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Abstract

In recent years, sparse restricted Boltzmann machines have gained popularity as
unsupervised feature extractors. Starting from the observation that their training
process is biphasic, we investigate how it can be accelerated: by determining when
it can be stopped based on the non-Gaussianity of the distribution of the model
parameters, and by increasing the learning rate when the learnt filters have locked
on to their preferred configurations. We evaluated our approach on the CIFAR-10,
NORB and GTZAN datasets.

1 Introduction

Since the advent of deep learning in 2006 with Hinton et al. [9]’s seminal paper, restricted Boltz-
mann machines (RBMs) have become very popular, not just as building blocks for deep architec-
tures, but also as feature extractors and generative models in their own right. A few years later Lee
et al. [13] introduced the sparse RBM, which has since then formed the basis of a lot of work in
unsupervised feature learning [3, 4, 14, 15].

In this paper, we investigate how the training of sparse Gaussian RBMs intended for feature extrac-
tion can be monitored and accelerated, starting from the observation that the training process seems
to be biphasic in nature: a relatively short exploration phase is followed by a much longer finetun-
ing phase. We propose to measure the non-Gaussianity of the distribution of the model parameters
during training, and we show how this information can be used to speed up training.

The paper is structured as follows: Section 2 introduces sparse Gaussian RBMs. Section 3 describes
the challenges of measuring training progress for these models, and the advantages of measuring
the non-Gaussianity of the distribution of the model parameters during training. Our experiments
are described and results are reported in Section 4. Finally, we conclude in Section 5 and point out
some directions for future research.

2 Restricted Boltzmann machines

2.1 Overview

A restricted Boltzmann machine is a probabilistic model consisting of a set of visible units v and
a set of hidden units h which form a bipartite graph; there are no connections between pairs of
visible units or pairs of hidden units, but every visible unit is connected to every hidden unit.
An RBM can be characterized by an energy function E(v,h). The joint probability distribu-
tion over all units defined by the model is then given by P (v,h) = Z−1 exp(−E(v,h)), where
Z =

∫
v,h

exp(−E(v,h)) is the normalizing constant. The basic RBM model has the following
energy function (assuming v and h are column vectors):
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E(v,h) = −
nv∑
i=1

bivi −
nh∑
j=1

cjhj −
nv∑
i=1

nh∑
j=1

viWijhj , v ∈ {0, 1}nv ,h ∈ {0, 1}nh ,

where nv and nh are the number of visible and hidden units respectively. The matrix W (weights)
and the vectors b and c (biases) are the parameters of the model. The set of weights that connect
a single hidden unit to all visible units is called a filter. This energy function gives rise to an RBM
with Bernoulli units (often called binary units).

The visible units of an RBM correspond to the input variables of the data that is to be modelled. The
hidden units capture correlations between visible units. To use an RBM as a feature extractor, the
values of the hidden units are inferred from the visible units1. This yields a feature representation of
the input. Unfortunately, maximum likelihood learning is intractable in RBMs. Instead, contrastive
divergence, which is an approximation to maximum likelihood learning, can be used [7].

2.2 Gaussian RBMs

The RBM described earlier can only be used to model binary data. It is possible to construct an
RBM for continuous data, with Gaussian visible units, which are normally distributed conditioned
on the hidden units. The following energy function gives rise to a Gaussian RBM:

E(v,h) =

nv∑
i=1

(vi − bi)2

2σ2
i

−
nh∑
j=1

cjhj −
nv∑
i=1

nh∑
j=1

vi
σi
Wijhj , v ∈ Rnv ,h ∈ {0, 1}nh .

In this formulation, each visible unit has a fixed variance σi, and only the mean depends on the
hidden units. The variances of the visible units can be either learnt, or they can be set to a sensible
value on beforehand. Because of its limited capacity to model variance, this type of RBM is rarely
as a density model. The variances are often fixed at 1 for convenience.

2.3 Sparse RBMs

It has been demonstrated in the past that sparsity is a desirable property for feature representations:
it increases interpretability and sometimes classification performance [8]. We can encourage an
RBM to produce sparse features with a form of data-dependent regularization. To do this, we add a
penalty term to the objective function which is proportional to the difference between the probability
of activation of the hidden units and a small target value. For details, we refer to Goh et al. [5].

3 Measuring training progress

Monitoring RBM training progress is a challenging problem. The objective function itself cannot
be used for this purpose because it is intractable to compute. Annealed importance sampling [16] is
sometimes used to estimate this quantity, but it is not always reliable and computationally intensive.

A frequently used alternative is the one-step reconstruction error: the mean squared error between
a set of data points and the reconstruction from their inferred feature representations. Unfortunately
this measure can be very misleading, as it correlates poorly with training progress: it strongly de-
pends on the mixing rate of the alternating Gibbs chain that is used to draw samples from the model
distribution (see Section 5 of Hinton [8] for details).

When training an RBM to use as a feature extractor, there is another option: we could evaluate
classification performance during training, and stop when the classification accuracy reaches a
plateau. However, this means that we would have to extract features and train a classifier at regular
intervals, which is a very expensive operation. As a result, this approach is rarely used in practice.

For differentiable convex optimization problems, a common approach to measuring progress is to
monitor the magnitude of the gradient; it is expected to decrease as the optimization progresses,
and it is zero at the optimal solution. Although this approach may be applicable to some non-convex

1With Bernoulli hidden units, the probabilities of activation are often used instead of samples, to yield a
deterministic feature representation.
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(a) 10 epochs (b) 50 epochs (c) 100 epochs (d) 200 epochs (e) 400 epochs (f) 1000 epochs

Figure 1: Evolution of the weights during sparse RBM training on the modified CIFAR-10 dataset,
with initial parameter values drawn from a Gaussian distribution. A subset of the filters (top) as well
as the weight histograms (bottom) are shown. After 50 epochs, the filters have found their preferred
configurations. After 400 epochs, they have been finetuned. See Figure 2(a) for the evolution of the
non-Gaussianity measures during this experiment.

problems, this is not the case for RBM training. The magnitude of the gradient reaches a minimal
value fairly quickly, after which it stays at that level.

3.1 Parameter histograms

Several authors have suggested to monitor statistics and histograms of the model parameters and
the activations of the hidden units, as well as their gradients, during training. Bengio [1] suggests
that visualizing these statistics and histograms can be useful to monitor training progress and to
identify under- or overfitting. Yosinski and Lipson [19] also note that these visualizations can be
instrumental in identifying inadequately tuned hyperparameters and implementation bugs.

3.2 Measuring non-Gaussianity of the parameters

Inspecting a histogram of the weight matrix W , which connect the visible and hidden units, reveals
an interesting progression: during the first few epochs, the histogram has a Gaussian shape. After-
wards, it becomes progressively more peaked around zero, which indicates that the weight matrix is
becoming sparser. This is despite the fact that the sparsity penalty applies to the activations of the
hidden units, and not directly to the parameters. This is shown in Figure 1.

This implies that the training process consists of two phases: the first phase could be interpreted
as an exploration phase, where good configurations for the filters are found. Once each filter has
‘locked on’ to a good configuration, it becomes progressively more pronounced and any remaining
noise disappears: the filters are finetuned.

A similar observation was made by Yosinski and Lipson [19], who found in their RBM training
experiments that the probabilities of activation of the hidden units had almost converged to their
final values after only a few epochs, but the reconstruction error had not yet decreased significantly
at that point. From this, they concluded that the units quickly decide on their preferred stimulus, but
further finetuning takes much longer.

This indicates that measuring the non-Gaussianity of the histogram of the parameters could tell us
which phase the training is currently in, and perhaps also how far training has progressed. Measures
of non-Gaussianity have been studied in the context of Independent Component Analysis (ICA)
[10]. Two such measures that are commonly used are the negentropy and the excess kurtosis.

The negentropy J(X) of a random variable X is the difference between the differential entropy of
a Gaussian-distributed random variable with the same variance as X (which we will denote σ2

X ),
and the differential entropy of X itself:

J(X) = H(N (0, σ2
X))−H(X) =

1

2
ln(2πeσ2

X)−H(X).
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For a given variance, the Gaussian distribution is the maximum entropy distribution, so the negen-
tropy J(X) is always nonnegative, and it is zero if and only if X has a Gaussian distribution. A
histogram-based estimation can be used for the differential entropy of X .

The excess kurtosis Kurt[X] of a random variableX , henceforth simply called ‘kurtosis’, measures
the peakedness or tail heaviness of its distribution and is defined as follows:

Kurt[X] =
E[(X − E[X])4]

(Var[X])2
− 3.

It is zero when X is Gaussian-distributed. Unlike the negentropy, it allows for distinguishing sub-
Gaussian (flatter) and super-Gaussian (more peaked) distributions. The biphasic nature of the train-
ing process is demonstrated using these non-Gaussianity measures in the experiment described in
Section 4.3.1.

3.3 Determining convergence

There is an inherent limit to the peakedness of the distribution of the weights: at some point it
cannot become any more peaked without changing the configurations of the filters. At the end of
the finetuning phase of training, the peakedness will reach its maximum, and as a result the kurtosis
and the negentropy of the distribution of the weights will both reach a saturation value. This value
depends on the model parameters and the nature of the dataset. As it turns out, the quality of the
features will not increase past this point. This is demonstrated in Section 4.3.2.

3.4 Faster training with a non-decreasing learning rate schedule

A key disadvantage of Gaussian RBMs is that they typically require a lower learning rate to avoid
divergence, compared to their binary counterparts. As previously discussed, the parameters will
reach their preferred configurations after only a few epochs of training, at which point the magnitude
of the gradient will have decreased significantly. This suggests that we could try increasing the
learning rate at that point. This is investigated in Section 4.3.3.

4 Experiments and results

4.1 Datasets

We used modified versions of the NORB [12] and CIFAR-10 [11] datasets for our experiments. The
resulting modified datasets are the same as those used by Saxe et al. [17]. We also used the GTZAN
genre classification dataset [18].

The normalized-uniform subset of the ‘small NORB dataset’ contains 48,600 stereo image pairs of
toys (24,300 for training, 24,300 for testing), imaged under different angles and lighting conditions
and divided into 5 classes. We retained only the first image of each stereo pair and downscaled the
images from 96x96 to 32x32 pixels. The CIFAR-10 dataset contains 60,000 32x32 color images
(50,000 for training, 10,000 for testing), divided into 10 classes. We converted them to grayscale.
The GTZAN dataset contains 1,000 30-second music fragments, divided into 10 genres. We used
500 fragments for training, 200 for validation and 300 for testing. Like Hamel et al. [6], we extracted
mel-spectrograms with 128 components from the audio data.

4.2 Classification pipeline

We trained a number of RBMs for feature extraction. To assess the usefulness of non-Gaussianity
measures for tracking training progress, we evaluated classification performance at regular intervals
during training, which allowed us to study the relation between both.

Our classification pipeline for NORB and CIFAR-10 is largely inspired by Coates et al. [3]. To
train the RBMs, we first extracted 100,000 random 6x6 patches from training examples. Each of
the patches was then preprocessed. We applied contrast normalization by subtracting the mean of
the entire patch from all the pixels, and dividing them by the standard deviation, followed by ZCA
whitening [11] and a zero mean unit variance transform.
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(b) uniform (sub-Gaussian)
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(c) Laplacian (super-Gaussian)

Figure 2: Evolution of kurtosis (top) and negentropy (bottom) of the parameters W during sparse
RBM training on the modified CIFAR-10 dataset, with initial parameter values drawn from different
distributions. The mean (thick line) and 99% confidence intervals (thin lines), computed over 10
training runs with different random initializations are shown.

To extract features from the data, we first extracted all possible patches from each image. The
patches were then preprocessed as above, and 200 features were extracted from each patch with a
trained RBM. These features were then sum-pooled within each quadrant of the image, yielding a
feature vector with 800 components.

For GTZAN, we extracted 100,000 random windows from the mel-spectrogram representations of
the fragments to use for RBM training. The windows were ZCA whitened and a zero mean unit
variance transform was applied. To extract features from the data, we preprocessed all of the mel-
spectrogram windows for each fragment. We then pooled the features by computing the mean,
variance, minimum and maximum of each component for every 128 windows (no overlap), as in
Hamel et al. [6]. This yielded 10 coarse timescale feature vectors with 800 components per fragment.
Each of the feature vectors was used as a separate training example.

For all datasets, each RBM had 200 hidden units, and the training procedure was run for 1,000
epochs. Although Coates et al. [3] tried much larger models, we decided to keep them relatively
small to reduce computation time. As a result, the classification performance attained by the models
we trained is far below the state of the art on all datasets. Since we are only looking to measure
training progress, this should not be an issue.

The feature vectors were then used to train logistic regression classifiers with minibatch gradient
descent for 400 epochs, after applying another zero mean unit variance transform. The learning rate
was set to 0.1. To obtain a validation dataset for classifier training for NORB and CIFAR-10, we
split off 10% of the training sets. We used Theano [2] to enable GPU acceleration for both classifier
and RBM training, as well as data preprocessing.

4.3 Experiments

4.3.1 Different initializations

To verify that the distribution of the weights becomes Gaussian at first, and then progressively more
peaked, we varied the distribution from which the initial weight values are drawn. We tried Gaussian,
uniform and Laplacian distributions, with the parameters chosen such that the mean is 0 and the
standard deviation is 0.05. The Laplacian distribution is super-Gaussian and has a kurtosis of 3. The
uniform distribution is sub-Gaussian with a kurtosis of −1.2.
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(a) CIFAR-10
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(b) NORB
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(c) GTZAN

Figure 3: Evolution of kurtosis (top), negentropy (middle) and classification accuracy (bottom)
during sparse RBM training on (a) CIFAR-10, (b) NORB and (c) GTZAN.

For each possible distribution, we trained 10 RBMs on the modified CIFAR-10 dataset with CD-1
(one step contrastive divergence). We used minibatch gradient descent with a learning rate of 0.01,
a relative sparsity cost of 0.1, a sparsity target of 0.1 and a minibatch size of 100. The evolution of
the non-Gaussianity measures during training is visualized in Figure 2.

The results corroborate our qualitative observations in Section 3.2 regarding the biphasic nature of
the training process. The negentropy decreases (Laplacian and uniform initialization) or stays at zero
(Gaussian initialization) for a while, before increasing toward a certain data-dependent level, and
then saturating. In the Laplacian case, the kurtosis never reaches zero, indicating that the distribution
never becomes fully Gaussian.

4.3.2 Relation with classification performance

Next, we investigated the relation between the non-Gaussianity of the distribution of the weights,
and the classification performance attained by extracting features using these weights. We stored the
parameters every epoch, and then trained a classifier every 10 epochs. We trained 10 RBMs on each
dataset. For this and all following experiments, we initialized the parameter values from a Gaussian
distribution. All hyperparameters were the same as in the previous experiment. The evolution of the
non-Gaussianity measures and the classification accuracy are visualized in Figure 3.

We can see that the classification accuracy on CIFAR-10 reaches its maximal value after about
150 epochs. The kurtosis and negentropy are increasing at that point, but they have not reached
their saturation values. This indicates that a certain degree of noise in the filters will not affect
classification performance. A possible explanation for this is that the classification pipeline involves
a feature pooling step, which reduces variance.

For NORB, things are a bit more complicated, as shown in Figure 3(b): the negentropy increases
quickly almost immediately, but then it dips down, only to increase again at a much slower rate.
The kurtosis shows no such behavior; it increases very quickly initially, and then much more slowly
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(a) CIFAR-10
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(b) NORB
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(c) GTZAN

Figure 4: Evolution of kurtosis (top), negentropy (middle) and classification accuracy (bottom)
during sparse RBM training on (a) CIFAR-10, (b) NORB and (c) GTZAN, where the learning rate
is increased tenfold after a fixed number of epochs.

until it saturates roughly around epoch 500. The classification accuracy shows a similar pattern,
saturating slightly earlier at around epoch 400.

For GTZAN, the kurtosis initially increases beyond its saturation value. The classification perfor-
mance does not significantly improve during training, so unfortunately we cannot draw any conclu-
sions. Presumably, the model is too small for this dataset.

4.3.3 Effect of increasing the learning rate

To examine the effect of increasing the learning rate once the filters have locked on to their preferred
configurations, we repeated the previous experiment, but we increased the learning rate tenfold (to
0.1) after five epochs for CIFAR-10 and NORB, and after ten epochs for GTZAN. For convenience,
we decided to increase the learning rate after a fixed number of epochs. It is important to note here
that using this higher learning rate from the start would lead to immediate divergence.

The results are shown in Figure 4. This experiment demonstrates that increasing the learning rate
does not seem to affect classification performance negatively, so it is a simple and efficient method
to get good features faster.

4.3.4 RBMs without sparsity regularization

Up until now we have been exclusively using sparse RBMs. To establish the importance of the
sparsity penalty, we also repeated the experiment described in Section 4.3.2 without it (i.e. with a
sparsity cost of zero). The results are shown in Figure 5. We also tried to repeat the experiment from
Section 4.3.3 without sparsity, but this consistently lead to divergence.

Without sparsity, there is no clear biphasic structure to be discerned, and it seems to take longer
to get good features. Although comparable performance is eventually reached on CIFAR-10 and
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(c) GTZAN

Figure 5: Evolution of kurtosis (top), negentropy (middle) and classification accuracy (bottom)
during RBM training on (a) CIFAR-10, (b) NORB and (c) GTZAN, when no sparsity penalty is
used.

NORB, this is not the case for GTZAN. Overall, this experiment shows that the sparsity penalty has
an additional benefit on top of increasing interpretability of the features: it reduces the training time
needed to obtain good features.

5 Conclusion and future work

Measures of non-Gaussianity are a useful tool for monitoring training progress. For sparse RBMs,
the evolution of these measures during training will follow a specific pattern revealing a biphasic
structure, which we can take advantage of. Clearly it is pointless to continue training once the
non-Gaussianity measures saturate, and typically we can stop training even before that happens; the
learnt filters will be somewhat noisy, but this turns out not to affect classification performance.

Furthermore, we have shown that the learning rate can safely be increased after the filters have
locked on to their preferred configurations. This allows for good features to be obtained much faster,
at no additional cost: classification performance is not affected. It may seem odd to advocate an
increase of the learning rate during training, when monotonically decreasing learning rate schedules
are commonplace. However, both approaches are not mutually exclusive: one could imagine using
a decreasing learning schedule with a one-time increase.

In summary, we have demonstrated two ways to accelerate sparse RBM training: by stopping the
training process once the non-Gaussianity of the parameters saturates, and by increasing the learning
rate once the filters have locked on to their preferred configurations.

In future work, we would like to investigate more rigorously when and by how much the learning
rate can safely be increased during sparse RBM training, without it negatively affecting performance.
We would also like to study the connection with more sophisticated adaptive learning rate methods,
which typically make use of second order information.
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