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Abstract—Driven by a large number of potential applications
in areas such as bioinformatics, information retrieval andsocial
network analysis, the problem setting of inferring relations
between pairs of data objects has recently been investigated in-
tensively in the machine learning community. To this end, current
approaches typically consider datasets containing crisp relations,
so that standard classification methods can be adopted. However,
relations between objects like similarities and preferences are
often expressed in a graded manner in real-world applications.
A general kernel-based framework for learning relations from
data is introduced here. It extends existing approaches because
both crisp and graded relations are considered, and it unifies
existing approaches because different types of graded relations
can be modeled, including symmetric and reciprocal relations.
This framework establishes important links between recentdevel-
opments in fuzzy set theory and machine learning. Its usefulness
is demonstrated through various experiments on synthetic and
real-world data. The results indicate that incorporating domain
knowledge about relations improves the predictive performance.

Index Terms—graded relations, fuzzy relations, reciprocal re-
lations, transitivity, learning in graphs, kernel methods, machine
learning

I. I NTRODUCTION

Relational data occurs in many predictive modeling tasks,
such as forecasting the winner in two-player computer games
[1], predicting proteins that interact with other proteinsin
bioinformatics [2], retrieving documents that are similarto a
target document in text mining [3], investigating the persons
that are friends of each other on social network sites [4],
etc. All these examples represent fields of application in
which specific machine learning and data mining algorithms
have been successfully developed to infer relations from data;
pairwise relations, to be more specific.

The typical learning scenario in such situations can be
summarized as follows. Given a dataset of known relations
between pairs of objects and a feature representation of these
objects in terms of variables that might characterize the
relations, the goal usually consists of inferring a statistical
model that takes two objects as input and predicts whether
the relation of interest occurs for these two objects. Moreover,
since one aims to discover unknown relations, a good learning
algorithm should be able to construct a predictive model that
can generalize for unseen data, i.e., pairs of objects for which
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at least one of the two objects was not used to construct the
model. As a result of the transition from predictive models
for single objects to pairs of objects, new advanced learning
algorithms need to be developed, resulting in new challenges
with regard to model construction, computational tractability
and model assessment.

As relations between objects can be observed in many
different forms, this general problem setting provides links to
several subfields of machine learning, like statistical relational
learning [5], graph mining [6], metric learning [7] and pref-
erence learning [8]. More specifically, from a graph-theoretic
perspective, learning a relation can be formulated as learning
edges in a graph where the nodes represent information
about the data objects; from a metric learning perspective,
the relation that we aim to learn should satisfy some well-
defined properties like positive definiteness, transitivity or the
triangle inequality; and from a preference learning perspective,
the relation expresses a (degree of) preference in a pairwise
comparison of data objects.

The topic of learning relations between objects is also
closely related to recent developments in fuzzy set theory.This
article will elaborate on these connections via two important
contributions: (1) the extension of the typical setting of learn-
ing crisp relations to real-valued and ordinal-valued relations
and (2) the incorporation of domain knowledge about relations
into the inference process by explicit modeling mathematical
properties of these relations. For algorithmic simplicity, one
can observe that many approaches only learn crisp relations,
that is relations with only 0 and 1 as possible values, so
that standard binary classifiers can be used. In this context,
consider examples such as inferring protein-protein interaction
networks or metabolic networks in bioinformatics [2], [9].

However, graded relations are observed in many real-world
applications [10], resulting in a need for new algorithms that
take graded relational information into account. Furthermore,
the properties of graded relations have been investigated
intensively in the recent fuzzy logic literature1, and these
properties are very useful to analyze and improve current
algorithms. Using the mathematical properties of graded rela-
tions, constraints can be imposed to allow for incorporation
of domain knowledge in the learning process, to improve
predictive performance or simply to guarantee that a relation
with the right properties is learned. This is definitely the

1Often the term fuzzy relation is used in the fuzzy set literature to refer
to graded relations. However, fuzzy relations should be seen as a subclass of
graded relations. For example, reciprocal relations should not be considered
as fuzzy relations, because they often exhibit a probabilistic semantics rather
than a fuzzy semantics.



2

case for properties like transitivity when learning similarity
relations and preference relations – see e.g. [11]–[14], but
even very basic properties like symmetry, antisymmetry or
reciprocity already provide domain knowledge that can steer
the learning process. For example, in social network analysis,
the notion “person A being a friend of person B” should be
considered as a symmetric relation, while the notion “person A
defeats person B in a chess game” will be antisymmetric (or,
equivalently, reciprocal). Nevertheless, many examples exist,
where neither symmetry nor antisymmetry necessarily hold,
like the notion “person A trusts person B”.

In this paper we present a general kernel-based approach
that unifies all the above cases into one general framework
where domain knowledge can be easily specified by choosing
a proper kernel and model structure, while different learning
settings are distinguished by means of the loss function. Let
Q(v, v′) be a binary relation on an object spaceV , then the
following learning settings will be considered in particular:

• Crisp relations: when the restriction is made thatQ :
V2 → {0, 1}, we arrive at a binary classification task
with pairs of objects as input for the classifier.

• [0, 1]-valued relations: here it is allowed for relations to
take the formQ : V2 → [0, 1], resulting in a regression
type of learning setting. The restriction to the interval
[0, 1] is predominantly made because many mathematical
frameworks in fields like fuzzy set theory and decision
theory are built upon such relations, using the notion of a
fuzzy relation, but in general one can account quite easily
for real-graded relations by applying a scaling operation
from R to [0, 1].

• Ordinal-valued relations: situated somewhat in the middle
between the other two settings, here it is assumed that the
actual values of the relation do not matter but rather the
provided order information should be learned.

Furthermore, one can integrate different types of domain
knowledge in our framework, by guaranteeing that certain
properties are satisfied. The following cases can be distin-
guished:

• Symmetric relations. Applications arise in many domains
and metric learning or learning similarity measures can
be seen as special cases requiring additional properties to
hold, such as the triangle inequality for metrics and pos-
itive definiteness or transitivity properties for similarity
measures. As shown below, learning symmetric relations
can be seen as learning edges in an undirected graph.

• Reciprocal or antisymmetric relations. Applications arise
here in domains such as preference learning, game theory
and bioinformatics for representing preference relations,
choice probabilities, winning probabilities, gene regula-
tion, etc. We will provide a formal definition below, but,
given a rescaling operation fromR to [0, 1], antisymmet-
ric relations can be converted into reciprocal relations.
Similar to symmetric relations, transitivity properties typ-
ically guarantee additional constraints that are definitely
required for certain applications. It is, for example, well
known in decision theory and preference modeling that
transitive preference relations result in utility functions

[15], [16]. Learning reciprocal or antisymmetric relations
can be interpreted as learning edges in a directed graph.

• Ordinary binary relations. Many applications can be
found where neither symmetry nor reciprocity holds.
From a graph inference perspective, learning such rela-
tions should be seen as learning the edges in a bidirec-
tional graph, where edges in one direction do not impose
constraints on edges in the other direction.

Indeed, the framework that we propose below strongly relies
on graphs, where nodes represent the data objects that are
studied and the edges represent the relations present in the
training set. The weights on the edges characterize the values
of known relations, while unconnected nodes indicate pairsof
objects for which the unknown relation needs to be predicted.
The left graph in Figure 1 visualizes a toy example repre-
senting the most general case where neither symmetry nor
reciprocity holds. Depending on the application, the learning
algorithm should try to predict the relations for three types of
object pairs:

• pairs of objects that are already present in the training
dataset by means of other edges, like the pair (A,B),

• pairs of objects for which one of the two objects occurs
in the training dataset, like the pair (E,F),

• pairs of objects for which none of the two objects is
observed during training, like the pair (F,G).

The graphs on the right-hand side in Figure 1 show examples
of specific types of relations that are covered by our frame-
work. The differences between these relations will become
more clear in the following sections.

We start in Section 2 with a formal definition of our frame-
work. The Kronecker pairwise product kernel is introduced
as a general-purpose tool for modeling arbitrary binary rela-
tions. This claim is supported by Theorem II.1, a theoretical
result stating that universal approximation can be obtained
for the Kronecker product pairwise kernel. Subsequently, we
analyze in Section 3 reciprocal and symmetric relations as two
important special cases of our framework. It is shown that
such prior knowledge can be easily incorporated by defining
suitable kernel functions. In Section 4, we investigate addi-
tional properties of reciprocal and symmetric relations, such as
transitivity and metric properties, while establishing important
connections with existing kernel functions for paired compar-
isons and recent developments in fuzzy set theory. Further
connections with related work are summarized in Section 5.
Finally, Section 6 presents experimental results for case studies
in different domains (game playing, document retrieval and
ecology), emphasizing the generality of our framework. Well-
known pairwise kernel functions are compared to illustrate
that inclusion of domain knowledge influences the predictive
performance. Scaling experiments confirm that this influence
increases when the sample size decreases.

II. GENERAL FRAMEWORK

A. Notation and basic concepts

Let us start with introducing some notation. We assume
that the data is structured as a graphG = (V , E , Q), where
V corresponds to the set of nodes,E ⊆ V2 represents the set
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(h) G, S, I

Fig. 1. Top: example of a multi-graph representing the most general case,
where no additional properties of relations are assumed. Bottom: examples of
eight different types of relations in a graph of cardinalitythree. The following
relational properties are illustrated: (C) crisp, (G) graded, (R) reciprocal, (S)
symmetric, (T) transitive and (I) intransitive. For the reciprocal relations, (I)
refers to a relation that does not satisfy weak stochastic transitivity, while (T)
is showing an example of a relation fulfilling strong stochastic transitivity. For
the symmetric relations, (I) refers a relation that does notsatisfyT -transitivity
w.r.t. the Łukasiewicz t-normTL(a, b) = max(a + b − 1, 0), while (T) is
showing an example of a relation that fulfillsT -transitivity w.r.t. the product
t-norm TP(a, b) = ab. See Section 4 for formal definitions of transitivity.

of edges, and the edges are associated with labels generated
from an unknown underlying relationQ : V2 → [0, 1].
Relations are required to take values in the interval[0, 1]
because some properties that we need are historically defined
for such relations, but an extension to real-graded relations
h : V2 → R can always be realized. Considerb ∈ R

+ and
an increasing isomorphismσ : [−b, b] → [0, 1] that satisfies
σ(x) = 1− σ(−x), then we consider theR → [0, 1] mapping
∇ defined by:

∇(x) =







0, if x ≤ −b
σ(x), if −b ≤ x ≤ b
1, if b ≤ x

and its inverse∇−1 = σ−1.

Any real-valued relationh : V2 → R can be transformed
into a [0, 1]-valued relationQ as follows:

Q(v, v′) = ∇(h(v, v′)) , ∀(v, v′) ∈ V2 , (1)

and conversely by means of∇−1. In what follows we tacitly
assume that∇ has been fixed.

Following the standard notation for kernel methods, we
formulate our learning problem as the selection of a suitable
functionh ∈ H, whereH is a hypothesis space, in particular a
reproducing kernel Hilbert space (RKHS). More specifically,
the RKHS supports in our case hypothesesh : V2 → R

denoted as

h(e) = w
TΦ(e) , (2)

with w a vector of parameters that needs to be estimated from
training data,Φ a joint feature mapping for edges in the graph
(see below) andaT the transpose of a vectora. Let us denote
a training dataset of cardinalityq as a sequence(ei, yei)

q

i=1 of
edge-label pairs sampled fromG. Then, we formally consider
the following optimization problem, in which we select an
appropriate hypothesish from H for training data:

argmin
h∈H

{

1

q

q
∑

i=1

L(h(ei), yei) + λ‖h‖2H

}

(3)

with L a given loss function,‖ · ‖2H the traditional quadratic
regularizer on the RKHS andλ > 0 a regularization parameter.
According to the representer theorem [17], any minimizerh ∈
H of (3) admits a dual representation of the following form:

h(e) = w
TΦ(e) =

q
∑

i=1

aiK
Φ(ei, e) , (4)

with ai ∈ R dual parameters,KΦ the kernel function associ-
ated with the RKHS andΦ the feature mapping corresponding
to KΦ andw =

∑q

i=1 aiΦ(ei).
The primal representation as defined in (2) and its dual

equivalent (4) yield an RKHS defined on edges in the graph.
In addition, we will establish an RKHS defined on nodes, as
every edge consists of a couple of nodes. Given an input space
V and a kernelK : V × V → R, the RKHS associated with
K can be considered as the completion of

{

f ∈ R
V











f(v) =
m
∑

i=1

βiK(v, vi)

}

,

in the norm ‖f‖K =
√

∑

i,j βiβjK(vi, vj), where βi ∈

R,m ∈ N, vi ∈ V .

B. Learning arbitrary relations

As mentioned in the introduction, both crisp and graded
relations can be handled by our framework. To make a
subdivision between different cases, a loss function needs
to be specified. For crisp relations, one will typically use
the hinge loss or the logistic loss. Conversely, if in a given
application the observed relations are graded instead of crisp,
other loss functions have to be considered. Hence, we will run
experiments with a least-squares loss function:

L(h(e), y) = (ye − h(e))2 , (5)

resulting in a regression type of learning setting.
So far, our framework does not differ from standard classi-

fication and regression algorithms. However, the specification
of a more precise model structure for (2) offers a couple of
new challenges. In the most general case, when no further
restrictions on the underlying relation can be specified, the
following Kronecker product feature mapping is proposed to
express pairwise interactions between features of nodes:

Φ(e) = Φ(v, v′) = φ(v) ⊗ φ(v′) ,
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whereφ represents the feature mapping for individual nodes.
A formal definition of the Kronecker product can be found in
the appendix. As first shown in [18], the Kronecker product
pairwise feature mapping yields the Kronecker product edge
kernel (a.k.a. the tensor product pairwise kernel) in the dual
representation:

KΦ
⊗(e, e) = KΦ

⊗(v, v
′, v, v′) = Kφ(v, v)Kφ(v′, v′) , (6)

with Kφ the kernel corresponding toφ.

This section aims to formally prove that the Kronecker
product edge kernel is the best kernel one can choose, when
no further domain knowledge is provided about the under-
lying relation that generates the data. We claim that with
an appropriate choice forKφ, such as the Gaussian RBF
kernel, the kernelKΦ generates a classH of universally
approximating functions for learning any type of relation.
Before summarizing this important result, we recollect the
classical concept of universal kernels (see Definition VII.1
in the appendix) introduced by [19]. With universality of the
kernel K, we refer to the property that the RKHS induced
by K can approximate any function inC(V) arbitrarily well,
where C(V) is the set of real-valued continuous functions
on V . Using another classical result, the Stone-Weierstraß
theorem (see Theorem VII.2 in the appendix, and e.g [20]
for a more detailed description), we arrive at the following
theorem concerning the Kronecker product pairwise kernels:

Theorem II.1. Let us assume that the space of nodesV is a
compact metric space. If a continuous kernelKφ is universal
on V , thenKΦ

⊗ defines a universal kernel onV2.

The proof can be found in the appendix. We would like
to emphasize that one cannot conclude from the theorem that
the Kronecker product pairwise kernel is the best kernel to
use in all possible situations. The theorem only shows that the
Kronecker product pairwise kernel makes a reasonably good
choice, if no further domain knowledge about the underlying
relation is known. Namely, the theorem says that given a
suitable sample of data, the RKHS of the kernel contains
functions that are arbitrarily close to any continuous relation
in the uniform norm. However, the theorem does not say
anything about how likely it is to have, as a training set,
such a data sample that is representative of the approximating
function. Further, the theorem only concerns graded relations
that are continuous and therefore crisp relations and graded,
discontinuous relations require more detailed consideration.

Other kernel functions might, of course, outperform the
Kronecker product pairwise kernel in applications where do-
main knowledge can be incorporated in the kernel function.
In the following section we discuss reciprocity, symmetry and
transitivity as three relational properties that can be represented
by means of more specific kernel functions. As a side note, we
also introduce the Cartesian pairwise kernel, which is formally
defined as follows

KΦ
C(v, v

′, v, v′) = Kφ(v′, v′)[v = v] +Kφ(v, v)[v′ = v′] ,

with [.] the indicator function, returning one when both
elements are identical and zero otherwise. This kernel was

recently proposed by [21] as an alternative to the Kronecker
product pairwise kernel. By construction, the Cartesian pair-
wise kernel has important limitations, since it cannot general-
ize to couples of nodes for which both nodes did not appear
in the training dataset.

III. SPECIAL RELATIONS

If no further information is available about the relation that
underlies the data, one should definitely use the Kronecker
product edge kernel. In this most general case, we allow that
for any pair of nodes in the graph several edges can exist, in
which an edge in one direction does not necessarily impose
constraints on the edge in the opposite direction. Multiple
edges in the same direction can connect two nodes, leading
to a multi-graph as in Figure 1, where two different edges in
the same direction connect nodesD andE. This construction
is required to allow repeated measurements. However, two
important subclasses of relations deserve further attention:
reciprocal relations and symmetric relations.

A. Reciprocal relations

This subsection briefly summarizes our previous work on
learning reciprocal relations [22]. Let us start with a definition
of this type of relation.

Definition III.1. A binary relationQ : V2 → [0, 1] is called
a reciprocal relation if for all (v, v′) ∈ V2 it holds that
Q(v, v′) = 1−Q(v′, v).

Definition III.2. A binary relation h : V2 → R is called
an antisymmetric relation if for all(v, v′) ∈ V2 it holds that
h(v, v′) = −h(v′, v).

For reciprocal and antisymmetric relations, every edgee =
(v, v′) in a multi-graph like Figure 1 induces an unobserved
invisible edgeeR = (v′, v) with appropriate weight in the
opposite direction. The transformation operator∇ transforms
an antisymmetric relation into a reciprocal relation. Appli-
cations of reciprocal relations arise here in domains such
as preference learning, game theory and bioinformatics for
representing preference relations, choice probabilities, winning
probabilities, gene regulation, etc. The weight on the edge
defines the real direction of such an edge. If the weight on the
edgee = (v, v′) is higher than 0.5, then the direction is fromv
to v′, but when the weight is lower than 0.5, then the direction
should be interpreted as inverted, for example, the edges from
A to C in Figures 1 (a) and (e) should be interpreted as edges
starting fromA instead ofC. If the relation is3-valued as
Q : V2 → {0, 1/2, 1}, then we end up with a three-class
ordinal regression setting instead of an ordinary regression
setting.

Interestingly, reciprocity can be easily incorporated in our
framework.

Proposition III.3. Let Ψ be a feature mapping onV2 and let
h be a hypothesis defined by (2), then the relationQ of type
(1) is reciprocal ifΦ is given by

ΦR(e) = ΦR(v, v
′) = Ψ(v, v′)−Ψ(v′, v) .
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The proof is immediate. In addition, one can easily show
that reciprocity as domain knowledge can be enforced in the
dual formulation. Let us in the least restrictive form now
consider the Kronecker product forΨ, then one obtains for
ΦR the kernelKΦ

⊗R given byKΦ
⊗R(e, e) =

2
(

Kφ(v, v)Kφ(v′, v′)−Kφ(v, v′)Kφ(v′, v)
)

. (7)

The following theorem shows that this kernel can represent
any type of reciprocal relation.

Theorem III.4. Let

R(V2) = {t | t ∈ C(V2), t(v, v′) = −t(v′, v)}

be the space of all continuous antisymmetric relations from
V2 to R. If Kφ on V is universal, then for every function
t ∈ R(V2) and everyǫ > 0, there exists a functionh in the
RKHS induced by the kernelKΦ

⊗R defined in (7), such that

max
(v,v′)∈V2

{|t(v, v′)− h(v, v′)|} ≤ ǫ . (8)

The proof can be found in the appendix.

B. Symmetric relations

Symmetric relations form another important subclass of
relations in our framework. As a specific type of symmetric
relations, similarity relations constitute the underlying relation
in many application domains where relations between objects
need to be learned. Symmetric relations are formally defined
as follows.

Definition III.5. A binary relationQ : V2 → [0, 1] is called
a symmetric relation if for all(v, v′) ∈ V2 it holds that
Q(v, v′) = Q(v′, v).

Definition III.6. A binary relation h : V2 → R is called
a symmetric relation if for all(v, v′) ∈ V2 it holds that
h(v, v′) = h(v′, v).

Note that∇ preserves symmetry. For symmetric relations,
edges in multi-graphs like Figure 1 become undirected. Appli-
cations arise in many domains and metric learning or learning
similarity measures can be seen as special cases. If the relation
is 2-valued asQ : V2 → {0, 1}, then we end up with a
classification setting instead of a regression setting.

Just like reciprocal relations, it turns out that symmetry can
be easily incorporated in our framework.

Proposition III.7. Let Ψ be a feature mapping onV2 and let
h be a hypothesis defined by (2), then the relationQ of type
(1) is symmetric ifΦ is given by

ΦS(e) = ΦS(v, v
′) = Ψ(v, v′) + Ψ(v′, v) .

In addition, by using mathematical properties of the Kro-
necker product, one obtains in the dual formulation an edge
kernel that looks very similar to the one derived for reciprocal
relations. Let us again consider the Kronecker product forΨ,
then one obtains forΦS the kernelKΦ

⊗S given byKΦ
⊗S(e, e) =

2
(

Kφ(v, v)Kφ(v′, v′) +Kφ(v, v′)Kφ(v′, v)
)

.

Thus, the substraction of kernels in the reciprocal case be-
comes an addition of kernels in the symmetric case. The
above kernel has been used for predicting protein-protein
interactions in bioinformatics [18] and it has been theoretically
analyzed in [23]. More specifically, for some methods one
has shown in the latter paper that enforcing symmetry in the
kernel function yields identical results as adding every edge
twice to the dataset, by taking each of the two nodes once
as first element of the edge. Unlike many existing kernel-
based methods for pairwise data, the models obtained with
these kernels are able to represent any reciprocal or symmetric
relation respectively, without imposing additional transitivity
properties of the relations.

We also remark that for symmetry as well, one can prove
that the Kronecker product edge kernel yields a model that is
flexible enough to represent any type of underlying relation.

Theorem III.8. Let

S(V2) = {t | t ∈ C(V2), t(v, v′) = t(v′, v)}

be the space of all continuous symmetric relations fromV2 to
R. If Kφ onV is universal, then for every functiont ∈ S(V2)
and everyǫ > 0, there exists a functionh in the RKHS (2)
induced by the kernel (7), such that

max
(v,v′)∈V2

{|t(v, v′)− h(v, v′)|} ≤ ǫ.

The proof is analogous to that of Theorem III.4 (see
appendix). As a side note, we remark that a symmetric and
reciprocal version of the Cartesian kernel can be introduced
as well.

IV. RELATIONSHIPS WITH FUZZY SET THEORY

The previous section revealed that specific Kronecker prod-
uct edge kernels can be constructed for modeling reciprocal
and symmetric relations, without requiring any further back-
ground about these relations. In this section we demonstrate
that the Kronecker product edge kernelsKΦ

⊗, KΦ
⊗R and

KΦ
⊗S are particularly useful for modeling intransitive relations.

Intransitive relations occur in a lot of real-world scenarios, like
game playing [24], [25], competition between bacteria [26]–
[31] and fungi [32], mating choice of lizards [33] and food
choice of birds [34], to name just a few. In an informal way,
Figure 1 shows with the help of examples what transitivity
means for symmetric and reciprocal relations that are crisp
and graded.

Despite the occurrence of intransitive relations in many
domains, one has to admit that most applications are still
characterized by relations that fulfill relatively strong transi-
tivity requirements. For example, in decision making, prefer-
ence modeling and social choice theory, one can argue that
reciprocal relations like choice probabilities and preference
judgments should satisfy certain transitivity properties, if they
represent rational human decisions made after well-reasoned
comparisons on objects [15], [35], [36]. For symmetric rela-
tions as well, transitivity plays an important role [37], [38],
when modeling similarity relations, metrics, kernels, etc.

It is for this reason that transitivity properties have been
studied extensively in fuzzy set theory and related fields.
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For reciprocal relations, one traditionally uses the notion of
stochastic transitivity [15].

Definition IV.1. Let g be an increasing[1/2, 1]2 → [0, 1]
mapping. A reciprocal relationQ : V2 → [0, 1] is called g-
stochastic transitive if for any(v1, v2, v3) ∈ V3

(

Q(v1, v2) ≥ 1/2 ∧Q(v2, v3) ≥ 1/2
)

⇒ Q(v1, v3) ≥ g(Q(v1, v2), Q(v2, v3)) .

Important special cases are weak stochastic transitivity when
g(a, b) = 1/2, moderate stochastic transitivity wheng(a, b) =
min(a, b) and strong stochastic transitivity wheng(a, b) =
max(a, b). Alternative (and more general) frameworks are FG-
transitivity [39] and cycle transitivity [12], [13]. For graded
symmetric relations, the notion ofT -transitivity has been put
forward [40], [41].

Definition IV.2. A symmetric relationQ : V2 → [0, 1] is
calledT -transitive withT a t-norm if for any(v1, v2, v3) ∈ V3

T (Q(v1, v2), Q(v2, v3)) ≤ Q(v1, v3) . (9)

Three important t-norms are the minimum t-norm
TM(a, b) = min(a, b), the product t-normTP(a, b) = ab and
the Łukasiewicz t-normTL(a, b) = max(a+ b− 1, 0).

In addition, several authors have shown that various forms
of transitivity give rise to utility representable or numerically
representable relations, also called fuzzy weak orders – see
e.g. [15], [16], [42]–[44]. We will use the term ranking
representability to establish a link with machine learning. We
give a slightly specific definition that unifies reciprocal and
symmetric relations.

Definition IV.3. A reciprocal or symmetric relationQ : V2 →
[0, 1] is called ranking representable if there exists a ranking
function f : V → R such that for all (v, v′) ∈ V2 it
respectively holds that

1) Q(v, v′) = ∇(f(v)− f(v′)) (reciprocal case) ;
2) Q(v, v′) = ∇(f(v) + f(v′)) (symmetric case) .

The main idea is that ranking representable relations can be
constructed from a utility functionf . Ranking representable
reciprocal relations correspond to directed acyclic graphs, and
a unique ranking of the nodes in such graphs can be obtained
with topological sorting algorithms. The ranking representable
reciprocal relations of Figures 1 (a) and (e) for example
yield the global rankingA ≻ B ≻ C. Interestingly, ranking
representability of reciprocal relations and symmetric relations
can be easily achieved in our framework by simplifying the
joint feature mappingΨ. Let Ψ(v, v′) = φ(v) such thatKΦ

simplifies to

KΦ
fR(e, e) =Kφ(v, v) +Kφ(v′, v′)−Kφ(v, v′)−Kφ(v′, v)

KΦ
fS(e, e) =Kφ(v, v) +Kφ(v′, v′) +Kφ(v, v′) +Kφ(v′, v)

whenΦ(v, v′) = ΦR(v, v
′) or Φ(v, v′) = ΦS(v, v

′), respec-
tively, then the following proposition holds.

Proposition IV.4. The relationQ : V2 → [0, 1] given by
(1) and h defined by (2) withKΦ = KΦ

fR (respectively
KΦ = KΦ

fS) is a ranking representable reciprocal (respec-

tively symmetric) relation.

The proof directly follows from the fact that for this specific
kernel,h(v, v′) can be respectively written asf(v)−f(v′) and
f(v)+f(v′). The kernelKΦ

fR has been used as a main building
block in many kernel-based ranking algorithms (see e.g. [45],
[46]). Since ranking representability of reciprocal relations
implies strong stochastic transitivity of reciprocal relations,
KΦ

fR can represent this type of domain knowledge.
The notion of ranking representability is powerful for re-

ciprocal relations, because the majority of reciprocal relations
satisfy this property, but for symmetric relations it has a rather
limited applicability. Ranking representability as defined above
cannot represent relations that originate from an underlying
metric or similarity measure. For such relations, one needs
another connection with its roots in Euclidean metric spaces
[37].

Definition IV.5. A symmetric relationQ : V2 → [0, 1]
is called Euclidean representable if there exists a ranking
function f : V → R

z such that for all pairs(v, v′) ∈ V2

it holds that

Q(v, v′) = ∇((f(v) − f(v′))T (f(v)− f(v′))) , (10)

with aT the transpose of a vectora.

Euclidean representability can be seen as Euclidean embed-
ding or Multidimensional Scaling in az-dimensional space
[47]. In its most restrictive form, whenz = 1, it implies that
the symmetric relation can be constructed from the Euclidean
distance in a one-dimensional space. When such a one-
dimensional embedding can be realized, one global ranking
of the objects can be found, similar to reciprocal relations.
Nevertheless, although models of type (10) withz = 1 are
sometimes used in graph inference [6] and semi-supervised
learning [48], we believe that situations where symmetric
relations become Euclidean representable in a one-dimensional
space occur very rarely, in contrast to reciprocal relations. The
extension toz > 1 on the other hand does not guarantee
the existence of one global ranking, then Euclidean repre-
sentability still enforces some interesting properties, because it
guarantees that the relationQ is constructed from a Euclidean
metric space with a dimension upper bounded by the number
of nodesp. Moreover, this type of domain knowledge about
relations can be incorporated in our framework. To this end,let
Φ(v, v′) = ΦS(v, v

′) and letΨ(v, v′) = φ(v)⊗ (φ(v)−φ(v′))
such thatKΦ becomesKΦ

MLPK(e, e) = (KΦ
fR(e, e))

2 =

(

Kφ(v, v) +Kφ(v′, v′)−Kφ(v, v′)−Kφ(v′, v)
)2

.

This kernel has been called the metric learning pairwise kernel
by [49]. As a consequence, the vector of parametersw can
be rewritten as anr× r matrixW whereWij corresponds to
the parameter associated with(φi(v)−φi(v

′))(φj(v)−φj(v
′))

such thatWij = Wji.

Proposition IV.6. If W is positive semi-definite, then the
symmetric relationQ : V2 → [0, 1] given by (1) withh defined
by (2) andKΦ = KΦ

MLPK is an Euclidean representable
symmetric relation.
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See the appendix for the proof. Although the model estab-
lished byKΦ

MLPK does not result in a global ranking, this
model strongly differs from the one established withKΦ

⊗S ,
sinceKΦ

MLPK can only represent symmetric relations that ex-
hibit transitivity properties. Therefore, one should useKΦ

MLPK

when, for example, the underlying relation corresponds to a
metric or a similarity relation, while the kernelKΦ

⊗S should be
preferably used for symmetric relations for which no further
domain knowledge can be assumed beforehand.

V. RELATIONSHIPS WITH OTHER MACHINE LEARNING

ALGORITHMS

As explained in Section 2, the transition from a standard
classification or regression setting to learning graded relations
should be found in the specification of joint feature mappings
over couples of objects, thereby naturally leading to the
introduction of specific kernels. Any existing machine learning
algorithm for classification or regression can in principlebe
adopted, if joint feature mappings are constructed explicitly.
Since kernel methods avoid this explicit construction, they
can often outperform non-kernelized algorithms in terms of
computational efficiency [17]. As a second main advantage,
kernel methods allow for expressing similarity scores for
structured objects, such as strings, graphs and trees and text
[50]. In our setting of learning graded relations, this implies
that one should plug these domain-specific kernel functions
into (6) or use the other pairwise kernels that are discussedin
this paper. Such a scenario is in fact common practice in some
applications of Kronecker product pairwise kernels, such as
predicting protein-ligand compatibility in bioinformatics [51].
String kernels or graph kernels can be defined on various types
of biological structures [52] and Kronecker product pairwise
kernels then combine these object-based kernels into relation-
based kernels (thus, node kernels versus edge kernels).

The edge kernels can be utilized within a wide variety of
kernel methods. Since we focus on learning graded relations,
one naturally arrives at a regression setting. In the following
section, we run some experiments with regularized least-
squares methods, which optimize (5) using a hypothesis space
induced by kernels. The solution is found by solving a system
of linear equations [50], [53].

Apart from kernel methods, we briefly mention a number
of other algorithms that are somewhat connected, even though
they provide solutions for different learning problems. Ifpair-
wise relations are considered between objects of two different
domains, one arrives at a learning setting that is referred to
as predicting labels for dyadic data [54]. Examples of such
settings include link prediction in bipartite graphs and movie
recommendation for users. As such, one could also argue
that specific link prediction and matrix factorization methods
could be applied in our setting as well, see e.g. [55]–[57].
However, these methods have been primarily designed for
exploiting relationships in the output space, whereas feature
representations of the objects are often not observed or simply
irrelevant. Moreover, similar to the Cartesian pairwise kernel,
these methods cannot be applied in situations where predic-
tions need to be made for two new nodes that were not present
in the training dataset.

TABLE I
METHODS CONSIDERED IN THE EXPERIMENTS

Abbreviation Method

MPRED Predicting the mean
KΦ

⊗ Kronecker Product Pairwise Kernel
KΦ

⊗S
Symmetric Kronecker Product Pairwise Kernel

KΦ

⊗R
Reciprocal Kronecker Product Pairwise Kernel

KΦ

MLPK
Metric Learning Pairwise Kernel

KΦ

C
Cartesian Product Pairwise Kernel

KΦ

CS
Symmetric Cartesian Pairwise Kernel

Another connection can be observed with multivariate
regression and structured output prediction methods. Such
methods have been occasionally applied in settings where
relations had to be learned [9]. Also recall that structured
output prediction methods use Kronecker product pairwise
kernels on a regular basis to define joint feature representations
of inputs and outputs [58], [59].

In addition to predictive models for dyadic data, one can
also detect connections with certain information retrieval and
pattern matching methods. However, these methods predom-
inantly use similarity as the underlying relation, often ina
purely intuitive manner, as a nearest neighbor type of learning,
so they can be considered much more restrictive. Consider the
example of protein ranking [60] or algorithms likequery by
document[3]. These methods simply look for rankings where
the most similar objects w.r.t. the query object appear on top,
contrary to our approach, which should be considered as much
more general, since we learn rankings from any type of binary
relation. Nonetheless, similarity relations will of course still
occupy a prominent place in our framework as an important
special case.

VI. EXPERIMENTS

We test the ability of the pairwise kernels to model different
types of relations, and the effect of enforcing prior knowledge
about the properties of the learned relations. To this end, we
train the regularized least-squares (RLS) algorithm to regress
the relation values [50], [53]. We perform experiments on both
symmetric and reciprocal relations, considering both synthetic
and real-world data. In addition to the standard, symmetric
and reciprocal Kronecker product pairwise kernels, we also
consider the Cartesian kernel, the symmetric Cartesian kernel
and the metric learning pairwise kernel. The performance
measure used is the mean squared error (MSE). For statistical
significance testing, we use the paired Wilcoxon-signed-rank
test with significance level0.05 where applicable. The con-
servative Bonferroni correction is applied to take into account
multiple hypothesis testing, meaning that the required p-value
is divided by the number of comparisons done.

A. Synthetic data: learning similarity measures

Experiments on synthetic data were conducted to illustrate
the behavior of the different kernels in terms of the transi-
tivity of the relation to be learned. A parametric family of
cardinality-based similarity measures for sets was considered
as the relation of interest [61]. For two setsA andB, let us
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TABLE II
RESULTS FOR THE FIRST SIMILARITY MEASURE EXPERIMENT, THE TASK

IS TO PREDICT WEIGHTS FOR UNOBSERVED EDGES IN A PARTIALLY
OBSERVED RELATIONAL GRAPH.

Setting (t, t′, u, v) MPRED KΦ

⊗ KΦ

⊗S
KΦ

MLPK
KΦ

C
KΦ

CS

Intransitive (0,1,2,2) 0.01038 0.00908 0.00773 0.00768 0.00989 0.00924
TL-transitive (0,1,1,0) 0.01514 0.00962 0.00781 0.00805 0.01155 0.00941
TP-transitive (1,2,1,1) 0.00259 0.00227 0.00192 0.00188 0.00248 0.00231

TABLE III
RESULTS FOR THE SECOND SIMILARITY MEASURE EXPERIMENT, THE

TASK IS TO PREDICT RELATIONS BETWEEN PREVIOUSLY UNSEEN NODES.

Setting (t, t′, u, v) MPRED KΦ

⊗ KΦ

⊗S
KΦ

MLPK

Intransitive (0,1,2,2) 0.01032 0.00995 0.00936 0.00971
TL-transitive (0,1,1,0) 0.01515 0.01236 0.01166 0.01453
TP-transitive (1,2,1,1) 0.00259 0.00251 0.00236 0.00242

define the following cardinalities:

∆A,B = |A \B|+ |B \A| ,

δA,B = |A ∩B| ,

νA,B = |(A ∪B)c| ,

then this family of similarity measures for sets can be ex-
pressed as:

S(A,B) =
t∆A,B + uδA,B + vνA,B

t′∆A,B + uδA,B + vνA,B

, (11)

with t, t′, u andv four parameters. This family of similarity
measures includes many well-known similarity measures for
sets, such as the Jaccard coefficient [62], the simple matching
coefficient [63] and the Dice coefficient [64].

Three members of this family are investigated in our
experiments. The first one is the Jaccard coefficient, corre-
sponding to(t, t′, u, v) = (0, 1, 1, 0). The Jaccard coefficient
is known to beTL-transitive. The second member that we
investigate was originally proposed by [65]. It corresponds to
(t, t′, u, v) = (0, 1, 2, 2) and it does not satisfyTL-transitivity,
which is considered as a very weak transitivity condition.
Conversely, the third member that we analyse has rather strong
transitivity properties. It is given by(t, t′, u, v) = (1, 2, 1, 1)
and it satisfiesTP-transitivity.

Features and labels for all three members are generated
as follows. First we generate 20-dimensional feature vectors
consisting of statistically independent features that follow a
Bernoulli distribution withπ = 0.5. Subsequently, the above-
mentioned similarity measures are computed for each pair of
features, resulting in a deterministic mapping between features
and labels. Finally, to introduce some noise in the problem
setting, 10% of the features are ad random swapped in a last
step from a zero to a one or vice versa.

In the experiments, we always generate three data sets,
a training set for building the model, a validation set for
hyperparameter selection, and a test set for performance

TABLE IV
RESULTS FOR THE ECOLOGY EXPERIMENT.

Kernel MPRED KΦ

⊗ KΦ

⊗R
KΦ

MLPK

MSE 0.02795 0.01082 0.01067 0.02877

102 103 104 105
#edges

0

10

20

30

40

50

M
SE

KΦ
⊗

KΦ
⊗S

Fig. 2. The comparison of the ordinary Kronecker product pairwise kernel
KΦ

⊗
and the symmetric Kronecker product pairwise kernelKΦ

⊗S
on the

Newsgroups dataset. The mean squared error is shown as a function of the
training set size.

evaluation. We perform two kinds of experiments. In the first
experiment, we have a single set of100 nodes.500 node pairs
are randomly sampled without replacement to the training,
validation and test sets. Thus, the learning problem here is,
given a subset of the relation values for a fixed set of nodes,
to learn to predict missing relation values. This setup allows
us for testing also the Cartesian kernel, which is unable to
generalize to completely new pairs of nodes. In the second
experiment, we generate three separate sets of100 nodes for
the training, validation and test sets, and sample500 edges
from each of these. This experiment allows us for testing the
generalization capability of the learned models with respect
to new couples of nodes (i.e., previously unseen nodes). Here,
the Cartesian kernel is not applicable, and thus not included in
the experiment. The experiments are repeated 100 times, the
presented results are means over the repetitions. The Gaussian
RBF kernel was considered at the node level. For training RLS
we solved the corresponding system of linear equations using
matrix factorization, by considering an explicit regularization
parameter. A grid search is conducted to select the width of the
Gaussian RBF kernel and the regularization parameter, both
are selected from the range2−20, . . . , 21.

The results for the experiments are presented in Tables II
and III. In both cases all the kernels outperform the mean
predictor, meaning that they are able to model the underlying
relations. For all the learning methods, the error is lower in
the first experiment than in the second one, demonstrating that
it is easier to predict relations between known nodes, than to
generalize to a new set of nodes. Enforcing symmetry is clearly
beneficial, as the symmetric Kronecker product pairwise kernel
always outperforms the standard Kronecker product pairwise
kernel, and the symmetric Cartesian kernel always outperforms
the standard one. Comparing the Kronecker and Cartesian
kernels, the Kronecker one leads to clearly lower error rates.
With the exception of theTL-transitive case in the second
experiment, MLPK turns out to be highly successful in mod-
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eling the relations, probably due to enforcing symmetry of
the learned relation. In the first experiment, all the differences
are statistically significant, apart from the difference between
the symmetric Kronecker product pairwise kernel and MLPK
for the intransitive case. In the second experiment, all the
differences are statistically significant. Clearly, including prior
knowledge about symmetry helps to boost the predictive
performance in this problem.

B. Learning the similarity between documents

In the second experiment, we compare the ordinary
and symmetric Kronecker pairwise kernels on a real-world
data set based on newsgroups documents2. The data was
sampled from 4 newsgroups: rec.autos, rec.sport.baseball,
comp.sys.ibm.pc.hardware and comp.windows.x. The aim is to
learn to predict the similarity of two documents as measured
by the number of common words they share. The node features
correspond to the number of occurrences of a word in a
document. The feature representation is high-dimensionaland
sparse, with more than50000 possible features, the majority
of which are zero for any given document. First, we sample
separate training, validation and test sets each consisting
of 1000 nodes. Second, we sample edges connecting the
nodes in the training and validation set using exponentially
growing sample sizes to measure the effect of sample size
on the differences between the kernels. The sample size grid
is [100, 200, 400, . . . , 102400]. Again, we sample only edges
with different starting and end nodes. When computing the
test performance, we consider all the edges in the test set,
except those starting and ending at the same node. The linear
kernel is used at the node level. We train the RLS algorithm
using conjugate gradient optimization with early stopping[66],
optimization is terminated once the MSE on the validation set
has failed to decrease for 10 consecutive iterations. Sincewe
rely on the regularizing effect of early stopping, a separate
regularization parameter is not needed. We do not include
other types of kernels besides the Kronecker product pairwise
kernels in the experiment. To the best of our knowledge,
no algorithms that scale to the considered experiment size
exist for the other kernel functions. Hence, this experiment
mainly aims to illustrate the computational advantages of the
Kronecker product pairwise kernel. The mean as prediction
achieves an MSE around145 on this data.

The results are presented in Figure 2. Even for100 pairs
the errors for both kernels are much lower than for mean
predictor, showing that RLS succeeds with both kernels in
learning the underlying relation. Increasing the trainingset
size leads to a decrease in test error. Using the prior knowledge
about the symmetry of the learned relation is clearly helpful.
The symmetric kernel achieves a lower error than the ordinary
Kronecker product pairwise kernel for all sample sizes, the
largest differences are observed for the smallest sample sizes.
For 100 training instances, the error is almost halved by
enforcing symmetry.

2Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/

C. Competition between species

Finally, we compare ordinary and reciprocal Kronecker
pairwise kernels and the metric learning pairwise kernel on
simulated data from an ecological model. The setup is based
on the one described in [67]. This model provides an elegant
explanation for the coexistence of multiple species in the same
habitat, a problem that has puzzled ecologists for decades [68].

Imaginen species sharing a habitat and struggling for their
share of the resources. One species can dominate another
species based onk so-called limiting factors. A limiting factor
defines an attribute that can give a fitness advantage, for
example in plants the ability to photosynthesize or to draw
minerals from the soil, resistance to diseases, etc. Each species
is scored on each of itsk limiting factors. The degree to
which one species can dominate a competitor is relative to the
number of limiting factors for which it is superior. All possible
interactions can thus be represented in a tournament. In this
framework relations are reciprocal and often intransitive.

For this simulation 400 species were simulated with 10
limiting factors. The value of each limiting factor is for each
species drawn from a random uniform distribution between 0
and 1. Thus, any speciesv can be represented by a vector
f of length k with the limiting factors as elements. The
probability that a speciesv dominates speciesv′ can easily
be calculated as:Q(v, v′) = 1

k

∑k

i=1 H(fi− f ′
i), whereH(x)

is the Heaviside step function.
Of the 400 species, 200, 100 and 100 were used for gen-

erating training, validation and testing data. For each subset,
the complete tournament matrix was determined. From those
matrices 1200 interactions were sampled for training, 600
for model validation and 600 for testing. No combination
of species was used more than once. Using the limiting
factors as features, we try to regress the probability that
one species dominates another one using the ordinary and
reciprocal Kronecker product pairwise kernels and the metric
learning pairwise kernel. Gaussian kernel is applied as the
node kernel. The validation set is used to determine the optimal
regularization parameter and kernel width parameter from the
grids 2−20, 2−19 . . ., 24 and 2−10, 2−9 . . ., 21. To obtain
statistically significant results the setup is repeated 100times.

The results are shown in Table IV. The metric learning
pairwise kernel gives rise to worse predictions than the mean
as prediction. This is not surprising, as the MLPK cannot learn
reciprocal relations. The ordinary Kronecker product pairwise
kernel performs well and the reciprocal Kronecker product
pairwise kernel performs even better. All the differences are
statistically significant. The results show that using prior
information on the types of relations to be learned can boost
predictive accuracy.

VII. C ONCLUSIONS

A general kernel-based framework for learning various
types of graded relations was presented in this article. This
framework extends existing approaches for learning relations,
because it can handle crisp and graded relations. A Kronecker
product feature mapping was proposed for combining the



10

features of pairs of objects that constitute a relation (edge
level in a graph), and it was shown that this mapping leads to
a class of universal approximators, if an appropriate kernel is
chosen on the object level (node level in a graph).

In addition, we clarified that domain knowledge about
the relation to be learned can be easily incorporated in
our framework, such as reciprocity and symmetry properties.
Experimental results on synthetic and real-world data clearly
demonstrate that this domain knowledge can significantly im-
prove generalization performance. Important links with recent
developments in fuzzy set theory and decision theory can be
established, by considering transitivity properties of relations.
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APPENDIX

Definition VII.1 (Steinwart [19]). A continuous kernelK on
a compact metric spaceV (i.e. V is closed and bounded) is
called universal if the RKHS induced byK is dense inC(V),
whereC(V) is the space of all continuous functionsf : V →
R. That is, for every functionf ∈ C(V) and everyǫ > 0, there
exists a set of input points{vi}mi=1 ∈ V and real numbers
{αi}

m
i=1, with m ∈ N, such that

max
x∈V

{










f(v)−

m
∑

i=1

αiK(vi, v)











}

≤ ǫ.

Accordingly, the hypothesis space induced by the kernelK
can approximate any function inC(V) arbitrarily well, and
hence it has the universal approximating property.

The following result is in the literature known as the Stone-
Weierstraß theorem (see e.g [20]):

Theorem VII.2 (Stone-Weierstraß). Let C(V) be the set of
real-valued continuous functions on a compact metric space
V . If A ⊂ C(V) is a subalgebra ofC(V), that is,

∀f(v), g(v) ∈ A, r ∈ R : f(v) + rg(v) ∈ A, f(v)g(v) ∈ A

andA separates points inV , that is,

∀v, v′ ∈ V , v 6= v′ : ∃g ∈ A : g(v) 6= g(v′),

andA does not vanish at any point inV , that is,

∀v ∈ V : ∃g ∈ A : g(v) 6= 0,

thenA is dense inC(V).

A. Proofs

Proof: (Theorem II.1) Let us define

A⊗A = {t | t(v, v′) = g(v)u(v′), g, u ∈ A} (12)

for a compact metric spaceV and a set of functionsA ⊂ C(V).
We observe that the RKHS of the kernelKΦ

⊗ can be written
asH⊗H, whereH is the RKHS of the kernelKφ.

Let ǫ > 0 and let t ∈ C(V) ⊗ C(V) be an arbi-
trary function which can, according to (12), be written as
t(v, v′) = g(v)u(v′), whereg, u ∈ C(V). By definition of
the universality property,H is dense inC(V). Therefore,H
contains functionsg, u such that

max
v∈V

{|g(v)− g(v)|} ≤ ǫ, max
v∈V

{|u(v)− u(v)|} ≤ ǫ ,

whereǫ is a constant for which it holds that

max
v,v′∈V

{

|ǫ g(v)|+ |ǫ u(v′)|+ ǫ2
}

≤ ǫ .

Note that, according to the extreme value theorem, the max-
imum exists due to the compactness ofV and the continuity
of the functionsg andu. Now we have

max
v,v′∈V

{|t(v, v′)− g(v)u(v′)|}

≤ max
v,v′∈V

{

|t(v, v′)− g(v)u(v′)|+ |ǫ g(v)|+ |ǫ u(v′)|+ ǫ2
}

= max
v,v′∈V

{

|ǫ g(v)|+ |ǫ u(v′)|+ ǫ2
}

≤ ǫ,

which confirms the density ofH⊗H in C(V)⊗ C(V).

According to Tychonoff’s theorem,V2 is compact ifV is
compact. It is straightforward to see thatC(V) ⊗ C(V) is a
subalgebra ofC(V2), it separates points inV2, it vanishes at
no point ofC(V2), and it is therefore dense inC(V2) due to
Theorem VII.2. Consequently,H⊗H is also dense inC(V2),
andKΦ

⊗ is a universal kernel onV2.

Proof: (Theorem III.4 ) Let ǫ > 0 and t ∈ R(V2) be an
arbitrary function. According to Theorem II.1, the RKHS of
the kernelKΦ

⊗ defined in (6) is dense inC(V2). Therefore,
we can select a set of edges and real numbers{αi}

m
i=1, such

that the function

u(v, v′) =

m
∑

i=1

αiK
φ(v, vi)K

φ(v′, v′i)

belonging to the RKHS of the kernel (6) fulfills

max
(v,v′)∈V2

{|t(v, v′)− 4u(v, v′)|} ≤
1

2
ǫ . (13)

We observe that, becauset(v, v′) = −t(v′, v), the functionu
also fulfills

max
(v,v′)∈V2

{|t(v, v′) + 4u(v′, v)|} ≤
1

2
ǫ

and hence

max
(v,v′)∈V2

{|4u(v, v′) + 4u(v′, v)|} ≤ ǫ . (14)

Let γ(v, v′) = 2u(v, v′) + 2u(v′, v). Due to (14), we have

|γ(v, v′)| ≤
1

2
ǫ, ∀(v, v′) ∈ V2 . (15)

Now, let us consider the functionh(v, v′) =
m
∑

i=1

αi2
(

Kφ(v, vi)K
φ(v′, v′i)−Kφ(v′, vi)K

φ(v, v′i)
)

,

which is obtained fromu by replacing kernel (6) with kernel
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(7). We observe that

h(v, v′) = 2u(v, v′)− 2u(v′, v)

= 4u(v, v′)− γ(v, v′). (16)

By combining (13), (15) and (16), we observe that the function
h fulfills (8).

Proof: (Proposition IV.6) The model that we consider
can be written as:

Q(v, v′) = ∇
(

(φ(v) − φ(v′))TW(φ(v) − φ(v′))
)

.

The connection with (10) then immediately follows by decom-
posingW as W = U

T
U with U an arbitrary matrix. The

specific case ofz = 1 is obtained whenU can be written as
a single-row matrix.
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