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Abstract—Permanent Magnet Synchronous Machines
(PMSMs) are frequently used in industry due to their high
efficiency and favorable dynamic properties. Mechanical
limitations and design considerations cause several harmonics
in the flux and back-emf of these machines. The back-emf
harmonics can be measured on the machine terminals if no
stator current is present and the neutral point is accessible. The
measured harmonics can then be included in a mathematical
model of the machine. This measurement is often done for
a constant speed. However, when a speed ripple is present,
several new harmonics are introduced in the flux and back-emf.
Although the existence of this phenomenon is intuitively clear, it
has not yet been investigated in detail and no method exists to
calculate these additional harmonics. Nevertheless, the impact of
a speed ripple on the back-emf can become significant in some
applications. Therefore, in this paper, a mathematical model is
presented which allows to accurately calculate the additional
back-emf harmonics in the presence of speed ripples. Also, it
provides more insight in the interaction between speed ripples
and harmonics. The mathematical model is extensively validated
by means of simulations and experiments.

Index Terms—Permanent magnet machines, Brushless ma-
chines, Speed ripple, Back-emf harmonics, Vibrations, Modeling
of electrical machines

NOMENCLATURE

δE Rms of actual minus constant-speed back-emf
δΨ Rms of actual minus constant-speed flux
E Back-emf [V]
E0 Constant-speed back-emf [V]
Ev Ripple-induced Back-emf [V]
J Rotational inertia [kgm2]
Nh Harmonic order of the speed ripple
Np Pole pair number
Ω Mechanical speed [rad/s or rpm]
Ω0 Average speed [rad/s or rpm]
PMSM Permanent Magnet Synchronous Machine
Ψ Flux of the permanent magnets [Wb]
Ψ0 Constant-speed flux [Wb]
Ψv Ripple-induced flux [Wb]
T0 Torque neglecting impact of speed ripple [Nm]
T Torque including impact of speed ripples [Nm]
θr Mechanical shaft angle [rad]
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I. INTRODUCTION

Permanent Magnet Synchronous Machines (PMSMs) are
popular in industry due to their high efficiency and favorable
dynamic properties. They are manufactured in two forms, e.g.,
the brushless ac and the brushless dc machine. In brushless
ac machines, the placement and shape of the magnets in
combination with a distributed stator winding result in a
sinusoidal waveform of the back-emf. They are used as a
motor in high-efficiency drives or as a generator in renewable
energy applications, such as wind energy and combined heat
and power (CHP) systems [1], [2]. In brushless dc machines,
a concentrated stator winding is used, theoretically resulting
in a trapezoidal waveform of the back-emf. They are used in
robotics, accurate positioning applications or servo drives [3].

Due to mechanical limitations and design considerations
regarding the rotor magnets and the stator winding, the back-
emf in a PMSM does not perfectly match an ideal sinusoidal or
trapezoidal waveform [4]. In general, the back-emf of a PMSM
can be considered as a fundamental sinusoidal wave and
harmonics. Also, subharmonics can be present in the back-emf,
e.g., in PMSMs with a fractional slot winding [5], which is
often used in axial flux machines. In a star-connected machine
with accessible neutral, or in a machine with windings which
are completely accessible, these harmonics can be identified
during a constant-speed test without stator currents. From this,
the harmonics of the flux coupled with the stator windings
are easily calculated and can be integrated in a mathematical
model of the machine.

In practice however, the speed is not always constant but can
contain ripples [6]. For example, in the case of a wind turbine
system, speed ripples can be caused by wind turbulence, tower
shadow, wind shear or mechanical issues such as resonances
[7], [8] and eccentricity. Several loads in industry generate
pulsating torques or consume intermittent power, which causes
vibrations, e.g., conveyor belt systems [9], piston pumps and
compressors [10]. Speed ripples can also be caused by the
PMSM itself, e.g., originated by torque ripples [11]–[13].

The speed ripples have an impact on the flux and back-emf
waveform. The ripples can significantly change the harmonic
spectrum and waveform of the back-emf when compared to
the constant-speed situation. This effect is often overlooked
or neglected, e.g., most mathematical models of the PMSM
assume a constant speed. Neglecting this effect in vibration-
sensitive situations could lead to unrealistic simulation results
regarding dynamic behavior. For instance, the waveform of
the back-emf can be used to calculate appropriate current
harmonics to minimize torque ripple [14], [15]. When the
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back-emf waveform changes due to speed ripples, the calcu-
lated current harmonics are no longer correct and the torque
ripple is not minimized. To achieve a constant torque, the
impact of speed ripples should thus be included. Although it
is intuitively clear that speed ripples can introduce additional
harmonics in the flux and back-emf, this effect has not yet
been investigated in detail in literature. Also, no methods
exist in literature to calculate the frequency and amplitude of
these additional harmonics for given speed ripples. Therefore,
this paper presents a mathematical model in the frequency
domain which allows to accurately calculate and predict these
harmonics. The harmonics could also be calculated with a
dynamical simulation model or Finite Element Methods. This
does however not provide much insight and general conclu-
sions cannot be made.

In this paper, the effect of speed ripples on the flux and the
back-emf is discussed in detail. First, a mathematical model
will be presented to calculate the harmonics in the presence
of speed ripples, which is applicable for both brushless ac and
dc machines. Second, a simplified analytical expression for
the harmonics induced by speed ripples is derived, providing
additional insight in these harmonics and their origin. Third,
the model will be applied to two practical situations. In the first
situation, a simple speed ripple is imposed on a PMSM which
allows to validate the accuracy of the mathematical model.
In the second situation, the speed ripples are caused by the
PMSM itself, i.e., torque ripples. Finally, measurements are
performed on a test-setup to compare measured and simulated
waveforms.

II. DEFINITIONS

Four quantities are of interest in this paper, i.e., the ro-
tational speed Ω, the angular rotor position θr, the flux Ψ
coupled with an arbitrary stator winding and the back-emf E.
Fig. 1 gives a schematic two-pole equivalent representation of
the PMSM, including the stator windings a, b and c, the rotor
axes d, q and the mechanical rotor position θr.

Fig. 1. Schematic representation of the PMSM

Each of the four quantities will be represented by a Fourier
series. As the Fourier transformation is only applicable on
periodic signals, a regime situation will be assumed. A finite
time interval is chosen, equal to µ times one revolution of the
rotor, i.e., µ 2π/Ω0, where Ω0 denotes the average speed and
µ is a positive integer. The factor µ can be chosen depending
on the application, e.g., µ = 1 if only ’conventional’ back-emf
harmonics are studied or µ > 1 if back-emf subharmonics or
low-frequent speed ripples need to be included.

A. Speed

The starting point of this paper is the presence of speed
ripples, caused by the load or by the PMSM itself. The
mechanical speed Ω(t) can be written as the sum of an average
speed Ω0 and a Fourier series:

Ω(t) = Ω0 +

+∞∑
n=−∞

Ω̂(n) · ejnΩ0t/µ (1)

The complex coefficients Ω̂(n) are calculated with the
Fourier transformation:

Ω̂(n) =
Ω0

µ2π

∫ µ 2π
Ω0

0

Ω(t) · e−jnΩ0t/µdt (2)

B. Angular rotor position

The angular rotor position or mechanical shaft angle θr(t)
can be calculated from Ω(t) by integrating (1):

θr(t) =

∫ t

0

Ω(t)dt = Ω0t+

+∞∑
n=−∞

µ
Ω̂(n)

jnΩ0
· ejnΩ0t/µ (3)

The second term is a series of harmonics caused by the
speed ripples. Their amplitudes are clearly attenuated due to
the division of n. However, this does not mean they can be
neglected, as will become clear further in this paper.

C. Flux

The back-emf of a PMSM is induced by the flux coupled
with the stator winding. This total flux is the superposition
of two components, i.e., the flux of the permanent magnets
of the rotor and the flux caused by the stator windings
themselves. The first component is the main flux component
while the second component is a smaller additional effect
due to armature reaction. The permanent magnet flux contains
several spatial harmonics in the air-gap of the machine. A
large part of this flux is coupled with the stator-winding and
is capable of inducing a back-emf. The winding factors of the
stator winding, defined by its design, determine how strong the
different harmonics are coupled with the stator. This results
in a stator-coupled flux waveform containing harmonics. In
this paper, only the dominant flux component caused by the
permanent magnets is considered. The impact of speed ripples
on the armature reaction flux is not considered here, as it is
outside the scope of this paper. Since this armature reaction
flux can be seen as decoupled from the permanent magnet flux,
this does not decrease the validity of the model developed in
this paper.

The waveform of the flux Ψ, can be written as the following
Fourier series in terms of θr:

Ψ (θr(t)) =

+∞∑
k=−∞

Ψ̂(k) · ejkθr(t)/µ (4)

In contrast to the Fourier series of Ω(t) and θr(t), this is
not a Fourier series in time but in space, i.e., the rotor angle
θr. The coefficients Ψ̂(k) are therefore space harmonics and
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not time harmonics. The coefficients Ψ̂(k) are calculated from
the flux Ψ(θr) by using the Fourier transformation:

Ψ̂(k) =
1

µ2π

∫ µ2π

0

Ψ(θr) · e−jkθr/µdθr (5)

In agreement with the time period µ 2π/Ω0, a period of
µ 2π is used here in the transformation since it also corre-
sponds to µ times one revolution of the shaft. The consequence
of this choice is that conventional harmonics have an order k
equal to a multiple of ±µ Np. The fundamental component
results in two frequency components, i.e., one with an order
µ Np and one with an order −µ Np. When µ is chosen large
enough, also subharmonics can be included in the analysis.
For instance, flux subharmonics are often present in PMSMs
with fractional slot windings [5].

It is important to note that the Fourier series of the flux given
in (4) depends on θr. This angle itself has a Fourier series
given by (3). In other words, the Fourier series (4) contains a
second Fourier series (3). This complicates the mathematical
model but will be treated appropriately in §III.

D. Back-emf

The back-emf E induced by the flux is calculated by:

E =
dΨ

dt
(6)

The derivative causes higher-order flux time harmonics to
be magnified in the back-emf. This shows the importance of
these flux harmonics, even if their amplitude seems negligible.

E. Constant-speed situation

When no speed ripples are present, the shaft angle becomes
linear, i.e., Ω0t. The flux Ψ and back-emf E simplify to:

Ψ0(t) =

+∞∑
k=−∞

Ψ̂(k) · ejkΩ0t/µ (7)

E0(t) =

+∞∑
k=−∞

jkΩ0

µ
· Ψ̂(k) · ejkΩ0t/µ (8)

Equations (7) and (8) show that the flux harmonics of (4),
which are space harmonics, are directly converted to time
harmonics in the flux Ψ0(t). Therefore, the fluxes Ψ(θr) and
Ψ0(t) have exactly the same waveform.

In [16], the back-emf waveform of a PMSM was measured
and the dominant harmonics were given, i.e., a third harmonic
of 22.45%, a fifth harmonic of 5.43% and a seventh harmonic
of 0.87%. This waveform has been used here to construct
Fig. 2, which shows the flux and back-emf as calculated by
(7) and (8). The speed Ω equals 750 rpm, i.e., the synchronous
speed for a 50 Hz machine with a pole pair number Np of four.
The back-emf waveform is typical for a brushless dc machine.
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Fig. 2. Constant speed situation: flux Ψ0 and back-emf E0

III. HARMONIC MODEL INCLUDING SPEED RIPPLES

In this section, the definitions of Ω, θr, Ψ and E are applied
to a more general situation where speed ripples are present.
This leads to a harmonic model of the flux and back-emf,
including an analytical expression for the harmonics caused
by the speed ripples.

The combination of (3) and (4) gives the flux Ψ(t) in the
presence of speed ripples:

Ψ(t) =

+∞∑
k=−∞

Ψ̂(k) · ejkΩ0t/µ · (9)

exp

(
jk

+∞∑
n=−∞

Ω̂(n)

jnΩ0
· ejnΩ0t/µ

)

This equation is not straightforward, since it contains a com-
plex exponential function, which in turn contains a complex
exponential function of time. However, as long as the ripples
Ω̂(n) are limited, the argument of the second exponential
function in this equation is small enough to apply a first-order
Taylor approximation, i.e., exp(x) ' 1 +x. This considerably
simplifies the equation. The accuracy of this approximation
will be verified further in this paper. The flux can now be
written as follows:

Ψ(t) =

+∞∑
k=−∞

Ψ̂(k) · ejkΩ0t/µ + (10)(
+∞∑

k=−∞

kΨ̂(k) · ejkΩ0t/µ

)
·

(
+∞∑

n=−∞

Ω̂(n)

nΩ0
· ejnΩ0t/µ

)

The first term is equal to the constant speed flux Ψ0. The
second term is the product of two Fourier series with the
same periodicity 2πµ/Ω0. This second term can therefore be
rewritten as a single Fourier series and will be called the
ripple-induced flux Ψv , which results in:

Ψ(t) =

+∞∑
k=−∞

Ψ̂(k) · ejkΩ0t/µ +

+∞∑
v=−∞

Ψ̂v(v) · ejvΩ0t/µ

= Ψ0(t) + Ψv(t) (11)

The Fourier coefficients Ψ̂v(v) of the ripple-induced flux
are calculated with a discrete convolution or Cauchy product:
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Ψ̂v(v) =
(
kΨ̂(k)

)
∗

(
Ω̂(n)

nΩ0

)

=

+∞∑
s=−∞

s

v − s
· Ψ̂(s) · Ω̂(v − s)

Ω0
(12)

The superposition of the flux as the sum of the classical
constant-speed flux and an additional ripple-induced flux is
an elegant and convenient result. More specifically, the com-
bination of a constant speed flux harmonic with order k and a
speed ripple with order n causes one flux harmonic with order
k + n and one with order k − n.

The back-emf E can also be split up into two parts, i.e.,
the classical constant-speed term E0 and a ripple-induced term
Ev:

E(t)=

+∞∑
k=−∞

jkΩ0

µ
Ψ̂(k) ej

kΩ0
µ t +

+∞∑
v=−∞

jvΩ0

µ
Ψ̂v(v) ej

vΩ0
µ t

= E0(t) + Ev(t) (13)

The previously drawn conclusions for the flux induced by
speed ripples are equally valid for the back-emf induced by
speed ripples. The only approximation made in the derivation
of the model is the first order Taylor series expansion.

IV. APPLICATION OF THE MODEL

The model of the previous section has been programmed in
Matlab and two situations are simulated. In the first situation, a
speed ripple is imposed on a PMSM. In the second situation, a
PMSM with a torque ripple is simulated. For both situations,
the parameter µ is set at 1 such that subharmonics are not
included.

A. Imposed speed ripple

The following speed is now imposed on the PMSM:

Ω(t) = Ω0 +
Ω̂(Nh)

2
· ejNhΩ0t +

Ω̂(Nh)
∗

2
· e−jNhΩ0t

= Ω0 + Ω̂(Nh) · cos(Nh Ω0 t) (14)

As in the constant-speed simulation, the speed Ω0 is set at
750 rpm and the pole pair number Np is set at 4. The frequency
of the ripple is expressed by the order Nh, which has a value
of 8. Four different simulations are performed, each with a
different real-valued ripple amplitude Ω̂(8), i.e., 10%, 30%,
60% and 90% of Ω0 respectively. Fig. 3 shows the resulting
flux waveforms.

For each simulation, three flux waveforms are shown. The
dotted line represents the constant speed flux Ψ0, calculated
by (7) and shown in Fig. 2 as well. The full line shows the real
flux Ψ given by (9). The dashed line shows the flux Ψ0 + Ψv ,
which is the flux approximated by the model, given by (11)
and (12). Fig. 4 shows the back-emf waveforms. Again, the
dotted line shows the constant speed back-emf E0 given by
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Fig. 3. Flux waveforms for an imposed speed ripple:
(a) Ω̂(8)=0.10 Ω0, (b) Ω̂(8)=0.30 Ω0, (c) Ω̂(8)=0.60 Ω0, (d) Ω̂(8)=0.90 Ω0,
. . . = constant-speed waveform, – = real waveform, - - = simplified model

(8), the full line shows the real back-emf E given by (6) and
the dashed line shows the approximated back-emf E0 + Ev
given by (13).
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Fig. 4. Back-emf waveforms for an imposed speed ripple:
(a) Ω̂(8)=0.10 Ω0, (b) Ω̂(8)=0.30 Ω0, (c) Ω̂(8)=0.60 Ω0, (d) Ω̂(8)=0.90 Ω0,
. . . = constant-speed waveform, – = real waveform, - - = simplified model

In situation (a), where the speed ripple is only 10%, the
three flux waveforms are similar since the flux components
caused by the speed ripple are small. However, in the back-
emf waveforms, the effect of the ripple is visible, since E
and E0 + Ev differ from E0. The real back-emf E and the
approximated back-emf E0 + Ev have a perfect match, so
the model is valid in this case. In situation (b), where the
ripple is 30%, a small difference between the real flux Ψ and
the constant speed flux Ψ0 can be observed. However, the
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difference between E and E0 has become significant. Still, the
approximated waveforms match the real waveforms accurately
enough such that the model remains valid. In situation (c),
where a large ripple of 60% is present, there is a considerable
difference between Ψ and Ψ0. In the back-emf waveforms,
the real waveform E and the constant speed waveform E0

have a large deviation since the ripple-induced back-emf Ev
has an important influence. Despite the large speed ripple, the
approximated waveforms are still close to the real waveforms.
In situation (d), an extreme speed ripple of 90% causes a large
ripple-induced flux Ψv and back-emf Ev . Although a speed
ripple of 90% has no practical relevance, it remains interesting
to simulate this case in order to validate the mathematical
accuracy of the model. In the back-emf, a small difference is
noticeable between the model and the real waveform, which
could be expected since the Taylor approximation is only valid
for small ripples. However, the model still corresponds very
well with the real waveform. Thus, the approximation made
for the model remains valid even for extreme speed ripples.

The ripple in the speed Ω has an order k of 8. The constant-
speed flux Ψ0 includes components with an order n of 4, 12,
20 and 28. The ripple flux Ψv includes components with an
order v of 4, 12, 20, 28 and 36. This confirms that the orders
v result from combining the orders k and n as k ± n.

The previous simulation has shown how a speed ripple can
influence the waveforms of the flux and the back-emf. It has
also shown the validity of the model. Only for extreme ripples,
the model is no longer valid. The simulation however has only
shown the particular case of an order Nh equal to 8. Therefore,
these simulations will now be repeated for other orders and
amplitudes, which allows to make a more general conclusion
concerning the accuracy. The accuracy will be quantified by
calculating the root mean square of the difference between the
actual waveform and the constant speed waveform:

δΨ =
1

Ψ0,rms
·

√
1

T

∫ T

0

(Ψ−Ψ0)2 dt (15)

δE =
1

E0,rms
·

√
1

T

∫ T

0

(E − E0)2 dt (16)

Due to (11) and (13), these quantities equal the rms value of
the flux and back-emf components caused by the speed ripples.
They are divided by the rms values Ψ0,rms and E0,rms, such
that δΨ and δE are relative quantities. A high δ means that
the ripple causes a large deviation between the real waveform
and the constant-speed waveform.

Fig. 5 shows both δΨ and δE in function of the ripple
amplitude Ω̂h for different orders Nh as defined in (14). This
calculation shows that the accuracy of the model decreases
for large ripple amplitudes Ω̂h, which is expected since the
argument of the exponential function in (9) becomes large such
that the Taylor approximation loses accuracy. Nevertheless, the
calculation shows that the model has a high overall accuracy.

Fig. 6 shows both δΨ and δE in function of discrete values
of the order Nh for different ripple amplitudes Ω̂h. The values
calculated from the model have a perfect agreement with the
real values if the order Nh is sufficiently large. For small
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Fig. 5. δΨ and δE in function of the ripple amplitude Ω̂h:
(a) Nh=7, (b) Nh=12, (c) Nh=35, – = Calculated from real Ψ and E,
- - = Calculated from approximated Ψ and E

values of Nh, the accuracy is reduced, which can be explained
by the limited validity of the Taylor approximation.
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Fig. 6. δΨ and δE in function of the order Nh:
(a) Ω̂h=10%, (b) Ω̂h=40%, (c) Ω̂h=80%, + = Calculated from real Ψ and E,
◦ = Calculated from approximated Ψ and E

It is concluded that the simplified model has a high accuracy
when compared to the real waveforms. Also, it offers a
significant improvement when compared to the constant-speed
model and is thus capable of accurately predicting the back-
emf of a PMSM in the presence of speed ripples.

B. Torque ripple

The concept of the ripple-induced flux and ripple-induced
back-emf will now be applied on a PMSM connected to a
constant-torque load. This load ensures that the speed ripples
are only caused by the PMSM itself. Torque ripples are
often present in PMSMs and have been widely discussed in
literature, since they can have a negative effect on certain loads
[17]–[19]. Torque ripples arise for example when sinusoidal
currents are injected into a brushless motor with harmonics in
the back-emf. The back-emf harmonics cause ripples in the
mechanical power and, thus, also in the torque. The torque of
the PMSM will be calculated from the speed, the back-emf
and current waveforms of the three phases by using:

T =
Ea Ia + Eb Ib + Ec Ic

Ω
(17)
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A sinusoidal current with an amplitude of 10 A, in phase
with the fundamental component of the back-emf, will be
imposed on the machine. This can be achieved in practice with
a current-controlled converter and an encoder as a position
sensor, resulting in a field-oriented situation [20]. The current
waveform used here is representative for a practical vector-
controlled drive, as it also contains the switching ripple. This
current waveform was obtained by simulating the vector-
controlled drive with a switching frequency of 5 kHz con-
nected to the PMSM with the machine parameters of [16].
The effect of this current ripple on the torque, speed and
subsequently back-emf waveform will also be discussed here.

The mean speed Ω0 is set at 750 rpm and Np equals 4. It is
assumed that the torque of the constant-torque load equals the
average torque T̄ of the PMSM, which is the case in steady-
state. The speed ripples can be calculated from the mechanical
equation:

Ω = Ω0 +
1

J

∫
(T − T̄ )dt (18)

The goal of the simulation is to show that the torque ripple
is influenced by including the impact of ripples on the back-
emf. Therefore, the torque ripple with and without the ripple-
induced back-emf will be calculated and compared. For this,
the inertia J is set at a low value of 1 gm2 to make the effect
clearly visible.

Fig. 7 shows the resulting speed, current waveforms, back-
emf and torque. The current waveforms are sinusoidal with
a current ripple. The combination of these current wave-
forms with the back-emf harmonics, clearly causes torque
ripples. The torque waveforms contain a nearly sinusoidal
low-frequent ripple component, caused by the dominant third
harmonic in the flux and back-emf, and a high-frequent ripple
caused by the switching ripple. The low-frequent torque ripple
causes a speed ripple which is also nearly sinusoidal. On
the other hand, the high-frequent torque ripple has a limited
impact on the speed as it is more effectively filtered by the
inertia.

The constant-speed back-emf E0 is shown as a grey dashed
line while the real back-emf E is shown as a black full line.
E diverts from E0 due to the speed ripples. To further clarify
this, the waveform Ev (calculated as E − E0) is also shown.
For the first torque waveform T0, the constant-speed back-
emf E0 and the real speed Ω were used in (17). The torque
T0 can therefore be interpreted as the result of the classical
approach, where the impact of speed ripples on the back-emf is
neglected. For the second torque waveform T , the real back-
emf E and the real speed Ω were used. The torque T can
therefore be interpreted as the real torque which would occur
in practice. T clearly diverts from T0 due to the speed ripples.

Both T0 and T have the same fundamental frequency. The
amplitude and phase are however changed by taking into
account the effect of the speed ripples. The fundamental
torque ripples of T0 and T have an amplitude of 7.38 Nm
and 4.46 Nm respectively. Fig. 8 shows a Fourier amplitude
spectrum of T and T0 on a logarithmic scale. These data were
calculated with a Fast Fourier Transform algorithm applied on
the waveforms of T0 and T with a high sampling frequency of
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Fig. 7. PMSM with torque ripple: speed Ω, currents I , back-emf E, torques
T0 and T ; - - = neglecting speed ripples, – = including speed ripples

50 MHz. Both T0 and T have two dominant components, i.e.,
24 and 48, which is expected for a three-phase machine with 4
pole pairs and a third harmonic in the back-emf since the order
of the torque ripples can be calculated as 3(k ± 1)Np. Both
dominant components are affected by the speed ripples. The
other components have a smaller amplitude, i.e., mostly below
10−2 Nm. Nevertheless, these components are also slightly
affected by the speed ripples.
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Fig. 8. Fourier amplitude spectrum of T0 and T on a logarithmic scale

V. EXPERIMENTAL RESULTS

The impact of speed ripples on the back-emf of a PMSM
has been measured on a test-setup, shown schematically in



7

Fig. 9. Measurements have been performed with and without
an electrical load connected to the machine terminals.

Fig. 9. Overview of the test-setup

The setup consists of an inverter (a) connected to an
induction motor (b), which drives a PMSM (c). The inverter
is a 2.2 kW Danfoss AutomationDrive FC302, which is
programmed to control the speed of the induction motor.
The motor is a standard 2.2 kW KEB machine with 2 pole
pairs. The set-point for the speed is created with a Digital
Signal Processor and can be varied in time to create speed
ripples. The PMSM is a Mecc Alte Eogen 60/16 wind turbine
generator. The parameters of this PMSM are given in Table I.
The speed is measured with an encoder with 8096 pulses per
revolution. From the PMSM’s point of view, the motor and
inverter emulate a load with a strongly pulsating torque. These
pulsations will be set rather strong in the experiments to clearly
see the effect on the back-emf waveform.

TABLE I
PARAMETERS PMSM: MECC ALTE EOGEN 60/16

Pm Np Ωnom Vnom Weight Rs Ls

1 kW 8 415 rpm 400 V 28 kg 13.47 Ω 120 mH

In a first measurement, the speed setpoint is kept constant
to measure the constant-speed back-emf waveform E0. This
measurement is repeated for different speeds, i.e., 92, 177,
303 and 434 rpm. The measured data are cut off at the
9th harmonic. Finally, from these measurements an averaged
waveform E0 can be calculated, which is shown in Fig. 10.
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E
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u
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−1
−0.5
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0.5
1

Fig. 10. Measured constant speed back-emf waveform E0

The measured waveform is scaled such that the fundamental
component has a magnitude of 1 pu. The waveform contains
a third harmonic of 5.2% and a fifth harmonic of 1.4%. The
other components are negligible. Instead of the previously-
used waveform of [16], this measured waveform is now
included in the simulation model.

A. No-load measurement

Now that the constant-speed waveform E0 is known, a
measurement with a speed ripple is performed. No electrical
load is connected to the PMSM, such that the back-emf
waveform can be measured directly on the machine terminals.
The setpoint of the speed controller in the inverter is varied

sinusoidally around a constant average value. Fig. 11 shows
the result of this measurement, together with simulated data.
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Fig. 11. Measured speed ripple: Ω(t) and E(t), – = simulated, ... = measured.

The speed of the PMSM was measured with a sampling
frequency of 300 Hz and has an average value Ω0 of 180 rpm
and several harmonics. The dominant component (full line)
has a frequency of 1.57 Hz and an amplitude of 9 rpm
(5% of Ω0). This dominant component was imported in the
simulation model to simulate the back-emf E. Since the ripple
is subharmonic, the parameter µ was set at 10. For the back-
emf, only the positive side of the waveform is shown to clearly
show the amplitude variation. There is a clear correspondence
between the simulated back-emf (full line) and the measured
back-emf (dots). The most notable effect of the ripple is a
variation in the back-emf amplitude of 12%, which would
not be present in the simulated back-emf when the speed
ripple would be neglected. As mentioned before, neglecting
this impact in an application where torque ripple must be
minimized, would not result in a constant torque since the
back-emf differs from the constant-speed back-emf.

B. Measurement under load

A resistive load of 50 Ω is connected to the PMSM in
wye without neutral connection, resulting in an electric output
power of 480 W. The back-emf can no longer be measured
directly. Therefore, the terminal voltage V and current I are
measured instead. Fig. 12 shows the result of this measure-
ment.

The speed has an average value Ω0 of 172 rpm and several
harmonics, again resulting in a 5% variation of the speed. The
measured speed (dots) was filtered in the frequency domain.
The first 10 components where retained, resulting in a filtered
speed waveform (full line). Both the voltage V and current I
show a 10% variation of the amplitude due to the speed ripple.
This variation can also be expected in the back-emf.

Although the back-emf waveform can not be measured
directly, it can be estimated in two ways. On one hand, the
back-emf can be calculated from the measured speed Ω and
the model developed in this paper. The resulting waveform is
shown as a full line in Fig. 12. On the other hand, the back-emf
can be calculated from the measured V and I by estimating
the voltage drop over the machine impedance:

E ' V +RsI + Ls
dI

dt
(19)
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Fig. 12. Measurement under load: Ω(t), I(t), V (t) and calculated E(t)

The result of this calculation is shown with dots in Fig. 12.
There is a clear correspondence between both back-emf wave-
forms. As expected, both have an amplitude variation of 10%.
Again, this variation would not be present if the speed ripple
was neglected.

VI. CONCLUSIONS

The effect of speed ripples on the flux and back-emf wave-
form was discussed in detail. Although the existence of this
effect was intuitively clear beforehand, no mathematical model
was found in literature to calculate the additional harmonics
caused by speed ripples. Therefore, in this paper, the effect was
modeled mathematically and a simplified analytical expression
for the harmonics was found. The simplified model has the
advantage that the back-emf can be seen as the superposition
of the classical constant-speed back-emf E0 and an additional
term Ev determined by the speed ripples. The simplified model
allows to simulate the back-emf waveform in the presence of
speed ripples, which can be of high importance in vibration-
sensitive applications.

The model was verified in two situations, i.e., an imposed
speed ripple and a speed ripple caused by a torque ripple.
This has shown that the accuracy of the simplified model was
sufficient, even for extreme ripple amplitudes. Finally, two
measurements have been performed on a test-setup. First, a
no-load test has been performed in which the back-emf could
be measured directly, showing the impact of the speed ripple.
A correspondence between the simulated and measured back-
emf was shown. Second, a load was connected to the machine
terminals. From the measured terminal voltage, current and
speed, the back-emf could be reconstructed, again showing
the impact of the speed ripple and a correspondence of the
model.
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