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Abstract—Driven by a large number of potential applications
in areas such as bioinformatics, information retrieval andsocial
network analysis, the problem setting of inferring relations
between pairs of data objects has recently been investigaten-
tensively in the machine learning community. To this end, ctrent
approaches typically consider datasets containing crispalations,
so that standard classification methods can be adopted. Hower,
relations between objects like similarities and preferenes are
often expressed in a graded manner in real-world applicatias.
A general kernel-based framework for learning relations from
data is introduced here. It extends existing approaches bacse
both crisp and graded relations are considered, and it unifie
existing approaches because different types of graded relans
can be modeled, including symmetric and reciprocal relatios.
This framework establishes important links between recentlevel-
opments in fuzzy set theory and machine learning. Its usefuless
is demonstrated through various experiments on synthetic rad
real-world data. The results indicate that incorporating domain
knowledge about relations improves the predictive perfornance.

Index Terms—graded relations, fuzzy relations, reciprocal re-
lations, transitivity, learning in graphs, kernel methods, machine
learning

I. INTRODUCTION

Relational data occurs in many predictive modeling tas
such as forecasting the winner in two-player computer game

[1], predicting proteins that interact with other proteiims
bioinformatics [2], retrieving documents that are similara

target document in text mining [3], investigating the p&so
that are friends of each other on social network sites [
etc. All these examples represent fields of application I
which specific machine learning and data mining algorithms
have been successfully developed to infer relations frota;da

pairwise relations, to be more specific.

The typical learning scenario in such situations can be
summarized as follows. Given a dataset of known relation
between pairs of objects and a feature representation Séthﬁ']e
objects in terms of variables that might characterize the

relations, the goal usually consists of inferring a stiiddt

model that takes two objects as input and predicts whet

the relation of interest occurs for these two objects. Meego

since one aims to discover unknown relations, a good legrn
algorithm should be able to construct a predictive model tha
can generalize for unseen data, i.e., pairs of objects fachwh

at least one of the two objects was not used to construct the
model. As a result of the transition from predictive models
for single objects to pairs of objects, new advanced legrnin
algorithms need to be developed, resulting in new challenge
with regard to model construction, computational traditybi
and model assessment.

As relations between objects can be observed in many
different forms, this general problem setting providegditio
several subfields of machine learning, like statisticatiehal
learning [5], graph mining [6], metric learning [7] and pref
erence learning [8]. More specifically, from a graph-théore
perspective, learning a relation can be formulated as ilegrn
edges in a graph where the nodes represent information
about the data objects; from a metric learning perspective,
the relation that we aim to learn should satisfy some well-
defined properties like positive definiteness, transitioit the
triangle inequality; and from a preference learning pectpe,
the relation expresses a (degree of) preference in a pairwis
comparison of data objects.

The topic of learning relations between objects is also
closely related to recent developments in fuzzy set thddrig
article will elaborate on these connections via two impairta
contributions: (1) the extension of the typical setting e#rin-

m’g crisp relations to real-valued and ordinal-valued tietes
and (2) the incorporation of domain knowledge about retegio
into the inference process by explicit modeling mathenaatic
properties of these relations. For algorithmic simplicibye

an observe that many approaches only learn crisp relations
at is relations with only 0 and 1 as possible values, so
at standard binary classifiers can be used. In this cgntext
consider examples such as inferring protein-protein auon
networks or metabolic networks in bioinformatics [2], [9].
However, graded relations are observed in many real-world
applications [10], resulting in a need for new algorithmatth
%e graded relational information into account. Furthanmen

properties of graded relations have been investigated
intensively in the recent fuzzy logic literatdreand these

ta

rproperties are very useful to analyze and improve current

zﬁéorithms. Using the mathematical properties of gradést re

itri]ons, constraints can be imposed to allow for incorporatio

of domain knowledge in the learning process, to improve
predictive performance or simply to guarantee that a ifati
with the right properties is learned. This is definitely the
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10ften the term fuzzy relation is used in the fuzzy set literatto refer
to graded relations. However, fuzzy relations should be& seea subclass of
graded relations. For example, reciprocal relations shook be considered
as fuzzy relations, because they often exhibit a probé&bilsemantics rather
than a fuzzy semantics.



case for properties like transitivity when learning simitha [15], [16]. Learning reciprocal or antisymmetric relatfon
relations and preference relations — see e.g. [11]-[14{, bu can be interpreted as learning edges in a directed graph.
even very basic properties like symmetry, antisymmetry ore Ordinary binary relations. Many applications can be
reciprocity already provide domain knowledge that canrstee found where neither symmetry nor reciprocity holds.
the learning process. For example, in social network aiglys From a graph inference perspective, learning such rela-
the notion “person A being a friend of person B” should be tions should be seen as learning the edges in a bidirec-
considered as a symmetric relation, while the notion “peso tional graph, where edges in one direction do not impose
defeats person B in a chess game” will be antisymmetric (or, constraints on edges in the other direction.
equivalently, reciprocal). Nevertheless, many exampiést.e |ndeed, the framework that we propose below strongly relies
where neither symmetry nor antisymmetry necessarily holgh graphs, where nodes represent the data objects that are
like the notion “person A trusts person B”. studied and the edges represent the relations present in the
In this paper we present a general kernel-based approagctining set. The weights on the edges characterize thevalu
that unifies all the above cases into one general framew@kknown relations, while unconnected nodes indicate pafirs
where domain knowledge can be easily specified by choosiigjects for which the unknown relation needs to be predicted
a proper kernel and model structure, while different leagni The left graph in Figure 1 visualizes a toy example repre-
settings are distinguished by means of the loss functioh. lsenting the most general case where neither symmetry nor
Q(v,v") be a binary relation on an object spagethen the reciprocity holds. Depending on the application, the leagn
following learning settings will be considered in partiaul  algorithm should try to predict the relations for three tyué

« Crisp relations: when the restriction is made tigat: Object pairs:
Vv — {0,1}, we arrive at a binary classification task e pairs of objects that are already present in the training

with pairs of objects as input for the classifier. dataset by means of other edges, like the pair (A,B),
« [0,1]-valued relations: here it is allowed for relations to « pairs of objects for which one of the two objects occurs
take the form@Q : V? — [0, 1], resulting in a regression in the training dataset, like the pair (E,F),

type of learning setting. The restriction to the interval « pairs of objects for which none of the two objects is
[0,1] is predominantly made because many mathematical observed during training, like the pair (F,G).
frameworks in fields like fuzzy set theory and decisiolfhe graphs on the right-hand side in Figure 1 show examples
theory are built upon such relations, using the notion ofef specific types of relations that are covered by our frame-
fuzzy relation, but in general one can account quite easilyork. The differences between these relations will become
for real-graded relations by applying a scaling operatianore clear in the following sections.
from R to [0, 1]. We start in Section 2 with a formal definition of our frame-
« Ordinal-valued relations: situated somewhat in the middigork. The Kronecker pairwise product kernel is introduced
between the other two settings, here it is assumed that tieea general-purpose tool for modeling arbitrary binarg-rel
actual values of the relation do not matter but rather thans. This claim is supported by Theorem II.1, a theorética
provided order information should be learned. result stating that universal approximation can be obthine

Furthermore, one can integrate different types of domaifr the Kronecker product pairwise kernel. Subsequenty, w
knowledge in our framework, by guaranteeing that Certa_ﬁpalyze in Section 3 reciprocal and symmetric relationsvas t

properties are satisfied. The following cases can be distifiPortant special cases of our framework. It is shown that
guished: such prior knowledge can be easily incorporated by defining
suitable kernel functions. In Section 4, we investigatei-add

» Symmetric relations. Applications arise in many doma"}%onal properties of reciprocal and symmetric relationshsas

and metric leaming or learning similarity measures C"’\Pgnsitivity and metric properties, while establishingoiontant

be seen as special cases requiring additional propert|e% hnections with existing kernel functions for paired camp

.h.OId’ suph as the trlangle_|r_1e_qual|ty for- metrics .an.d PORons and recent developments in fuzzy set theory. Further
itive definiteness or transitivity properties for similgri

measures. As shown below. learning svmmetric relatioconnections with related work are summarized in Section 5.
’ . ' ning symr R‘?‘nally, Section 6 presents experimental results for cashies
can be seen as learning edges in an undirected graph

Reciprocal or antisymmetric relations. Applications arisIh different domains (game playing, document retrieval and
* h P d . yh ¢ I. PP h ecology), emphasizing the generality of our framework. IWel
ere In domains such as preference iearning, game teppy,,, pairwise kernel functions are compared to illustrate

and bioinformatics for representing preference relationf%at inclusion of domain knowledge influences the predéctiv

qh0|ce probab|!|t|es, winning probab|I.|t|.e.s, gene reguléberformance. Scaling experiments confirm that this infleenc
tion, etc. We will provide a formal definition below, bUt’increases when the sample size decreases

given a rescaling operation frofid to [0, 1], antisymmet-
ric relations can be converted into reciprocal relations.
Similar to symmetric relations, transitivity propertigpt ) _
ically guarantee additional constraints that are defipiteft- Notation and basic concepts

required for certain applications. It is, for example, well Let us start with introducing some notation. We assume
known in decision theory and preference modeling th#ttat the data is structured as a graph= (V, &, Q), where
transitive preference relations result in utility funct® )V corresponds to the set of nodeésC V? represents the set

Il. GENERAL FRAMEWORK



denoted as
h(e) = w'®(e), (2)

with w a vector of parameters that needs to be estimated from
training data® a joint feature mapping for edges in the graph
(see below) ana' the transpose of a vectar Let us denote

a training dataset of cardinalityas a sequence;, y., );_, of
edge-label pairs sampled froi Then, we formally consider
the following optimization problem, in which we select an

B B B B
/ \ / \ / \ / \ appropriate hypothesis from H for training data:
Ay C A7 CA 5 CA 5 C -

. 1
argrmn{—Zﬁ(h(ei),yeiHAIIhlli} 3)
@CRT (MCRI (CST (dCS,I hen |13
with £ a given loss function| - |3, the traditional quadratic
regularizer on the RKHS andl > 0 a regularization parameter.
\6 0.7 \6 0/ &6 0/ &6 According to the representer theorem [17], any minimizer
H of (3) admits a dual representation of the following form:
(e G, R, T 0 G, R () G, S, T (h) G, S, | h(e) = Zaz (e5,2) 4)

Fig. 1. Top: example of a multi-graph representing the mestegal case, | @ . .
where no additional properties of relations are assumettolo examples of With a; € R dual parameters(® the kernel function associ-

eight different types of relations in a graph of cardinatityee. The following gted with the RKHS an@ the feature mappmg Corresponding
relational properties are illustrated: (C) crisp, (G) gad(R) reciprocal, (S) to K® andw = Zq a-@(e-)

symmetric, (T) transitive and (1) intransitive. For the iprocal relations, (1) . T Lai=1 AT . . .

refers to a relation that does not satisfy weak stochastitsttivity, while (T) The primal representation as defined in (2) and its dual
is showing an example of a relation fulfilling strong stodtasansitivity. For  equivalent (4) yield an RKHS defined on edges in the graph.
the symmetric relations, (1) refers a relation that doessadisfy 7'-transitivity . . . ’

wrt. the tukasiewicz t-nomiy,(a, b) = max(a + b — 1,0), while (T) is In addition, we WI|| establish an RKHS deflned on _nodes, as
showing an example of a relation that fulfills-transitivity w.r.t. the product €very edge consists of a couple of nodes. Given an input space
t-norm T'p (a, b) = ab. See Section 4 for formal definitions of transitivity. ) and a kernelK : V x V — R, the RKHS associated with

K can be considered as the completion of

. . {f € RY Zﬂz U,V }a
of edges, and the edges are associated with labels generated
from an unknown underlying relatio® : V2 — [0,1].
Relations are required to take values in the interj@all] in the norm|/f[|x = \/Zm- BiBi K (vi,v;), where §; €
because some properties that we need are historically defiffie m € N, v; € V.
for such relations, but an extension to real-graded relatio
h: V* — R can always be realized. Considere R™ and B. Learning arbitrary relations

an increasing isomorphism : [—b,b] — [0,1] that satisfies  Aq mentioned in the introduction, both crisp and graded
o(z) =1—o(-x), then we consider th& — [0, 1] mapping rejations can be handled by our framework. To make a

V defined by: subdivision between different cases, a loss function needs
0, if 2 <—b to be specified. For crisp relations, one will typically use
V(r) = o(x), if =b<z<b the hinge loss or the logistic loss. Conversely, if in a given
1, if b<uzx application the observed relations are graded insteadisy,cr
. . . other loss functions have to be considered. Hence, we will ru
and its inversev—" = o~ experiments with a least-squares loss function:
Any real-valued relatiorh : V? — R can be transformed - 2
into a [0, 1]-valued relation? as follows: £(h(e),y) = (ye = hle))", ()

resulting in a regression type of learning setting.

Qv, ') = V(h(v,), V(v,0') €V, @D s fa?, our fra?nework d%)%s not diﬁer?rom stgndard classi-
and conversely by means & '. In what follows we tacitly fication and regression algorithms. However, the spedificat
assume tha¥ has been fixed. of a more precise model structure for (2) offers a couple of
new challenges. In the most general case, when no further

strictions on the underlying relation can be specifie@, th
ollowing Kronecker product feature mapping is proposed to
Xpress pairwise interactions between features of nodes:

Following the standard notation for kernel methods,
formulate our learning problem as the selection of a swta
functionh € H, whereH is a hypothesis space, in particular
reproducing kernel Hilbert space (RKHS). More specifigally
the RKHS supports in our case hypotheges V? — R D(e) = P(v,v") = ¢(v) @ P(v),



where ¢ represents the feature mapping for individual nodesecently proposed by [21] as an alternative to the Kronecker
A formal definition of the Kronecker product can be found iproduct pairwise kernel. By construction, the Cartesiain- pa
the appendix. As first shown in [18], the Kronecker produetise kernel has important limitations, since it cannot gahe
pairwise feature mapping yields the Kronecker product edge to couples of nodes for which both nodes did not appear
kernel (a.k.a. the tensor product pairwise kernel) in thal dun the training dataset.

representation:

Kg(e,é) _ Kg(v,v’,ﬁ,ﬁ’) _ qu(vj)qu(v/jl), (6) Ill. SPECIAL RELATIONS
i i If no further information is available about the relatiorath
with K the kernel corresponding to. underlies the data, one should definitely use the Kronecker
This section aims to formally prove that the Kroneckefroduct edge kernel. In this most general case, we allow that
product edge kernel is the best kernel one can choose, Whgnany pair of nodes in the graph several edges can exist, in
no further domain knowledge is provided about the undefhich an edge in one direction does not necessarily impose
lying relation that generates the data. We claim that wigbnstraints on the edge in the opposite direction. Multiple
an appropriate choice foK?, such as the Gaussian RBFedges in the same direction can connect two nodes, leading
kernel, the kernelK® generates a clas® of universally to a multi-graph as in Figure 1, where two different edges in
approximating functions for learning any type of relationthe same direction connect nodBsand E. This construction
Before SUmmariZing this important reSUlt, we recollect thlg required to allow repeated measurements. However, two
classical Concept of universal kernels (See Definition N“.important subclasses of relations deserve further attenti

in the appendix) introduced by [19]. With universality ofth reciprocal relations and symmetric relations.
kernel K, we refer to the property that the RKHS induced

by K can approximate any function i&i(V) arbitrarily well, . .
where C(V) is the set of real-valued continuous functiond Reciprocal relations

on V. Using another classical result, the Stone-WeierstraRThis subsection briefly summarizes our previous work on
theorem (see Theorem VII.2 in the appendix, and e.g [2arning reciprocal relations [22]. Let us start with a ditifom

for a more detailed description), we arrive at the followingf this type of relation.

theorem concerning the Kronecker product pairwise kemelf)efinition 1. A binary relation@ : V2 — [0,1] is called

Theorem I1.1. Let us assume that the space of notieis a & "eciprocal relation if for all (v,v’) € V* it holds that
compact metric space. If a continuous kerét is universal Qv,v') =1 -Q(v,v).

onV, thenKZ defines a universal kernel ow. Definition 11.2. A binary relationh : V?> — R is called

. . 2 , M
The proof can be found in the appendix. We would ji@n antisymmetric relation if for al(v,v") € V* it holds that

to emphasize that one cannot conclude from the theorem tﬁgf’v/) = —h(v',v).

the Kronecker product pairwise kernel is the best kernel toFor reciprocal and antisymmetric relations, every edge

use in all possible situations. The theorem only shows that t(v,v’) in a multi-graph like Figure 1 induces an unobserved
Kronecker product pairwise kernel makes a reasonably goiodtisible edgeer = (v/,v) with appropriate weight in the
choice, if no further domain knowledge about the underlyingpposite direction. The transformation opera¥otransforms
relation is known. Namely, the theorem says that given am antisymmetric relation into a reciprocal relation. Appl
suitable sample of data, the RKHS of the kernel contaigations of reciprocal relations arise here in domains such
functions that are arbitrarily close to any continuoustieta as preference learning, game theory and bioinformatics for
in the uniform norm. However, the theorem does not sagpresenting preference relations, choice probabilitigsning
anything about how likely it is to have, as a training seprobabilities, gene regulation, etc. The weight on the edge
such a data sample that is representative of the approxignatilefines the real direction of such an edge. If the weight on the
function. Further, the theorem only concerns graded mlati edgee = (v, v’) is higher than 0.5, then the direction is fram
that are continuous and therefore crisp relations and gradm «’, but when the weight is lower than 0.5, then the direction
discontinuous relations require more detailed considerat should be interpreted as inverted, for example, the edges fr

Other kernel functions might, of course, outperform théd to C'in Figures 1 (a) and (e) should be interpreted as edges
Kronecker product pairwise kernel in applications where détarting from A instead ofC' If the relation is3-valued as
main knowledge can be incorporated in the kernel functio. : V> — {0,1/2,1}, then we end up with a three-class
In the following section we discuss reciprocity, symmetngla ordinal regression setting instead of an ordinary regoessi
transitivity as three relational properties that can beasgnted Setting.
by means of more specific kernel functions. As a side note, welnterestingly, reciprocity can be easily incorporated ur o
also introduce the Cartesian pairwise kernel, which is fillyn framework.

defined as follows Proposition 111.3. Let ¥ be a feature mapping ob? and let

K&(v, v, 5,7) = KW', 7)[v =7 + K®(v,5)[v' =7, h be a hypothesis defined by (2), then the relatiprof type
(1) is reciprocal if ® is given by
with [.] the indicator function, returning one when both ) ) )
elements are identical and zero otherwise. This kernel was Pr(e) = Pr(v,v') = ¥(v,0) = ¥ (', 0).



The proof is immediate. In addition, one can easily shoWwhus, the substraction of kernels in the reciprocal case be-
that reciprocity as domain knowledge can be enforced in thtemes an addition of kernels in the symmetric case. The
dual formulation. Let us in the least restrictive form novabove kernel has been used for predicting protein-protein
consider the Kronecker product fdr, then one obtains for interactions in bioinformatics [18] and it has been theioedty
dp the kernelKgR given bngR(e,é) = analyzed in [23]. More specifically, for some methods one
has shown in the latter paper that enforcing symmetry in the

2(K°(v, D)K. 7) = K(v,7)K?(/, 7)) (") kernel function yields idgnzcal results as agddi};g eve?lgeed
The following theorem shows that this kernel can represeifice to the dataset, by taking each of the two nodes once

any type of reciprocal relation. as first element of the edge. Unlike many existing kernel-
based methods for pairwise data, the models obtained with
Theorem IIl.4. Let these kernels are able to represent any reciprocal or symemet
ROV?) = {t|t € COV2),t(v,0') = —t(v/,0)} relation respectively, without imposing additional triivgy

properties of the relations.
be the space of all continuous antisymmetric relations fromwe also remark that for symmetry as well, one can prove
V2 to R. If K? onV is universal, then for every functionthat the Kronecker product edge kernel yields a model that is
t € R(V?) and everye > 0, there exists a functioh in the flexible enough to represent any type of underlying relation

. @ : :
RKHS induced by the kerné(J , defined in (7), such that Theorem II1.8. Let

t(v,v") — h(v,0")]} <e. 8
(o L0 = b} < e ®) S(V?) = {t| t € C(V?), t(v,0') = t(v',v)}
The proof can be found in the appendix. be the space of all continuous symmetric relations figfrto
R. If K? onV is universal, then for every functianc S(V?)
) ) and everye > 0, there exists a function in the RKHS (2)
B. Symmetric relations induced by the kernel (7), such that
Symmetric relations form another important subclass of max {[t(v,v") — h(v,v)|} < e.
relations in our framework. As a specific type of symmetric (v,0)EV? ’ ’ -

relations, similarity relations constitute the undertyirelation The proof is analogous to that of Theorem lIl.4 (see
in many application domains where relations between objegppendix). As a side note, we remark that a symmetric and

need to be learned. Symmetric relations are formally defingstiprocal version of the Cartesian kernel can be introduce
as follows. as well.

Definition 111.5. A binary relation@ : V2 — [0,1] is called

a symmetric relation if for all(v,v’) € V? it holds that _ _ o

N o_ / The previous section revealed that specific Kronecker prod-
Q(U,U)—Q(U,U). H H

uct edge kernels can be constructed for modeling reciprocal

Definition 11.6. A binary relationh : V> — R is called and symmetric relations, without requiring any further lbac
a symmetric relation if for all(v,v’) € V? it holds that ground about these relations. In this section we demoestrat
h(v,v") = h(v',v). that the Kronecker product edge kernel§®, K2, and
Kgs are particularly useful for modeling intransitive relatfo
htransitive relations occur in a lot of real-world sceiatilike

IV. RELATIONSHIPS WITH FUZZY SET THEORY

Note thatV preserves symmetry. For symmetric relation
edges n r_nult_l graphs like Fl_gure L become und!rected. App ame playing [24], [25], competition between bacteria {26]
cations arise in many domains and metric learning or legrni . . . .

N : . 1] and fungi [32], mating choice of lizards [33] and food
similarity measures can be seen as special cases. If thiorela™ . . . .
. o : choice of birds [34], to name just a few. In an informal way,
is 2-valued as@ : V* — {0,1}, then we end up with a _. . L
e Co . ) Figure 1 shows with the help of examples what transitivity
classification setting instead of a regression setting. . . ; .
: . . : means for symmetric and reciprocal relations that are crisp
Just like reciprocal relations, it turns out that symmetm c

b v i ted | p K and graded.
€ easlly Incorporated in our framework. Despite the occurrence of intransitive relations in many

Proposition 111.7. Let ¥ be a feature mapping ohi2 and let domains, one has to admit that most applications are still
h be a hypothesis defined by (2), then the relatipmf type Ccharacterized by relations that fulfill relatively stronaurtsi-

(1) is symmetric if® is given by tivity requirements. For example, in decision making, pref
, . . ence modeling and social choice theory, one can argue that
Pg(e) = @s(v,v') = V(v,0") + ¥(v',v). reciprocal relations like choice probabilities and prefere

In addition, by using mathematical properties of the Krdt/dgments should satisfy certain transitivity propertieshey
necker product, one obtains in the dual formulation an edfePresent rational human decisions made after well-remson
kernel that looks very similar to the one derived for recgaio tomparisons on ob!gc_ts [15], [35], _[36]' For symmetric fela
relations. Let us again consider the Kronecker productfpr tions as well, transitivity plays an important role [37]8]3

then one obtains fabs the kemeli 2 given by K2 (e, 2) = when modeh_ng similarity relat|on_sZ metrics, ke.rnels,. etc
It is for this reason that transitivity properties have been

2(K? (v, 0)K*(W', 7)) + K(v,7)K?(v/, 7)) . studied extensively in fuzzy set theory and related fields.



For reciprocal relations, one traditionally uses the notid tively symmetric) relation.

hasti itivity [15].
stochastic transitivity [15] The proof directly follows from the fact that for this specifi

Definition IV.1. Let g be an increasing1/2,1]> — [0,1] kernel,h(v,v’) can be respectively written g§v) — f(v') and
mapping. A reciprocal relatiorQ : V? — [0,1] is calledg-  f(v)+f(v'). The kernelk 7, has been used as a main building
stochastic transitive if for anyvy, vo, v3) € V3 block in many kernel-based ranking algorithms (see e.d, [45

[46]). Since ranking representability of reciprocal radas

(Qu1,02) 2 1/2A Q(v2,v3) 2 1/2) implies strong stochastic transitivity of reciprocal tedas,

= Q(v1,v3) = g(Q(v1,v2), Q(v2,v3)) . K, can represent this type of domain knowledge.
Important special cases are weak stochastic transitivigny ~ 1he notion of ranking representability is powerful for re-
g(a,b) = 1/2, moderate stochastic transitivity whet, b) = C|p_rocal r_elatlons, because the majo_rlty of remp_rocaitrehs
min(a,b) and strong stochastic transitivity wheyfa,b) = satisfy this property, but for symmetric relations it hasther

max(a, b). Alternative (and more general) frameworks are F@imited applicability. Ranking representability as defirsoove
transitivity [39] and cycle transitivity [12], [13]. For gded cannot represent relations that originate from an undeglyi
symmetric relations, the notion @f-transitivity has been put Metric or similarity measure. For such relations, one needs
forward [40], [41]. another connection with its roots in Euclidean metric space
[37].
Definition IV.2. A symmetric relation : V? — [0,1] is - _ _
called T-transitive withT" a t-norm if for any(vy, vs, v3) € V3 Definition IV.5. A symmetric relation@ : V* — [0,1]
is called Euclidean representable if there exists a ranking

T(Q(v1,v2), Q(v2,v3)) < Q(v1,03) . (©) function f : V — R such that for all pairs(v,v’) € V?
Three important t-norms are the minimum t-nornff Nolds that
Twm(a,b) = min(a,b), the product t-norni’p(a,b) = ab and Qu,v') = V((f(v) — FWNT(f(v) — F(V))), (10)

the tukasiewicz t-nornTy,(a,b) = max(a + b —1,0). o
In addition, several authors have shown that various foriidth a” the transpose of a vectar.

of transitivity give ri_se to utility representable or nurieeily Euclidean representability can be seen as Euclidean embed-
representable relations, also callgd fuzzy weak ordersg— #ing or Multidimensional Scaling in a-dimensional space
e.g. [15], [16], [42]-[44]. We will use the term rankingry7) |, jts most restrictive form, when — 1, it implies that

rgpresen_tab|l|ty to e.sFabllsh g_lmk with m_a.chme I(_aarnMga the symmetric relation can be constructed from the Eucfidea
give a slightly specific definition that unifies reuprocaldandistance in a one-dimensional space. When such a one-
symmetric relations. dimensional embedding can be realized, one global ranking
Definition IV.3. A reciprocal or symmetric relatior) : V2 — of the objects can be found, similar to reciprocal relations

0,1] is called ranking representable if there exists a rankindlevertheless, although models of type (10) with= 1 are
function f : V — R such that for all (v,v/) € V? it sometimes used in graph inference [6] and semi-supervised

respectively holds that learning [48], we believe that situations where symmetric
1 N —vw — f(v")) (reciprocal case) relations become Euclldgan representabk_a ina one—dl_mmig
2; ggz’ zxg _ VE;E?; + ;EZ%; gsympmetric case)) space occur very rarely, in contrast to reciprocal relatidie

extension toz > 1 on the other hand does not guarantee

The main idea is that ranking representable relations canthe existence of one global ranking, then Euclidean repre-
constructed from a utility functiorf. Ranking representable sentability still enforces some interesting propertiesause it
reciprocal relations correspond to directed acyclic gsapind guarantees that the relatiGhis constructed from a Euclidean
a unique ranking of the nodes in such graphs can be obtaingdtric space with a dimension upper bounded by the number
with topological sorting algorithms. The ranking repreis@fe of nodesp. Moreover, this type of domain knowledge about
reciprocal relations of Figures 1 (a) and (e) for exampl@lations can be incorporated in our framework. To this éatd,
yield the global rankingd =~ B >~ C. Interestingly, ranking ®(v,v’) = ®g(v,v’) and let¥ (v,v") = ¢(v) @ (d(v) — p(v"))
representability of reciprocal relations and symmetriatiens such thatk'® becomesKyy; px (¢,€) = (K (e, €))* =
can be easily achieved in our framework by simplifying the )
joint feature mappingV. Let U(v,v’) = ¢(v) such thatk'® (K?(v,0) + K, 7) — K?(v,7) — K®(v', 7))

simplifies to This kernel has been called the metric learning pairwisadder

K?R(e,é) =K%, 7)+ K*W,7) - K°(v,7) — K®(',5) by [49]. As a consequence, the vector of parametersan
S o= b — b0 = P 6.1 —  berewritten as am x r matrix W whereW;; corresponds to
=K K K K .
Kys(e.®) (0,9) + K20, 7) + KO, 7) + K2, 0) - g parameter associated with; (v) — ¢; (v'))(¢; (v) — d;(v'))
when ®(v,v") = ®p(v,v') or &(v,v") = Pg(v,v’), respec- such thatW;; = W ;.

i i ition holds. -
tively, then the following proposition holds Proposition IV.6. If W is positive semi-definite, then the

Proposition IV.4. The relation@ : V? — [0,1] given by symmetric relatiorQ : V2 — [0, 1] given by (1) with:, defined
(1) and & defined by (2) withK® = K¥%, (respectively by (2) and K® = K p¢ is an Euclidean representable
K® = Kfs) is a ranking representable reciprocal (respecsymmetric relation.



TABLE |

See the appendix for the proof. Although the model estab- METHODS CONSIDERED IN THE EXPERIMENTS
lished by K3}, p;x does not result in a global ranking, this
model strongly differs from the one established wiif g, Abbreviation Met;"d -

. P . . MPRED Predicting the mean
since Ky py can only represent symmetric relations that ex- Ké Kronecker Product Pairwise Kemel
hibit transitivity properties. Therefore, one should Usg; px Ko Symmetric Kronecker Product Pairwise Kernel
when, for example, the underlying relation corresponds to a Kor Reciprocal Kronecker Product Pairwise Kemel
metric or a similarity relation, while the kern&l® . should be Ry Metric Learning Pairwise Kerel
k X ®S Kg Cartesian Product Pairwise Kernel

preferably used for symmetric relations for which no furthe K& Symmetric Cartesian Pairwise Kernel
domain knowledge can be assumed beforehand.

V. RELATIONSHIPS WITH OTHER MACHINE LEARNING Another connection can be observed with multivariate

ALGORITHMS regression and structured output prediction methods. Such

As explained in Section 2, the transition from a standarglethods have been occasionally applied in settings where
classification or regression setting to learning gradeatioels relations had to be learned [9]. Also recall that structured
should be found in the specification of joint feature mappin@utput prediction methods use Kronecker product pairwise
over couples of objects, thereby naturally leading to thernels on aregular basis to define joint feature represensa
introduction of specific kernels. Any existing machine téag of inputs and outputs [58], [59].
algorithm for classification or regression can in principle In addition to predictive models for dyadic data, one can
adopted, if joint feature mappings are constructed explici also detect connections with certain information retrierad
Since kernel methods avoid this explicit construction,ytheattern matching methods. However, these methods predom-
can often outperform non-kernelized algorithms in terms @fantly use similarity as the underlying relation, often dn
computational efficiency [17]. As a second main advantagsurely intuitive manner, as a nearest neighbor type of lagrn
kernel methods allow for expressing similarity scores fago they can be considered much more restrictive. Consiger th
structured objects, such as strings, graphs and trees &nhd ¢éample of protein ranking [60] or algorithms lilkguery by
[50]. In our setting of learning graded relations, this ifepl documen{3]. These methods simply look for rankings where
that one should plug these domain-specific kernel functiotife most similar objects w.r.t. the query object appear gn to
into (6) or use the other pairwise kernels that are discussedcontrary to our approach, which should be considered as much
this paper. Such a scenario is in fact common practice in somere general, since we learn rankings from any type of binary
applications of Kronecker product pairwise kernels, sush gelation. Nonetheless, similarity relations will of coerstill
predicting protein-ligand compatibility in bioinformas [51]. occupy a prominent place in our framework as an important
String kernels or graph kernels can be defined on varioustypgecial case.
of biological structures [52] and Kronecker product pagwsvi
kernels then combine these object-based kernels intaaelat
based kernels (thus, node kernels versus edge kernels).

The edge kernels can be utilized within a wide variety of We test the ability of the pairwise kernels to model différen
kernel methods. Since we focus on learning graded relgtionges of relations, and the effect of enforcing prior knalge
one naturally arrives at a regression setting. In the fahow about the properties of the learned relations. To this ered, w
section, we run some experiments with regularized leastain the regularized least-squares (RLS) algorithm toagg
squares methods, which optimize (5) using a hypothesisespé#ute relation values [50], [53]. We perform experiments othbo
induced by kernels. The solution is found by solving a systesymmetric and reciprocal relations, considering both lsgti¢
of linear equations [50], [53]. and real-world data. In addition to the standard, symmetric

Apart from kernel methods, we briefly mention a numbeand reciprocal Kronecker product pairwise kernels, we also
of other algorithms that are somewhat connected, even thowugnsider the Cartesian kernel, the symmetric Cartesiameker
they provide solutions for different learning problemsp#ir- and the metric learning pairwise kernel. The performance
wise relations are considered between objects of two @iffier measure used is the mean squared error (MSE). For stdtistica
domains, one arrives at a learning setting that is refereddignificance testing, we use the paired Wilcoxon-signedkra
as predicting labels for dyadic data [54]. Examples of sudbst with significance leved.05 where applicable. The con-
settings include link prediction in bipartite graphs andvieo servative Bonferroni correction is applied to take into@aat
recommendation for users. As such, one could also argweltiple hypothesis testing, meaning that the requireclioer
that specific link prediction and matrix factorization medls is divided by the number of comparisons done.
could be applied in our setting as well, see e.g. [55]-[57].

However, these methods have been primarily designed for ) _ o

exploiting relationships in the output space, whereasufeat ~ Synthetic data: learning similarity measures
representations of the objects are often not observed gigim Experiments on synthetic data were conducted to illustrate
irrelevant. Moreover, similar to the Cartesian pairwisenied, the behavior of the different kernels in terms of the transi-
these methods cannot be applied in situations where predieity of the relation to be learned. A parametric family of
tions need to be made for two new nodes that were not preseatdinality-based similarity measures for sets was censitl

in the training dataset. as the relation of interest [61]. For two setsand B, let us

VI. EXPERIMENTS



TABLE Il
RESULTS FOR THE FIRST SIMILARITY MEASURE EXPERIMEN;TTHE TASK
IS TO PREDICT WEIGHTS FOR UNOBSERVED EDGES IN A PARTIALLY
OBSERVED RELATIONAL GRAPH

Setting (t,t',u,v) MPRED K2 Koo Kyipx K& KZs
Intransitive  (0,1,2,2) 0.01038 0.00908 0.00773 0.0076609B89 0.00924

Ti.-transitive (0,1,1,0) 0.01514 0.00962 0.00781 0.008051166 0.00941
Tp-transitive (1,2,1,1) 0.00259 0.00227 0.00192 0.001880248 0.00231

MSE

TABLE Il
RESULTS FOR THE SECOND SIMILARITY MEASURE EXPERIMENTTHE
TASK IS TO PREDICT RELATIONS BETWEEN PREVIOUSLY UNSEEN NOCE

Setting (t,t',u,v) MPRED Kg Kgo Kuipk

Intransitive (0,1,2,2) 0.01032 0.00995 0.00936 0.00971
Ty-transitive  (0,1,1,0) 0.01515 0.01236 0.01166 0.01453
Tp-transitive  (1,2,1,1) 0.00259 0.00251 0.00236 0.00242

#edges

define the following cardinalities: _ _ , "
Fig. 2. The comparison of the ordinary Kronecker productvpiae kernel

A A\ B B\ A K¢ and the symmetric Kronecker product pairwise kern]égs on the
AB | \ | * | \ | ’ Newsgroups dataset. The mean squared error is shown as teoffunt the
ooz = |ANB|, training set size.

vap = |(AUB),

then this family of similarity measures for sets can be ex- . . . :
pressed as: evaluation. We perform two kinds of experiments. In the first

experiment, we have a single setl®f nodes500 node pairs
tAaB +udaB+vvan (11) are randomly sampled without replacement to the training,
t'Aap+udap+vvap’ validation and test sets. Thus, the learning problem here is

with ¢, ¢/, u and v four parameters. This family of similarity given a subset of the relation values for a fixed set of nodes,

measures includes many well-known similarity measures & 1€arn to predict missing relation values. This setupwalo

sets, such as the Jaccard coefficient [62], the simple nmagcht'S for testing also the Cartesian kernel, which is unable to
coefficient [63] and the Dice coefficient [64]. generalize to completely new pairs of nodes. In the second

Three members of this family are investigated in oUfXPeriment, we generate three separate set9@hodes for
experiments. The first one is the Jaccard coefficient, corf@® training, validation and test sets, and sanjle edges
sponding to(t, ¢/, u, v) = (0,1,1,0). The Jaccard coefficient from each of these. This experiment allows us for testing the
is known to beT -transitive. The second member that wdeneralization capability of the learned models with respe
investigate was originally proposed by [65]. It correspotal 0 NEW couples of nodes (i.e., previously unseen nodesg,Her

(t,t',u,v) = (0,1,2,2) and it does not satisfyy.-transitivity, the Cartesian kernel is not applicable, and thus not include

which is considered as a very weak transitivity conditio"€ €xperiment. The experiments are repeated 100 times, the

Conversely, the third member that we analyse has ratherg;tré’rese”ted results are means over the repetitions. The i@auss
transitivity properties. It is given byt, ¢, u,v) = (1,2,1,1) RBF kernel was considered at the node level. For training RLS

and it satisfies’p-transitivity. we solved the corresponding system of linear equationgusin

Features and labels for all three members are generafd@ifix factorization, by considering an explicit reguttion

as follows. First we generate 20-dimensional feature vect@2rameter. A grid search is conducted to select the widtheof t
consisting of statistically independent features thalofela Gaussian RBF kernel and tgoe regul?rlzatlon parameter, both
Bernoulli distribution withr = 0.5. Subsequently, the above-2'€ Selected from the range™, ..., 2%.
mentioned similarity measures are computed for each pair ofThe results for the experiments are presented in Tables II
features, resulting in a deterministic mapping betweetufea and lll. In both cases all the kernels outperform the mean
and labels. Finally, to introduce some noise in the probleptiedictor, meaning that they are able to model the undeglyin
setting, 10% of the features are ad random swapped in a lglations. For all the learning methods, the error is lower i
step from a zero to a one or vice versa. the first experiment than in the second one, demonstratatg th
In the experiments, we always generate three data séidS easier to predict relations between known nodes, tban t
a training set for building the model, a validation set fogeneralize to a new set of nodes. Enforcing symmetry islglear

hyperparameter selection, and a test set for performa@neficial, as the symmetric Kronecker product pairwisedder
always outperforms the standard Kronecker product paérwis

kernel, and the symmetric Cartesian kernel always outpago

S(A,B) =

TABLE IV : .
RESULTS FOR THE ECOLOGY EXPERIMENT the standard one. Comparing the Kronecker and Cartesian
Remel WPRED KT R R kernels, the Kronecker one leads to clearly lower errorsrate

MSE 002795 001082001067 002577 With the exception of thelp-transitive case in the second
experiment, MLPK turns out to be highly successful in mod-




eling the relations, probably due to enforcing symmetry @. Competition between species

the learned relation. In the first experiment, all the déferes Finally, we compare ordinary and reciprocal Kronecker

are statistically significant, apart from the differencé®en 5iyise kernels and the metric learning pairwise kernel on
the symmetric Kronecker product pairwise kernel and MLPKjmjated data from an ecological model. The setup is based

for the intransitive case. In the second experiment, all g the one described in [67]. This model provides an elegant
differences are statistically significant. Clearly, irdgilug prior explanation for the coexistence of multiple species in thaes

knowledge about symmetry helps to boost the predictiygitat a problem that has puzzled ecologists for decaifis [

performance in this problem. Imaginen species sharing a habitat and struggling for their
share of the resources. One species can dominate another
species based dnso-called limiting factors. A limiting factor
B. Learning the similarity between documents defines an attribute that can give a fithess advantage, for
%ample in plants the ability to photosynthesize or to draw
i

In the second experiment, we compare the ordina : : . :
nerals from the soil, resistance to diseases, etc. Eagtiesp

and symmetric Kronecker pairwise kernels on a real-wor o
data set based on newsgroups docunfertsie data was IS scored on each of it& limiting factors. The degree to

sampled from 4 newsgroups: rec.autos, rec.sport.baseb\%{n'(:h one species can dominate a competitor is relativedo th

comp.sys.ibm.pc.hardware and comp.windows.x. The aim is!}umber. of limiting factors for which it is superior. All pabge .
eractions can thus be represented in a tournament. $n thi

learn to predict the similarity of two documents as measur . _ X "
@gnework relations are reciprocal and often intransitive

by the number of common words they share. The node featu his simulafi . imulated with
correspond to the number of occurrences of a word in ghor this simulation 400 species were simulated with 10

document. The feature representation is high-dimensiamal Iimiting factors. The value of each Iimitin_g f_actqr is forara
sparse, with more thaR0000 possible features, the majoritySPECIES drawn from a rgndom uniform distribution between 0
of which are zero for any given document. First, we sampfd'd 1. Thus, any species can be represented by a vector
separate training, validation and test sets each corgistin ©f !ength & with the limiting factors as e/lements. The
of 1000 nodes. Second, we sample edges connecting fyobability that a spelees i:lomklnates spec/|ee can easily
nodes in the training and validation set using exponegtiaff® c@lculated asy(v, v') = ¢ > ey H(fi— f}), whereH (z)

growing sample sizes to measure the effect of sample sl?ethe Heaviside step function.

on the differences between the kernels. The sample size grid®! the 400 species, 200, 100 and 100 were used for gen-
is [100, 200,400, . . ., 102400]. Again, we sample only edgeseratmg training, validation and_ testing data. For eaclsstb
with different starting and end nodes. When computing t{€ complete tournament matrix was determined. From those
test performance, we consider all the edges in the test Jpptrices 1209 Interactions were SamP'ed for training, ,600
except those starting and ending at the same node. The Iinf&%irmOd_eI validation and 600 for testing. N,O comb|r!at!9n
kernel is used at the node level. We train the RLS algorithff SPecies was used more than once. Using the limiting
using conjugate gradient optimization with early stopf, factors as feature_s, we try to regress _the probab_lhty that
optimization is terminated once the MSE on the validation s8"€ SPecies dominates another one using the ordinary and

has failed to decrease for 10 consecutive iterations. Siree "€CiProcal Kronecker product pairwise kernels and the imetr

rely on the regularizing effect of early stopping, a sepmralleaming pairwise kernel. Gaussian kernel is applied as the

regularization parameter is not needed. We do not incluf@de kemel. The validation set is used to determine thenapti
other types of kernels besides the Kronecker product mw(egulané%tlon E)garametfr and kelronel V‘thh pagameter fioen t
kernels in the experiment. To the best of our knowledg8Mds 2=, 277 ..., 2% and 2%, 277 ..., 2°. To obtain
no algorithms that scale to the considered experiment siz@tistically significant results the setup is repeated tif@@s.
exist for the other kernel functions. Hence, this experimen ) ) )
mainly aims to illustrate the computational advantageshef t 1€ results are shown in Table IV. The metric learning

Kronecker product pairwise kernel. The mean as predicti@ﬁirWise kernel gives rise to worse predictions than thermea
achieves an MSE arounidi5 on this data. as prediction. This is not surprising, as the MLPK cannatiea

reciprocal relations. The ordinary Kronecker product \pae
é@rnel performs well and the reciprocal Kronecker product

predictor, showing that RLS succeeds with both kernels ppurwise kern_el pgrforms even better. All the dlfferencas a

learning the underlying relation. Increasing the trainsef _statlst|ca_lly significant. The res_ults show: that using prio

size leads to a decrease in test error. Using the prior krigele mformqmon on the types of relations to be leamned can boost

about the symmetry of the learned relation is clearly hdzpruprechCtIVe accuracy.

The symmetric kernel achieves a lower error than the orginar

Kronecker product pairwise kernel for all sample sizes, the VII. CONCLUSIONS

|argest differences are observed for the smallest San’m.Si A genera| kernel-based framework for |earning various

For 100 training instances, the error is almost halved bypes of graded relations was presented in this articles Thi

enforcing symmetry. framework extends existing approaches for learning i@tati

because it can handle crisp and graded relations. A Kromecke

2pAvailable at: http://people.csail. mit.edu/jrennie/2806groups/ product feature mapping was proposed for combining the

The results are presented in Figure 2. Even o0 pairs
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features of pairs of objects that constitute a relation éedg Let ¢ > 0 and lett € C(V) ® C(V) be an arbi-

level in a graph), and it was shown that this mapping leadstiary function which can, according to (12), be written as

a class of universal approximators, if an appropriate Kéme t(v,v’) = g(v)u(v'), whereg,u € C(V). By definition of

chosen on the object level (node level in a graph). the universality property}{ is dense inC(V). Therefore,H
In addition, we clarified that domain knowledge aboutontains functiong, @ such that

the relation to be learned can be easily incorporated in _ _ _ _

our framework, such as reciprocity and symmetry properties %133“9(”) -9k <% %125““(“) —u)} <7,

Experimental resultg on synthetic and real-wor_ld (_Jlatartyez_iWhereE is a constant for which it holds that

demonstrate that this domain knowledge can significantly im

prove generalization performance. Important links witberrat max {[eg(v)| + [eu(v')| +€} <e.

developments in fuzzy set theory and decision theory can be ey

established, by considering transitivity properties détiens. Note that, according to the extreme value theorem, the max-
imum exists due to the compactnesslofind the continuity

of the functionsy andu. Now we have
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APPENDIX which confirms the density ot © H in C(V) @ C(V).
Definition VII.1 (Steinwart [19]) A continuous kernek on

a compact metric spac® (i.e. V is closed and bounded) is According to Tychonoff’s theoremy? is compact ifV is
called universal if the RKHS induced By is dense inC'(V),  compact. It is straightforward to see thaty) @ C(V) is a
whereC(V) is the space of all continuous functiofis V —  subalgebra of”(V?), it separates points w2, it vanishes at
R. Thatis, for every functiorf € C( ) and every > 0, there  no point of C(V2), and it is therefore dense ifi(12) due to
exists a set of input point§v;}i”, € V and real numbers Theorem VII.2. Consequentl§{ 7 is also dense ilC’(V2),

{as}iZ,, with m € N, such that and K2 is a universal kernel o>, n
} Se Proof: (Theorem 11l.4) Let ¢ > 0 andt € R(V?) be an

max{ Zal
zeV

arbitrary function. According to Theorem II.1, the RKHS of
Accordingly, the hYPOthGS'S space induced by the kefel the kernelK2 defined in (6) is dense i’ (V?). Therefore,

can approximate any function i@'(V) arbitrarily well, and we can select a set of edges and real number$™ ,, such
hence it has the universal approximating property. that the function

The following result is in the literature known as the Stone- ,
— P . Dl o)
Weierstra3 theorem (see e.g [20]): u(v,v') = ZO%K (v, 01) K2 (0", v7)

=1
Theorem VII.2 (Stone-WeierstraB)Let C'(V) be the set of belonging to the RKHS of the kernel (6) fulfills
real-valued continuous functions on a compact metric space

V. If AcC C(V) is a subalgebra of”(V), that is, max _{|t(v,v") — 4u(v,v")|} < %e. (13)
(v,0")eV?
R:
V(). g9(v) € A €R: f(v) +7g(v) €A fv)g(v) € A We observe that, becaus@, v') = —t(v’, v), the functionu
and A separates points iV, that is, also fulfills
Vo, v € V,u# v 1 3g € A g(v) # g(v), max {|t(v,v") + du(’,v)|} < %e
v,v')eV?
and A does not vanish at any point i, that is, and hence
YoeV:3dge A:g(v) #0, ( m)axv {|4u(v, U)+4u(v v)[} <e. (14)
v, )eV?

then A is dense inC'(V).
Let v(v,v") = 2u(v,v") + 2u(v’,v). Due to (14), we have

A. Proofs
Proof: (Theorem I1.1) Let us define
A@A={t]t(v,v) = gv)u(v'),g,u € A} (12)

for a compact metric spadéand a set of functionsl ¢ C(V). D ai2 (K (v,v) KO, 0]) = K?(v/,v) K¢ (v,0])) |
We observe that the RKHS of the kern€l. can be written i=1
asH ® H, whereH is the RKHS of the kernek?. which is obtained fromu by replacing kernel (6) with kernel

1
) < 56 Vo) €V (15)

Now, let us consider the functiola(v,v’) =



(7). We observe that
h(v,v") = 2u(v,v") — 2u(v’,v)

= 4u(v,v") — vy(v,v).

[22]
(16)

By combining (13), (15) and (16), we observe that the furnttic;23]
h fulfills (8). [ |

Proof: (Proposition 1V.6) The model that we consider[24]
can be written as:

Q(v,v") = V((6(v) = ¢(v")"W(e(v) — ¢(v))) -

The connection with (10) then immediately follows by decont?®
posingW as W = UTU with U an arbitrary matrix. The
specific case of = 1 is obtained wherlJ can be written as [27]
a single-row matrix. [ ]

[25]

(28]
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