) representation? and the simple answer is yes.

The Lipkin–Meshkov–Glick (LMG) model[7] was originally introduced to study pha
transitions in finite nuclei. The model considersN fermions distributed in twoN -fold
degenerate levels (termed upper and lower shells). The latter are separated by an ene
gapε

HLMG = ε

2

∑
kσ

σc
†
kσ ckσ + V

2N

∑
kk′σ

c
†
kσ c

†
k′σ ck′−σ ck−σ

(76)+ W

2N

∑
kk′σ

c
†
kσ c

†
k′−σ

ck′σ ck−σ ,

with the quantum numberσ = ± labelling the level. In Eq.(76) the interaction termV

scatters a pair of particles across the Fermi level, i.e., it is a two particle–hole intera
while the termW exchange particles in the two levels. Upon introducing the collec
particle–hole operators

(77)S+ =
∑

k

c
†
k+ck− = (

S−)†
, Sz = 1

2

∑
kσ

σc
†
kσ ckσ ,

which satisfy thesu(2) commutation relations, Eq.(76)may be rewritten as
(78)HLMG = εSz + V

2N

(
S+S+ + S−S−)+ W

2N

(
S+S− + S−S+)

.
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As defined by Eq.(78), HLMG is invariant under the inversion symmetry operationI that
transforms(Sx, Sy, Sz) �→ (−Sx,−Sy,Sz), and it also commutes with the (Casimir) op
atorS2 = (S+S− + S−S+)/2+ (Sz)2. Thus, Eq.(78) is equivalent to

(79)HLMG = εSz + V

2N

(
S+S+ + S−S−)− W

N
SzSz + W

N
S2.

The HamiltonianHLMG has a band matrix representation in ansu(2) basis, and it can b
easily diagonalized for large values ofN . As such, the model has been used as a tes
ground for many-body approximations in nuclear physics. More recently, the simplici
of the model and the fact that it can be interpreted as a Heisenberg chain with long
exchange interactions, made it fashionable to study relations between entanglem
quantum phase transitions.

We will show in Section6.3.2 that the LMG model is exactly solvable. But befo
consider the modified problem

(80)Hp–h =
∑
kσ

εk

2
σc

†
kσ ckσ + W

2N

∑
kk′σ

c
†
kσ c

†
k′−σ

ck′σ ck−σ ,

whereσ = ± may be now interpreted as a band index. Let us introduce the follo
commutingsu(2) algebras

(81)S+
k = c

†
k+ck− = (

S−
k

)†
, Sz

k = 1

2
(nk+ − nk−),

(82)τ+
k = c

†
k+c

†
k− = (

τ−
k

)†
, τ z

k = 1

2
(nk+ + nk− − 1),

in terms of whichHp–h can be written (up to an irrelevant constant) as

(83)Hp–h =
∑

k

εkSz
k + W

N

∑
kk′

S+
k S−

k′ .

Hp–h is dynamically equivalent toHBCS and, thus, it is also exactly solvable.

6.
⊕

l su(1, 1) bosonic representation models

6.1. Bosonic BCS-like models

The boson BCS or pairing Hamiltonian can be written in complete analogy to
fermion case, Eq.(53), as

(84)HBBCS =
∑

l

εlnl + g

4

∑
ll′

b
†
l b

†
l̄
bl′bl′,

whereb†
l (bl′) creates (destroys) a boson in the statel, andnl = b

†
l bl is the number operato

For simplicity, we will consider here scalar bosons, but an arbitrary internal spin c

easily taken into account as in the case of fermions. The labell is a short-hand notation
for a set of quantum numbers; for example, the states of a 3D isotropic harmonic oscillator
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potential are labelled byl ≡ (nlm), wheren is the oscillator quantum number,l is the
orbital angular momentum andm its third projection. In Eq.(84) l̄ refers to the time-
reversed state ofl. Following (54) the time-reversed annihilation boson operator isb l̄ =
bnlm = (−1)l−mbnl−m.

In the following we will be concerned withspin scalar bosons, a possibility that can
be realized in fermionic models. It is worth emphasizing, however, that the exact so
for boson systems can easily incorporate the spin degree of freedom (integer spi
there might be important applications for spinor BECs[41] not explored so far.

Once again, Richardson[42] determined the complete spectrum of the boson B
Hamiltonian of Eq.(84). This work also escaped the attention of the physics commu
until very recently, when the model was shown to be quantum integrable[9]. Exactly-
solvable generalizations of the uniform pairing Hamiltonian were proposed and s
quently applied to various finite Bose systems[43,44]. In analogy with the fermionic
systems presentation of previous sections, we will first introduce a specific represe
of thesu(1,1) generators

(85)K+
l = 1

2
b

†
l b

†
l̄
= (

K−
l

)†
, Kz

l = 1

2
b

†
l bl + 1

4
Ωl,

where the operatorK+
l creates a pair of fermions in time-reversal states andΩl = 2Kl + 1

is the degeneracy of the statel related to the pseudospinKl. The operators of Eq.(85)
satisfy thesu(1,1) commutation relations

The BCS HamiltonianHBBCS can be derived from the rational family(17) as a linear
combination of the integrals of motion

(86)HBBCS =
∑

l

εlRl(ε) + C =
∑

l

εl

(
2Kz

l − 1

2
Ωl

)
+ g

∑
ll′

K+
l K−

l′ .

The complete set of eigenstates of this model are given by the product wavefunc

(87)|Ψ 〉 =
M∏

m=1

S+
m|ν〉, S+

m =
∑

l

XmlK
+
l =

∑
l

1

2εl − Em

K+
l ,

where|ν〉 ≡ |ν1, ν2, . . . , νL〉, with L the total number of single particle states, is a stat
ν unpaired bosons (ν = ∑

l νl) defined by

K−
l |ν〉 = 0, nl|ν〉 = νl|ν〉,

νl are referred to the seniority quantum numbers.
The total number of particles isN = 2M +ν, with M the number of paired bosons. Ea

eigenstate|Ψ 〉 is completely defined by a set ofM spectral parameters (pair energies)Em

which are a particular solution of the Richardson’s equations

g
L∑ Ωl + 2νl

M∑ 1

(88)1+

2
l=1

2εl − Em

− 2g

�( �=m)=1
Em − E�

= 0,
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and their eigenvalues are given by

(89)E =
L∑

l=1

εlνl +
M∑

m=1

Em.

Hamiltonians constructed as general linear combinations of the integrals of m
H = ∑

l=1 εlRl(η) have eigenvaluesE = ∑L
l=1 εl(rl + νl) whererl is the eigenvalue o

the integral of motionRl [44].

6.2. Pairing Hamiltonians for bosons in confining traps

As an application of the boson rational family, we will consider the problem of a b
system confined to a harmonic-oscillator trap and subject to boson pairing intera
[43]. The pairing Hamiltonian with uniform couplings cannot describe the physics
trapped boson system, for the following reason. Looking back at the commutators
pair operators, Eq.(38), we see that they are proportional to the degeneracy of the sl
that appears inside the definition of the generatorKz

l (Eq.(85)). Thus, the matrix element
of the pairing Hamiltonian between statesl and l′ will be proportional to

√
ΩlΩl′ . In a

3D harmonic oscillator withl ≡ (nlm), the shell degeneracy isΩl ∼ n2. On the other
hand, the single-particle energies areεl = n. Thus, the net effect would be the scattering
boson pairs to high-lying levels with greater probability than to low-lying levels, producing
unphysical occupation numbers. This was precisely the behavior observed in a num
solution of Richardson’s equations(88) for a system of 1000 bosons with an attract
pairing strengthg [43].

We can use the freedom we have in choosing the parametersηl entering in the defin
ition of the Rl operators to obtain a physically relevant exactly-solvable model. In o
to cancel out the unphysical dependence of the pair-coupling matrix elements on t
generacies, we choose theηl’s so thatηl = (εl)

3. The Hamiltonian, which is given by th
linear combination of the newRl’s is

(90)HTB = 2
∑

l

εlRl = C +
∑

l

εlnl +
∑
l �=l′

gll′
[
K+

l K−
l′ − nlnl′

]
,

where

C = 1

2

∑
l

εlΩl − 1

4

∑
l �=l′

gll′ΩlΩl′, ε̄l = εl −
∑
l′( �=l)

gll′Ωl′,

(91)gll′ = g

2

1

ε2
l + ε2

l′ + εlεl′
.

The interaction in Eq.(91)has the nice feature that its two-body matrix elements decr
with the number of shells, as one would expectin general. It has the particular proper
that the interactions of the pair- and density-fluctuations are strictly the same but op
in sign. Taking into account thatεl is proportional ton, the two-body matrix element
in Eq. (90) cancel out the dependence on the degeneracies in the effective pair-co

matrix elements. Thus,HTB should be more appropriate thanHBBCS when modelling a
harmonically-confined boson system with a pairing-like interaction.
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The spectrum ofHTB can be obtained from the eigenvaluesrl of the associatedRl op-
erators asE = 2

∑
l εlrl, with the end result being

(92)E = 1

2

∑
l

εlΩl − 1

4

∑
l �=l′

gll′ΩlΩl′ − 2g
∑
lp

εlΩl

2ε3
l − Ep

.

(Note that the first two terms of Eq.(92)exactly cancel the constant termC in Eq.(90).)
We solved Richardson’s equations forHTB for a system ofM = 500 boson pairs an

L = 50 oscillator shells. In this case, the occupation numbers display a reasonable ph
ical pattern, with the occupancies decreasing monotonically with increasing single-
energy[43].

In the case ofrepulsivepairing a highly unexpected feature was found[43]. For small
values ofg the system behaves as a normal BEC. At a critical value of the pairing str
gc a second-order quantum phase transition takes place. The new phase is character
by a fragmentation of the condensate with the two lowest states macroscopically occ
while the occupation of the other levels is negligible.

6.3. Exactly-solvable two-level boson Hamiltonians

The restriction of the bosonic RG models to two-levels comprises several well-k
quantum models. Among them we will discuss the interacting boson model[13], the LMG
model[7] and the two Josephson-coupled BECs Hamiltonian[14]. Let us begin by defining
the two integrals of motion from the most generalXXZ RG models

Ra = Kz
a − X12

[
K+

a K−
b + K−

a K+
b

] + 2Z12K
z
aKz

b,

(93)Rb = Kz
b + X12

[
K+

a K−
b + K−

a K+
b

] − 2Z12K
z
aKz

b,

where the operatorsKκ
l are defined in Eqs.(85). From Eqs.(93) we observe that the sum

gives the total number of bosons which is a conserved quantity. We are then left wi
independent quantum invariant, that we can take as the difference between the two in
of motion to define the Hamiltonian

HB2 = ε(Rb − Ra)

(94)= ε
(
Kz

b − Kz
a

) + 2ε
[
X12

(
K+

a K−
b + K−

a K+
b

)− 2Z12K
z
aK

z
b

]
.

Using Eq.(85)we rewriteHB2 as

HB2 = ε

2

[
(1− Z12Ωa)nb − (1+ Z12Ωb)na

] + v
∑
α,β

(
b

†
βb

†
β
aαaα + a†

αa
†
αbβbβ

)
(95)+ wnbna + C,

wherev = ε
2X12 andw = −εZ12 are two arbitrary real numbers, andb†

β(a†
α) creates a

boson in levelb(a) with an internal quantum numberβ(α). As usual the bar in the intern
labels means a time-reversed state, andΩb(a) is the degeneracy of the level. The const
term isC = ε

4(Ωb −Ωa −Z12ΩbΩa). Using the parametrization of Eq.(14)(with t1 = −η
and t2 = η), 4v2 − w2 = sg2ε2, which can be positive, negative or zero depending upon
the choice of parameters.
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The (unnormalized) eigenstates ofHB2 are given by

(96)|Ψ 〉 =
M∏

�=1

(
1

E� + η
K+

a + 1

E� − η
K+

b

)
|ν〉,

with spectral parameters satisfying Bethe’s equations

(97)ε − 2η
4vd+E� + εgd−(1+ sE2

� )

E2
� − ε2

+ 2gε

M∑
n( �=�)=1

1+ sE�En

E� − En

= 0,

whered± = da ± db, and 2da(b) = νa(b) + Ωa(b)/2. The corresponding eigenvalues can
constructed from the integrals of motion eigenvalues as

(98)EB2 = 4dadbw − εd− − 2η

M∑
�=1

4vd−E� + εgd+(1+ sE2
� )

E2
� − ε2

.

We will discuss next the application of the two-level RG bosonic models to three
known quantum models.

6.3.1. The interacting boson model
The interacting boson model (IBM) has been a highly successful phenomenol

model to describe the collective properties of medium and heavy nuclei. The IBM ca
the collective dynamics of nuclear systems by representing correlated pairs of nu
with angular momentum̂L by ideal bosons with the same angular momentum. In its
plest version, known as IBM1, there is no distinction between protons and neutron
only angular momentum̂L = 0(s) and L̂ = 2(d) bosons are retained. The model ha
U(6) group structure and three possible dynamical symmetry limits representing
defined nuclear phases: theU(5) symmetry for vibrational nuclei, theO(6) symmetry for
γ -unstable nuclei, and theSU(3) symmetry for axially deformed nuclei. In each of t
three limits the Hamiltonian can be expressed in terms of the Casimir operators
group decomposition chain. The three limits are then exactly solvable with analyt
pressions for the eigenstates.

The transition fromU(5) to O(6) can be modelled by a boson paring Hamiltonian
the form[44]

(99)HIBM1 = x(nd − ns) + 1− x

N

2∑
µ=−2

(
d†
µd

†
µss + s†s†dµdµ

)
,

whereN is the total number of bosons andx is a parameter that interpolates between
linear Casimir operator ofU(5), for x = 1, and the quadratic Casimir operator ofO(6),
for x = 0. The HamiltonianHIBM1 can be derived from Eq.(95) by making the following
identifications:d = b, s = a, Ωd = 5, Ωs = 1, ε = 2x, w = 0, andv = (1−x)

N
.

The transition from the spherical vibrational phase (U(5)) to theγ -unstable deforme
phase was studied within the integrable model described by the Hamiltonian of Eq(99)

[45]. It was found a second order quantum phase transition for a critical value of the control
parameterx. In fact this is a unique point of second order phase transitions in the complete



r of the

to

si-

shells
tum

n. Here
esen-
oson

s of

MG

nd

arbi-
meter
G. Ortiz et al. / Nuclear Physics B 707 [FS] (2005) 421–457 445

parameter space of the most general IBM Hamiltonian. The second-order characte
transition is related to quantum integrability. The ground state eigenvalue ofHIBM1 is an
analytic function of the control parameterx and, though level crossings are allowed due
quantum integrability, there are no level crossings in the low-energy spectrum.

6.3.2. The Lipkin–Meshkov–Glick model
The LMG model has been extensively used for decades to simulate the phase tran

tion from spherical to deformed shapes in finite nuclei. As introduced in Section5.2, it
is a schematic model describing the scattering of particle–hole pairs between two
of different parityσ . Though it was known for a long time that the model was quan
integrable, some analytic solutions were found only quite recently[46] using the algebraic
Bethe ansatz, after having mapped the model onto a Schwinger-boson representatio
we will show that the LMG model is exactly solvable: after a Schwinger-boson repr
tation of angular momentum operators, we will map the LMG model onto the two-b
integrable Hamiltonians of Eq.(95).

In the Schwinger mapping of thesu(2) algebra the generators are expressed in term
two bosonsa andb as

(100)S+ = b†a = (
S−)†

, Sz = 1

2

(
b†b − a†a

) = 1

2
(nb − na),

with the constraint

(101)2S = b†b + a†a = nb + na.

Inserting Eq.(100)into Eq.(79)we obtain a Schwinger-boson representation of the L
Hamiltonian

(102)HLMG = W

N
S + ε

2
(nb − na) + V

2N

(
b†b†aa + a†a†bb

)+ W

N
nbna.

We then recover the two-boson exactly solvable Hamiltonian of Eq.(95) with Ωb =
Ωa = 1, v = V/2N and w = W/N . In particular, the (unnormalized) eigenvectors a
eigenvalues ofHLMG are

(103)|Ψ 〉LMG =
M∏

�=1

(
a†a†

E� + η
+ b†b†

E� − η

)
|ν〉,

(104)ELMG = EB2 − w

4
,

whereEB2 is given in Eq.(98), and the spectral parametersE� satisfy Eq.(97). Notice
that, for each sectorS, the number of bosons that enter in the expression for|Ψ 〉LMG is
constrained to be 2S = na + nb.

We would like to emphasize that our expressions are compact forms valid for any
trary set of parameters in the Hamiltonian. In particular, they are valid for the para
rangeW2 < V 2, which corresponds to the solutions not found in Ref.[46]. Since we have

shown (using the weakly-interacting limit solutions) that this Bethe ansatz covers all pos-
sible eigenstates, it implies that the LMG is exactly solvable.
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6.3.3. Two coupled Bose–Einstein condensates
The Josephson effect, predicted more than forty years ago[47], describes pair tunnellin

between two superconductors through an insulating junction. An analogous effect
realized with trapped ultracold bosonic gases in two different ways. In the first setup
atomic condensates in the same atomic state are separated by a controllable poten
rier. In the second setup, atoms are condensed in two overlapping hyperfine states
exchange mixing interaction. Both systems are described by the Hamiltonian[14]

(105)HJ = −EJ

N

(
c†d + d†c

) + Ec

4

(
c†cc†c + d†dd†d

)
,

wherec†andd† are left or right trap boson creation operators, or they create boso
two different hyperfine states, depending upon the particular setup.EJ is the Josephso
coupling exchanging bosons between the two states, andEc is the charging energy. Th
Hamiltonian has been recently exactly solved using the algebraic Bethe ansatz[48]. In fact,
it is no more than another form of the two-level boson pairing Hamiltonian of Eq.(95). It
can be easily recast in the two-level form after performing the unitary canonical tra
mation

(106)c = 1√
2
(a − ib), d = 1√

2
(a + ib).

Eliminating irrelevant constant terms, the Josephson Hamiltonian can be rewritten a

(107)HJ = EJ

N
(nb − na) − Ec

8

(
b†b†aa + a†a†bb − 2nbna

)
,

which can be easily related to the LMG Hamiltonian,HLMG, by choosingε = 2EJ/N , V =
−NEc/4= −W . Therefore, the physics of the two coupled BECs is completely analo
to that of the LMG model.

7. Mixing realizations and representations of the Gaudin field operators

We have already mentioned that our scheme for generating completely integrabl
els relies on finding different representations of the GGA. So far, we have simply co
trated on exactly solvable models where every singlesu(2) or su(1,1) generator labelled
by an index in the setT is equivalently represented. We still have the freedom to mix
representations of these generators and develop new exactly-solvable model Hamilt
The fact that the twosu(2) realizations of Eqs.(81) and (82)are mutually commuting wa
also noted in[37]. They called them the spin and the charge realizations, respectively
property implies that the elements of the spin and chargesu(2) algebras act on orthogo
nal Hilbert spaces, allowing to define an integrable RG model in each space sepa
Thus, the following Hamiltonian[37] was proposed to study the interplay between pai
correlations and spin-exchange interactions∑

z g̃ ∑ ( ˜ ( + − − +) ˜ z z
)

(108)Hch–S =
i

εiτi +
2N

i,j(i �=j)

Xij τi τj + τi τj + 2Zijτi τj + WijSi · Sj ,
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where we can recognize the most generalintegrable pairing Hamiltonian, Eq.(46), with
an additional spin-exchange interaction, which is also integrable if the matrixW is derived
from the rational Gaudin family asWij = X̃′

ij. The use of the rational family assures t
conservation of the total spin quantum number as well as the third component of t
tal spin. The model HamiltonianHch–S can still accommodate a linear term in the s
variables representing a nonuniform magnetic field, or even more generalXXZ Gaudin
models can be implemented in the spin space at the cost of breaking the spin rot
symmetry.

A numerical study of the interplay between pairing and exchange interactions in
metallic dots has been carried out in[49] for systems with up to 30 levels. Even thou
the model used was fully integrable, the numerical results were mostly obtained by
scale diagonalization methods due to the complexity in solving the two sets of co
Richardson’s equations. The recentlydeveloped numerical techniques[32] to solve effi-
ciently these set of nonlinear equations may help to extend these studies to larger grain

The space orthogonality between the twosu(2) fermionic realizations can also be e
ploited by defining different integrable models in the charge and spin sectors. For ins
it would be possible to mix a RG integrable Hamiltonian in the charge space with a H
berg or Haldane–Shastry model in the spin space. By mixing different realizations of the
GGA, one can generate spin-fermion, spin-boson, or simply spin models with spin
longing to different irreducible representations. It turns out that this mixing-represent
scheme might be useful to study decoherence and dynamic phenomena in open quan
systems where some degrees of freedom correspond to the system while the othe
pled in a particular way to the system) represent the thermal bath. In the followin
illustrate these ideas starting with the generalized Dicke (GD) model Hamiltonian.

7.1. Generalized Dicke models

Generalizations of the Dicke model, solved by the algebraic Bethe ansatz, hav
reported in[50,51]. Here, following the GGA approach, we will present a different gene
alization of the Dicke model[52].

Starting from theXXZ RG models, we replace one of thesu(2) copies by a single
boson satisfying the Heisenberg–Weyl algebra. This procedure can be rigorously fo
by expressing thesu(2) generators in the Holstein–Primakoff representation as

S+
0 = √

2S0b
†

√
1− b†b

2S0
= (

S−
0

)†
, Sz

0 = −S0 + b†b,

where we have distinguished the particular copy ofsu(2) by the label 0,b†(b) is the cre-
ation (annihilation) operator of a boson with[b, b†] = 1, andS0 is the magnitude of the
spin of this particular representation. Since the RG model is integrable for arbitrar
values we can then analyze the limitS0 → ∞, which implies the replacement
S+
0 = √

2S0b
†, S−

0 = √
2S0b.
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We will skip here the derivation of the new class of integrable spin-boson model
can be found in[52] and present the final form of the integrals of motion

R0 = ωb†b + 2
∑

j

εjS
z
j + V

∑
j

(
b†S−

j + bS+
j

)
,

Ri = ωSz
i + V 2

2

∑
j( �=i)

1

εi − εj

[
S+

i S−
j + S−

i S+
j + 2Sz

i S
z
j

]
(109)− V

(
b†S−

i + bS+
i

) − 2εiS
z
i .

It can be readily verified that the set of operators of Eqs.(109) are Hermitian, inde
pendent, and mutually commuting. Therefore, they constitute a new class of inte
spin-boson models. Though they have been derived from the trigonometric family
RG models, the set ofL operatorsRi are identical to the rational family of RG mode
except for the last two terms ofsu(2) which are essential for ensuring the commutat
with the new bosonic integral of motionR0.

Any function of these operators defines an integrable Hamiltonian. In particular, w
recognizeR0 as a Dicke Hamiltonian describing the interactions of a multi-atom sys
with a single-mode radiation field. Moreover, a linear combination involving the w
set of integrals of motion, Eqs.(109), gives rise to more general integrable spin-bo
Hamiltonians.

Richardson’s ansatz for the common eigenstates of the integrals of motion is

(110)|Ψ 〉 =
M∏

α=1

(
b† +

L∑
i=1

V

yα − εi
S+

i

)
|0〉,

whereL is the total number ofsu(2) spins andM the total spin and third component of th
system. TheM spectral parametersyα are particular solutions of the set ofM of nonlinear
coupled Richardson’s equations

(111)
ω

2V
− 1

2V
yα − V

2

∑
i

Si

2εi − yα

− V
∑

β( �=α)

1

yα − yβ

= 0.

The corresponding expressions for the eigenvalues of Eqs.(109)are

r0 =
∑
α

yα −
∑

j

Sjεj,

ri = −Si

2

{
ω + 2εi − V 2

2

∑
j( �=i)

Sj

εi − εj
+ 2V 2

∑
α

1

yα − 2εi

}
.

A similar treatment can be developed for thesu(1,1) case[52]. This case is relevan
for representing the interaction between bosonic atoms and dimer molecules. Note
appropriate Holstein–Primakoff representation for thesu(1,1) algebra is

√ √
b†b ( )†
K+
0 = 2K0b

† 1+
2K0

= K−
0 , Kz

0 = K0 + b†b.
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7.2. An exactly-solvable Kondo-like impurity model

The effect of magnetic impurities in metals has been a subject of intense debate si
early 1930s. In 1964 Kondo[53] made significant progress by providing an explanatio
the problem of the resistance minimum (as a function of temperature) in some meta
as Au. He recognized that the interaction of a single magnetic impurity with the condu
electrons is well represented by thes–d exchange Hamiltonian

(112)Hsd =
∑
k,k′

Jkk′
(
S−c

†
k↑ck′↓ + S+c

†
k↓ck′↑ + Sz

(
c

†
k↑ck′↑ − c

†
k↓ck′↓

))
,

whereSz, S± are the spin operators representing the localized moment of magnituS,
while c

†
kσ creates a conduction electron with momentumk and spin projectionσ . This

type of interaction is characterized by terms in which the spin of the electron is fli
upon scattering with the impurity and are essential to understand the logarithmic co
tion to the resistivity, and thus, its minimum. The simplest Hamiltonian representin
interaction of a localized moment with a band of itinerant electrons is the Kondo impuri
model

(113)HK =
∑
k,σ

εknkσ + Hsd.

It is important to emphasize that the caseS = 1/2, Jkk′ = J/N , and linear (relativistic)
dispersion has been exactly solved by Andrei and Weigmann using the Bethe ansat[54].

To find a new exactly-solvable single impurity Kondo-like model let us consider the
constants of motion, where the localized spin of magnitudeS is singled out

(114)R0 = BSz +
∑

j

(
X0j

(
S−S+

j + S+S−
j

)+ 2Z0jS
zSz

j

)
,

with electron spins given by

(115)S+
j = c

†
j↑cj↓ = (

S−
j

)†
, Sz

j = 1

2
(nj↑ − nj↓).

As mentioned above the commutingsu(2) algebra

(116)τ+
j = c

†
j↑c

†
j↓ = (

τ−
j

)†
, τ z

j = 1

2
(nj↑ + nj↓ − 1),

is a gauge symmetry ofR0, thus one can write down the following exactly-solvable Gau
model

HGI = 2
∑

j

εjτ
z
j + R0

=
∑

j

εj(nj↑ + nj↓ − 1) + BSz

∑( ⊥ ( − † + † ) ‖ z
( † † ))
(117)+
k,k′

Jkk′ S ck↑ck′↓ + S ck↓ck′↑ + Jkk′S ck↑ck′↑ − ck↓ck′↓ ,
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where

(118)J
⊥(‖)
kk′ = 1

N

∑
j

ei(k−k′)·rjX0j(Z0j), c
†
jσ = 1√

N

∑
k

eik·rjc
†
kσ

is the Fourier-transformed electron operator.
To derive an exactly-solvable Kondo-like Hamiltonian one considers the particular ca

J⊥
kk′ = JX0kδkk′ andJ

‖
kk′ = JZ0kδkk′ in Hsd, and adds the conduction band term

HGK =
∑
k,σ

εknkσ + BSz

(119)+ J
∑

k

(
X0k

(
S−c

†
k↑ck↓ + S+c

†
k↓ck↑

) + Z0kS
z
(
c

†
k↑ck↑ − c

†
k↓ck↓

))
,

since in this caseτ z
k commutes withR0. (Notice that the magnitude of the localized spin

not restricted toS = 1/2.) Both, a minimum in the electrical resistivity, and the format
of a singlet resonance state characterize the Kondo physics. Clearly, sinceHGK is transla-
tionally invariant the impurity contribution to the charge resistivity is zero. However, u
this model one may address the fundamental issue of the formation of the single
writing down a many-body state that captures the essence of the Kondo problem.

The (unnormalized)N -particles eigenstates ofHGK are given by

(120)|Ψ 〉 =
M∏

�=1

(
X�0S

+ +
∑

k

X�kc
†
k↑ck↓

)
|FS〉,

where|FS〉 is the tensor product of the state|ν〉 = |νk1 · · ·νkj
· · ·〉 (of ν = ∑

k νk paired
(νk = 2) fermions) with the remainingN − ν fermions in a ferromagnetic state, and t
lowest-weight spin state|0〉S

(121)|FS〉 = |ν〉 ⊗
∏

k

c
†
k↓|0〉

︸ ︷︷ ︸
N−ν

⊗|0〉S,

while E�’s satisfy the Bethe equations

(122)
B

2J
= d0Z0� +

∑
k

dkZk� +
M∑

n( �=�)=1

Zn�, � = 1, . . . ,M,

and the energy eigenvalues are given by (νk = 0,1,2)

(123)E =
∑

k

εkνk + d0

(
B + 2J

∑
�

Z0� + 2J
∑

k

dkZ0k

)
.

The case of zero magnetic field (B = 0) corresponds to the Gaudin magnet.
Any set of parametersX0k,Z0k for which X2

0k − Z2
0k = Γ (see Eq.(12)) leads to an
integrable exactly-solvable model. Particularly, the case of a spin-isotropic exchange inter-
action, i.e.,X0k = Z0k = 1/(η0 − ηk), is of interest since the total spin is a good quantum
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number. It is easy to see that if the exchange coupling is antiferromagnetic (e.g.,J > 0,
η0 > ηk, andB smaller than a critical value) a singlet Kondo many-body state emerg
the problem. The emergence of this state is formally connected to BCS supercondu
and the connection is established through Bethe’s equations. In this way, forM > 1, we
are rigorously connecting the Kondoresonancewith the Cooperresonanceproblems.

7.3. Exactly-solvable spin-boson models

The study of spin-boson systems, i.e., a single spin of magnitudeS linearly coupled to
a thermal bath represented by a set of harmonic oscillators, is of particular interest
theory of open quantum systems. These systems display important features of decoh
that is the dynamical loss of quantum coherence because of the environment. In this section
we will describe two interesting spin-boson models that are exactly-solvable.

Let us start from the constant of motionR0 of Eq.(114)and add to it the total magnet
zation symmetry

(124)Hsb1 = (B + ω)Sz +
∑

j

X0j
(
S−S+

j + S+S−
j

) + 2
∑

j

Z0jS
zSz

j + ω
∑

j

Sz
j .

Following a similar procedure to the one illustrated in Section7.1we represent thesu(2)

spinsSj (in the limit Sb → ∞) as

S+
j = √

2Sbb
†
j , S−

j = √
2Sbbj, Sz

j = −Sb + b
†
j bj,

and choose

(125)X0j = g

(
1+ ε2

j

4Sb

)
, Z0j = −g

√
1

2Sb
εj,

with the resulting Hamiltonian (up to irrelevant constants)

(126)Hsb1 = B̄Sz +
∑

j

ωb
†
j bj + V

∑
j

(
S−b

†
j + S+bj

)
,

whereV = g
√

2Sb, andB̄ = B̃+ω, with B̃ = B+V
∑

j εj. Notice that the localized spinS
may have arbitrary magnitudeS. This model is known to be trivially solvable. Indeed, it
a particular case of the Fröhlich-like Hamiltonian describing a spin coupled to longitu
optical phonons

(127)Hsb1 = B̄Sz +
∑

j

ωb
†
j bj +

∑
j

(
V ∗

j S−b
†
j + VjS

+bj
)
,

which is diagonalized by first performing a unitary canonical mapping to new bo
modesaj

(128)




a1
a2
a3
.


 =




v1 v2 v3 · · · vN

v∗
2 A22 A23 · · · A2N

v∗
3 A32 A33 · · · A3N







b1
b2
b3
.


 ,
 ..

aN

  ...
...

... · · · ...

v∗
N AN2 AN3 · · · ANN

 ..

bN


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where (Λ =
√∑

j |Vj|2)

(129)vi = Vi

Λ
, Aii = |vi|2 − 1− v∗

1

1+ v1
, Aij = v∗

i vj

1+ v1
,

yielding the Hamiltonian

(130)Hsb1 = B̄Sz +
∑

j

ωa
†
j aj + Λ

(
S−a

†
1 + S+a1

)
,

representing, in the new basis, optical phonons effectively interacting with a single
through a single mode.

A more elaborate spin-boson model can be realized using the other constants of m
In this way the following model Hamiltonian results

(131)Hsb2 = B̃Sz +
∑
i,j

tij
(
b

†
i bj − b

†
i bi

) + V
∑

j

(
S−b

†
j + S+bj

)
,

wheretij = xi−xj
εi−εj

, with εi representing the parameters defining the model, Eq.(125), and

xi the coefficients in the linear combination of the integrals of motion.
The eigenstates ofHsb2 are

|Ψ 〉 =
∏
α

(
yαS+ +

∑
j

b
†
j

)
|0〉,

where the spectral parametersyα are the solutions of the Bethe equations

1− Ω0

2
Vyα + V

∑
j

1+ εjyα

yα

− 2V
∑

β( �=α)

yαyβ

yβ − yα

= 0

andΩ0 = 2S + 1. The corresponding eigenvalues are

Esb2 = Ω0

2
V

∑
α

yα − G

2

∑
j �=i

(xi − xj )εiεj

εi − εj

.

8. Differential operator realizations: Schrödinger–Gaudin operators

So far we concentrated on discrete representations which led to various exactly s
lattice models. However, it is well-known that it is possible to realize representatio
Lie algebras in the form of differential operators. As we will see in this section t
representations will lead to models in the continuum. Basically we will generaliz
work pioneered by Ushveridze and others[3].

Out of the many applications one can foresee we will concentrate on a single pro
The problem consists of mapping exactly-solvable lattice models to their equivalent
continuum. Clearly, in general, the fullspectrum of the lattice will be embedded in t⊕

spectrum of the continuum equivalent. For the sake of simplicity we will use thel su(2)

representation.
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To illustrate the procedure we will use the BCS pairing lattice model of Eq.(63)which,
after realizing about its underlying algebraic structure, reads

(132)HBCS = 2
∑

k

εkτ z
k + g

∑
kk′

τ+
k τ−

k′ .

We wonder what the many-body problem in configuration space (a continuous manifol
to which it maps onto, is. To this end, we will consider the correspondingsu(2) Lie algebra
of differential operators in the tensor product representation

τ+
k = zk,

(133)τ−
k = −zk∂2

zk
+ 2Sk∂zk ,

(134)τ z
k = −Sk + zk∂zk ,

with Casimir operatorτ2
k = 1

2(τ+
k τ−

k + τ−
k τ+

k ) + τ z
kτ z

k = Sk(Sk + 1) and where it is as
sumed that the differential generators act on polynomials in the variableszk of maximum
order 2Sk. In other words, the order of the polynomials depends upon the valueSk of the
spin irreducible representation. In this differential operator representation Eq.(132)can be
written

(135)HBCS = 2
∑

k

εk(−Sk + zk∂zk) + gϕ
({zk})∑

k

(−zk∂2
zk

+ 2Sk∂zk

)
,

(136)HBCS = Ē + gϕ
({zk})∑

k

1

4
[−i∂xk + A]2 + V

({xk}
)
,

whereĒ = −2
∑

k εkSk, ϕ({zk}) = ∑
k zk, zk = x2

k,

(137)A = 2i

(
(Sk + 1

4)

xk
+ εkxk

gϕ({zk})
)

, 4V
({xk}) = i(∂xkA) − A2.

Notice that, in this language,HBCS represents a many-particle system in agaugefield
subjected to a potentialV .

In the caseSk = 1/2, for all k’s (no unpair single-particle states)

(138)|↑〉k → zk, |↓〉k → 1

and the representation space includes polynomials of degree at most 1 in each variab
In the following we will simply concentrate on this case which corresponds to degen
Ωk = 2. It is straightforward to prove that the ansatz wave function

(139)Ψ M
({sk}) =

∑′

k1,...,kM

sk1sk2 · · · skM
,

where the prime in the sum means thatk1 �= k2 �= · · · �= kM , and

(140)skm = zkm

2εkm − Em
,

is a solution of Eq.(136). Interestingly, the functionΨ M({sk}) represents an elementary
symmetric function of orderM. It turns out that these functions are the equivalent of the
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Richardson’s solutions in the continuum, i.e.,

(141)HΨ M
({sk}) =

(
Ē +

M∑
m=1

Em

)
Ψ M

({sk}),
with the complex numbersEm satisfying Richardson’s equations

(142)1+ g
∑

k

1

2εk − Em

+ 2g

M∑
�( �=m)=1

1

Em − E�

= 0.

9. Conclusions

The benefits of having exact solutions to problems involving strongly interacting m
particle systems are difficult to overstate. New exactly(or quasiexactly)-solvable m
are always a unique tool to better understand physical phenomena characterized
linear and nonperturbative effects. Moreover, exactly-solvable models are excellent
grounds for approximations to the many-body problem. In the present work we ha
plored a generalized Gaudin algebra, whose invariants provide the generating func
integrable quantum Hamiltonians calledXYZ Gaudin models. These quantum invaria
can be simultaneously diagonalized using the Bethe ansatz. Different representation
generators of the generalized Gaudin algebra realize many well-known physical Hamilto
nians including the Bardeen–Cooper–Schrieffer, Suhl–Matthias–Walker, interacting
model of nuclei, Lipkin–Meshkov–Glick, several BEC models, generalized Dicke,
boson, a new Kondo-like, and many other models not yet exploited in the literatu
this way, we have identified the underlying algebraic structure, thus providing a un
framework. An advantage of the Bethe ansatz for the Gaudin models is that the ph
interpretation of their eigenfunctions is straightforward. The built-in correlation physics
so transparent that they could have well been chosen asexactvariational states.

An important question concerns the differences between mean-field approximat
the eigenfunctions of the Gaudin models and their exact solutions in the thermody
limit. Here, we briefly discussed issues related to the quantum critical behavior of
models. In particular, we analyzed the nature of the transition between the superconduc
and Fermi liquid phases in the BCS model. We concluded that it is of the Koste
Thouless type independently of the space dimensionality of the lattice.

A number of applications have been presented with the intention of illustrating the
ety of physics problems described by microscopic Hamiltonians which belong to the cla
of XXZ Gaudin models. We have shown that the Lipkin–Meshkov–Glick model, wi
used in nuclear physics and, more recently, in connection with quantum information the
ory, is exactly-solvable. Our proof seems to complete the work initiated in Ref.[46] to
the whole parameter space(including the sectorW2 < V 2). The exact solvability of the
two-level boson Hamiltonians given in6.3 comprises three important models, the LM
the IBM (describing the transition from theU(5) to theO(6) dynamical symmetries), an

the two Josephson-coupled BECs. All of them are, therefore, characterized by the same
physics.
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We have also shown that theXYZ Gaudin equation, Eq.(6), results from the use of th
Jacobi identities for the generators of the algebra, i.e., it is a property of the algebr
the XXZ case, we have derived a family of antisymmetric solutions which include
rational, trigonometric, hyperbolic, and Richardson’s solution as special cases. Inde
have proved that the latter is a reparametrization of any of the other three.

Solving efficiently the nonlinear Bethe equations, which provide the necessary sp
parameters, is an important technical issue. In this regard, knowing the strong- and
coupling limits of those equations help to reduce the complexity of the task. In the s
interacting limit this analysis was previously done in Ref.[55]. In Appendix A we have
shown that the weakly-coupled limit solutions of the Bethe equations are given b
roots of Laguerre polynomials, by transforming those equations into a generalized Stiel
equation. In this way, we proved that the Bethe ansatz encompasses all possible eige
and does not provide spurious solutions for finite couplings.

In this paper we concentrated on the spectrum and eigenfunctions of generalized
models. Certain static correlators for the Gaudin magnet and the Richardson mode
studied in Refs.[56–58]. Computation of correlation functions for the generalizedXYZ

Gaudin models, either static or dynamic, constitute a more demanding task and is a sub
of future research.
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Appendix A. The weakly interacting limit

The Bethe equations, Eq.(41), can be expressed in terms of the parametrizatio
Eq.(14)as

1− 2gs
(∑

j∈T dj + M − 1
)

1+ st2
�

+ 2g
∑
j∈T

dj

t� − tj
+ 2g

M∑
n( �=�)=1

1

t� − tn
= 0,

(A.1)� = 1, . . . ,M.

In the limit g → 0 one recovers the noninteracting model, with the variablest� converging
to the parameter valuestj, depending on the corresponding distribution of the particle
spins. Therefore one can make the substitution
(A.2)t� = tj� + gx�,
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wherej� is the index of the parameter value to whicht� converges. Then Eq.(A.1) can be
rewritten up to first order ing as

(A.3)
2dj�

x�
+

∑
n,jn=j�, n�=�

2

x� − xn
= −1+ 2gαj�

1+ st2
j�

,

with αj� independent of the variablesx�:

(A.4)αj� =
∑

j∈T ,j�=j�

dj
1+ stj� tj

tj� − tj
+

M∑
n=1,jn �=j�

1+ stj� tjn

tj� − tjn
− s(dj� + Nj� − 1),

and whereNj� is the number of variablestn that cluster around the parametertj� .
Eq. (A.3) can be transformed into aGeneralized Stieltjes equation[59], with the solu-

tions given by:

(A.5)x� = − 1+ st2
j�

1+ 2gαj�
rl,

where therl are the roots of the associated Laguerre polynomialsLk
N , with k = 2dj� − 1

andN = Nj� . Note that the resulting values for the variablest� are correct up to secon
order ing:

(A.6)t� = tj� + g
f(tj�)

1+ 2gαj�
rl .

The variablesrl will be real for dj� > 0 (with su(1,1) realizations, typical for bosons
while for dj� < 0 (with su(2) realizations, typical for fermions) the variablesx� will come
in complex conjugated pairs, except for one real value in case of an odd number of va
per cluster.

Because a polynomial of orderN has a unique set ofN roots, the weakly interactin
limit establishes a one-to-one mapping between the noninteracting solutions (defi
the number of variables clustered around each parametertj) and the solutions at finit
values ofg.
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