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SUMMARY 

Staphylococcus aureus is a common human pathogen, which is regularly part of the normal microflora 

found in the nose and skin. It represents a significant threat to human health, not in the least because of 

its capability to produce exotoxins, which have superantigenic properties. These exotoxins, in 

particular the staphylococcal enterotoxins (SEs), are involved in the aggravation of airway 

inflammation. Indeed, recent studies show an important impact of SEs on the natural course of allergic 

rhinitis, nasal polyposis, asthma and COPD. This thesis started from these observations in human 

airway disease, and we aimed to confirm the hypothesis that SEs significantly contribute to the 

modulation and aggravation of airway inflammation. 

In the first model, we have demonstrated that concomitant airway exposure to allergen ovalbumin and 

Staphylococcus aureus enterotoxin B (SEB) has lead to sensitization to inhaled allergen, in a mouse 

model of experimental asthma. SEB was able to overcome the primary tolerance to ovalbumin (OVA) 

allergen, leading to OVA-specific IgE production, increased dendritic cell maturation and migration to 

the draining lymph nodes, as well as an increased allergen-specific T cell proliferation. Moreover, 

bronchial inflammation with influx of eosinophils and lymphocytes was demonstrated in OVA/SEB 

mice, together with bronchial hyperresponsiveness and production of IL-4, IL-5, IL-10 and IL-13 by 

draining lymph nodes stimulated with OVA. Interestingly, the sole application of either OVA or SEB 

did not lead to significant airway disease. This novel model of experimental asthma, using airway 

exposure of allergen and SEB closely mimics the human situation of allergic sensitization, and 

confirms that staphylococcal enterotoxins play an important role in this process. 

We have demonstrated in this thesis that SEB exerts also a direct pro-inflammatory effect on epithelial 

cells, besides the above described effects on dendritic cells and T cells. In a novel model of freshly 

isolated nasal epithelial cells, SEB was able to induce a significant release of chemokines like IP-10, 

MIG, RANTES, MCP-1 and G-CSF. These chemokines augmented the granulocyte migration and 

survival, indicating an important role for the epithelium in the induction and orchestration of SE-

induced and granulocyte-dominated airway inflammation. 
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The disease-modifying effects of SEB are also demonstrated in this thesis in a different inflammatory 

background, such as cigarette smoke-induced airway inflammation. In a mouse model of subacute and 

chronic CS exposure, we have demonstrated a clearly different regulation of airway inflammation in 

upper versus lower airways, in particular upon chronic CS exposure. CS-induced inflammation in 

upper airways appeared to be adequately suppressed, in particular compared to lower airway 

inflammation, which was clearly present and ongoing. Furthermore, we evaluated in this model the 

effect of combined CS and SEB exposure. Interestingly, CS/SEB mice displayed a raised number of 

lymphocytes and neutrophils in BAL fluid, as well as increased numbers of CD8+ T lymphocytes and 

granulocytes in lung tissue, compared to sole CS or SEB exposure. Moreover, concomitant CS/SEB 

exposure induced both IL-13 mRNA expression in lungs and goblet cell hyperplasia in the airway 

wall. In addition, combined CS/SEB exposure stimulated the formation of dense, organized aggregates 

of B and T lymphocytes in lungs, as well as significant higher CXCL-13 (protein, mRNA) and CCL19 

(mRNA) levels in lungs. These findings confirm the hypothesis derived from human observations, 

which suggest that S. aureus could influence the pathogenesis of COPD. 

In summary, we have demonstrated that Staphylococcus aureus enterotoxin B is a potent inducer and 

modulator of airway inflammation. The findings described in this work further unravel the 

pathophysiology of airway inflammatory conditions, and may indicate new possible therapeutic 

strategies in their prevention and treatment. 
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SAMENVATTING 

Staphylococcus aureus is een frequent voorkomend humaan pathogeen, dat regelmatig wordt 

gevonden in de normale microflora in de neus en op de huid. De kiem vormt een belangrijke 

bedreiging voor de menselijke gezondheid, niet het minst door de mogelijkheid om exotoxines te 

produceren, die kunnen functioneren als superantigen. Deze exotoxines, meer in het bijzonder de 

Staphylococcus enterotoxines (SEs), zijn betrokken in de aggravatie van luchtweg ontsteking. Recente 

studies tonen inderdaad aan dat er een belangrijke impact is van SEs op het natuurlijke verloop van 

allergische rhinitis, nasale polyposis, astma en COPD. Dit proefschrift vertrok van de observaties in 

humane luchtwegaandoeningen, en het doel was de hypothese te bevestigen dat SEs significant 

bijdragen aan de modulatie en aggravatie van luchtweg ontsteking. 

In het eerste model hebben we aangetoond dat gelijktijdige blootstelling van de luchtweg aan het 

allergeen ovalbumine (OVA) en Staphylococcus aureus enterotoxine B (SEB) leidt tot sensitisatie aan 

dit allergeen, in een muismodel van experimenteel astma. SEB kon de primaire tolerantie tegenover 

ovalbumine allergeen doorbreken, wat leidde tot OVA-specifieke IgE productie, toegenomen 

maturatie en migratie van dendritische cellen naar de drainerende lymfeklieren, alsook een toename 

van de allergeen-specifieke T cel proliferatie. Daarenboven konden we ook bronchiale inflammatie 

met instroom van eosinofielen en lymfocyten aantonen in OVA/SEB muizen, tezamen met bronchiale 

hyperreactiviteit en productie van IL-4, IL-5, IL-10 en IL-13 door de drainerende lymfeknopen na 

OVA stimulatie. Belangwekkend is dat toediening van OVA of SEB alleen niet leidt tot luchtweg 

aandoeningen. Dit nieuwe model van experimenteel astma maakt gebruik van luchtwegblootstelling 

aan allergeen en SEB en weerspiegelt daardoor heel precies de humane situatie van allergische 

sensitisatie. Dit bevestigt dat Staphylococcus enterotoxines een belangrijke rol spelen in dit proces. 

We hebben aangetoond in dit proefschrift dat SEB een pro-inflammatoir effect uitoefent op epitheliale 

cellen, naast het hierboven beschreven effect op dendritische cellen en T cellen. In een nieuw model 

van vers geïsoleerde nasale epitheliale cellen, was SEB in staat een significante vrijstelling van 

chemokines te bewerkstelligen, waaronder IP-10, MIG, RANTES, MCP-1 en G-CSF. Deze 
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chemokines zorgden voor een toename in de migratie en overleving van granulocyten, wat duidt op 

een belangrijke rol voor het epitheel in de inductie en orkestratie van SE-geïnduceerde en granulocyt-

gedomineerde luchtweginflammatie. 

De ziekte-modifiërende effecten van SEB worden in dit proefschrift ook aangetoond in een andere 

ontstekingsachtergrond, met name bij sigarettenrook (SR) geïnduceerde luchtweg ontsteking. In een 

muismodel van subacute en chronische SR blootstelling hebben we duidelijke verschillen aangetoond 

in de regulatie van luchtweginflammatie in de bovenste luchtwegen ten opzichte van de onderste 

luchtwegen, in het bijzonder bij chronische blootstelling. SR-geïnduceerde luchtweginflammatie in de 

bovenste luchtwegen blijkt adequaat onderdrukt te zijn, terwijl de ontsteking de onderste luchtwegen 

duidelijk aanwezig is. Vervolgens hebben we in dit model het effect van gecombineerde SEB en SR 

blootstelling bestudeerd. SR/SEB muizen vertoonden een toename van het aantal lymfocyten en 

neutrofielen in het BAL vocht, alsook een toename in CD8+ T lymfocyten en granulocyten in het 

longweefsel, in vergelijking met zuivere SR of SEB blootstelling alleen. Daarenboven induceerde 

concomitante SR/SEB blootstelling zowel IL-13 mRNA expressie in de long als slijmbekercel 

hyperplasie in de luchtwegwand. Verder toonden we aan dat gecombineerde SR/SEB blootstelling de 

vorming stimuleert van dense, georganiseerde aggregaten van B en T lymfocyten in de long, alsook 

significant hogere niveaus van CXCL-13 (eiwit, mRNA) en CCL19 (mRNA) in de longen. Deze 

bevindingen bevestigen de hypothese die uitgaat van de humane observaties, die suggereert dat 

S.aureus de pathogenese van COPD kan beïnvloeden. 

Samengevat kunnen we stellen dat dit proefschrift aantoont dat Staphylococcus aureus enterotoxine B 

een krachtige inductor en modulator is van luchtweg inflammatie. De resultaten die beschreven zijn in 

dit werk ontrafelen verder de pathofysiologie van luchtweg ontsteking, en wijzen nieuwe 

therapeutische strategieën aan voor de preventie en behandeling van deze ziektes. 
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Chapter 1 : Chronic upper airway disease 

CHRONIC RHINOSINUSITIS WITH AND WITHOUT NASAL POLYPS: WHAT IS THE DIFFERENCE 

Wouter Huvenne, Nicholas van Bruaene, Nan Zhang, Thibaut van Zele, Joke Patou, Philippe Gevaert, 

Sofie Claeys, Paul Van Cauwenberge, Claus Bachert 

Curr Allergy Asthma Rep 2009; 9:213-20. 

 

INTRODUCTION 

Rhinosinusitis is a considerable and increasing health problem causing in a large financial burden for 

the society1-3. Its high prevalence has recently led to an increasing interest in the pathophysiology of 

different forms of rhinosinusitis, in order to develop better treatment modalities. Because sinusitis 

usually coexists with rhinitis, and isolated sinusitis is rare, the more correct term to use now is 

rhinosinusitis. 

Rhinosinusitis is a group of disorders defined as inflammation of the nose and paranasal sinuses, 

characterized by nasal blockage/obstruction/congestion, nasal discharge, facial pain/pressure and/or 

reduction or loss of smell. The diagnosis is based upon these symptoms and their duration, clinical 

findings, nasal endoscopy and CT scan. Acute rhinosinusitis – defined as a duration of < 12 weeks, 

with complete resolution of symptoms – in most cases is of viral origin, but rarely may also be caused 

by bacterial infections. In these cases, the disease is generally more severe and may lead to 

complications. It remains speculative whether recurrent acute rhinosinusitis might be a prerequisite for 

the development of chronic rhinosinusitis – defined as a duration of > 12 weeks, without complete 

resolution of symptoms – and possibly would result in persistent obstruction of the ostiomeatal 

complex4-6. 

Chronic upper airway disease, or chronic rhinosinusitis (CRS), is an ill defined group of sinus 

diseases, when used as an umbrella covering different disease entities. CRS, defined as having ‘sinus 

trouble’ for more than 3 months in the year before the interview, is estimated to affect 15.5% of the 

total population in the United States7. A recent European survey reports a prevalence of 10.8% of 
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CRS8. Chronic rhinosinusitis with nasal polyposis (CRSwNP) might be difficult to differentiate from 

chronic rhinosinusitis without nasal polyposis (CRSsNP) without nasal endoscopy. Therefore, both 

groups are often taken together as ‘chronic upper airway disease’ by non-specialists. However, it is 

unclear why in some patients polyps develop and in others not. Moreover, nasal polyps (CRSwNP) 

have a strong tendency to recur after sinus surgery, even when aeration is improved. This reflects a 

distinct property of those mucosae vs. CRSsNP patients9. 

In specific conditions like cystic fibrosis and allergic fungal sinusitis, polyp formation can be 

differentiated into disease entities based on genetic defects in cystic fibrosis and specific 

immunoglobulin E immune responses to fungi in allergic fungal sinusitis respectively10, 11. Moreover, 

development of appropriate disease markers have recently opened new possibilities and facilitated 

disease classification. These markers might be manifold: inflammatory cells and their products, T cell 

differentiation markers, markers of the remodeling processes, or markers derived from innate or 

adaptive immunity products. This disease differentiation might help to ameliorate the management of 

sinusitis by introducing new diagnostic and therapeutic strategies specifically targeted and adapted to 

the diagnosed disease entity.  

A clear epidemiological and clinical association has been demonstrated between upper and lower 

airway diseases like allergic rhinitis and asthma12, leading to the ‘united airways’ concept. 

Interestingly, this concept holds also true beyond the scope of allergic asthma, as patients with allergic 

and nonallergic asthma and COPD show increased nasal symptoms and more nasal inflammation13. 

Moreover, in CRSwNP up to 70% of patients suffer from asthma, and there is evidence of bronchial 

hyperreactivity in CRSwNP patients without a history of asthma, in particular in non-atopic patients14. 

The link of upper and lower airways is again reflected by the fact that medical or surgical treatment of 

nasal polyposis may have an impact on the control of asthma in those subjects.  Until now, the link 

between upper airway disease and co-morbid lower airway pathology is not fully understood, possibly 

due to the ill-defined upper airway disease entities. 
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PREVALENCE AND PATHOPHYSIOLOGY 

Prevalence 

When reviewing the literature, it becomes clear that the estimation of the prevalence of CRS remains 

speculative, because of the heterogeneity of this group of disorders and the diagnostic uncertainties. 

As mentioned above, CRS has a prevalence of 15.5% in the United States, ranking this condition 

second among all chronic conditions. This high prevalence of CRS has been confirmed by another 

survey suggesting that 16% of the adult US population has CRS15. In a Canadian study, the prevalence 

increased with age, with a mean of 2.7% in the group of 20-29 years and 6.6% in the group of 50-59 

years. After the age of 60, prevalence levels of CRS leveled off to 4.7 %16. In Belgium, Gordts et al.17 

reported that 6% of the subjects in the general population suffered from chronic nasal discharge. 

However, a recent population based survey found 16% of the adult population suffering from signs of 

CRS (unpublished data).  

Until now, epidemiological studies exploring the prevalence and incidence of CRSsNP and CRSwNP 

are scarce, but increasing data is now becoming available from postal questionnaires or personal 

interviews8, 18. These data have demonstrated that CRS affects approximately 5–15% of the general 

population both in Europe and the USA. However, the prevalence of doctor-diagnosed CRS was 2-

4%19. 

The prevalence of CRSwNP in the general population is commonly considered to be low20. Valid 

epidemiological studies are greatly missing, and the fact that an endoscopic examination would be 

necessary for diagnosis further complicates such approaches. A postal questionnaire survey of a 

population-based random sample of 4300 adult women and men aged 18-65 years was performed in 

southern Finland21. The prevalence of CRSwNP was 4.3%, and nasal polyposis and aspirin sensitivity 

were associated with an increased risk of asthma. The prevalence of doctor-diagnosed aspirin 

sensitivity was 5.7%. The incidence was higher in men than in women and significantly increases after 

the age of 40 years22. 
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Pathophysiology 

There is a distinct pathophysiology proposed for the different CRS subgroups. CRSsNP displays a 

predominantly neutrophilic inflammation, while in contrast, CRSwNP is in approximately 80% of all 

cases dominated by eosinophilic inflammatory mechanisms, and may be accompanied by aspirin 

sensitivity and asthma. Recently, the role of bacterial infection in CRSsNP23 has been challenged, 

whereas a modifying role of colonizing Staphylococcus aureus in CRS with nasal polyps has been 

introduced. 

 

Fungal disease 

Fungi have been increasingly recognized as important pathogens in sinusitis. Fungal infection, mainly 

by moulds, can impose a severe acute and chronic sinusitis in the immunocompromised host. In 

contrast, fungi are regarded as frequent innocent bystanders when cultured from the respiratory tract of 

immunocompetent hosts24. The concept of fungi involvement in chronic rhinosinusitis should be that 

the ubiquitous airborne fungi become entrapped in sinonasal mucus, are attacked by eosinophils, and 

cause, via the release of toxic granules from eosinophils, secondary mucosal inflammation in 

susceptible individuals. If true, fungal eradication by using intranasal antifungals should improve the 

course of the disease. However in a double-blind, placebo-controlled, multicenter trial no additional 

benefit of amphotericin B nasal lavages to intranasal steroids and irrigations in patients with CRS with 

or without NP with a previous history of ESS was shown25. Amphotericin B nasal lavages is therefore 

not suited to reduce clinical signs and symptoms in patients with CRS. These results might indicate 

that extramucosal fungi are probably innocent bystanders in the upper respiratory tract and playing no 

demonstrable role in the pathophysiology of CRS in immunocompetent patients. 
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Cystic fibrosis 

In case of children suffering from nasal polyp formation, systemic diseases such as cystic fibrosis (CF) 

have to be considered. Cystic fibrosis  is the most common fatal inherited disease among Caucasians, 

affecting approximately 1 of 2000 live births. The basic metabolic derangement is related to a 

mutation in the gene regulating the chloride transport in epithelial cells. Although bacterial infection is 

widely accepted to be a major factor in the pathogenesis of acute exacerbations and chronic 

progression of lung disease in CF, it remains unclear if the CF-specific sinonasal pathogens, of which 

Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus influenza and anaerobes are the most 

common, play a particular role in the pathogenesis of CF-NP. Because of the ubiquitous and persistent 

nature of the disease and the often transient effect of surgery, sinus surgery should only be performed  

in case of sufficient symptoms or before lung transplantation. The development of functional 

endoscopic sinus surgery has decreased the morbidity of sinus surgery and reduced the recurrence of 

nasal polyposis in cystic fibrosis26-28. A careful postoperative follow-up is mandatory, but often 

difficult in young patients. Nasal irrigations with saline solution may help to clean the cavities after 

surgery.  

 

Aspirin sensitivity, or AERD (aspirin-exacerbated respiratory disease) 

The symptom triad consisting of aspirin sensitivity, steroid-depend asthma and nasal polyposis 

(rhinosinusitis) described by Widal in 1922, was made known by Samter  and Beers later29. Aspirin-

sensitive rhinosinusitis (ASRS) is characterized by increased eosinophils in the nasal and bronchial 

mucosa, and elevated cysteinyl-leukotriene concentrations in the tissue and urine, which further 

increases after aspirin exposure30, 31. Initially, the symptoms mostly develop after a prolonged common 

cold episode in the third or fourth decade of life with nasal congestion, rhinorrhea, post-nasal drip and 

hyposmia, based on persistent mucosal inflammation. Within a few years, nasal polyposis and 

bronchial asthma develop, until aspirin sensitivity is suspected due to a typical respiratory reaction and 

eventually is diagnosed by oral provocation test32. Asthma and rhinitis attacks are caused by ingestion 
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of aspirin and other non-steroidal anti-inflammatory drugs that share the ability to inhibit 

cyclooxygenase enzymes (COX-1,-2). About 15% of patients with aspirin-inducible asthma and 

rhinitis are unaware of aspirin sensitivity, indicating that aspirin challenge is necessary to fully 

diagnose the disease. About 50% of patients need systemic steroid treatment on top of inhaled 

corticosteroids, emphasizing the severity of the disease in the upper and lower respiratory tract. 

Interestingly, the course of disease is independent from aspirin intake, indicating that the disease is 

driven by so far unknown agents and with few exceptions, aspirin sensitivity remains life-long. Until 

now, no validated laboratory test is available, and the diagnosis is based on oral, bronchial or nasal 

provocation tests33.  

Although ASRS often is associated with allergy and highly elevated local IgE levels34, an IgE-

mediated mechanism has not been demonstrated, and atopy does not seem to influence the risk to 

develop aspirin sensitivity32. However, alterations in arachidonic acid metabolism, resulting in an 

alteration of the cellular response to aspirin, have been suggested30. Blockage of COX-2 reduces 

asthma symptoms and CysLTs release, in contrast to COX-1 inhibition which precipitates asthma 

attacks35. Additionally, it has been found that COX-2 expression is down regulated in nasal mucosa of 

aspirin-intolerant patients. COX-2 mRNA expression is regulated by cytokines, which activate the 

nuclear factor kappa B (NF-kappa B) transcription factor. Further studies are needed to explain 

whether an alteration in the NF-kappa B and/or other regulatory mechanism is responsible for the 

abnormal expression of COX-2 mRNA in patients with AIAR36. The LTC4-synthase has been 

demonstrated to be overexpressed in eosinophils and mast cells37, resulting in an overproduction of 

cys-leukotrienes, which may be released into the airways after aspirin challenge, causing typical 

symptoms (nasal congestion, rhinorrhoea, bronchoconstriction), as well as constantly, inducing 

eosinophilia. In a subgroup of nasal polyp patients with the clinical history of asthma and aspirin 

sensitivity, a marked tissue eosinophilia, increased IL-5 and eotaxin expression as well as leukotriene 

C4-E4 overproduction have been linked to an immune reaction to Staphylococcus aureus enterotoxins, 

also inducing a local multiclonal IgE response34.  However, the mechanisms of  direct impact of 

18



Chapter 1 : Chronic upper airway disease 

Staphylococcus aureus on the arachidonic metabolism still need to be defined. It seems that aspirin 

sensitivity and immune reactions to SAEs are independently related to eosinophilic inflammation38. 

Conservative treatment possibilities consist of 1) avoidance of aspirin and other NSAIDs, which does 

prevent exacerbations, but does not prevent progression of disease 2) oral and/or topical 

glucocorticosteroids, 3) eventually leukotriene receptor antagonists or synthesis inhibitors, and 4) in 

selected cases, aspirin desensitisation. To prevent exacerbations, the ingestion of aspirin and COX-

inhibiting NSAIDs has to be avoided, while acetaminophen, nimesulide  (dose-dependently) and 

selective COX-2 inhibitors (celecoxib, rofecoxib) may be tolerated30. Whereas systemic steroids have 

been proven effective, but may cause side effects in long-term usage, anti-leukotriene drugs deserve 

further trials to find their place in the treatment regimen. Aspirin desensitisation consists of 

administering incremental oral doses, to reach a maintenance dose of > 650 mg daily, inducing a 

refractory period of a few days. Continuous treatment over years may lead to a significant reduction in 

numbers of sinus infections per year, hospitalizations for treatment of asthma per year, improvement 

in olfaction, and reduction in use of systemic corticosteroids39. Furthermore, numbers of sinus 

operations per year were significantly reduced. However, due to gastro-intestinal side effects of aspirin 

and a relapse of risk in case of non-compliance, this therapy is not widely accepted. Furthermore, 

aspirin desensitization does not seem to change the long-term course of the disease. 

 

Signs and symptoms 

The pattern of symptoms and signs caused by CRS is somewhat overlapping in all patients with 

chronic sinus inflammation, with most of the symptoms occurring in both CRSsNP and CRSwNP. 

However, looking more in detail to symptom profile, patients suffering from CRSwNP have a more 

pronounced nasal obstruction and loss of smell, while CRSsNP patients complain more of headache 

and postnasal drip40. In particular the partial or complete loss of smell with a subsequent effect on taste 

and the loss to discriminate subtleties of flavour is a typical feature of CRSwNP. Even with obstructed 

sinuses, CRSwNP patients without prior surgery rarely complain from facial pain or headache, 
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although these patients have more extensive opacifications on CT scan compared with CRSsNP 

patients, as scored with the Lund-Mackay score: this scoring system consists of a scale of 0-2 

dependent on the absence, partial or complete opacification of the sinus system and the ostiomeatal 

complex, with a maximum score of 12 per side.  Lund Mackay scoring system is the most widely used 

grading system for CRS.  

 

CYTOKINES, MEDIATORS AND CELLULAR PROFILES 

In order to differentiate more clearly between the different disease entities that compose chronic sinus 

disease, identification of inflammatory cells and the array of cytokines and mediators released by them 

may proof very useful. It has been demonstrated that CRSsNP, CRSwNP and cystic fibrosis patients 

with nasal polyps (CF-NP) are dissociated disease entities with distinct cytokine, mediator and cellular 

profiles40, as demonstrated in Figure 1. These groups share a T cell mediated immune response, 

although different T lymphocyte subsets contribute to it. When analysing diseased tissue from 

CRSsNP and CRSwNP patients, a clear Th1/Th2 polarisation becomes clear with IFN-γ (Th1 related) 

characterising CRSsNP, whereas IL-5 (Th2 related) is emblematic for CRSwNP. Moreover, 

inflammation in CRSwNP is accompanied by abundant eosinophils and IgE formation, again stressing 

the Th2 bias in this disease. Eosinophilic inflammation is a key feature of CRSwNP, with highly 

increased concentrations of ECP as marker of eosinophil activation, and of eotaxin, a CC chemokine, 

which co-operates with IL-5 to recruit and activate eosinophils41. Interestingly, these markers of 

eosinophilic inflammation, which are increased in CRSwNP vs. control patients, but also compared to 

CRSsNP patients, are further increased in polyps with IgE antibodies to S. aureus enterotoxins, 

pointing towards a modifying role of these bacterial superantigens in the pathophysiology of 

CRSwNP: staphylococcal superantigens34, 42 induce a polyclonal T cell and B cell activation with 

multiclonal IgE formation and T cell activation, severely amplifying the eosinophilic inflammation. In 

contrast, specific IgE to enterotoxins and muticlonal IgE formation in tissue is a rare finding in 
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CRSsNP and CF-NP43, although S. aureus belongs to the usual germ flora, in particular in upper 

airway manifestations of cystic fibrosis44. 
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MMP-9 ↑
Fibrosis

Higher collagen 
deposition

IFN-γ ↑

T-bet↑

TNF-α ↑

Macrophages

CRSwNP

Staphylococcal colonisation and enterotoxin release

Increased expression of MMR

Macrophages
Th2 lymphocyte activation

IL-5 ↑ Eosinophils

IL-5 ↑
ECP ↑
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and activation
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Figure 1. Chronic rhinosinusitis without (A) and with (B) nasal polyps. Distinct cytokine, mediator 
and cellular profiles differentiate chronic sinonasal disease. In Caucasians, CRSsNP is characterized 
by a Th1 profile (high IFN-γ), adequate FoxP3 expression, high levels of TGF-β1 with excessive tissue 
repair and fibrosis. Conversely, a Th2 profile (high IL-5) is found in CRSwNP, decreased FoxP3 
levels, low amounts of TGF-β1 and lack of tissue repair resulting in loose connective tissue and 
oedema formation.  

A 

B 
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Nasal polyps in cystic fibrosis patients also show oedema formation and matrix disruption, but display 

a prominent neutrophilic instead of eosinophilic inflammation, and a significant lower tissue ECP 

concentration compared to CRSwNP, suggesting that the typical oedema formation in CRSwNP may 

not be exclusively dependent on tissue eosinophilia and their activation. The apparent neutrophilic 

inflammation in CF-NP is characterized by high IL-8 (a CXC chemokine), MPO (released by 

neutrophil granulocytes), and pro-inflammatory mediator IL-1β concentrations. 

CRSwNP and CF-NP not only differ in terms of inflammatory cell and cytokine patterns, but also in 

terms of expression of innate markers43: CF-NP is associated with the up-regulation of both human 

beta defensin 2 (HBD2) and Toll-like receptor 2 (TLR2), while the expression of the macrophage 

mannose receptor (MMR) dominates the innate defense in non-CF-NP. These apparent differences 

point towards a variable inflammatory background in CRSwNP and nasal polyps in cystic fibrosis. 

 

T cell biology 

T cell polarization of CRSsNP (Th1) and CRSwNP (Th2) is controlled by intracellular mechanisms, 

which initiate differentiation of naïve T cells towards the distinct T cell subtypes, based on the 

expression of certain transcription factors. T-box transcription factor (T-bet) involves commitment 

toward Th1 cells; GATA-3 is critical for commitment toward Th2 cells and controls the expression of 

IL-4 and IL-5. T regulatory (Treg) cells – another T cell subset, characterised by the transcription 

factor forkhead box P3 (FoxP3) – control the balance between Th1 and Th2 cells and limit chronic 

inflammation. Interestingly, we recently showed a decreased expression of FoxP3 mRNA and protein 

(IHC) in CRSwNP tissue, which reflects deficiency of Treg cells in this often persistent, severely 

inflamed sinus mucosa45. Consequently, lower TGF-β1 protein levels were found in this group, which 

led to a defective suppression of Th1 and Th2 transcription signals in CRSwNP. In contrast, adequate 

expression of FoxP3 with increased TGF-β1 protein levels were found in CRSsNP, which resulted in 

maintained control over T-bet and GATA-3 expression, suggesting adequate Treg cell function in this 
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sinus disease subgroup. These differences in T cell biology again clearly distinguish CRSwNP from 

CRSsNP entities. 

Besides Th1/Th2/Treg cells, other T cell subsets like the recently described Th17 cells can be used to 

further divide and characterise disease entities within the CRSwNP group. Although clinical 

appearance, mucosal oedema formation, T effector cell activation and T regulatory cell impairment 

(decreased FoxP3 expression) are shared by European and Asian nasal polyps, the pattern of 

inflammation is remarkably different between the disease groups, with a Th1/Th17 dominance in 

South Chinese and a Th2 dominance in Belgian polyps46. This Th1/Th17 effector cell polarization in 

South Chinese CRSwNP was characterized by T-bet expression and IFN-γ protein formation, IL-17 

and related IL-1β and IL-6 protein synthesis in tissue homogenates, whereas Belgian CRSwNP 

demonstrated increased GATA-3 expression with consequently raised IL-5 protein levels compared to 

control tissue. Moreover, these differences in T cell biology are reflected by a distinguished neutrophil 

and eosinophil granulocyte activation bias in South Chinese and Belgian CRSwNP respectively, which 

is reflected in a significantly lower ECP/MPO ratio in South Chinese CRSwNP compared to Belgian 

CRSwNP. These findings largely affect treatment approaches in CRSwNP, as the focus of the 

treatment in daily practice in Europe and US is on eosinophils, with the use of topical and systemic 

corticosteroids and humanized anti-IL-5 monoclonal antibodies becoming a treatment option in the 

future. It is very unlikely that the anti-IL-5 concept will be appropriate in neutrophilic IL-17 biased 

CRSwNP in Asia, or CF nasal polyps in Europe46. 

 

REMODELING 

Chronic inflammation in the nose and paranasal sinuses eventually results in tissue destruction and 

remodeling processes within the mucosa, which are characterised by changes in the extracellular 

matrix (ECM) protein deposition and tissue structure. A major role in airway remodeling in general, 

and chronic sinus disease in particular, is played by TGF-β
47, a pleiotropic and multifunctional growth 

factor, with important immunomodulatory and fibrogenic characteristics. Interestingly, the distinct 
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disease entities within the group of chronic sinus disease display significantly different levels of TGF-

β1, with high levels in of TGF-β1 in CRSsNP and conversely low TGF-β1 levels in CRSwNP34, 40, 45. 

These low TGF-β1 levels may. reflect the decreased T regulatory cell function in CRSwNP, which 

was confirmed by the low FoxP3 levels. The high TGF-β1 levels and adequate expression of FoxP3 in 

CRSsNP on the other hand, mirror the adequate control of inflammation. Moreover, recent 

immunohistochemistry findings confirm these data, and show increased TGF-β1 receptor expression 

and increased active intracellular signal in CRSsNP48. 

Besides its immunomodulatory effect, TGF-β plays a crucial role in the extracellular matrix 

metabolism, as it acts as a master switch in the induction of fibrosis. TGF-β counteracts tissue 

destruction that can result from inflammation by inducing fibrogenesis. Moreover, it induces the 

expression of ECM proteins in mesenchymal cells, and stimulates the production of TIMP-1, a tissue 

inhibitor of metalloproteinases that prevent enzymatic breakdown of the ECM49. In CRSsNP MMP-9 

and TIMP-1 are found upregulated, whereas in CRSwNP, MMP-9, but not TIMP-1, is up-regulated, 

which is in line with the observed edema formation in CRSwNP. The observed lack of upregulation of 

TIMP-1 can be related to the low TGF-β1 levels in CRSwNP50-52. Furthermore, the extracellular 

matrix remodeling pattern in CRSwNP is characterized by low amount of collagen compared to 

control tissue, without thick collagen fibers. The lack of TGF-β1 in CRSwNP can be interpreted as a 

lack of tissue repair, reflected by loose connective tissue and oedema formation in a severely inflamed 

tissue. In contrast, remodeling in CRSsNP results in a higher collagen content compared to controls. 

This is indicative for excessive tissue repair and fibrosis formation in CRSsNP. These differences in 

TGF-β signaling clearly support the distinction between CRSsNP and CRSwNP as separate disease 

entities.  
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ROLE OF SAE 

The finding of IgE antibodies to S. aureus enterotoxins in CRSwNP tissue homogenates indicates that 

superantigens could be involved in the pathogenesis of this disease53. We previously reported an 

increased colonization rate of S. aureus in CRSwNP, but not CRSsNP patients42. Colonization with S. 

aureus was present in more than 60% of patients with CRSwNP, with rates as high as 87% in the 

subgroup with asthma and aspirin sensitivity, which were significantly higher than in control 

individuals and patients with CRSsNP (33% and 27%, respectively). 

IgE antibodies to S. aureus enterotoxins were present in 28% in polyp samples, with rates as high as 

80% in the subgroup with asthma and aspirin sensitivity, compared to 15% in control individuals and 

6% in patients with CRSsNP, respectively. The presence of specific IgE against S. aureus enterotoxins 

in nasal polyp tissue also co-incidenced with higher levels of IL-5, eotaxin and eosinophil cationic 

protein (ECP). Moreover, an increased number of T cells expressing the T cell receptor β-chain 

variable region known to be induced by microbial superantigens was detected in CRSwNP and 

correlated with the presence of specific IgE against S. aureus enterotoxin54. These findings confirm the 

role played by S. aureus enterotoxins as disease modifiers specifically in CRSwNP. Interestingly, 

stimulation of CRSwNP tissue with SEB results in significantly higher release of proinflammatory 

cytokines compared to controls. Besides induction of T cell activation, SEB introduced a bias towards 

Th2 cytokines, as IL-4 and IL-5 production was favored55. 

The strikingly high correlation between IL-5 and IgE antibody concentrations in CRSwNP 

homogenates support the hypothesis that S. aureus enterotoxins, apart from T cells, also modify B and 

plasma cells41. In fact, there is accumulating evidence that S. aureus enterotoxins can directly affect 

the frequency and activation of the B cell repertoire. We recently described a markedly increased 

number of plasma cells in sinonasal mucosal tissue samples from CRSwNP patients as compared with 

those from CRSsNP patients and control individuals. We have recently extended these findings with S. 

aureus specific data. In a follow-up study, high concentrations of total IgE, IgA and IgG were 

measured in CRSwNP homogenates, and these concentrations were significantly greater in CRSwNP 
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than in CRSsNP patients and control individuals. These changes were not reflected in the serum of 

patients; the presence of S. aureus enterotoxin–IgE antibodies in tissue or serum did not influence 

immunoglobulin concentrations in serum, confirming the notion of a local impact of superantigens – 

via direct action on B cells or indirectly via T cell derived cytokines – on immunoglobulin synthesis56. 

The functional role played by local IgE antibodies in CRSwNP is currently being investigated by our 

group, and others have called it into question by observations in ragweed-sensitive polyp patients, who 

do not exhibit specific seasonal changes in symptoms or mediators57. In laboratory experiments in 

which basophils armed with specific IgE to enterotoxin B were exposed to the superantigen, however, 

the basophils degranulated rapidly58. Thus, enterotoxin specific IgE antibodies could potentially 

contribute to the disease via degranulation of mast cells in polyp tissue, as well as other IgE antibodies 

with specificities against inhalant allergens. Indeed, because of the multiclonality, hundreds of 

allergens could possibly induce a constant degranulation of those mast cells, a condition that has 

actually been observed in polyp tissue55. Based on these observations, anti-IgE treatment could be 

expected to suppress the IgE-mediated inflammatory cascade in a nonallergic disease such as 

CRSwNP, similar to its activity in allergic respiratory disorders. A proof-of-concept study is currently 

being performed at the Ear, Nose and Throat Department of the Ghent University Hospital. 

These findings provide increasing evidence that S. aureus derived enterotoxins play a role as modifier 

of inflammation in CRSwNP, but not in CRSsNP. 

 

TREATMENT 

Medical treatment consisting of nasal corticosteroids (sprays/drops) and antibiotics with anti-

inflammatory activities is the first step in treatment, but surgery is indicated for CRSs/wNP in the case 

of failure. Clear diagnosis and management schemes for both CRSsNP and CRSwNP for GPs, non-

ENT specialists and ENT specialists are published in the EP3OS position paper19, summarizing the 

current knowledge. Nowadays, functional endoscopic sinus surgery (FESS) has become the standard 

procedure to restore sinus ventilation and drainage by opening the key areas while preserving sinus 
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mucosa. An overall success rate of 85% is reported in primary FESS, with a 2-24% failure rate 

because of recurrence of disease or poor healing due to persistent inflammation and/or bacterial 

colonization59, 60. In approximately 18% of the patients, poor healing is linked to abnormal scarring, 

super-infection and fibrosis formation, with these complications potentially leading to revision 

surgery61. The healing prognosis in CRSwNP patients is worse compared with patients with CRSsNP, 

especially if CRSwNP is associated with asthma and/or aspirin sensitivity. Previous data from our 

group demonstrated that both pre- and postoperative levels of matrix metalloproteinase-9 (MMP-9) are 

significantly and independently predictive for the healing outcome62. This was clinically linked to the 

diagnosis CRSwNP rather than CRSsNP, as well as to previous surgery. Indeed, patients with high 

concentrations of MMP-9 (and probably other MMPs, not balanced by TIMPs) in the preoperative and 

late postoperative period suffered from poor healing. Moreover, recent data indeed support the 

hypothesis that MMP-9 can serve as a target for therapeutic intervention to achieve better healing 

quality63. 

Consistent with the current knowledge on the pathophysiology of CRSwNP, new therapeutic 

approaches could focus on eosinophilic inflammation, eosinophil recruitment, the T cell as the 

orchestrating cell and IgE antibodies, as well as on tissue destruction and remodelling processes. 

Recently, the introduction of monoclonal humanised antibodies opened new perspectives, and these 

are currently evaluated in clinical studies. An interleukin-5 antagonist, reslizumab, induced a reduction 

of blood eosinophil numbers and concentrations of eosinophil cationic protein up to 8 weeks after 

treatment in serum and nasal secretions64. Individual nasal polyp scores improved only in half of the 

verum-treated patients for up to 4 weeks. When carefully analyzing responders and nonresponders in a 

post-hoc analysis, only those CRSwNP patients with increased baseline levels of IL-5 (>40 pg/mL) in 

nasal secretions seemed to benefit from the anti–IL-5 treatment. Furthermore, nasal IL-5 levels 

decreased only in the responders, whereas they increased in the nonresponders. These data show that 

at least in 50% of the CRSwNP, IL-5 and eosinophils play a key role (IL-5 dependent) in sustaining 

polyp size, whereas in others eosinophilia might be dependent on other factors (IL-5 independent) or 

lacking64. 
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As mentioned above, our group is currently evaluating the principle of IgE antagonism in CRSwNP, in 

order to suppress the IgE-mediated inflammatory cascade. Preliminary data confirm the concept that 

anti-IgE is an effective treatment option in patients with CRSwNP and comorbid asthma. In this study 

patients were selected based on the presence of nasal polyps and asthma irrespective of the presence of 

allergy. Nevertheless, anti-IgE was equally efficacious in both allergic and non-allergic patients with 

nasal polyps and asthma.  

Other therapies focus on neutralization of CCR3 or eotaxin and their role in the regulation of 

eosinophil, basophil and potentially T helper type 2 and mast cell recruitment. Moreover, future 

therapies in CRSwNP might consist of anti-IL-4, anti-IL-13, matrix metalloproteinase inhibitors or 

immunosuppression with for example ciclosporin. However, until now, none of these therapies has 

been evaluated in randomized, placebo-controlled clinical trials in CRSwNP. 

We have demonstrated the microbial involvement in CRSwNP by several studies42, 65. In that 

perspective, doxycycline was evaluated as systemic treatment, based on its antimicrobial and anti-

inflammatory effects66. In a double blind, placebo controlled trial, doxycycline showed an effect on 

bilateral CRSwNP, as it reduced polyp size and post nasal drip, and increased peak nasal inspiratory 

flow. Furthermore, doxycycline was able to significantly reduce local inflammation in terms of ECP, 

IgE, MPO and MMP-9. The reduction of ECP reflects a down-regulation of eosinophil activation, and 

together with the decrease in IgE may reflect the anti-staphylococcal activity, whereas the drop in 

MPO reflects a diminished neutrophilic activity. The MMP-9 suppressive effect, which represents a 

specific activity of tetracyclines, favors a beneficial remodeling of the polyp tissue, leading to a 

reduction of matrix degradation and oedema formation. The observed decrease in polyp size might 

therefore require both the antimicrobial and anti-inflammatory effect of doxycycline. 

Another anti-inflammatory approach is the long-term treatment with macrolide antibiotics. A number 

of clinical reports indeed have stated that long-term low-dose macrolide antibiotics are effective in 

treating chronic rhinosinusitis incurable by surgery or glucocorticosteroid treatment, with an 

improvement in symptoms varying between 60 and 80 %19. The exact mechanism of action is 
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currently unknown, but may involve downregulation of the local host immune response as well as 

downgrading the virulence of the colonizing bacteria. However, placebo-controlled studies are 

necessary to clarify if macrolide therapy is acceptable as evidence-based medicine in chronic sinus 

disease.  

 

CONCLUSION 

Chronic rhinosinusitis is a heterogeneous group of inflammatory conditions in the nose and paranasal 

cavities and differentiation between disease entities is mandatory to achieve progress in the diagnosis 

and treatment of CRSwNP and CRSsNP. The orchestrating T effector cells, the remodeling patterns, 

and the type of inflammation clearly differ between groups. The usage of disease markers, which 

might be manifold, will allow clear differentiation and accurate diagnosis, resulting in more precise 

and focused treatment. This principle might increase the success rate of both medicinal and surgical 

treatment, as therapies could be modified according to the specific disease entity. Patient phenotyping, 

based on clinical, but also biological markers, will be indicated in order to recommend an optimal, 

individualized treatment of CRS patients in the near future. 

The involvement of staphylococcal enterotoxins in the pathogenesis of chronic upper airway disease 

like CRSwNP, is becoming increasingly clear. Furthermore, these enterotoxins are known to modulate 

inflammation in other diseases like atopic dermatitis, allergic rhinitis, severe late-onset asthma or 

chronic obstructive pulmonary disease. In chapter 2, we focus on these staphylococcal superantigens, 

and their role in airway pathology. 
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INTRODUCTION 

Superantigens represent a growing family of bacterial and viral proteins that share the capacity of 

inducing massive activation of the immune system. Marrack and colleagues first described the concept 

of superantigens already in 1989, pointing out the ability of Staphylococcus aureus enterotoxin B to 

induce a remarkable expansion of T cells expressing T cell receptors with a specific subset of the T 

cell receptor β-chain variable region1. Superantigens (SAgs) are able to bind to the major 

histocompatibility complex (MHC) class II out-side the peptide-binding groove, and cross-link to the 

T cell receptor (TCR) via the variable region of the TCR β-chain (Figure 1).  

This leads to a potent polyclonal activation of up to 25% of an individual’s T cell population. 

Superantigens differ from conventional antigens because they’re not processed by antigen-presenting 

cells (APC) and presented as short peptides. These conventional peptide antigens then require 

recognition by all five variable elements of the TCR (Vβ, Dβ, Jβ, Vα, Jα), resulting in a stimulation of 

about 0.001-0.0001% of naïve T cells.  

Cα Cβ

Vα Vβ

α1 β1

α2 β2

TCR

MHC II
antigen

superantigen

T lymphocyte

Antigen presenting cell

α1 β1

α2 β2

Vα Vβ

Cα Cβ

 

 

Figure 1: Superantigen cross-linking of MHC class II receptor on antigen presenting cell (APC) and 
T cell receptor (TCR) on T lymphocyte. Left: conventional antigen presentation with processing and 
presentation by the MHC II within the peptide binding groove. Right: Superantigen cross-linking 
MHC II and TCR, without being processed. 
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Since the number of different Vβ regions in the human T cell repertoire is restricted to less than 50, 

and since most SAgs can bind more than one Vβ, a far more compelling activation of circulating T 

cells is achieved. Consequently, each SAg is associated with a characteristic Vβ signature that is 

independent of the MHC polymorphism, as is shown in Table 1.  

This immune system stimulation of T cells and antigen-presenting cells by superantigens initiates a 

cascade of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 

beta (IL-1b), and T cell mediators, such as IL-2, leading to fever and shock. Concentrations of less 

than 0.1 pg/ml of a bacterial SAg are sufficient to stimulate T cells in an uncontrolled manner, making 

SAgs the most powerful T cell mitogens ever discovered2. 

Enterotoxin-producing Staphylococcus aureus (S. aureus) is probably the best studied source of 

superantigens. However, other bacteria like Streptococcus pyogenes3, Yersinia pseudotuberculosis4, or 

Mycoplasma arthritis mitogen5 have known superantigen activities. Similarly, superantigen formation 

is linked to some viruses like Rabies6, Epstein Barr virus7, Cytomegalo virus8 or HIV9. 
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Superantigen MW(kDa) Organism Human TCR Vβ specificity 
SPE-A 26.0 S. pyogenes 2.1, 12.2, 14.1, 15.1 
SPE-C 24.4 S. pyogenes 2.1, 3.2, 12.5, 15.1 
SPE-G 24.6 S. pyogenes 2.1, 4.1, 6.9, 9.1, 12.3 
SPE-H 23.6 S. pyogenes 2.1, 7.3, 9.1, 23.1 
SPE-I 26.0 S. pyogenes 6.9, 9.1, 18.1, 22 
SPE-J 24.6 S. pyogenes 2.1 
SPE-K/L 27.4 S. pyogenes 1.1, 5.1, 23.1 
SPE-L/M 26.2 S. pyogenes 1.1, 5.1, 23.1 
SPE-M 25.3 S. pyogenes 1.1, 5.1, 23.1 
SSA 26.9 S. pyogenes 1.1, 3, 15 
SMEZ-1 24.3 S. pyogenes 2.1, 4.1, 7.3, 8.1 
SMEZ-2 24.1 S. pyogenes 4.1, 8.1 
SePE-H 23.6 S. equi ? 
SePE-I 25.7 S. equi ? 
SPE-LSe 27.4 S. equi ? 
SPE-MSe 26.2 S. equi ? 
SPE-Gdys 24.4 S. dysgalactiae ? 
SDM 25.0 S. dysgalactiae 1.1, 23 
SEA 27.1 S. aureus 1.1, 5.3, 6.3, 6.4, 6.9, 7.3, 7.4, 9.1, 23.1 
SEB 28.4 S. aureus 1.1, 3.2, 6.4, 15.1 
SEC1 27.5 S. aureus 3.2, 6.4, 6.9, 12, 15.1 
SEC2 27.6 S. aureus 12, 13, 14, 15, 17, 20 
SEC3 27.6 S. aureus 5.1, 12 
SED 26.9 S. aureus 1.1, 5.3, 6.9, 7.4, 8.1, 12.1 
SEE 26.4 S. aureus 5.1, 6.3, 6.4, 6.9, 8.1 
SEG 27.0 S. aureus 3, 12, 13.1, 13.2, 14, 15 
SEH 25.1 S. aureus Vα27 
SEI 24.9 S. aureus 1.1, 5.1, 5.3, 23 
SEJ 28.5 S. aureus  
SEK 26.0 S. aureus 5.1, 5.2, 6.7 
SEL 26.0 S. aureus 5.1, 5.2, 6.7, 16, 22 
SEM 24.8 S. aureus 6, 7.1, 8, 9, 18, 21 
SEN 26.1 S. aureus 5.1, 5.3, 9, 20 
SEO 26.7 S. aureus 5.1, 7, 21.3 
SEP 27.0 S. aureus 5.1, 8, 16, 18, 21.3 
SEQ 25.0 S. aureus 2.1, 5.1, 6.7, 21.3 
SER 27.0 S. aureus 3, 5.1, 8, 11, 12, 13.2, 14 
SEU 27.1 S. aureus 12, 13.2, 14 
TSST-1 22.1 S. aureus 2.1 
MAM 25.2 M. arthritidis 6, 8 (murine) 
YPM-A 14.5 Y. pseudotuberculosis 3, 9, 13.1, 13.2 
YPM-B 14.6 Y. pseudotuberculosis 3, 9, 13.1, 13.2 
YPM-C 14.6 Y. pseudotuberculosis 3, 9, 13.1, 13.2 

 

Table 1: List of frequently studied bacterial SAgs. The major TCR Vβ targets are underlined10. 
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T CELL DIFFERENTIATION 

T cells or T lymphocytes play a central role in cell-mediated immunity. They are named T cells 

because they mature in the thymus, where they differentiate into several subsets: T helper cells, 

cytotoxic T cells, memory T cells, regulatory T cell, natural killer T cells or γδ T cells. Each of these 

subtypes have a distinct function. In this thesis, we mainly focus on T helper cells, which express the 

CD4+ protein on their surface. T helper (Th) cells become activated after the encounter of the innate 

immune system with antigen, when Th cells are presented with peptide antigens by MHC class II 

molecules, which are expressed on the surface of antigen presenting cells. Once activated, 

differentiation into different effector T cell lineages, Th1, Th2, Th17 and T regulatory cells is initiated 

as depicted in Figure 2. Tight management of this adaptive immune response is essential for host 

function and survival, maintaining a balance between antigen clearance and immune pathology, while 

tolerance to all components of self as well as many harmless antigens needs to be preserved. 

Th1, Th2, Treg, and Th17 are characterized by their synthesis of specific cytokines and their immuno-

regulatory functions. IFNγ is the signature cytokine produced by Th1 cells, while IL-4, IL-5 and IL-13 

are major cytokines produced by Th2 cells. Th17 cells produce IL-17A (IL-17), IL-17F, IL-21, and IL-

22 as major cytokines, while Treg cells synthesize IL-10 and TGF-β
11. 

T helper and Treg cells play a critical role in several inflammatory responses, including adaptive 

immune responses to various pathogens. Host defense is coordinated by the proinflammatory Th1, 

Th2, and Th17 cells, while Treg cells are involved in the down regulation and contraction of an 

immune inflammatory response. Th17 cells are believed to be the major proinflammatory cells 

involved in autoimmunity, while Treg cells protect against autoimmunity12. 

Th1 cells appear to drive cell-mediated immune responses leading to tissue damage, as well as 

antibody-mediated responses in certain subclasses of the G isotype of immunoglobulin antibody, 

specifically termed IgG2a. In contrast, Th2 cells drive certain antibody-mediated responses, 

particularly those that are involved in allergy dominated by the IgE isotype13. 
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Th cell differentiation upon activation, involves the activation of distinct signaling cascades and 

transcription factors and the synthesis of other cyto/chemokines and cyto/chemokine receptors that are 

part of additional positive and negative feedback loops. For example, induction of Th1 cells by IL-12 

involves  amongst others the transcription factors T-bet, while differentiation along the Th2 lineage in 

response to IL-4 requires GATA3. Interestingly, there is an important plasticity of effector and 

regulatory T cells and differentiation different subsets is often reciprocal, involving several positive 

and negative regulatory networks that favor one or the other lineage14. 

 

 

 

 

 

 

 

 

Figure 2: T helper cell differentiation and regulation (adapted from11). 

OVALBUMIN  

In this thesis, we use ovalbumin as allergen in order to study allergic sensitization (Chapter 3). 

Ovalbumine (OVA) is the main protein found in egg white, making up 60-65% of the total protein. 

The proteins of hen’s egg white, like ovalbumin (OVA), frequently induce hypersensitivity symptoms 

among egg allergic individuals. OVA  is the most dominant ingredient of the five major allergens of 

egg white and is universally used as the main allergen in establishing different animal models of 
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asthma, food and skin allergy. The ovalbumin protein of chickens is made up of 385 amino acids, and 

its relative molecular mass is 45 kDa. It is a glycoprotein with 4 sites of glycosylation15. 

In mouse models of allergic asthma, sensitization is classically achieved after intraperitoneal injections 

with OVA, often using adjuvants like alum to boost the immune response. In contrast, we have 

obtained allergic sensitization applying OVA endonasally, more mimicking the natural way of 

mucosal contact with allergen. The purity of OVA used in research is of uttermost importance, in 

particular the endotoxin content, which was monitored in all our experiments in order not to interfere 

with the natural immune response after allergen contact. 

  

STAPHYLOCOCCAL SUPERANTIGENS 

Staphylococcus aureus is one of the most significant infectious threats to human health. It is a 

facultative anaerobic, Gram-positive coccus, which is frequently part of the normal microflora found 

in the nose and on skin. Carriage of S. aureus appears to play a key role in the epidemiology and 

pathogenesis of infection. In healthy subjects, the anterior nares are most frequently colonized with S. 

aureus, and over time, three patterns of carriage can be distinguished: about 20% of people are 

persistent carriers, 60% are intermittent carriers, and approximately 20% almost never carry S. 

aureus16. This carriage is a major risk factor for infection, as the colonizing strains may serve as 

endogenous reservoirs for overt clinical infections or may spread to other patients. Indeed, the 

elimination of carriage in the anterior nares, the principal reservoirs of S. aureus, reduces the incidence 

of S. aureus infections17. 

S. aureus is responsible for an array of diseases ranging from minor skin and soft tissue infections, 

such as pimples, impetigo, cellulitis, folliculitis, carbuncles, scalded skin syndrome, and abscesses, to 

more invasive and life-threatening infections, such as pneumonia, meningitis, osteomyelitis, 

endocarditis, toxic shock syndrome (TSS), bacteremia, and sepsis. The ability of S. aureus to cause 

such diverse diseases is due primarily to an arsenal of virulence factors encoded in the staphylococcal 

genome. Amongst these bacterial pathogenicity or virulence factors, there are products whose role in 
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the disease process is either clearly demonstrable, like toxins, or more or less obvious on the basis of 

biological properties, e.g. enzymes that degrade tissue components18. S. aureus is known for its 

production of potent toxins. Once introduced into a host's system, these toxins can act to profoundly 

stimulate the immune system. The proteins are known to act on host systems in three distinct ways: as 

enterotoxins, they induce emesis and diarrhea in humans and nonhuman primates19; as exotoxins, they 

have been implicated in induction of toxic shock20; and as superantigens, they induce extensive Vβ-

specific T cell stimulation followed by anergy and apoptosis, which results in immunosuppression21. 

For a long time, the production of SAgs by S. aureus was thought to be a rare phenomenon, linked to 

the occurrence of staphylococcal toxemia and therefore restricted to isolates responsible for such 

syndromes. However, because of the structural and biological similarities that these staphylococcal 

toxins share, it is no surprise that phylogenic analysis has identified an enterotoxin gene cluster (egc) 

in S. aureus, which was probably generated from an ancestral gene through gene duplication and 

variation22. This is shown in Figure 3. In fact, SAg production by S. aureus isolates appeared more 

frequent than initially expected, and it is more common for S. aureus to possess a SAg than not. 

Moreover, most of the strains harbor several SAg genes as illustrated in genome sequences of S. 

aureus strains23. 

 

Figure 3: Reconstruction of phylogenic tree of staphylococcal enterotoxin genes (A) and toxins (B)22. 
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STAPHYLOCOCCAL ENTEROTOXINS 

Enterotoxins are short, secreted proteins (from 194 to 245 amino acids long) of approximately 27kDa 

molecular mass. They share common biological and structural properties. Remarkably resistant to 

heat, the potency of these toxins can only be gradually degraded by prolonged boiling or autoclaving. 

Except for toxic shock syndrome toxin-1 (TSST-1), they are highly stable and resistant to most 

proteolytic enzymes, such as pepsin and trypsin, which explains the retention of their activity in the 

digestive tract after ingestion. 

Staphylococcal enterotoxins (SEs) are able to induce high fever similar to bacterial endotoxin 

induction, lethal shock in animals resulting from excessive intravenous doses, enhanced host 

susceptibility to endotoxin lethality, cytokine production, and the typical superantigenic feature of 

polyclonal T cell proliferation24. SEs can bind directly and unprocessed to MHC class II molecules on 

APCs. Figure 4 depicts this binding of the β-barrel of the SE domain A to the MHC II at a region 

distinct from the peptide-binding groove25. SEs are able to bind a wide variety of molecules, although 

there is some preference depending on the toxin involved: SEC prefers HLA-DQ and SEA, SEB, SED, 

SEE, SEH and TSST-1 prefer HLA-DR26. Subsequently, the α-helices of domain A can co-bind and 

facilitate ligation between MHC II molecules of APCs and certain TCRs. As described above, this 

binding is not dependent on T cell antigenic specificity, but occurs as a function of the variable region 

of the TCR β- or α-chain27. Indeed, each SAg interacts with a defined TCR repertoire, resulting in 

massive cell activation of both cell types and cytokine release. 

The exact reason why bacteria produce superantigens, or what superantigens are actually doing for the 

bacteria remains elusive. Most likely, it is not the purpose to induce systemic toxic shock in the host. 

Superantigens are probably rather inducing local T cell activation in the early stages of infection. This 

local T cell activation might result in cytokine production such as IL-2, IFN-γ and TNF-α, which 

suppress local inflammation10. 
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Figure 4: Ribbon diagram of SEB as representative of SEs. The MHC class II and TCR recognition 
sites are indicated25. 

 

EFFECTS ON OTHER CELLS 

Besides activation of T cells, increasing evidence shows the ability of staphylococcal enterotoxins to 

interact with other cells, such as B cells, eosinophils, mast cells and epithelial cells. Similarly to T cell 

binding, this unconventional type of B cell ligands can, in principle , trigger all B cells bearing the 

appropriate variable region, regardless of the other junctional and diversity segments. Interestingly, the 

concentrations of SEs and the surrounding cytokines determine the effect of SEs on B cells. Cross-

linking of the MHC class II molecule on B cells with TCR on T cells results in IgE production, when 

low amounts of IFN-γ are combined with low SE concentration. However, IgE production is inhibited 

by IFN-γ upon high SE concentration28. Interestingly, the effect of SEs on B cell stimulation also 

depends on the type of superantigen. SEA and SEB fail to induce proliferation of B cells in the 

absence of T cells. Survival of B cells on the other hand is enhanced by SEB. 

Eosinophils are mostly studied as actors in the effector limb of the immune response, because of their 

origin in the myelocytic cell series and biochemical similarities to neutrophils. However, several 

biological features of human eosinophils suggest they may also perform functions in the afferent limb 

of the immune response.  Human eosinophils become hypodense and express class II major 
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histocompatibility (MHC) molecules when activated by granulocyte-macrophage colony-stimulating 

factor (GM-CSF) in vitro or in vivo in pathological conditions such as allergic disorders. Studies have 

therefore been undertaken to examine the capacity of class II MHC-expressing eosinophils to serve as 

antigen-presenting cells (APC) for resting and activated CD4+ T cells29. Preincubated eosinophils 

induced resting T cells to proliferate in response to SEs (SEA, SEB and SEE). Furthermore, 

superantigen-induced T cell proliferation correlated with the proportion of eosinophils expressing 

class II MHC molecules.  

Eosinophil
• Activation and survival
• T cell proliferation

B cell
• Ig production

T cell
• Activation
• Cytokine production

Macrophage
• IL-8 production
• Neutrophilic chemotaxis
• T cell proliferation

Staphylococcal enterotoxins

Epithelium
• T cell activation
• Chemokine release  

Figure 5: Effects of staphylococcal enterotoxins on different cell types. 

Compared to macrophages however, eosinophils are not as efficient in acting as accessory cells for 

SE-induced T cell proliferation. The function of macrophages as accessory cells for SE-induced T cell 

proliferation has already extensively been studied in several research lines30, 31. On the other hand, 

direct effects of SE on macrophage activity have been documented, in particular on the production of 

cytokines. Interleukin 8 is synthesized and secreted by human alveolar macrophages upon incubation 

with SEA32. Furthermore, stimulation of macrophages with SEB causes release of chemotactic protein 
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leading to neutrophil migration by a mechanism mediated by platelet-activating factor, histamine H(2) 

receptors, lipoxygenase products and substance P33. 

Similar to eosinophils and macrophages, mast cells can also be either directly activated by SEs, but 

also act as accessory cells for T cell activation. Staphylococcal protein A is capable of cross-linking 

IgE molecules on mast cells34. Mast cells isolated from human heart tissue are able to release 

histamine, tryptase en leuktrien C4, when incubated with staphylococcal protein A35. 

The effect of SEs, in particular SEB, on epithelial cells is extensively elaborated in Chapter 4. Briefly, 

SEB can activate the immune system after contact with epithelial cells by MHC class II binding and 

cross-linking. In this case, epithelial cells act as accessory cells for superantigen-induced T cell 

activation36, 37. However, involvement of non MHC class II receptors has also been demonstrated38. 

Moreover, SEB is known to activate APCs like dendritic cells via Toll-like receptor (TLR)2, a 

receptor which plays an important role in pathogen recognition and innate immunity39. Interestingly, 

these TLRs are also present on nonprofessional antigen presenting cells like these epithelial cells40. 

Our findings on the effect of SEB on human nasal epithelial cells, with chemokine release and 

subsequent increase in granulocyte migration and survival are described in Chapter 4. 

 

ROLE OF STAPHYLOCOCCAL ENTEROTOXINS IN DISEASE 

Atopic dermatitis 

Atopic dermatitis (AD) is a chronically relapsing inflammatory disease of still unknown 

aetiopathogenesis. A typical characteristic of AD is the infiltration of T cells, 

monocytes/macrophages, and eosinophils into the skin lesions. AD patients show an enhanced 

susceptibility to cutaneous infections with certain viral, fungal and microbial pathogens. The first 

evidence that S. aureus might play a role in AD has been given already 30 years ago41. In this regard, 

the prominent role of S. aureus skin colonization as a factor contributing to the exacerbation of AD 

has been well established. In AD patients colonization with S. aureus is found significantly more (80-
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100%) compared to healthy controls (5-30%)42. This is likely the result of a combination of host 

factors including skin barrier dysfunction as well as impaired host immune responses in AD43. The 

majority of these S. aureus isolates from AD skin secrete identifiable S. aureus enterotoxin A , SEB 

and toxic shock syndrome toxin (TSST)-1, suggesting a direct involvement of SAg in the disease 

mechanism. Furthermore, IgE to these toxins was found in the serum of 57% of these patients44, and 

these IgE antisuperantigens correlate with skin disease severity. This study also showed an increased 

numbers of T cell bearing a superantigen-specific TCR Vβ repertoire in diseased skin of AD patients, 

further supporting the role of SAgs in AD pathophysiology. 

Superantigens have been demonstrated to induce corticosteroid resistance of T cells in vitro45. This 

could contribute to difficulty in management of AD, because topical corticosteroids are the most 

common medication used for treatment of atopic dermatitis. Indeed, S. aureus isolates from patients 

with steroid-resistant atopic dermatitis showed the ability to produce large numbers of superantigen 

types per organism, significantly higher than those produced by other skin isolates. Furthermore, S. 

aureus isolates from patients with steroid-resistant atopic dermatitis have been selected for their 

production of greater numbers of superantigens than those produced by isolates from a general 

population of patients with atopic dermatitis. Thirdly, in addition to having the potential to make more 

types of superantigens, S. aureus isolates from patients with steroid-resistant atopic dermatitis also 

have dysregulated production of superantigens and produce unusual combinations of superantigens46. 

Mouse models of atopic dermatitis have been developed , using epicutaneous immunization with SEB. 

This elicits allergic skin inflammation accompanied by a systemic Th2 response to the superantigen, 

suggesting that superantigens might play a role in the pathogenesis of AD47. Indeed, epicutaneous 

exposure to SEB elicited a local, cutaneous, inflammatory response characterized by dermal 

infiltration with eosinophils and mononuclear cells and increased mRNA expression of the Th2 

cytokine IL-4, sharing several features with skin lesions in AD. In another model, topical SEB 

treatment provokes epidermal accumulation of CD8+ T cells, a mixed Th1/Th2 type dermatitis and 

vigorous production of SEB-specific IgE and IgG2a antibodies, as well as significantly increased the 
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production of OVA-specific IgE and IgG2a antibodies48. These findings can be related to the chronic 

phase of atopic skin inflammation. 

 

Food allergy 

SEs have an established association with several atopic conditions. S. aureus contamination is one of 

the most prevalent causes of food poisoning, and SEs are most frequently found in foods, such as milk, 

dairy products, eggs, meats and fish, all food allergens49. As described above, SEB is resistant to 

breakdown by stomach acid and is transcytosed across the intestinal epithelium. This led to the 

development of a new mouse model of food allergy to oral antigen, using concomitant ovalbumin 

(OVA) and SEB application. In this model SEB administered though oral route, was able to elicit 

sensitization to low doses OVA, promoting a dominant Th2 response50. Although this was only the 

case when SEB was administered together with the antigen, as SEB alone did not show any response. 

The authors hypothesize that SEB exposure leads to allergic sensitization to food allergens, perhaps 

through breakthrough of oral tolerance. The development of Th2 immunity to oral antigen in this 

model likely occurred as a result of a loss in immune suppression, with decreased levels of FoxP3 

mRNA and TGF-β levels in OVA/SEB mice. 

 

Mouse models 

Other experimental animal models have been described using SEB in the study for colitis51. In this 

model, the authors demonstrate alteration of Treg development by SEB, which contributes to the 

activation of effector T cells in a dysregulated environment. The observation that mucosal exposure to 

SEs activated the development of intestinal inflammation in immune deficient hosts may explain how 

gut flora and bacterium-derived products could lead to the development of chronic IBD in immune-

dysregulated intestinal mucosa. 
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One other interesting experimental model from Rajagopalan et al52. studies the superantigenic capacity 

of SEs in the field of toxic shock syndrome (TSS), a serious systemic illness. TSS is caused by SAgs 

which cause a massive T cell activation. The T cells activated by SAg rapidly produce large amounts 

of cytokines and chemokines resulting in a sudden surge in the systemic levels of these biological 

mediators. This process, called systemic inflammatory response syndrome, may lead to multiple organ 

dysfunction syndrome, wherein several vital organs within the body fail to perform their physiological 

functions. The usage of mouse models to study TSS is necessary in order to find new therapeutical 

strategies for this possible life-threatening disease, caused by the superantigen exotoxins of S. aureus. 

 

ROLE OF STAPHYLOCOCCAL ENTEROTOXINS IN AIRWAY DISEASE 

Staphylococcus aureus is an ubiquitous common human pathogen, which is most frequently found in 

the anterior nares of the nose. Producing enterotoxins with superantigenic properties, S. aureus is 

known to modulate airway disease. Most likely, it is not the purpose of these superantigens to induce 

systemic toxic shock in the host, but rather act locally, probably suppressing local immune responses. 

However, transcytosis of SEB, a prototypic staphylococcal superantigen, has been described in 

intestinal epithelium53, 54. Furthermore, SEB can elicit robust systemic immune activation following 

exposure through non-enteric portals of entry such as the nasal, conjunctival or vaginal routes55. In 

order to study the systemic levels of SEB after endonasal application in our studies, we have 

demonstrated a time-dependent increase in serum levels of SEB after endonasal application, 

demonstrating the systemic absorption after local airway application. 
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Figure 6: time-dependent increase in serum levels of SEB after endonasal application. Local upper 
airway application of SEB results in systemic absorption.  

 

Allergic rhinitis 

Similarly to atopic dermatitis, a role for staphylococcal enterotoxins has been suggested in allergic 

rhinitis. It has been reported that the nasal carriage of S. aureus was higher in patients with perennial 

allergic rhinitis (44%) than in control subjects (20%). There was an even more significant association 

with enterotoxin-producing S. aureus (22% versus 6.7% in control subjects)56. Rossi57 analyzed the 

prevalence of serum-specific IgE towards SEA, SEB, SEC, SED, and TSST-1 in dust mite-allergic 

patients with allergic rhinitis and found an increase in serum eosinophil cationic protein in patients 

with anti-enterotoxin IgE compared with IgE-negative patients. This observation pointed to an 

involvement of SEs in local IgE production and a Th2-type biased eosinophil inflammation. Further 

evidence was obtained from animal experiments with BALB/c mice that were intranasally sensitized 

with Schistosoma mansoni egg antigen (SmEA) in the presence or absence of SEB. Nasal exposure to 

SEB resulted in enhanced development of allergic rhinitis in SmEA-sensitized mice, shown by SmEA-

specific IgE production, nasal eosinophilia, and IL-4 and IL-5 production by nasal mononuclear cells 

after antigen challenge58. 
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Nasal Polyposis 

Nasal polyps, also referred to as chronic rhinosinusitis with nasal polyps (CRSwNP), are characterized 

by an eosinophilic type of inflammation, driven by interleukin-5 and eotaxin, which together 

orchestrate the chemotaxis, activation and survival of eosinophils59. An increased colonization rate 

with S. aureus has been described in 60% of CRSwNP patients, and 87% of CRSwNP with co-morbid 

asthma and aspirin sensitivity, vs. 33% in control patients60. Furthermore, IgE antibodies to SEs were 

present in 28% in polyp samples, with rates as high as 80% in the subgroup with asthma and aspirin 

sensitivity, as compared with 15% in control individuals. Moreover, an increased number of T cells 

expressing the TCR Vβ known to be induced by microbial superantigens was detected in CRSwNP 

and correlated with the presence of specific IgE against SEs61. This SE-specific IgE serves as an 

indicator for superantigen impact on the mucosal inflammation. These specific IgE antibody level in 

the tissue is associated with high total IgE titers, which is polyclonal. Interestingly, this polyclonal IgE 

from mucosal tissue appears to be functional, and may induce mast cell degranulation to numerous 

inhalant allergens. Together with the fact that SEB may serve as an allergen, these findings may 

contribute to the persistent inflammation by continuously activating mast cells62. These findings 

confirm the role played by S. aureus enterotoxins as disease modifiers in CRSwNP63.  

 

Asthma 

The relation between SE-specific IgE and severity of asthma has been suggested from the above 

mentioned data in CRSwNP patients. Interestingly, it has been shown that serum from asthmatic 

patients contains more often SE-specific IgE compared to serum from controls and. Furthermore, 

within the group of asthmatic patients, severe asthmatics have more often SE-specific IgE than those 

with mild asthma64, 65. A pathophysiologic link between SE-specific IgE and bronchial inflammation 

has therefore been suggested. In mice, SEB enhanced the allergen-induced bronchial inflammation in 

experimental asthma, as reflected by more eosinophilic inflammation in the airway lumen and in 

bronchial tissue. Aggravation of experimental asthma correlated with higher expression of mRNA for 
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IL-5, IL-4, IFN-γ, IL-12 p40, eotaxin-1 and TGF-β in bronchi. In addition, nasal SEB elevated 

concentrations of IL-4, IL-5 and IFN-γ in serum and bronchial SEB increased titres of OVA-specific 

and total IgE in serum66. 

Staphylococcal enterotoxins cause a Th2 biased inflammation and amplification in CRSwNP patients. 

In addition, in a specific phenotype of CRSwNP patients, namely the ones with high IL-5 expression, 

SEs significantly modify the severity of upper airway inflammation. Interestingly, these patients carry 

a considerable risk for comorbide asthma67. 

Recently, a new hypothesis was formulated, questioning the role of superantigens in the development 

of intrinsic asthma68.  S. aureus is able to invade bronchial epithelial cells and release its enterotoxins. 

Subsequent stimulation of T and B cell proliferation may follow, as well as induction of class-

switching to IgE and the production of allergen-specific IgE in mucosal B cells. Furthermore, S. 

aureus is also capable of invading mast cells and causing the release of cytokines. It is therefore 

possible that patients with intrinsic asthma may in some way be susceptible to colonization of the 

lower airways with S. aureus, which, through the local released of superantigens, drives an allergic 

inflammatory response and local IgE formation, which is associated with more severe asthma as the 

anti-inflammatory response to corticosteroids is reduced68. These findings correlate with murine data, 

where SEB induces lymphocytic inflammation and eosinophilia in the lungs with increased production 

of IL-4, together with airway hyperresponsiveness in both IgE-and non-IgE-producing strains, 

demonstrating the capacity of superantigens to induce allergic inflammation independent of any 

allergen69. 

In early childhood, SEs are also potential modifiers of childhood wheeze and eczema. The levels of 

SE-specific IgE in children with eczema and wheeze is significantly increased compared to healthy 5-

year-old children. Furthermore, the proportion of patients sensitized to SEs increases with increasing 

symptoms severity70. 

In another cohort of 1380 teenagers, we were able to demonstrate a positive association between type 

2 immunity to S. aureus and asthma phenotypes71. This association reflects IgE-mediated effector cell 
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activation of SEs, which are secreted in soluble form. In this study, we could demonstrate significant 

higher SE-specific IgE levels in atopic individuals, compared to non-atopic individuals. Moreover, in 

univariate models SE-specific IgE titre was a significant risk factor for asthma and BHR, particularly 

amongst atopics (Figure 7). 

 

 

 

In non-atopics, SE-specific IgE appeared to function as an independent risk factor for BHR, implying 

that despite its low titre this IgE may contribute to airway inflammation in subjects in whom 

significant IgE of other specificities is extremely rare. Interestingly, we found a contrasting benign 

nature of IgE to H. influenzae and S. pneumoniae antigens: HI- and SP-specific IgE is inversely 

associated with asthma risk in healthy atopic teenagers despite the fact that respective mean 

production levels are higher than corresponding responses to SEs which are positively associated with 

risk. This may reflect their lower availability in soluble forms that can crosslink IgE receptors. We 

theorize that instead they may be processed by antigen presenting cells and presented to type-2 

memory cells leading to mucosal secretion of IL-4/IL-13, a mechanism widely recognized in other 

tissues to attenuate T-helper-1 associated bacterial-induced inflammation72. 

The role of SEs in the pathophysiology of asthma is further elaborated in Chapter 3. 

Figure 7: Staphylococcus aureus enterotoxin (SAE)-immunoglobulin (Ig)E titres within 
subgroups of the cohort.(A)  Data shown are geometric means (95% CI) of SAE-IgE titres 
stratified by atopy. (B) Data shown are geometric means (95% CI) of SAE-IgE titres stratified 
by clinical outcomes in asthma65. # p≤0.05; ¶ p≤0.005. 
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COPD 

Staphylococcal enterotoxins can modulate airway inflammation in COPD patients, similar to unstable 

asthma. This was studied in smokers, stable COPD, exacerbated COPD, and healthy controls. The 

authors found a significant increase in serum SE-specific IgE levels in COPD patients compared to 

controls. This indeed reflects the superantigen activity on B and T cells of these SEs73, which 

challenge the lower airways locally. This hypothesis is reinforced by the fact that bacterial 

colonization in the lower airways is increased in COPD patients, including S. aureus. Moreover, 

during exacerbations of COPD, S. aureus has been found as a pathogen. Altogether, these findings 

indicate a possible role for SEs in the pathogenesis of COPD, similar to that in severe asthma. This 

hypothesis is further elaborated in Chapter 6. 
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AIMS OF THE STUDIES 

The aims of the studies described in this thesis are to investigate the role of Staphylococcus aureus 

enterotoxin B as inducer and modulator of airway inflammation. For this purpose, we took advantage 

of mouse models of allergic asthma and cigarette smoke-induced inflammation, as well as in vitro 

models. Furthermore, a comparison was made between upper and lower airway inflammation in CS-

exposed mice. 

 

Specific aims of this thesis are: 

1. To investigate the role of SEB in the induction of allergic sensitization upon combined 

application with inhaled allergen. We aimed to unravel the mechanisms involved in the 

development of allergic sensitization in this model, in particular the role of dendritic cells and 

T cells. (Chapter 3) 

2. To study the immunologic interaction between SEB and airway epithelial cells. We used a 

novel technique of freshly isolated and purified human nasal epithelial cells to evaluate 

chemokine production after SEB application. In addition, the chemotactic activity of the 

supernatant for granulocytes was evaluated. (Chapter 4) 

3. To investigate and compare the effects of CS on upper and lower airways, in a mouse model 

of subacute and chronic CS exposure. We obtained bronchoalveolar lavage fluid and tissue 

cryosections from nasal turbinates for staining of neutrophils and T cells. Furthermore, we 

evaluated cytokines and chemokines in nasal turbinates and lungs by RT-PCR. (Chapter 5) 

4. To study the effect of SEB on cigarette smoke-induced inflammation, in a mouse model of 

COPD. We evaluated the aggravating effects of endonasal SEB application upon concomitant 

CS-exposure in C57/Bl6 mice. (Chapter 6) 
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Chapter 3: SEB facilitates allergic sensitization in experimental asthma 

STAPHYLOCOCCUS AUREUS ENTEROTOXIN B FACILITATES ALLERGIC SENSITIZATION IN 

EXPERIMENTAL ASTHMA 

Wouter Huvenne, Ina Callebaut, Maud Plantinga, Jeroen Vanoirbeek, Olga Krysko, Dominique 
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ABSTRACT 

Background: Staphylococcus aureus Enterotoxin B (SEB) has immunomodulatory effects in allergic 

airway disease. The potential contribution of SEB to the sensitization process to allergens remains 

obscure. 

Objective: We evaluated the effect of concomitant airway exposure to the allergen ovalbumin (OVA) 

and different bacterial derived toxins on the induction of experimental allergic asthma. 

Methods: Nasal applications of OVA and Saline, SEA, SEB, TSST-1, Protein A or LPS were 

performed on alternate days from day 0 till 12. On day 14, mice were sacrificed for evaluation of 

OVA-specific IgE, cytokine production by mediastinal lymph node (MLN) cells and bronchial 

hyperreactivity (BHR) to inhaled metacholine. The effect of SEB on dendritic cell (DC) migration and 

maturation, and on T cell proliferation was evaluated. 

Results: Concomitant endonasal application of OVA and SEB resulted in OVA-specific IgE 

production, whereas this was not found with SEA, TSST-1, Protein A or LPS. Increased DC 

maturation and migration to the draining lymph nodes was observed in OVA/SEB mice, as well as an 

increased T cell proliferation. Bronchial inflammation with influx of eosinophils and lymphocytes was 

demonstrated in OVA/SEB mice, together with bronchial hyperresponsiveness and production of IL-4, 

IL-5, IL-10 and IL-13 by MLN stimulated with OVA.  
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Conclusions: Our data demonstrate that SEB facilitates sensitization to OVA and consecutive 

bronchial inflammation with features of allergic asthma. This is likely due to augmentation of DC 

migration and maturation, as well as the allergen-specific T cell proliferation upon concomitant OVA 

and SEB application. 

 

INTRODUCTION 

Epidemiologic data provide strong evidence for a steady increase in the prevalence of allergic diseases 

in the Western world over the past three decades, reaching epidemic proportions1-3. As the reason for 

the steep rise in prevalence of allergic rhinitis and asthma remains speculative, several hypotheses 

have been put forward to explain this phenomenon. Among others, environmental factors may 

interfere with the sensitization process and lead to the development of allergic inflammation4. These 

exogenous factors provide immunostimulatory signals that are necessary to overcome immunological 

tolerance and induce allergic sensitization5-12. Eventually, these immunostimulatory signals result in 

dendritic cell (DC) activation, leading to functional DC differentiation and priming of Th2 effector 

cells13.  

Enterotoxins of Staphylococcus aureus have been implicated in the pathology of chronic airway 

inflammation, as IgE directed against Staphylococcus aureus enterotoxins (SAE) was found in chronic 

upper airway inflammation14-16. These SAE act as superantigens as they potentially activate T cells via 

linkage of the β chain of the T cell receptor to MHC class II molecules on antigen presenting cells 

(APC) outside the peptide-binding groove area17.  

Recent evidence suggests a putative role of these enterotoxins in allergic diseases. In patients suffering 

from the atopic eczema/dermatitis syndrome (AEDS), colonization with S. aureus is found more 

frequently (80-100%) compared to healthy controls (5-30%)18, and S. aureus isolates secrete 

identifiable S. aureus enterotoxins A (SEA), SEB and toxic shock syndrome toxin (TSST)-1. IgE to 

these toxins was found in the serum of 57% of AEDS patients19, indicating immune responses against 

these bacterial products. Beside AEDS, 25% of allergic rhinitis (AR) patients have detectable serum 
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IgE levels to SAE, whereas this is only a minority of healthy controls (6.3%). In AR, the presence of 

SAE-specific IgE was associated with the highest titer of total serum IgE14,20. IgE against SEA and 

SEB was also found in nasal polyps (NP)21 and levels of SAE-specific IgE in NP correlated with 

markers of eosinophil activation and recruitment22,23. In mice, Herz et al24 reported lymphocyte 

dependent bronchial inflammation with increased bronchial responsiveness by repeated nasal 

application of SEB. Furthermore, epicutaneous sensitization of mice with SEB elicited an immune 

response with Th2 cell activation, allergic skin inflammation and increased IgE titres in serum25. 

Recently, a new mouse model of food allergy was described, demonstrating that SEB impairs the oral 

tolerance26. Finally, we previously reported aggravation of experimental allergic asthma by application 

of SEB, characterized by higher of IL-4 production and allergen-specific IgE27. 

Until now, the contribution of SAE to the sensitization to inhaled allergens remains unclear. 

Therefore, we took advantage of a mouse model of repeated endonasal applications of enterotoxins of 

Staphylococcus aureus in order to study which of the enterotoxins alters the sensitization to allergens, 

and whether this process involves the activity of sensitized CD4+ cells. Evaluating the involved 

mechanisms in this model, we investigated the behavior of dendritic cells and allergen-specific T cells. 

 

MATERIALS AND METHODS 

Mice 

Male inbred BALB/c mice were obtained from Harlan CBP (Horst, the Netherlands) and kept under 

conventional relative pathogen-free conditions. 6 to 8 week old mice were used in all experiments, 

with 5 to 6 mice per group. OVA-TCR transgenic mice (DO11.10) were purchased from the Jackson 

Laboratory (ME, USA). 
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Experimental protocol 

Nasal application of 50 µL of pyrogen-free saline, SEB, SEA, TSST-1, protein A (all 10 µg/mL) or 

LPS (0.1 µg/mL) combined with OVA at 10 mg/mL was performed by means of placing this volume 

at the nostrils of spontaneously breathing mice in a supine position. Seven applications were 

performed on alternate days from day 0 till day 12, as depicted in Fig. 1A. In subsequent experiments, 

50 µL of pyrogen-free saline, SEB 10µg/mL, Sigma-Aldrich, LPS content: 34.82 pg/mL) and/or OVA 

(10 mg/mL, grade V, Sigma-Aldrich, Saint Louis, USA, LPS content: 0.18 µg/mL) was endonasally 

applied in an identical schedule (Fig. 2A). 

 

Figure 1: (A) Experimental protocol: Nasal application of 50 µL of saline, SEB, SEA, TSST-1, protein 
A (all 10 µg/mL) or LPS (0.1 µg/mL) combined with OVA ( 10 mg/mL) was performed 7 times on 
alternate days from day 0 till day 12. 

 

The dose of SEB was chosen according to dosing experiments in naïve24 and in sensitized mice27, 

where it was shown that 500 ng of SEB potently altered bronchial inflammation without clinical signs 

of wasting disease. The same dose was chosen for the other toxins. The chosen dose of LPS has been 

described to induce Th2 responses in a mouse model of allergic asthma9. Mice were sacrificed on day 

14, i.e. 48h after the last application. All experimental procedures were approved by the local Ethical 

Committee. 
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Assessment of bronchial responsiveness (BHR) 

Airway responses to inhaled methacholine (MCh) was measured using the forced ventilation technique 

(FlexiVent, SCIREQ, Montreal, Canada) as reported previously28. 48h after the last endonasal 

application, airway resistance and compliance to incremental doses of MCh was assessed. To this 

purpose, mice were anaesthetized with sodium pentobarbital (70mg/kg i.p.). After exposure of the 

trachea, a tracheotomy was performed and a 19-gauge metal needle inserted into the bronchus. The 

mice were connected to a computer-controlled small animal ventilator and were quasi-sinusoidally 

ventilated with a tidal volume of 10 mL/kg at frequency of 150 breaths/minute and a positive end-

expiratory pressure of 2 cm H2O to achieve a mean lung volume close to that during spontaneous 

breathing. After measurement of baseline values, each mouse was exposed to an aerosol, generated 

with an in-line nebulizer and administered directly through the ventilator for 5 seconds, containing 

increasing concentrations of MCh (0, 0.625, 1.25, 2.5, 5 and 10 mg/mL). Airway resistance (R) was 

measured using a “snapshot” protocol each 20 seconds for 2 minutes. For each concentration of MCh, 

the mean of six values of R was calculated. For each mouse, R was plotted against the MCh 

concentration (from 0 to 10 mg/mL) and the area under the curve (AUC) was calculated. 

 

Measurement of OVA-specific and total IgE levels 

After anaesthesia with sodium pentobarbital, a retro-orbital bleed was performed on day 14 (i.e. 48h 

after the last exposure) and serum was frozen until analysis. For measurement of OVA-specific IgG2a, 

96-well plates were first coated overnight with rat anti-mouse IgG2a (20 µg in 100 µL PBS, 

PharMingen, San Diego, CA, USA). Remaining binding sites were blocked and plates were incubated 

with 100 µL of diluted serum (1:10). After washing, following substances were sequentially added, 

incubated and washed: OVA (1 µg/100 µL, Sigma), peroxidase-labeled rabbit anti-OVA IgG (240 

ng/100 µL, Rockland, Gilbertsville, PA, USA) and buffer containing tetramethylbenzidin 

dihydrochloridhydrate (1 µL/100 µL, ACROS, New Jersey, NJ, USA) and H2O2 (1 µL/100 µL). 

Then, H2SO4 was added and the optical density measured at 450 nm. 
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For measurement of OVA-specific and total IgE, commercially available ELISA kits were purchased 

and samples were processed according to the manufacturer’s guidelines (OVA-specific IgE: MD 

Biosciences, Zürich, Switzerland – total IgE: Pharmingen). Data were expressed as ng/mL (OVA-

specific IgE) or as optical density values at 450 nm (total IgE, OVA-specific IgG2a). 

 

Analysis of broncho-alveolar lavage fluid 

On day 14, mice were lethally anaesthetized with sodium pentobarbital. A polyethylene catheter (0.85 

mm) connected to a syringe was gently inserted into the trachea. Then, the bronchoalveolar tree was 

lavaged five times with 1 mL aliquots of pyrogen-free phosphate-buffered saline (PBS) supplemented 

with 5% of bovine serum albumin (BSA; Sigma, Bornem, Belgium) at 37°C through a polyethylene 

tracheal catheter (0.85 mm). The first lavage was performed with 1 mL PBS/BSA 5%, centrifuged 

(1400 × g, 5 min) and the supernatant was stored at −20°C until analysis. The cellular pellet was added 

to the subsequent four lavages, each one performed with 1 mL of PBS. The bronchoalveolar lavage 

(BAL) fluid was centrifuged (1400 × g, 5 min) and the pellet washed and resuspended in 100 µL of 

PBS. Ten microlitres of cell suspension from BAL fluid were added to 90 µL of Türk's solution 

(Merck Diagnostica, Darmstadt, Germany), and the total number of cells was counted in a Bürker–

Türk chamber. For differential cell counts, cytospin preparations were stained according to the May–

Grünwald–Giemsa method and 300 cells differentiated into eosinophils, neutrophils, 

monocytes/macrophages and lymphocytes according to standard morphological criteria. 
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Histologic analysis 

After performing BAL, the bronchoalveolar tree was removed for histological examination and fixed 

overnight in buffered formalin. After dehydration and embedding in paraffin, 3 µm sections were 

stained with hematoxylin and eosin (H&E) to demonstrate inflammatory infiltrates, or Congo red to 

highlight eosinophils. Quantification of eosinophilic influx was performed on Congo red staining by 

counting the number of eosinophils per airway wall at magnification x 400, for 10 representative 

airways with perimeter of basement membrane around 800 µm. 

 

Cytokine production by draining lymph node (LN) cells 

At the time of analysis, submandibular and peribronchial lymph nodes (LN) were dissected and 

homogenized using a cell strainer (Falcon®, Becton Dickinson, Franklin Lakes, NJ, USA) and 

suspended in RPMI (Biowhittaker, Walkersville, MD, USA) supplemented with FCS (5%). The 

homogenates were washed twice with PBS/FCS and centrifuged at 1500 rpm for 10 min. In parallel, 

spleen homogenates were incubated for 1 min with 5 mL of lysis buffer containing NH4Cl, KHCO3 

and Na2EDTA, and then washed with PBS/FCS. Cells were counted using a Coulter Counter (Analis, 

Ghent, Belgium). 

For analysis of cytokine production, 1×106 LN cells were incubated with splenocytes from naive mice, 

as a source of antigen-presenting cells, in the presence of OVA, BSA (as negative control) or SEB in 1 

mL of culture medium (RPMI with 10% FCS supplemented with penicillin, streptomycin, L-glutamine 

and 0.1% of 2-mercaptoethanol). Pilot studies showed that 1 ng/mL and 10 µg/mL were the optimal 

doses for SEB and OVA/BSA respectively for further experiments (data not shown). Cells were 

incubated for 5 days at 37°C. The supernatants were stored at –20°C until cytokine measurement.  

To determine levels of IL-4, IL-5, IL-13, IL-10, IL-12 and IFN-γ, a Cytometric Bead Array Flex set 

(BD Biosciences, Erembodegem, Belgium) was used. IL-17 (R&D) and TGF-β (BD Biosciences) 

were measured by ELISA according to the manufacturer’s specifications.  
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Anti-CD4 mAb treatment 

To study the role of CD4+ cells in the SEB-mediated effects on sensitization to OVA, 50 µg of GK1.5 

rat anti-mouse CD4 blocking antibody (Biolegend, San Diego, CA, USA) was administered i.p. in a 

volume of 0.5 mL on day 0 and day 6, which is during the phase of exposure of mice to OVA and SEB 

from day 0 until 12. Rat IgG (50 µg in 0.5 mL, Rockland, Gilbertsville, PA, USA) was injected i.p. on 

day 0 and 6 as control. The antibody preparations were centrifuged to remove aggregates (30000 x g, 

20 min) as reported previously29. Groups consisted of 5 mice and were exposed endonasally to both 

OVA and SEB from day 0 until 12 on alternate days. 

Reduction of CD4+ cells was assessed in blood and draining lymph nodes. To this purpose, blood was 

collected in 0.5M EDTA by retro-orbital bleed. Subsequently, draining lymph nodes were taken and 

put through a cell strainer. Samples were incubated with antibodies against CD3 (rat anti-mouse clone 

RM4-5), CD8 (rat anti-mouse Ly-2 Clone 53–67) and CD4 (rat anti-mouse clone 17A2, all BD 

Biosciences). The red blood cells were lysed and all cells were fixed with 4% paraformaldehyde. 10 x 

103 lymphocytes were analyzed using a FACScan flow cytometer (BD Biosciences, San Diego, CA, 

USA). Data were analyzed using CellQuest Software. 

 

Analysis of DC and T cell behavior 

DC migration was evaluated in vivo 24h after i.t. application of 500µg OVA-FITC. For that, mice 

were slightly anaesthetized with isoflurane. Mediastinal lymph node (MLN) cells were harvested and 

stained with antibodies against CD11c and MHC class II. DAPI was used to exclude dead cells. Cells 

were analyzed by FACS Aria II (BD Biosciences). 
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DC maturation was investigated in bone marrow–derived dendritic cell cultures from naive WT 

BALB/c mice. Bone marrow cells were collected, depleted of red blood cells using RBC-lysisbuffer 

(0.15M NH4Cl, 1mM KHCO3, 0.1mM Na2EDTA), and grown in RPMI culture medium containing 

5% FCS and GM-CSF for 8 days. At day 8, DCs were pulsed in vitro with TCM, OVA (100 µg/ml), 

SEB (100 ng/ml) or OVA/SEB. After 24h, cells were collected and stained for MHC class II, CD11c, 

CD86 or isotype control before analysis by FACS Aria II.  

To study T cell proliferation in vivo, cell suspensions of pooled peripheral lymph nodes and spleen 

from naive OVA T-cell receptor transgenic DO11.10 mice were labeled with carboxyfluorescein 

diacetate succinimidyl ester (CFSE; Invitrogen)30. Then, 5 x 106 CFSE+ T cells were transferred 

intravenously into naive WT mice. After 24h, mice received OVA (100 µg) +/- SEB (500 ng) in 55 µl 

PBS intratracheally. Seventy-two hours after i.t. injection, MLN were analyzed for the proliferation of 

CFSE-labeled OVA-specific TCR Tg T cells. As a control, non–lung-draining LNs were used. 

Transferred OVA-specific TCR transgenic CD4+ T cells were recognized as CD4+CFSE+ cells 

expressing the clonotypic TCR. DAPI was used to exclude dead cells. T cell divisions were measured 

by flow cytometry. The percentage of cells recruited into each cell division was calculated by dividing 

the number of individual cells by CFSE content, after correction for the multiplying effect of division, 

as describe previously30. 

 

Statistical analysis 

Statistical analysis was performed with Medcalc software 9.2.0.1 (F. Schoonjans, Belgium; 

http://www.medcalc.be). Data are expressed as mean with error bars expressing standard error of the 

mean. All outcome variables were compared using non-parametrical tests (Kruskal-Wallis; Mann 

Whitney U test for unpaired data). The significance level was set at α = 0.05. 

75



Chapter 3: SEB facilitates allergic sensitization in experimental asthma 

RESULTS 

Effects of different toxins on OVA-specific and total IgE levels 

In order to study the effects of staphylococcal derived toxins on the sensitization to ovalbumin and 

induction of allergic airway inflammation, we have combined the nasal application of OVA with 

different toxins. Interestingly, only the combination of OVA and Staphylococcus aureus enterotoxin B 

resulted in increased serum levels of OVA-specific IgE compared to OVA/Sal, whereas this was not 

the case for other proteins (Fig. 1B). Moreover, levels of total IgE were also significantly higher in 

OVA/SEB mice(OD 0.69 ± 0.1) compared to OVA/Sal (OD 0.33 ± 0.02, p < 0.0001). Concurrent 

application of OVA/Prot A also resulted in modestly raised levels of total IgE (OD 0.47 ± 0.07, p < 

0.05). The combined application of OVA and LPS did not result in raised OVA-specific or total IgE 

levels in our model (Fig. 1B-C). 

Consequently, the same protocol was used to study the effect of SEB on the immune response to OVA 

(Fig. 2A), and we confirmed that repeated and concomitant exposure to OVA and SEB resulted in 

significantly higher titers of OVA-specific IgE, compared to the three control groups Sal/Sal, Sal/SEB 

or OVA/Sal (Fig. 2B). In addition, OVA-specific IgG2a levels were also significantly higher in the 

OVA/SEB group (OD 43.59 ± 4.56) compared to all other groups (OD 0.18 ± 13 in Sal/Sal, 7.68 ± 

7.65 in Sal/SEB and 19.44 ± 4.53 in OVA/Sal, p < 0.05, Fig. 2C). 
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Figure 1: (B) Experimental protocol: on day 14, OVA-specific IgE levels in serum were evaluated. 
Interestingly, only the combination of OVA and Staphylococcus aureus enterotoxin B resulted in 
increased serum levels of OVA-specific IgE, whereas this was not the case for other proteins. (C) 
Moreover, levels of total IgE were also significantly higher in OVA/SEB mice compared to OVA/Sal, 
and concurrent application of OVA/Prot A also resulted in modestly raised levels of total IgE.  *p < 
0.05, ***p < 0.001 compared to OVA/Sal. 

 

Effects of SEB on the OVA-induced bronchial allergic inflammation 

Mice that were sensitized to OVA following OVA/SEB application developed features of allergic 

asthma. A significant influx of eosinophils and lymphocytes counts in the broncho-alveolar lumen was 

seen in mice that were simultaneously exposed to OVA and SEB (p < 0.01, Fig. 2D). Interestingly, 

neither Sal/SEB nor OVA/Sal exposure caused any bronchial influx of eosinophils. Sal/SEB 

application resulted in raised BAL lymphocyte and neutrophil number compared to controls (p < 0.05, 

Fig. 2D). The total number of cells in BAL fluid did not differ between groups (data not shown). 

Simultaneous application of OVA and SEB resulted in a significant increase in bronchial 

responsiveness (BHR, measured as described above) to incremental doses of nebulized methacholine 

(p < 0.01, Fig. 2E) compared to all other conditions, while OVA or SEB application alone did not 

cause any BHR compared to control mice.  
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The BAL fluid findings were in line with the histologic analyses, revealing that concomitant 

application of OVA and SEB induced bronchial inflammation in the OVA/SEB group with minor 

inflammation around bronchi in the 3 control groups (Fig. 3, A-D). Detailed analysis of the cellular 

infiltrate revealed that simultaneous application of OVA and SEB caused a significant higher number 

of eosinophils in the lung parenchyma of OVA/SEB (2.825 ± 0.66) mice compared to the 3 other 

groups (0.32 ± 0.06, 0.43 ± 0.24 and 0.87 ± 0.49, p < 0.05), as was shown by Congo red staining. 
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Figure 2: (A) Experimental protocol. (B) Concomitant application of OVA and SEB resulted in 
increased levels of OVA-specific IgE levels, (C) OVA-specific IgG2a levels, (D) BAL eosinophils 
and lymphocytes and (E) bronchial hyperreactivity measured as resistance (R), compared to control 
conditions. One representative experiment out of 2 is shown. *p < 0.05, **p < 0.01, ***p < 0.001. 
#p < 0.01 vs. all others (eosinophils) and vs. OVA/Sal and Sal/Sal (lymphocytes). §p < 0.01 vs. 
Sal/Sal (neutrophils). ●p < 0.05 vs. Sal/Sal (lymphocytes). 
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Figure 3: Histologic analysis revealed that concomitant application of OVA and SEB induced 
bronchial inflammation primarily in the OVA/SEB group (D) with minor inflammation around bronchi 
in the 3 control groups: Sal/Sal (A), Sal/SEB (B) and OVA/Sal (C). H&E, x200. Representative 
bronchial sections are presented. 

 

Cytokine profile analysis of SEB mediated effects on OVA sensitization 

Submandibular and peribronchial draining lymph nodes were harvested for IL-4, IL-5, IL-10, IL-12, 

IL-13, IFN-γ, TGF-β and IL-17 cytokine production, after stimulation with OVA, BSA or SEB. LN 

cells of OVA/SEB mice showed an increase in IL-4, IL-5, IL-13 and IL-10 production upon 

stimulation with OVA compared to BSA (p < 0.05, Fig. 4, A-D). In vitro stimulation of OVA/SEB LN 

cells with OVA induced higher IL-5 production compared to OVA stimulation of control LN cells 

(Fig. 4B). This trend was also seen for IL-4, IL-10 and IL-13 although significance was not reached 

for these cytokines. In contrast to the Th2 cytokines, the production of IFN-γ, IL-12, TGF-β or IL-17 

was not altered in the OVA/SEB group upon stimulation with OVA (data not shown).  

79



Chapter 3: SEB facilitates allergic sensitization in experimental asthma 

 

 

 

 

 

 

 

 

 

 

 

Effects of anti-CD4 mAb on the SEB-mediated sensitization to OVA  

Intraperitoneal injection of blocking anti-CD4 mAb significantly altered the relative CD3+CD4+ and 

CD3+CD8+ cell percentages in blood and in draining lymph nodes (Fig. 5A). Furthermore, anti-CD4 

mAb caused a significant reduction in OVA-specific IgE production in OVA/SEB mice (Fig. 5B) 

compared to control IgG treated OVA/SEB mice (p < 0.05, Fig. 5B), as well as a reduction of total IgE 

levels (OD 0.86 ± 0.18 in anti-CD4 vs. 0.29 ± 0.003 in control IgG, p < 0.01). Anti-CD4 treated 

OVA/SEB mice showed a reduced number of eosinophils and lymphocytes in BAL fluid compared to 

control IgG treated OVA/SEB mice (Fig. 5C). In addition, levels of BHR were reduced to baseline 

values in anti-CD4 treated mice (Fig. 5D), reaching levels of naive (Sal/Sal) mice (Fig. 2D). This was 

not the case in the control group where BHR consistently developed upon OVA/SEB administration (p 

< 0.01, Fig. 5D). 
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Figure 4: (A-D) LN cells of OVA/SEB mice showed a significant increase in IL-4, IL-5, IL-13 
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for other mice. (B) In vitro stimulation of OVA/SEB LN cells with OVA induced higher IL-5 
production compared to OVA stimulation of control LN cells. (C-D) This trend was also seen for 
IL-4, IL-10 and IL-13 although significance was not reached for these cytokines. *p < 0.05, **p 
< 0.01, ***p < 0.001. 

80



Chapter 3: SEB facilitates allergic sensitization in experimental asthma 

 

 

 

 

 

 

 

 

 

 

 

 

SEB augments OVA-induced DC migration, maturation and T cell proliferation 

After antigen recognition, lung DCs are known to migrate to the MLN. We evaluated the DC 

migration process in vivo 24h after i.t. OVA-FITC +/- SEB administration. As shown in Fig. 6A, the 

number of OVA-FITC+ DCs in the MLN is augmented in mice receiving both SEB and OVA-FITC, 

compared to mice receiving only OVA-FITC. Subsequently, we investigated the dendritic cell 

maturation in this model, and demonstrated that DCs exposed to both OVA and SEB had a higher 

expression of the CD86 maturation marker in vitro, compared to control conditions (Fig. 6B), which is 

consistent with their involvement in the induction of allergic sensitization in this model. 
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Figure 5: (A) Change in the relative CD3+CD4+ and CD3+CD8+ cell percentages in blood 
and in draining lymph nodes  by i.p. injection of anti-CD4 mAb on day 0 and 6 of the 
experimental protocol. This has resulted in decreased levels of (B) OVA-specific IgE and (C) 
total IgE, (D) decreased BAL eosinophils and lymphocytes and (E) bronchial hyperreactivity 
measured as resistance (R), compared control IgG treatment. All mice received endonasally 
OVA/SEB. *p < 0.05, **p < 0.01, ***p < 0.001 vs. Control IgG. 
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In addition to the effect of SEB on DCs, we also investigated its effects on T cell proliferation in vivo, 

through adoptive transfer of CFSE-labeled DO11.10 OVA-specific T cells into WT BALB/c mice. 

24h after i.v. injection of DO11.10 T cells, mice were i.t. challenged with OVA +/- SEB or SEB. Fig. 

7 demonstrates the significant increase in proliferation index of DO11.10 OVA-specific T cells in the 

MLN of mice that were concomitantly exposed to OVA and SEB, compared to mice exposed to OVA 

(p < 0.001) or SEB (p < 0.05) alone. 

 

DISCUSSION 

We here demonstrate that SEB facilitates the sensitization of CD4+ cells to nasally applied allergen 

resulting in subsequent development of experimental asthma. Concomitant endonasal application of 

OVA and enterotoxin B resulted in an immune response to otherwise inert allergen, characterized by 

the production of allergen-specific IgE, increased production of IL-4, IL-5 and IL-13, bronchial influx 

of eosinophils and development of BHR. Moreover, these findings can be explained by the observed 

increase in DC migration and maturation in these mice, which occurs in parallel to the SEB mediated 

augmentation of allergen-specific T cell proliferation. 
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Mouse models of allergic asthma classically use artificial Th2 inducing stimuli or adjuvants such as 

aluminum hydroxide acting mainly on DC activation31, to obtain allergic sensitization. Alternatively, 

additional danger signals can be used to induce Th2 priming. Interestingly, we could induce the 

allergic inflammation in this model by applying the allergen and the enterotoxin endonasally, instead 

of using intraperitoneal injections. Moreover, combination of both was critical to induce asthma, as 

neither substance could do so itself. Asthmatic features in this model consisted among others of a 

marked bronchial influx of eosinophils. This influx may largely be attributed to the increased IL-5 

production by T lymphocytes within the lung-draining lymph nodes. Besides eosinophils, SEB also 

Figure 6: (A) 24h after OVA-FITC +/- SEB application, the number of OVA-FITC+ DCs in the 
MLN is augmented in mice receiving both SEB and OVA-FITC, compared to mice receiving 
only OVA-FITC. (B) DCs exposed to both OVA and SEB had a higher expression of the CD86 
maturation marker compared to control conditions, which is consistent with their involvement 
in the induction of allergic sensitization in this model. One out of 2 representative experiments 
is shown. 
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induced a minor increase in neutrophils and lymphocytes in BAL fluid. The increase in neutrophils in 

Sal/SEB and OVA/SEB mice may be induced by the stimulation of macrophages which in response 

release chemotactic proteins for neutrophils32. In addition, SEB-induced IL-8 secretion by endothelial 

cells has also been described in in vitro studies33. A similar increase in SEB treated mice was seen in 

lymphocyte counts, likely due to the superantigen activity of this enterotoxin, activating large numbers 

of lymphocytes. 

p = 0.057

Division Index

SEB OVA OVA/SEB
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We demonstrate a clear increase of total serum IgE in OVA/SEB mice, indicating the activation of B 

lymphocytes by SEB. Besides the induction of total IgE production, SEB also induced the production 

of OVA-specific IgE, suggestive of an important role for SEB in the process of sensitization to 

allergens. Of note, the facilitating effects on OVA sensitization appear to be mouse strain independent, 

as we have observed a similar influx of BAL eosinophils and induction of OVA-specific IgE in 

C57BL/6 mice using the same experimental protocol (unpublished observations). In our model, OVA 

or SEB application alone did not primarily alter the OVA-specific IgE production, whereas 

concomitant exposure of the nasal mucosa to OVA and SEB did lead to OVA-specific IgE production. 

We suspect that enhanced production of IL-4 and/or IL-13 at the level of the LNs may be responsible 

for these observations. Among the enterotoxins studied here in BALB/c mice, only SEB influenced the 

sensitization process to OVA. The fact that SEA, TSST-1 or Prot A did not induce sensitization to 

OVA may be related to the Vβ chain profile of the TCR. It has been shown that particularly SEB has a 

Figure 7: 24 h after i.v. injection of CFSE-labeled DO11.10 T cells, mice were i.t. challenged 
with OVA +/- SEB or SEB. After 3 days, MLN were harvested and analyzed for proliferation 
of OVA-specific TCR Tg T cells. Proliferation index was calculated, and appeared to be 
significantly higher in OVA/SEB mice compared to mice receiving OVA or SEB alone. One out 
of 2 representative experiments is shown. *p < 0.05, ***p < 0.001. 
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high affinity for Vβ8+ compared to Vβ6+ T cells, and mucosal contact with SEB selectively induces 

the expansion of Vβ8+ T cells24-26. The fact that we could not repeat previous reported data on the 

enhancing effects of LPS on OVA sensitization, might be due to differences in experimental protocol 

related to the route of administration, doses of allergen and toxin used and/or genetic background. 

To demonstrate the Th2 priming by concomitant mucosal contact with OVA/SEB, cytokines IL-4, IL-

5 and IL-13 were measured in lymph node cell cultures after stimulation with OVA or BSA. As 

expected, we demonstrated a rise in levels of IL-4, consistent with the increase in total and OVA-

specific IgE observed in OVA/SEB mice34,35. Moreover, OVA stimulation in OVA/SEB mice caused a 

significant increase in IL-5 production compared to OVA stimulation in naive (Sal/Sal) mice, 

explaining the observed BAL eosinophilia in this group36. However, increased titers of OVA-specific 

IgG2a  in OVA/SEB mice, which are classically found in Th1 immune responses, suggest a B cell 

expansion involving both IgE and IgG2a production37,38. The described Th2 priming in the draining 

lymph nodes did not alter Th1 cytokine production (IFN-γ and IL-12), as allergen stimulation did not 

result in increased levels compared to BSA stimulation. 

In this model, we could induce one of the major characteristics of human asthma, namely bronchial 

hyperresponsiveness. The increase in bronchial responsiveness to metacholine as observed in the 

OVA/SEB group may be attributed to activation of different cell types among which are CD4+ cells. 

Moreover, BHR in these mice may be explained by the increased production of IL-13 and IL-10 by 

these T lymphocytes in OVA/SEB mice, as both cytokines have been associated with BHR in 

experimental asthma39,40. Interestingly, the secretion of the regulatory cytokine IL-10 was also 

augmented in OVA/SEB mice upon allergen stimulation in vitro, probably representing an inhibitory 

signal for the further rise in Th2 activity41. 

Treatment with anti-CD4 mAb abrogated the development of allergic disease in OVA/SEB mice, 

indicating the critical involvement of CD4+ cells in the SEB-mediated effects. Prevention of SEB-

induced T cell activation by anti-CD4 mAb averted the production of OVA-specific and total IgE, the 

development of BHR and the influx of eosinophils in the BAL fluid. As CD4+ cells are primarily 
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responsible for the different features of asthma through their cytokine profile42-44, it is no surprise to 

find that a reduction of IL-4, IL-5 and IL-13 production by anti-CD4 mAb treatment resulted in 

abrogation of the development of experimental asthma. 

Mechanistically, we were interested whether and how dendritic cells (DCs) were involved in the 

facilitation of sensitization in this model, as DCs are pivotal in the induction of Th2 sensitization. 

Upon contact with antigens, and in the presence of some form of activation, DCs evolve towards their 

mature state and migrate out of the antigen-exposed site towards the draining LNs. There, antigen-

specific naive T lymphocytes are activated by DCs for proliferation and differentiation. We observed 

an increased migration of OVA-FITC loaded dendritic cells towards the draining lymph nodes upon 

concomitant SEB application. Moreover, DCs from OVA/SEB mice appeared to express higher levels 

of the CD86 maturation marker. As DC migration and maturation are pivotal in the induction of Th2 

sensitization, these findings can explain the observed induction of allergic sensitization. In parallel, we 

demonstrated the SEB-driven significant increase in allergen-specific T cell proliferation, possibly due 

to the superantigen activity of this enterotoxin, contributing to the described features of allergic 

asthma in this mouse model. Altogether, these findings provide arguments for a direct effect of SEB 

on DCs. However, SEB might also activate DCs via TLRs on epithelial cells producing chemokines 

and DC growth/differentiation factors13. In addition, these processes might be reinforced by the 

polyclonal T cell stimulation of the SEB superantigen. 

In conclusion, we show that Staphylococcus aureus Enterotoxin B facilitates the sensitization process 

to allergens like ovalbumin, thereby inducing allergic airway disease. The SEB-mediated effects on 

sensitization to OVA and the consecutive bronchial inflammation and hyperreactivity appeared to be 

CD4+ cell dependent, and rely on increased DC migration and maturation upon SEB exposure in the 

presence of allergen, in parallel to augmented allergen-specific T cell proliferation. These combined 

pathways result in the allergic asthma phenotype in this mouse model of nasal applied allergen and 

enterotoxin. 
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SURVIVAL VIA AIRWAY EPITHELIAL CELL ACTIVATION 

Wouter Huvenne, Ina Callebaut, Kristien Reekmans, Greet Hens, Sonja Bobic, Mark Jorissen, 

Dominique Bullens, Jan Ceuppens, Claus Bachert, Peter Hellings 

Allergy 2010; 65:1013-20. 

 

ABSTRACT 

Background: Staphylococcus aureus enterotoxin B (SEB) has recently been postulated to be involved 

in the pathology of granulocyte-dominated disease. Studying the immunologic interaction between 

SEB and airway epithelial cells in immortalized cell lines or long term epithelial cell cultures has 

obvious disadvantages. 

Methods: We used a novel technique of freshly isolated and purified human nasal epithelial cells from 

healthy, non-allergic individuals, which were incubated for 24 h without/with SEB at different 

concentrations. Chemokine production was evaluated in the supernatant using Cytometric Bead Array. 

The chemotactic activity of the supernatant was studied in vitro using a Boyden chamber. Survival 

was evaluated with flow cytometry, using propidium iodide to identify dead cells. 

Results: SEB showed a dose-dependent induction of IP-10, MIG, RANTES, MCP-1 and G-CSF 

production by epithelial cells in vitro. The supernatant of epithelial cells had chemotactic activity for 

granulocytes in vitro, which was enhanced in the supernatant of SEB-stimulated epithelial cells. 

Reduced number of propidium iodide positive granulocytes was found in the conditions where 

supernatant of SEB-stimulated epithelial cells was applied. 

Conclusion: Staphylococcus aureus enterotoxin B exerts a direct pro-inflammatory effect on human 

nasal epithelial cells, with induction of chemokine and growth factor release, resulting in the migration 

and prolonged survival of granulocytes in vitro. 
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INTRODUCTION 

Staphylococcus aureus (S. aureus) is a common human pathogen which is often found as part of the 

normal microflora in the nasal cavity. The anterior nares of the nose are the most frequent carriage site 

for S. aureus, although multiple sites can be colonized (e.g. skin, pharynx and perineum)1. 

Colonization with S. aureus may represent a major source of superantigens as a set of toxins are being 

produced including staphylococcal enterotoxins SAEs and toxic shock syndrome toxin-1 (TSST-1) 

which cause food poisoning and toxic shock syndrome respectively2. These toxins activate up to 20% 

of all T cells in the body by binding the human leukocyte antigen (HLA) class II molecules on 

antigen-presenting cells (APCs) and specific V beta regions of the T cell receptor3. Between 50 and 

80% of S. aureus isolates are positive for at least one superantigen gene, and close to 50% of these 

isolates show superantigen production and toxin activity4. The pathophysiologic role of enterotoxin 

producing S. aureus in human disease has recently been recognized. SAEs have immune-modulatory 

and pro-inflammatory effects in several granulocyte-dominated diseases like atopic dermatitis5, 

allergic rhinitis6 and asthma7, nasal polyposis8 or chronic obstructive pulmonary disease (COPD)9. 

Studies have shown a putative role for SAEs in patients suffering from the atopic eczema/dermatitis 

syndrome (AEDS), where colonization with S. aureus is found more frequently (80-100%) compared 

to healthy controls (5-30%)10, and S. aureus isolates secrete identifiable enterotoxins like 

Staphylococcus aureus enterotoxin (SEA), SEB and toxic shock syndrome toxin (TSST)-1. IgE to 

these toxins was found in the serum of 57% of AEDS patients11, indicating immune responses against 

these bacterial products. Moreover, in 25% of allergic rhinitis (AR) patients detectable serum IgE 

levels to SAE are found, whereas this is only found in a minority of non-allergic patients (6.3%). In 

AR, the presence of SAE-specific IgE was associated with the highest titer of total serum IgE6,12. 

Furthermore, SAEs are thought to play a major role in the pathogenesis of nasal polyp (NP) disease, as 

IgE against SEA and SEB has been demonstrated in nasal polyps13 and levels of SAE-specific IgE in 

NP correlated with markers of eosinophil activation and recruitment14. Moreover, in COPD patients a 

significantly elevated IgE to SAE was found, pointing to a possible disease modifying role in COPD, 

similar to that in severe asthma9. 

In murine research, the role of SAEs as disease modifier has been demonstrated by in models of 
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airway disease15, atopic dermatitis16 and food allergy17. In addition, we have previously reported 

aggravation of experimental allergic asthma by application of SEB, characterized by higher IL-4 

production and allergen-specific IgE18. These findings highlight the important pathological 

consequences of SAE exposure, as these superantigens not only cause massive T-cell stimulation, but 

also lead to activation of B-cells and other pro-inflammatory cells like eosinophils, macrophages and 

mast cells19. Moreover, SAEs are known inducers of chemokine production in epithelial cells20. 

The involvement of the epithelium in the pathogenesis of airway disease is increasingly 

acknowledged. The airway epithelium is not only a physiological barrier, but is actively involved in 

the immune response as a major source of inflammatory cytokines and mediators21, relevant to the 

ongoing inflammatory responses dominated, amongst other features, by abundant granulocytes. 

Activated epithelial cells are potent sources of haematopoietic cytokines such as granulocyte(-

macrophage) colony stimulating factor (G(M)-CSF), and chemokines like regulated upon activation 

normal T cell expressed and secreted (RANTES), eotaxin, monokine induced by interferon-γ (MIG), 

interferon-inducible protein-10 (IP-10), interleukin (IL)-822 and monocyte chemoattractant protein 1 

(MCP-1)23. 

Because of the above mentioned association between SAEs and granulocyte-dominated inflammatory 

disease, we have investigated the effect of S. aureus enterotoxin B  – a prototypic staphylococcal 

superantigen – on chemokine production of human nasal epithelial cells (HNEC). Until now, the 

immunologic interaction between SEB and epithelial cells has mostly been studied in immortalized 

cell lines. Here, a novel technique of pure and freshly isolated epithelial cells is being elaborated and 

presented. Furthermore, we investigated the effects of these epithelial derived mediators in vitro in a 

granulocytic chemotaxis and survival assay. 

 

METHODS 

Human nasal epithelial cell isolation procedure 

Nasal inferior turbinates were obtained from patients (n=10) undergoing nasal surgery for non–

mucosal anatomical abnormalities causing nasal obstruction. Exclusion criteria were smoking, 

occupational exposure to irritants, IgE-mediated hypersensitivity to a panel of frequent inhalant 
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allergens demonstrated with a standardized skin prick test, or use of intranasal corticosteroid spray 6 

weeks before the surgery. Inferior turbinates were harvested at the end of the septoplasty or 

rhinoplasty procedure, and immediately placed in a sterile saline solution, washed with saline and 

incubated for 24h at 4°C with 0.1% sterile pronase solution for dissociation of the epithelial cell layer 

(Sigma, Bornem, Belgium, Fig. 2). After 24h, large tissue pieces were removed with a sterile pincet. 

FCS (Sigma) was added to the solution in order to stop the pronase reaction. Cells were washed three 

times in culture medium (HBSS supplemented with 0.05% BSA). Next, supernatant was discarded and 

the pellet was resolved in culture medium, transferred in a cell culture flask and incubated for 90min at 

37°C in order to let fibroblasts attach to the wall.  

 

 

 

 

 

 

 

 

Figure 1: Sagittal view of the lateral nasal wall, with indication of inferior, middle and superior nasal 
turbinate. 
 
In a next step, nasal epithelial cells were negatively selected using MACS cell separation columns 

(Miltenyi, Utrecht, The Netherlands). Therefore, magnetic beads coated with anti-CD45 were added to 

the cell suspension, incubated for 20min and put in a column before transferring the supernatant. This 

procedure was repeated with anti-CD15 coated beads and the supernatant was transferred into a cell 

culture flask. Viability was evaluated using Trypan blue, and May-Grünwald-Giemsa (MGG) staining 

of the cytospins was performed to confirm cell culture purity. This epithelial cell isolation procedure 

using 2 negative selections resulted in an epithelial cell population with 98% purity and viability. 

 

 

Superior nasal turbinate 

Middle nasal turbinate 

Inferior nasal turbinate 
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Evaluation of SEB-induced chemokine secretion 

Pilot studies showed that 3 x 105 Human Nasal Epithelial Cells (HNEC) was the optimal number of 

cells for stimulation studies and analyses of supernatants (data not shown). HNEC were incubated 

with 0.1, 1 or 10 µg of SEB in a total volume of 1mL culture medium for 24h. Incubation with IL-

1beta was used as positive control condition. Supernatant was evaluated for IP-10, G-CSF, GM-CSF, 

MCP-1, MIG, RANTES, Eotaxin-1/2, IL-3, IL-4 and IL-8 using cytometric bead array Flex (BD 

Biosciences, Erembodegem, Belgium) according to the manufacturers’ instructions. Samples were 

acquired with the FACS Array (BD Biosciences). 

Stimulation index was calculated by dividing the values from the experimental conditions (SEB or IL-

1beta) by the respective values from the control condition. 

 

Figure 2:Experimental protocol: Human nasal epithelial cell isolation procedure. Using pronase 
treatment and negative selections, a nasal epithelial cell population with 98% purity and viability was 
obtained. 
 

Granulocyte isolation 

For migration and survival assays on granulocytes in vitro, blood cells were obtained from house dust 

mite allergic donors (n=5) suffering from allergic rhinitis which presented at the Outpatient clinic of 

the Department of Otorhinolaryngology of the University Hospital Leuven, Belgium. Patients with a 
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positive skin prick test to house dust mite allergen (>5 mm – GA²LEN pan-European skin prick test) 

were included in the study for blood sampling. All patients included in this study completed written 

informed consent and the local ethical committee approved the study.   

Blood was obtained and diluted with an equal volume of PBS. Then, 40 mL of this suspension was 

added to 10 mL Lymphoprep (Axis-Shield, Oslo, Norway) and tubes were centrifuged for 30min at 

800 x g. Plasma and peripheral blood mononuclear cells (PBMCs) were discarded and tubes were 

supplemented with an equal volume of Plasmasteril (Bad Homburg, Germany) and PBS. Tubes were 

incubated for 30min at 37°C before centrifuging (10min – 218 x g). The pellet was washed with PBS 

and residual red blood cells were lysed with hypotonic shock. 

 

Granulocyte migration assay 

In order to evaluate the chemotactic activity of SEB-stimulated HNEC supernatant, we used a Boyden 

chamber-based cell migration assay, as reported previously24. Briefly, granulocytes (50µL – 1 x 106 

per mL) from house dust mite allergic donors were placed in the upper compartment and were allowed 

to migrate through 5 µm pore size poly(vinylpyrrolidone)-free (PVPF) polycarbonate filters 

(Nuclepore, Pleasanton, CA) for 45min at 37°C. The lower compartment contained supernatant of 

unstimulated HNEC (SN Medium), SEB-stimulated HNEC (SN SEB) or control medium. IL-8 

(10µg/ml) was used as positive control condition. After 45min incubation, the membrane was 

subjected to MGG staining, and its lower side was evaluated for number of migrated granulocytes, by 

counting 10 high power fields per sample. According to standard morphological criteria of the cell 

nucleus and cytoplasmic granules, cells were further categorized into neutrophilic and eosinophilic 

granulocytes. The chemotactic index was calculated by dividing the number of cells migrated under 

the experimental condition (SN SEB) by the number of cells migrated under control condition (SN 

Medium). A chemotactic index of >2 was considered to be a positive index of chemotaxis. 

 

Granulocyte survival assay 

Granulocytes (2 x 106 cells per mL) were incubated for 24h and 48h with SN Medium, SN SEB or 

Medium. At time of analysis, cells were evaluated with flow cytometry (FACS Array, BD 
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Biosciences), where propidium iodide was used to identify dead cells. Granulocytes were sorted with 

MACS into neutrophils and eosinophils using a CD16 monoclonal antibody (Miltenyi).  

 

Statistical analysis 

Statistical analysis was performed with Medcalc software 9.2.0.1 (F. Schoonjans, Belgium; 

http://www.medcalc.be). All outcome variables were compared using non-parametrical tests. When 

comparisons were made between groups, the Kruskal-Wallis test was used to establish the significant 

inter-group variability. The Mann Whitney-U test was then used for between-group comparison. The 

significance level was set at α = 0.05. Data are expressed as mean with error bars expressing standard 

error of the mean. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: HNEC incubation for 24h with increasing doses of SEB resulted in a significant increase in 
chemokine secretion of IP-10, G-CSF, MCP-1, MIG and RANTES, showing a dose-dependent 
induction. IP-10 (A) and MIG (B) were already increased at the lowest (0.1 µg) SEB concentration, 
whereas G-CSF (C) only raised above control at SEB 1µg. Finally, RANTES (D) and MCP-1 (E) were 
significantly increased just at the highest SEB concentration (10 µg). Incubation with IL-1beta as a 
general pro-inflammatory stimulus resulted in a significant increase in G-CSF (C) and IL-8 (F) 
secretion by nasal epithelial cells. ** p < 0.01 vs. control, *** p < 0.001 vs. control, §§p < 0.01 vs. 
control, §§§p < 0.001 vs. control. 
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RESULTS 

Effect of SEB on human nasal epithelial cells (HNEC) 

HNEC (n=6) incubation for 24h with increasing doses of SEB resulted in a significant increase in 

chemokine secretion of IP-10, G-CSF, MCP-1, MIG and RANTES, showing a dose-dependent 

induction as depicted on Fig. 3 A-F. Interestingly, IP-10 and MIG were already increased at the lowest 

(0.1 µg/mL) SEB concentration, whereas G-CSF only raised above control at SEB 1µg/mL. Finally, 

RANTES and MCP-1 were significantly increased just at the highest SEB concentration (10 µg/ml). 

Incubation with IL-1beta as a general pro-inflammatory stimulus resulted in a significant increase in 

G-CSF and IL-8 secretion by nasal epithelial cells. Levels of eotaxin-1/2 and GM-CSF were below 

detection limit (data not shown). 

 

Figure 4: Boyden chamber-based cell migration assay. Granulocytes from house dust mite allergic 
donors were allowed to migrate through 5 µm pore size poly(vinylpyrrolidone)-free (PVPF) 
polycarbonate filters for 45min at 37°C. At 45min after incubation, the membrane was subjected to 
May-Grünwald-Giemsa staining, and its lower side was evaluated for number of migrated 
granulocytes, by counting 10 high power fields per sample. (A) Control: Granulocytes incubated with 
medium. (B) SN Medium: Granulocytes incubated with supernatant from medium-stimulated epithelial 
cells. (C) SN SEB: Granulocytes incubated with supernatant from SEB –stimulated epithelial cells. 
(magnification x400). 
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Effects of SEB-stimulated epithelial cell mediators on the granulocyte migration in vitro 

A Boyden chamber was utilized for the evaluation of migration of granulocytes in vitro through a 

semipermeable membrane. We evaluated the level of granulocyte migration after 45min incubation 

with supernatant from medium-stimulated (SN Medium) or SEB-stimulated HNEC (SN SEB, n=4) 

and demonstrate that the chemotactic index of SN SEB is significantly higher (2.62 ± 0.30) compared 

to SN Medium which was set to 1 (p < 0.001). 

The supernatant from SEB-stimulated HNEC (SN SEB) appeared to be particularly chemotactically 

active for neutrophils. As shown in Figure 5A, the number of migrated neutrophils was significantly 

higher upon SN SEB incubation (10.0 ± 0.6 cells per field) compared to SN Medium (7.4 ± 0.6 cells 

per field, p < 0.001) and Medium (3.6 ± 0.4, p < 0.001). Interestingly, the supernatant of epithelial 

cells itself (SN Medium) had chemotactic activity for neutrophils (Medium, p < 0.05, Fig. 5A). As 

expected, IL-8 was the most potent chemo-attractant in this assay (18.0 ± 1.8, p < 0.001 vs. Medium). 

Looking to the chemoattraction of eosinophils, we could demonstrate a significant decrease in 

chemotactic activity in SN SEB (4.8 ± 0.4) compared to SN Medium (6.9 ± 0.6, p < 0.01) and Medium 

(9.3 ± 1.1, p < 0.001, Fig. 5B). 

  

 

 
 
 
 
 
 
 
 
 
 
 
Figure 5: (A) Effects of SEB-stimulated epithelial cell mediators on the granulocyte migration in vitro. 
The number of migrated neutrophils was significantly higher upon SN SEB incubation compared to SN 
Medium. Interestingly, control experiments revealed a significantly increased number of migrated 
neutrophils upon SEB incubation, compared to control medium. (B) The chemoattraction of 
eosinophils did not differ upon incubation with SN Medium or SN SEB. Surprisingly, a significant 
lower number of eosinophils was found upon SEB incubation. ** p < 0.01, *** p < 0.001. 
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Effects of SEB stimulated epithelial cell-derived mediators on granulocyte survival in vitro 

Modulation of granulocyte survival by supernatant from SEB-stimulated HNEC (SN SEB) was 

evaluated after 1 and 2 days of co-incubation. As can be appreciated from Fig. 6A, neutrophil survival 

was not significantly altered upon SN SEB incubation after 24h or 48h. However, SN SEB caused a 

significant increase in eosinophil survival after 24h (62.76 ± 9.70 %), compared to medium (30.63 ± 

3.83 % living eosinophils, p < 0.001, Fig. 6B). After 48h incubation with SN SEB 27.99 ± 4.14 % of 

eosinophils were alive, versus 9.90 ± 4.22 % in the Medium group (p < 0.05). Interestingly, at that 

time point SN Medium incubation resulted only in 14.16 ± 1.97 % living eosinophils, which is 

significantly lower compared to SN SEB incubation (p < 0.01, Fig. 6B). 

 

DISCUSSION 

The experimental approach of using freshly isolated and purified epithelial cells from healthy donors 

allowed us to study epithelial cell immunology more accurately compared to the usage of cell lines. 

By means of magnetic cell sorting we obtained a cell population consisting of uncontaminated, naïve 

nasal epithelial cells, in which we could study the effect of exogenous signals. Specifically, the role of 

S. aureus enterotoxin B in the activation of human nasal epithelial cells (HNEC) for chemokine 

secretion with subsequent granulocyte migration and survival was evaluated.  

 

 

 

 

 

 

 
Figure 6: Effects of SEB stimulated epithelial cell-derived mediators on granulocyte survival in vitro. 
(A) Neutrophil survival was not significantly altered upon SN SEB incubation after 24h or 48h. (B) 
However, SN SEB caused a significant increase in eosinophil survival after 24h and 48h. *p < 0.05, 
** p < 0.01, *** p < 0.001. 
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Stimulation of HNEC with SEB has resulted in significantly increased, dose-dependent chemokine 

production of IP-10, G-CSF, MCP-1, MIG and RANTES, as was measured in the supernatant. 

Interestingly, compared to control medium this supernatant was significantly more chemotactically 

active for granulocytes, in particular for neutrophils. Moreover, granulocyte survival analysis revealed 

a significantly prolonged survival of eosinophilic granulocytes, when incubated with supernatant from 

SEB-stimulated HNEC. These results indicate the importance of the epithelium in the orchestration of 

granulocyte-dominated inflammation, and demonstrate the significant role of SEB as disease modifier.   

Previous studies using either SEB or S. aureus itself confirm the role of the innate immune activation 

through epithelial cells secreting cytokines and chemokines, which lead to a secondary influx of 

inflammatory cells23, 25-27. However, this is the first study evaluating the effect of the prototypic 

staphylococcal superantigen SEB on a highly purified human nasal epithelial cell population. 

Interestingly, HNEC are capable of secreting IFNgamma-inducible protein-10 (IP-10) and monokine 

induced by IFNgamma (MIG) upon SEB stimulation. Both chemokines have been shown to be 

functional agonists of CXC chemokine receptor 3 (CXCR3), and they largely act on natural killer 

(NK) cells and activated T cells. However, CXCR3-expression is also found on eosinophils28 and 

neutrophils29, in particular in inflammatory microenvironments. Furthermore, increased levels of 

RANTES and MCP-1 – both chemoattractant for mononuclear cells – after SEB stimulation are in line 

with previous data23, and increased levels of G-CSF – causing granulocyte proliferation and 

differentiation – are reported after S. aureus stimulation of epithelial cells30. 

 

Pretreatment of HNEC with IFNgamma has resulted in increased levels of interleukin 8 (IL-8) upon 

SEB stimulation20. However, we and others25 did not find increased IL8 levels in untreated SEB-

stimulated HNEC. Altogether, these data stress the major role of airway epithelial cells in the immune 

response to SEB, therefore actively participating in the pathogenesis of granulocyte-dominated 

diseases linked to SAEs like asthma, nasal polyposis or allergic rhinitis31. A potential drawback of the 

used approach however, might be the loss of epithelial cell polarization, allowing SEB to reach the 

apical and basal side of epithelial cells equally. 
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The mechanism via which SEB activates HNEC to produce chemokines has been linked to MHC class 

II binding and crosslinking20, although involvement of non MHC class II receptors has also been 

demonstrated26. Moreover, SEB is known to activate antigen presenting cells (APCs) like dendritic 

cells via Toll-like receptor (TLR)2, a receptor which plays an important role in pathogen recognition 

and innate immunity32. Interestingly, these TLRs are also present on nonprofessional antigen 

presenting cells like epithelial cells33. However, we were not able to block SEB-induced chemokine 

secretion in our study using TLR2 or TLR4 mAb (data not shown). The typing and contribution of 

receptors involved in the SEB-induced chemokine secretion therefore clearly merits further 

investigation. 

 

Chemokines present in the supernatant of SEB-stimulated HNEC (SN SEB) were able to increase 

granulocyte chemotaxis, in particular neutrophilic chemotaxis (Fig. 5A), probably due to the increase 

in G-CSF34. Interestingly, eosinophilic chemotaxis was downregulated by SN SEB, a finding possibly 

related to raised levels of MIG, which has a known negative regulatory effect on eosinophil 

recruitment35.  

 

Granulocyte survival has been evaluated upon incubation with SN SEB. Interestingly, only 

eosinophilic survival was significantly increased after 1 and 2 days. Although we could not 

demonstrate an increase in individual factors directly linked to eosinophil survival like GM-CSF36 or 

eotaxin1/237, it is tempting to speculate that their synergistic effect has contributed to the observed 

increase in survival, as was shown by others37. Alternatively, other yet unidentified factors, which are 

also under the tight control of the nuclear factor (NF)-κB complex, could be responsible for the 

observed effects38. Surprisingly, neutrophilic survival was not altered by SN SEB, although epithelial 

derived G-CSF has been described to prolong neutrophil survival in cystic fibrosis (CF) airways30. 

Altogether, we could speculate that the presence of neutrophils in SEB-mediated granulocyte-

dominated disease might be due to increased chemotaxis, whereas increased number of eosinophilic 

granulocytes could be linked to augmented survival. However, this hypothesis needs to be confirmed 

in further studies.  
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In summary, we hereby demonstrate that stimulation of human nasal epithelial cells with the 

superantigen SEB leads to production of cytokines and chemokines, important in the chemotaxis of T 

cells, monocytes and granulocytes. Moreover, in vitro analysis of these factors confirmed their 

involvement in the pathogenesis of granulocyte-dominated disease, as they significantly increased 

granulocyte migration and survival. These findings contribute to the understanding of SAE modulation 

of airway disease, and stress the opportunity to target epithelial cells for therapeutic intervention.  
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DIFFERENT REGULATION OF CIGARETTE SMOKE INDUCED INFLAMMATION IN UPPER VERSUS 

LOWER AIRWAYS  

Wouter Huvenne, Claudina Pérez-Novo, Lara Derycke, Natalie De Ruyck, Olga Krysko, 

Tania Maes, Nele Pauwels, Lander Robays, Ken R. Bracke, Guy Joos, Guy Brusselle, Claus 

Bachert 

Respir Res 2010; 11:100. 

 

ABSTRACT  

Background: Cigarette smoke (CS) is known to initiate a cascade of mediator release and 

accumulation of immune and inflammatory cells in the lower airways. We investigated and compared 

the effects of CS on upper and lower airways, in a mouse model of subacute and chronic CS exposure. 

Methods: C57BL/6 mice were whole-body exposed to mainstream CS or air, for 2, 4 and 24 weeks. 

Bronchoalveolar lavage fluid (BAL) was obtained and tissue cryosections from nasal turbinates were 

stained for neutrophils and T cells. Furthermore, we evaluated GCP-2, KC, MCP-1, MIP-3α, RORc, 

IL-17, FoxP3, and TGF-β1 in nasal turbinates and lungs by RT-PCR. 

Results: In both upper and lower airways, subacute CS-exposure induced the expression of GCP-2, 

MCP-1, MIP-3α and resulted in a neutrophilic influx. However, after chronic CS-exposure, there was 

a significant downregulation of inflammation in the upper airways, while on the contrary, lower 

airway inflammation remained present. Whereas nasal FoxP3 mRNA levels already increased after 2 

weeks, lung FoxP3 mRNA increased only after 4 weeks, suggesting that mechanisms to suppress 

inflammation occur earlier and are more efficient in nose than in lungs. 

Conclusions: Altogether, these data demonstrate that CS induced inflammation may be differently 

regulated in the upper versus lower airways in mice. Furthermore, these data may help to identify new 

therapeutic targets in this disease model. 
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INTRODUCTION 

Tobacco smoking can induce bronchial inflammation and structural changes, and is one of the major 

causes of Chronic Obstructive Pulmonary Disease (COPD), which is characterized by a slowly 

progressive development of airflow limitation that is not fully reversible1. There is growing evidence 

that the disease process is not confined to the lower airways, which is perhaps not surprising given the 

fact that the entire airway is exposed to tobacco smoke. Epidemiological data suggest that 75% of the 

COPD patients have concomitant nasal symptoms and more than 1/3 of patients with sinusitis also 

have lower airway symptoms of asthma or COPD2. These arguments stress the significant sinonasal 

inflammation in patients with lower airway complaints, beyond the scope of allergic inflammation3-5. 

We know from human and murine research that both inflammatory and structural cells actively 

participate in the inflammatory response that characterizes COPD. An accumulation of inflammatory 

cells such as neutrophils, macrophages, dendritic cells and CD8+ T lymphocytes is seen, although the 

cellular and molecular pathways behind this increased cellular influx are still incompletely unraveled. 

However, CC-chemokines (MIP-1alpha, MIP-3alpha, RANTES and MCP-1)6 and CXC-chemokines 

(IL-8, GCP-2)7, binding to their respective receptors play an important role. Moreover, the role of 

lymphocytes in the development of COPD is demonstrated by the fact that chronic cigarette smoke 

(CS) exposure leads to an increase in peribronchial lymphoid follicles in both mice and humans8, 9, 

although the importance of these lymphoid follicles remains unclear10. 

COPD is frequently considered a Th1/Tc1 disease11, although recent developments in cytokine biology 

imply that COPD might be better explained by the pro-inflammatory T helper 17 (Th17) phenotype12, 

therefore suggesting a role of the interleukin (IL)-17 family members in COPD13. Alternatively, T 

regulatory cells which are widely investigated in the pathogenesis of asthma, might be involved in a 

possible autoimmune base of COPD14. These cells, expressing the transcription factor FoxP3, are 

involved in the interplay between lymphocyte subpopulations in order to control the cigarette smoke 

induced inflammation, including the activity of autoreactive lymphocytes15.  

Compared to lungs, the direct effect of CS on upper airways is less extensively studied, although the 

link between upper and lower airway smoke induced inflammation is illustrated by increased nasal IL-
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8 concentrations correlating with IL-8 in sputum of COPD patients2. Moreover, these patients report a 

high prevalence of nasal symptoms and sinusitis, and nasal and bronchial inflammation coexist in 

smokers and is characterized by infiltration of CD8+ T lymphocytes16. In upper airways, CS may act 

as a local irritant, influencing the local inflammatory process. It has been described that nicotine has 

an effect on the nasal epithelium, regulating physiological processes and influencing cell transport 

systems17, although an individual variability in response has been reported. CS can increase nasal 

resistance18, and the direct use of tobacco could also be linked to an increased prevalence of sinusitis19. 

In addition, a correlation between duration of secondhand smoke exposure and sinusitis has recently 

been described20. 

Also in mice, obligatory nose breathers, little knowledge has been gathered on the effects of CS on 

upper airways, especially in comparison to the lower airways. We therefore aimed to investigate the 

inflammatory response of the upper airways in a murine model of COPD in comparison to the lower 

airway response after exposure to mainstream cigarette smoke. 

 

METHODS 

Mouse model of Cigarette Smoke exposure 

Groups of 8 Male C57BL/6 mice, 6–8-week old were exposed to the tobacco smoke of five cigarettes 

(Reference Cigarette 2R4F without filter; University of Kentucky, Lexington, KY, USA) four times 

per day with 30 min smoke-free intervals as described previously6. The animals were exposed to 

mainstream cigarette smoke by whole body exposure, 5 days per week for 2 weeks, 4 weeks and 24 

weeks. The control groups (8 age-matched male C57BL/6 mice) were exposed to air. All experimental 

procedures were approved by the local ethical committee for animal experiments (Faculty of Medicine 

and Health Sciences, Ghent University). 
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Bronchoalveolar lavage 

Twenty-four hours after the last exposure, mice were weighed and sacrificed with an overdose of 

pentobarbital (Sanofi-Synthelabo), and a tracheal cannula was inserted. A total of 3 x 300 µl, followed 

by 3 x 1 ml of HBSS, free of ionized calcium and magnesium, but supplemented with 0.05 mM 

sodium EDTA, was instilled via the tracheal cannula and recovered by gentle manual aspiration. The 

six lavage fractions were pooled and centrifuged, and the cell pellet was washed twice and finally 

resuspended in 1 ml of HBSS. A total cell count was performed in a Bürcker chamber, and the 

differential cell counts (on at least 400 cells) were performed on cytocentrifuged preparations using 

standard morphologic criteria after May-Grünwald-Giemsa staining. 

 

Quantitative real time PCR  

RNA and cDNA synthesis 

Total RNA was isolated from mouse inferior turbinate or lung tissue by using the Aurum Total RNA 

Mini Kit (BioRad Laboratories, CA, USA). Single stranded cDNA was then synthesized from 2 µg of 

total RNA with the iScript cDNA Synthesis Kit (BioRad Laboratories, CA, USA). Primer sequences 

are listed in table 1.  

 

PCR amplifications using SYBR Green 

PCR reactions contained 30 ng cDNA (total RNA equivalent) of each sample in duplicate, 1x SYBR 

Green I Master mix (BioRad laboratories, CA, USA) and 250 nM of specific primer pairs (table 1) in a 

final volume of 20 µl. Real time amplifications were performed on the iQ5 Real-Time PCR Detection 

System (BioRad laboratories, CA, USA) with a protocol consisting of 1 cycle at 95°C for 10 minutes 

followed by 40 cycles at 95°C for 30 seconds and at 62°C for 1 minute. At the end of each PCR run, a 

melting curve analysis to control for unspecific amplification was performed by increasing the 

temperature by 0.4ºC for 10 seconds starting from 62ºC until 95°C. 
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PCR amplifications using TaqMan probes 

PCR reactions contained 30 ng cDNA (total RNA equivalent) of each sample in duplicate, 1x TaqMan 

Master mix (BioRad laboratories, CA, USA), 100 nM of TaqMan probe and 250 nM of specific 

primer pairs (table 1) in a final volume of 20 µl. Real time amplifications were performed on the iQ5 

Real-Time PCR Detection System (BioRad laboratories, CA, USA) with a protocol consisting of 1 

cycle at 95°C for 90 seconds followed by 50 cycles at 95°C for 15 seconds, 62°C for 1 minute and 

72°C for 1 minute.   

 

PCR amplifications using Assay on demand kits 

PCR reactions contained 30 ng cDNA (total RNA equivalent) of each sample in duplicate and 1x 

TaqMan Master mix (BioRad laboratories, CA, USA). Primers were obtained from Applied 

Biosystems inventoried TaqMan Gene Expression Assay (table 1). Real time amplifications were 

performed on the iQ5 Real-Time PCR Detection System (BioRad laboratories, CA, USA) with a 

protocol consisting of 1 cycle at 95°C for 90 seconds followed by 50 cycles at 95°C for 15 seconds 

and 60°C for 1 minute.   

 

Normalization and data analysis 

Quantification cycles (Cq) values were selected and analyzed using the iQ5 Real-Time PCR software 

(BioRad laboratories, CA, USA). Then, the relative expression of  each gene was calculated with the 

qBase software (version 1.3.5, University of Ghent, Belgium)21. Results (expressed as relative 

expression units / 30 ng cDNA) were then normalized to the quantities of gene beta-actin (ACTB) to 

correct for transcription and amplification variations among samples. 
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Table 1: Primer sequences used for real time PCR amplification 
 
 Forward primer (5' → 3') Reverse primer (5'→ 3') TaqMan probe (5'-6-FAM →TAMRA - 3')  Size GA number 

ACTB AGAGGGAAATCGTGCGTGAC CAATAGTGATGACCTGGCCGT CACTGCCGCATCCTCTTCCTCCC 139 NM_007393 

GCP-2 GCTGCCCCTTCCTCAGTCAT CACCGTAGGGCACTGTGGA  129 NM_009141 

MCP-1 CTTCTGGGCCTGCTGTTCA CCAGCCTACTCATTGGGATCA CTCAGCCAGATGCAGTTAACGCCCC 126 NM_011 333 

MIP-3α CCAGGCAGAAGCAAGCAACT TCGGCCATCTGTCTTGTGAA TGTTGCCTCTCGTACATACAGACGCCA 71 AJ222694 1 

TGF-β1 TGACGTCACTGGAGTTGTACGG GGTTCATGTCATGGATGGTGC TTCAGCGCTCACTGCTCTTGTGACAG 170 M13177 

RORc: Applied Biosystems – TaqMan Gene Expression Assays - Mm00441139_m1 
KC (CXCL1): Applied Biosystems – TaqMan Gene Expression Assays - Mm00433859_m1 
FoxP3: Applied Biosystems – TaqMan Gene Expression Assays - Mm00475156_m1 
IL-17: Applied Biosystems – TaqMan Gene Expression Assays - Mm00439619_m1 
 

 

Immunohistochemistry 

Presence of lymphoid follicles 

To evaluate the presence of lymphoid infiltrates in lung tissues, sections obtained from formalin-fixed, 

paraffin-embedded lung lobes were subjected to an immunohistological CD3/B220 double-staining, as 

described previously6.  

 

Inferior turbinate stainings 

After removal of the palate, nasal turbinates were obtained, snap frozen and stored at -80°C until 

analysis. Cryosections were prepared (3-5 µm) and mounted on SuperFrost Plus glass slides (Menzel 

Glaeser, Braunschweig, Germany), packed in aluminum paper and stored at -20°C until staining.  

Sections were fixed in acetone and incubated with peroxidase blocking reagent. Then, primary 

biotinylated antibodies (anti-CD3 (DakoCytomation, CA, USA) and neutrophil 7/4 clone (Serotec, 

Düsseldorf, Germany)) or isotype control were added, followed by anti-rabbit polymer HRP 

(DakoCytomation). Finally, ready-to-use AEC+ substrate-chromogen-solution was added, sections 

were counterstained with hematoxylin and coverslips were mounted with aquatex. Slides were 

evaluated by light microscopy (Olympus CX40) at magnification of x400 for the number of positive 

cells per field, and this was done for the entire surface of the tissue cryosection by two independent 

observers (on average, 12.43 ± 1.00 number of fields were counted per mouse). 
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Nasal epithelial cell isolation 

Nasal epithelial cells were isolated in order to determine their contribution to the overall nasal FoxP3 

expression. Therefore, pooled inferior turbinates were incubated in collagenase/DNAse solution for 

30min at 37°C. Then, mechanical digestion was performed, and supernatant was discarded. The pellet 

was washed and incubated for 30min at 4°C with Fc blocking solution. Next, Dynabeads (sheep anti-

mouse IgG, Dynal, Invitrogen, Belgium) coated with anti-pan cytokeratin (catalog nr C 1801, Sigma, 

Belgium) were for 30min at 4°C during gentle rotation and tubes were placed in the magnet for 2min. 

The two fractions containing epithelial and subepithelial cells respectively, were resuspended in 75µl 

RNA lysis buffer (Qiagen, Venlo, The Netherlands) in separate tubes. Finally, tubes containing 

subepithelial cells were centrifuged, and tubes containing epithelial cells were put again in the magnet. 

Supernatant was taken to store at -80°C.  

In order to isolate total RNA from nasal epithelial cells and subepithelial cells, we used the RNeasy 

Micro kit (Qiagen) according to the manufacturer’s specifications. Single stranded cDNA was then 

synthesized from 2 µg of total RNA with the iScript cDNA Synthesis Kit (BioRad Laboratories). 

 

Statistical analysis 

Statistical analysis was performed with the Medcalc software 9.2.0.1 (F. Schoonjans, Belgium, 

http://www.medcalc.be). Data are expressed as mean with error bars expressing standard error of the 

mean. All outcome variables were compared using non-parametrical tests (Kruskal-Wallis; Mann 

Whitney U test for unpaired data). The significance level was set at α = 0.05. A Bonferoni correction 

was used in case of multiple statistical comparisons. 
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RESULTS 

BAL fluid analysis 

2-wk, 4-wk and 24-wk CS exposure caused a significant increase in the absolute numbers of total 

cells, lymphocytes and neutrophils in the BAL fluid (table 2). Significant increase in alveolar 

macrophages was seen at 4-wk and 24-wk CS exposure. 

 
2-wk Air 2-wk Smoke 4-wk Air 4-wk Smoke 24-wk Air 24-wk Smoke 

Total cell number, (x 10³) 602.5 ± 41.20 797.53 ± 74.96* 410.00 ± 144.12 1046.00 ± 154.98† 432.50 ± 37.97 845.00 ± 114.25† 

Neutrophils, (x10³) 0.00 ± 0.00 62.59 ± 10.47‡ 0.00 ± 0.00 200.23 ± 50.97‡ 0.16 ± 0.16 99.75 ± 30.04† 

Macrophages, (x10³) 598.55 ± 38.90 723.66 ± 61.59 408.71 ± 142.94 797.55 ± 103.16* 429.46 ± 37.56 719.10 ± 80.27† 

Lymphocytes, (x10³) 2.49 ± 066 8.32 ± 1.42† 1.29 ± 1.21 47.82 ± 8.19‡ 2.46 ± 0.32 26.15 ± 8.42† 

Eosinophils, (x10³) 1.46 ± 1.46 2.96 ± 1.49 0.00 ± 0.00 0.39 ± 0.26 0.27 ± 0.18 0.00 ± 0.00 

 

 

 

 

Immunohistochemistry 

CS induced neutrophilic inflammation in upper airways 

We analyzed the presence of neutrophils in the nasal turbinate tissue of subacute (2-wk and 4-wk) and 

chronic (24-wk) CS exposed mice by immunohistochemistry, evaluating the average number of 

neutrophils per high power field, for the entire section. The increase in neutrophils was seen only after 

4-wk CS exposure, compared to air exposed littermates (Fig. 1B). Interestingly, the number of 

neutrophils in the nasal turbinate decreased when the mice were chronically (24-wk) exposed, 

resulting in a significant lower amount of neutrophils per field in the CS exposed group compared to 

the air exposed group (Fig. 1C). 

Table 2: Bronchoalveolar lavage analysis. Subacute (4-wk) and chronic (24-wk) CS exposure caused 
a significant increase in the absolute numbers of total cells, alveolar macrophages, lymphocytes and 
neutrophils in the BAL fluid, compared to air exposed littermates. Values are reported as mean ± 
SEM; n = 8 mice/group, *p < 0.05 versus Air, †p < 0.01 versus Air, ‡p < 0.001 versus Air. 
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Figure 1: Average number of neutrophils in nasal turbinate sections. Increase in number of 
neutrophils after CS exposure was not seen after 2-wk, compared to air exposed littermates (Fig. 1A), 
but only after 4-wk (Fig. 1B). Interestingly, the number of neutrophils in the nasal turbinate decreased 
when the mice were chronically (24-wk) exposed, resulting in a significant lower amount of 
neutrophils per field in the CS exposed group compared to the air exposed group (Fig. 1C). n = 8 
mice/group, * p < 0.05. 

 

Scattered CD3+ T cells in nasal turbinates versus (CS-induced) lymphoid follicles in lungs 

The presence of peribronchial lymphoid follicles has been shown both in mice after chronic CS 

exposure and patients with severe COPD. We could demonstrate the presence of these lymphoid 

follicles in lungs after chronic CS exposure, using a CD3/B220 double staining (Fig. 2A). Lymphoid 

aggregates, absent in the bronchovascular lung regions of air-exposed mice, were strongly induced 

upon chronic CS exposure. In nasal turbinate tissue on the other hand, the number of CD3+ cells did 

not differ at any time point when air and smoke exposed mice were compared (Fig. 3). Moreover, 

CD3+ cells were not organized in lymphoid follicles – in contrast to findings in lower airways upon 

chronic exposure – but were scattered throughout the tissue section (Fig. 2B). 
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Figure 3: CD3+ staining. Nasal turbinate sections were evaluated for the presence of CD3+ cells, 
within lymphoid follicles. Number of CD3+ cells per field did not differ between air and CS exposed 
group at any time point (Fig. 3 A-C). n = 8 mice/group. 
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Figure 2: CD3+ cells. Lymphoid follicles were demonstrated in lungs after chronic CS exposure, 
using CD3(brown)/B220(blue) doublestaining (Fig. 2A, x200). In nose however, no increased number 
of CD3+ cells in inferior turbinate, or lymphoid follicle neogenesis was found at that time point (Fig. 
2B, x400). 
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Real time Quantitative PCR analysis 

In order to evaluate the immune response after CS exposure in detail, we analyzed a panel of genes. 

Neutrophilic chemoattraction was evaluated by measurements of Granulocyte Chemotactic Protein 

(GCP)-2 and keratinocyte chemoattractant (KC), which is the mouse homologue of IL-8. 

Because of the role of chemokines like MCP-1 and MIP-3α in the recruitment of inflammatory cells 

like dendritic cells, monocytes or T lymphocytes6 after CS-exposure, these parameters were also 

included in the panel. Finally, FoxP3 and TGF-β1 were evaluated, in order to estimate the effect on T 

regulatory cells, and RORc and IL-17 as parameters for Th17 behavior. These parameters are 

increasingly studied in the perspective of CS-induced inflammation, as mentioned in the introduction. 

  

Gene expression analysis in nasal turbinate 

Neutrophilic chemoattraction related genes 

In the nasal turbinates, no significant difference could be found in GCP-2 and KC levels after 2-wk CS 

exposure (Fig. 4A). Continued exposure (4-wk) however resulted in significant up-regulation of GCP-

2 representing the neutrophilic chemoattractant signal in the CS group compared to the air group, since 

levels of KC did not differ between groups (Fig. 4B). This increase in GCP-2 expression disappeared 

at chronic (24-wk) CS exposure; moreover KC levels were significant lower in the CS group at that 

time point (Fig. 4C). 

 

Monocyte/Macrophage chemoattraction related genes 

We also found an interesting kinetics in the levels of MCP-1 and MIP-3α. At 2-wk, a significant up-

regulation of MCP-1 mRNA in the CS-exposed group and a similar tendency for MIP-3α was seen (p 

= 0.08, Fig. 4A). This increase disappeared on continued exposure at 4-wk, both for MCP-1 and MIP-

3α (Fig. 4B). Moreover, a significant lower expression of MCP-1 and a similar tendency for MIP-3α 

were noticed at chronic (24-wk) CS exposure (Fig. 4C). 
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Figure 4: Gene expression analysis in nasal turbinate. 2-wk CS exposure resulted in increased levels 
of MCP-1 and FoxP3. Levels of RORc and subsequent IL-17 were significantly down-regulated at this 
time point (Fig. 4A). At 4-wk, GCP-2, but not KC, levels are increased. Moreover, FoxP3 is 
significantly higher in the CS exposed group (Fig. 4B). 24-wk CS exposure results in significant down-
regulation of nasal MCP-1, MIP-3α an TGF-β1 (Fig. 4C). n = 8 mice/group, *p < 0.05, ** p < 0.01, 
*** p < 0.001. 
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T cell related genes 

Interestingly, FoxP3 was already significantly increased after 2-wk and 4-wk CS exposure – although 

this was not the case for TGF-β1 – but not after 24-wk. 

Levels of RORc and subsequent IL-17 were significantly down-regulated after 2-wk CS exposure 

(Fig. 4A), but this finding disappeared when CS exposure was prolonged. 

 

Gene expression analysis in lung 

Neutrophilic chemoattraction related genes 

Significant up-regulation of both GCP-2 and KC in the CS group remained consistent throughout the 

entire study, representing the neutrophilic chemoattractant signal triggered by CS exposure (Fig. 5 A-

C).  

 

Monocyte/Macrophage chemoattraction related genes 

Both MCP-1 and MIP-3α were significantly increased in the CS group at every time point (except for 

MIP-3α at 24wk, p = 0.05) (Fig. 5 A-C). 

 

T cell related genes 

In contrast to the nose, 2-wk CS exposure did not result in increased FoxP3 expression in the lungs 

(Fig. 5A). At 4-wk and 24-wk however, significantly higher FoxP3 levels were found in the CS 

exposed groups although we could only find higher TGF-β1 levels at 4-wk (Fig. 5B and C). 

Although levels of RORc did not differ between experimental groups, IL-17 mRNA levels were 

significantly increased at 2-wk and 4-wk CS exposure, correlating with the neutrophilic 

chemoattraction signals. 
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Figure 5: Gene expression analysis in lung. Pulmonary levels of GCP-2, KC, MCP-1, MIP-3α and IL-
17, but not FoxP3 were significantly increased after 2-wk CS exposure (Fig. 5A). After 4-wk CS 
exposure, all markers of neutrophilic and monocyte/macrophage chemoattraction are significantly 
increased, as well as FoxP3 and TGF-β1 (Fig. 5B). Chronic CS exposure caused an increase in levels 
of GCP-2, KC, MCP-1 and FoxP3 levels (MIP-3α p = 0.05) (Fig. 5C). n = 8 mice/group, *p < 0.05, 
** p < 0.01, *** p < 0.001. 
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Analysis of FoxP3 expression in epithelium vs. subepithelium of nasal turbinates 

Recently, FoxP3 expression in epithelial cells has been described22. In order to determine the source of 

FoxP3 expression in whole nasal turbinate, we isolated nasal epithelial cells and subepithelial cells by 

magnetic cell sorting. The mRNA expression of FoxP3 however was not altered in the nasal 

epithelium after 4-wk CS exposure (Air 0.3453 ± 0.0084 versus Smoke 0.2894 ± 0.0084 normalized 

relative expression units). On the contrary, we demonstrated a nearly 5-fold increase in subepithelial 

FoxP3 expression in nasal turbinates upon 4-wk CS exposure, possibly due to infiltrating T regulatory 

cells (Air 1.0432 ± 0.0723 versus Smoke 5.1730 ± 0.9323). 

 

DISCUSSION 

In this study we aimed to investigate the effects of cigarette smoke (CS) on upper airways and lower 

airways, in a mouse model of subacute and chronic CS exposure. We here demonstrate for the first 

time that the inflammatory response upon CS exposure clearly differs between nose and lungs in mice. 

The nature and kinetics of both the neutrophil and monocyte/macrophage inflammation differ in both 

airways compartments. This indicates the involvement of different regulatory mechanisms, which is 

reflected by the observed differences in FoxP3 increase after CS exposure. The suppressive 

mechanisms arise earlier and appear to be more efficient in nose than in lungs. Although increased 

levels of MCP-1, MIP-3α and GCP-2 are found both in nose and lungs after subacute CS exposure, the 

neutrophilic influx and increase in neutrophilic chemoattraction signals are transient in upper airways 

while they remain constant in lower airways. Consequently, chronic upper airway CS exposure results 

in a non-inflammatory status with a significant downregulation of inflammation, while lower airway 

inflammation is clearly present and ongoing.  

Neutrophilic inflammation in the nasal turbinate tissue was not present after 2-wk CS exposure, likely 

due to the absence of a neutrophilic chemoattraction signal, as both GCP-2 and KC levels were not 

increased in the CS group. However, prolonged (4-wk) exposure caused a significant GCP-2 increase 

in the CS group, which correlates with the immunohistochemistry, showing a higher number of 
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neutrophils per field in the CS group compared to the air group, but only after 4-wk. To our surprise, 

chronic (24-wk) CS exposure did not cause a further increase in neutrophil accumulation in the nasal 

turbinate tissue. Moreover, GCP-2 levels and KC levels in the CS group did not differ and were 

significantly down regulated from controls respectively. This was again confirmed by IHC, where we 

found a significant decrease in the number of neutrophils per field in the CS group compared to 

controls. This may be interpreted as a clear sign of down-regulation of the neutrophilic inflammatory 

long-term response in the nasal turbinates. Evaluation of neutrophilic inflammation in upper airways 

was done in nasal turbinate tissue, because nasal lavage did not yield sufficient cells allowing a 

reliable cell differentiation. As a consequence, compartmentalization of inflammation in both upper 

and lower airways may influence the interpretation of these findings. Indeed, cigarette smoke causes 

an  increase of neutrophil numbers in BAL (mouse studies), or sputum (human studies), whereas its 

effect in lung tissue or biopsies is less pronounced. 

Our findings on neutrophilic inflammation in upper airways are in sharp contrast with the data 

obtained from experiments in the lung, where CS exposure resulted in a significant increase in both 

GCP-2 and KC at all time points, accounting for to the observed influx of neutrophils in the BAL fluid 

of these mice23.  

We have shown a remarkable change over time in the nasal mRNA MCP-1 levels of CS exposed mice, 

showing an initial increase, followed by a significant decrease in MCP-1 levels in the nasal turbinate 

upon chronic exposure. In the lungs of these mice however, we detected a consistent increase in MCP-

1 levels in CS exposed mice on each time point23. This is another sign of the different inflammatory 

response to CS in the upper airway. 

The role of pro-inflammatory T helper 17 phenotype in the pathogenesis of COPD is increasingly 

studied, and it is suggested that COPD might be better explained by the Th17 phenotype12. These 

Th17 cells, which require the up-regulation of the orphan nuclear receptor RORgammat (encoded by 

RORc) for differentiation from naïve T cells24, account for the production of several members of the 

IL-17 family of cytokines, which have proven abilities to recruit and activate neutrophils25. Here, nasal 
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mRNA levels of RORc and IL-17 in the nose were significantly down-regulated after 2-wk CS 

exposure, but not upon longer (4-wk and 24-wk) exposure. In lungs however, the response of Th17 

cells appears to be opposite, as 2-wk and 4-wk CS exposure resulted in a significant up-regulation of 

IL-17, and chronic (24-wk) exposure showed a similar tendency. These differences in IL-17 levels 

between nose and lungs, can explain the observed differences in neutrophil accumulation, as described 

above. 

Duration 2-wk 4-wk 24-wk 

Nose 

↑ MCP-1 
↑ FoxP3 
↓ RORc 
↓ IL 17 

↑ GCP-2 
↑ FoxP3 

↓ KC 
↓ MCP-1 
↓ TGF-β1 

Lung 

↑ GCP-2 
↑ KC 
↑ MCP-1 
↑ MIP-3α 
↑ IL 17 

↑ GCP-2 
↑ KC 
↑ MCP-1 
↑ MIP-3α 
↑ IL 17 
↑ FoxP3 
↑ TGF-β1 

↑ GCP-2 
↑ KC 
↑ MCP-1 
↑ FoxP3 

 
Table 3: Effect of CS-exposure in nose and lungs at 2-wk, 4-wk and 24-wk. 

 

T regulatory cells expressing FoxP3 are thought to play a role in controlling CS induced 

inflammation15, 26, amongst others via the immunomodulatory cytokine TGF-β127. In nose, FoxP3 

mRNA expression was increased already after 2-wk, and was mainly found – at least at 4-wk – in the 

subepithelium, possibly due to invading Tregs expressing FoxP3. In lungs, FoxP3 was only increased 

after 4-wk, which is in line with increased Tregs in lungs after CS exposure in humans14. Interestingly, 

these infiltrating Tregs in lungs are thought to have a weak functionality, as they are unable to control 

inflammation in lungs15. It is tempting to speculate that Tregs act early and adequately in nose to 

suppress CS-induced inflammation, but that they invade later and have weaker functionality in lungs, 

allowing inflammation to persist. Alternatively, the CS exposure of the nose might be higher in mice – 

obligatory nose-breathing animals – compared to lungs, allowing tolerazation or change in cell 

127



Chapter 5: Different regulation of CS-induced inflammation in upper vs. lower airways 

populations to occur earlier. Indeed, upon 24-wk CS exposure the number of neutrophils shows a 

decreasing tendency compared to 4-wk CS exposed mice. 

Although in vivo cigarette smoke-exposed mice can offer valuable information on several aspects of 

the pathogenesis of COPD, such as the time course of upper and lower airway inflammation, there are 

also limitations that need to be taken into account. Firstly, a number of anatomical and physiological 

differences exist between the respiratory tract of mice and humans. For example, mice are obligate 

nose breathers that filter tobacco smoke inefficiently, and they have less branching of the bronchial 

tree. Furthermore, the profile of inflammatory mediators is also slightly different in the mouse. And 

lastly, there is no mouse model that mimics all the hallmarks of COPD pathology, including 

exacerbations and extrathoracic manifestations. 

Another possible limitation to this study is the fact that not only T cells are able to produce either IL-

17, TGF-β or FoxP3, but a number of other cells like neutrophils or epithelial cells can do so. 

Furthermore, the suppressive capacity of the FoxP3 producing Tregs in upper airways stills remains to 

be elucidated. 

Although the inflammatory answer of nose and lungs is clearly different upon CS exposure, possible 

confounding factors might influence the data interpretation in this model. Above, we have described 

the issue of compartmentalization of inflammation, and the relative dosage exposure, with higher 

deposition of CS in the nose vs. lungs. Furthermore, physiologic temporal changes are seen in the 

inflammatory readouts: levels of inflammatory cells and mediators of unexposed control mice vary 

over time, as shown in Fig. 3-5. By using age-matched control mice in our experiments, we have 

corrected for these physiologic temporal changes. Altogether, the above mentioned limitations of this 

model remain to be elucidated.  
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CONCLUSIONS 

In conclusion, we have demonstrated that cigarette smoke-induced inflammation differs between nose 

and lungs in this mouse model. After CS exposure, inflammatory markers were upregulated in lungs at 

all time points. However, this was not the case in the nose, where particularly upon chronic CS 

exposure, nasal inflammatory markers were significantly lower than the control (air) conditions. It is 

possible that infiltrating FoxP3 expressing Tregs might account for these observed differences, 

although further investigation is necessary to identify possible differences in their suppressive 

functionality in both airway compartments. 
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ABSTRACT 

Background: Cigarette smoke (CS) is a major risk factor for the development of COPD. CS exposure 

is associated with an increased risk of bacterial colonization and respiratory tract infection, because of 

suppressed antibacterial activities of the immune system and delayed clearance of microbial agents 

from the lungs. Colonization with Staphylococcus aureus results in release of virulent enterotoxins, 

with superantigen activity which causes T cell activation.  

Objective: To study the effect of Staphylococcs aureus enterotoxin B (SEB) on CS-induced 

inflammation, in a mouse model of COPD. 

Methods: C57/Bl6 mice were exposed to CS or air for 4 weeks (5 cigarettes/exposure, 4x/day, 5 

days/week). Endonasal SEB (10µg/ml) or saline was concomitantly applied starting from week 3, on 

alternate days. 24h after the last CS and SEB exposure, mice were sacrificed and bronchoalveolar 

lavage (BAL) fluid and lung tissue were collected. 

Results: Combined exposure to CS and SEB resulted in a raised number of lymphocytes and 

neutrophils in BAL, as well as increased numbers of CD8+ T lymphocytes and granulocytes in lung 

tissue, compared to sole CS or SEB exposure. Moreover, concomitant CS/SEB exposure induced both 

IL-13 mRNA expression in lungs and goblet cell hyperplasia in the airway wall. In addition, combined 
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CS/SEB exposure stimulated the formation of dense, organized aggregates of B- and T- lymphocytes 

in lungs, as well as significant higher CXCL-13 (protein, mRNA) and CCL19 (mRNA) levels in lungs. 

Conclusions: Combined CS and SEB exposure aggravates CS-induced inflammation in mice, 

suggesting that S. aureus could influence the pathogenesis of COPD. 

 

INTRODUCTION 

Cigarette smoking is associated with an increased risk of bacterial colonization and respiratory tract 

infection, because of suppressed antibacterial activities of the immune system and delayed clearance 

of microbial agents from the lungs1. This is particular relevant in COPD patients, where bacterial 

colonization in the lower respiratory tract has been shown2. These bacteria are implicated both in 

stable COPD and during exacerbations, where most commonly pneumococci, Haemophilus influenza, 

Moraxella catarrhalis and Staphylococcus aureus (S. aureus) are found3. Interestingly, colonization 

with S. aureus may embody a major source of superantigens as a set of toxins are being produced 

including S. aureus enterotoxins (SAEs)4. These toxins activate up to 20% of all T cells in the body by 

binding the human leukocyte antigen (HLA) class II molecules on antigen-presenting cells (APCs) and 

specific V beta regions of the T cell receptor5. Between 50 and 80% of S. aureus isolates are positive 

for at least one superantigen gene, and close to 50% of these isolates show superantigen production 

and toxin activity6. 

During the last few years, it became increasingly clear that SAEs are known to modify airway 

disease7, like allergic rhinitis8, nasal polyposis9 and asthma10. Furthermore, studies have shown a 

putative role for SAEs in patients suffering from the atopic eczema/dermatitis syndrome (AEDS), 

where colonization with S. aureus is found more frequently (80-100%) compared to healthy controls 

(5-30%)11, and S. aureus isolates secrete identifiable enterotoxins like Staphylococcus aureus 

enterotoxin A and B (SEA, SEB) and toxic shock syndrome toxin (TSST)-1. Until now, evidence for 

SAE involvement in the pathogenesis of upper airway disease like chronic rhinosinusitis with nasal 

polyposis (CRSwNP),  arises from the finding that IgE against SEA and SEB has been demonstrated 
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in nasal polyps12 and levels of SAE-specific IgE in NP correlated with markers of eosinophil 

activation and recruitment13. Similarly, in COPD patients, a significantly elevated IgE to SAE was 

found, pointing to a possible disease modifying role in COPD, similar to that in severe asthma14. 

Moreover, we have recently demonstrated the pro-inflammatory effect of SEB on human nasal 

epithelial cells in vitro, resulting in augmented granulocyte migration and survival15.  

In murine research, the role of SAEs as inducer and modifier of disease has been demonstrated in 

models of airway disease16, 17, allergic asthma18, atopic dermatitis19 and food allergy20. These findings 

highlight the important pathological consequences of SAE exposure, as these superantigens not only 

cause massive T-cell stimulation, but also lead to activation of B-cells and other pro-inflammatory 

cells like neutrophils, eosinophils, macrophages and mast cells21. 

To date, the exact pathomechanisms of COPD are not yet elucidated. Cigarette smoking is a primary 

risk factor for the development of COPD, but only 20% of smokers actually develop the disease, 

suggesting that genetic predisposition plays a role22. However, understanding the impact of toxin-

producing bacteria on cigarette-smoke induced inflammation might provide novel insights into the 

pathogenesis of smoking-related disease such as COPD. Therefore, we investigated the effects of 

concomitant Staphylococcus aureus Enterotoxin B (SEB) application on a well established mouse 

model of cigarette-smoke (CS) induced inflammation23. We evaluated inflammatory cells and their 

mediators in bronchoalveolar lavage (BAL) fluid and lung tissue, looked at systemic effects by 

measuring serum immunoglobulins, and evaluated goblet cell hyperplasia and lymphoid neogenesis. 

 

METHODS 

Experimental protocol 

Male C57BL/6 mice (n=8), 6–8-week old were purchased from Charles River Laboratories (Brussels, 

Belgium). Mice were exposed to the tobacco smoke of five cigarettes (Reference Cigarette 2R4F 

without filter, University of Kentucky, Lexington, KY, USA) four times per day with 30 min smoke-
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free intervals24. The animals were exposed to mainstream cigarette smoke (CS) by whole body 

exposure, 5 days per week for 4 weeks. Control groups (8 age-matched male C57BL/6 mice) were 

exposed to air. Starting from day 14 of the CS exposure, mice received concomitant endonasal 

application of SEB (50 µL – 10 µg/mL - Sigma-Aldrich, LPS content below detection limit) or Saline, 

on alternate days. For this, mice were slightly anaesthetized with isoflurane, and six applications were 

performed as depicted in Fig. 1. All experimental procedures were approved by the local ethical 

committee for animal experiments (Faculty of Medicine and Health Sciences, Ghent University). The 

results section contains data from one representative experiment out of three independent experiments. 

 

Figure 1: Experimental protocol. Male C57BL/6 mice (n=8) were exposed to the tobacco smoke of 
five cigarettes four times per day with 30 min smoke-free intervals. Controls were exposed to air. 
Starting from day 14 of the CS exposure, mice received concomitant endonasal application of SEB (50 
µL – 10 µg/mL) or saline, on alternate days. 

 

Bronchoalveolar lavage and cytospins 

Twenty-four hours after the last cigarette smoke (CS) exposure and endonasal application, mice were 

sacrificed by a lethal dose of pentobarbital (Sanofi-Synthelabo). A cannula was inserted in the trachea, 

and BAL was performed by instillation of 3 x 300 µl of HBSS supplemented with BSA for cytokine 

measurements. Three additional instillations with 1 ml of HBSS plus EDTA were performed to 

achieve maximal recovery of BAL cells. A total cell count was performed in a Bürker chamber. 

Approximately fifty thousand BAL cells were processed for cytospins and were stained with May-

Grünwald-Giemsa for differential cell counting. The remaining cells were used for FACS analysis. 
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Preparation of lung single-cell suspensions 

Blood was collected via retro-orbital bleeding. Then, the pulmonary and systemic circulation was 

rinsed to remove contaminating blood cells. Lungs were taken and digested as described previously24. 

Briefly, minced lung pieces were incubated with 1 mg/ml collagenase and 20 µg/ml DNase I for 45 

min at 37°C. Red blood cells were lysed using ammonium chloride buffer. Finally, cell suspensions 

were filtered through a 50-µm nylon mesh to remove undigested organ fragments. 

 

Flow cytometry 

All staining procedures were conducted in calcium- and magnesium-free PBS containing 10 mM 

EDTA, 1% BSA (Dade Behring), and 0.1% sodium azide. Cells were preincubated with anti-

CD16/CD32 (2.4G2) to block Fc receptors. Antibodies used to identify mouse DC populations were 

anti-CD11c-allophycocyanin (APC; HL3) and anti-I-Ab-phycoerythrin (PE; AF6-120.1). The 

following mAbs were used to stain mouse T-cell subpopulations: anti-CD4-fluorescein isothiocyanate 

(FITC; GK1.5), anti-CD8-FITC (53-6.7), anti-CD3-APC (145-2C11) and anti-CD69-PE (H1.2F3). + 

anti-Gr-1-PE (RB6-8C5). 

As a last step before analysis, cells were incubated with 7-aminoactinomycin D (or viaprobe; BD 

Pharmingen) for dead cell exclusion. All labeling reactions were performed on ice in FACS-EDTA 

buffer. Flow cytometry data acquisition was performed on a FACScaliburTM running CellQuestTM 

software (BD Biosciences, San Jose, CA, USA).  

 

Measurement of Immunoglobulins 

Retro-orbital blood was drawn for measurement of total IgE, IgG, IgM and IgA with ELISA. 

Commercially available ELISA kits were used to determine serum and BAL titers of IgG 

(ZeptoMetrix, Buffalo, NY, USA), IgM (ZeptoMetrix, Buffalo, NY, USA) and IgA (Alpha Diagnostic 

International, San Antonio, TX, USA).  For the measurement of total IgE, a two-side in-house 
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sandwich ELISA was used, with two monoclonal rat anti-mouse IgE antibodies reacting with different 

epitopes on the epsilon heavy chain (H. Bazin, Experimental Immunology Unit, UCL, Brussels, 

Belgium). The second antibody was biotinylated and detected colorimetrically after adding 

horseradish peroxidase-streptavidine conjugate.  Absorbance values, read at 492 nm (Labsystems 

Multiscan RC, Labsystems b.v., Brussels, Belgium) were converted to concentrations in serum and 

BAL fluid by comparison with a standard curve obtainded with mouse IgE of known concentration (H. 

Bazin) 

 

Goblet cell analysis 

Left lung was fixed in 4% paraformaldehyde and embedded in paraffin.  Transversal sections of 3 µm 

were stained with periodic acid-Schiff (PAS) to identify goblet cells. Quantitative measurements of 

goblet cells were performed in the airways with a perimeter of basement membrane (Pbm) ranging 

from 800 to 2000 µm. Results are expressed as the number of goblet cells per millimeter of basement 

membrane. 

 

Morphometric quantification of lymphoid neogenesis 

To evaluate the presence of lymphoid infiltrates in lung tissues, sections obtained from formalin-fixed, 

paraffin-embedded lung lobes were subjected to an immunohistological CD3/B220 double-staining as 

described previously24. Infiltrates in the proximity of airways and blood vessels were counted. 

Accumulations of ≥50 cells were defined as lymphoid aggregates. Counts were normalized for the 

number of bronchovascular bundles per lung section. 
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RT-PCR analysis 

Total lung RNA was extracted with the Rneasy Mini kit (Qiagen, Hilden, Germany). Expression of 

CXCL-13, CCL19 and IL-13 mRNA relative to HPRT mRNA25, were performed with Assay-on-

demand Gene Expression Products (Applied Biosystems, Foster City, CA, USA).  Real-time RT PCR 

for CCL21-leucine and CCL21-serine started from 25 ng of cDNA.  Primers and FAM/TAMRA 

probes were synthesized on demand (Sigma-Proligo).  Primer/probe sequences and PCR conditions 

were performed as described previously26, 27. 

 

Protein measurement in BAL 

IL-13 and CXCL13 protein levels in BAL SN were determined using a commercially available ELISA 

(R&D Systems, Abingdon, UK). Cytometric Bead Array (BD Biosciences, San Jose, CA, USA) was 

used to detect the cytokines KC, MCP-1, IL-17A and IFN-gamma in the supernatant of BAL fluid. 

 

Statistical analysis 

Reported values are expressed as mean ± SEM. Statistical analysis was performed with SPSS software 

(version 16.0) using nonparametric tests (Kruskal-Wallis and Mann-Whitney U test). The significance 

level was set at α = 0.05. (*p < 0.05; ** p < 0.01; *** p < 0.001). 

 

RESULTS 

SEB aggravates the CS-induced pulmonary inflammation 

To evaluate the effects of Staphylococcus aureus enterotoxin B (SEB) on cigarette smoke (CS)-

induced pulmonary inflammation, C57Bl6 mice were exposed to CS for 4 weeks, with a concomitant 

SEB exposure during the last 2 weeks (Fig. 1). 
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Figure 2: BAL fluid analysis. In BAL fluid, sole endonasal SEB application and sole CS-exposure 
resulted in increased numbers of total cells, alveolar macrophages, dendritic cells (DCs), lymphocytes 
and neutrophils, compared to air/saline exposed animals. Interestingly, the combination of CS 
exposure and SEB significantly increased BAL neutrophil numbers compared to sole CS or SEB 
exposure. Also BAL lymphocyte numbers in smoke-exposed mice were significantly increased upon 
SEB application. Results are expressed as mean±SEM, n=8 animals/group, *p<0.05, ** p<0.01, 
*** p<0.001. 

 

In BAL fluid, sole endonasal SEB application and sole CS-exposure resulted in increased numbers of 

total cells, alveolar macrophages, dendritic cells (DCs), lymphocytes and neutrophils, compared to 

air/saline exposed animals (Fig. 2). However, these increases in cell numbers were much more 

pronounced upon SEB application compared to CS-exposure. Also a modest eosinophilic 

inflammation was observed in the SEB-exposed groups.  

Interestingly, the combination of CS exposure and SEB significantly increased BAL neutrophil 

numbers compared to sole CS or SEB exposure (Fig. 2). Also BAL lymphocyte numbers in smoke-

exposed mice were significantly increased upon SEB application.  

In lung single cell suspensions, SEB solely induced an increase in DCs, CD3+ T cells and 

macrophages, whereas CS exposure caused increased DCs and CD3+ T cells in lung tissue (Fig. 3). 
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Interestingly, combined CS and SEB exposure caused a further increase in CD3+ T cells, and more 

specifically CD8+ T-cells, compared to CS or SEB alone (Fig. 3). Also DC, CD4+ T-cells and GR1+ 

cells tended to be higher in the combined CS/SEB group versus sole CS or SEB application.  

 

 

 

 

 

 

 

Figure 3: Lung cell differentiation. In lung single cell suspensions, SEB solely induced an increase in 
DCs, CD3+ T cells and macrophages, whereas CS exposure caused increased DCs and CD3+ T cells 
in lung tissue. Interestingly, combined CS and SEB exposure caused a further increase in CD3+ T 
cells, and more specifically CD8+ T-cells, compared to CS or SEB alone. Results are expressed as 
mean±SEM, n=8 animals/group, *p<0.05, ** p<0.01, *** p<0.001. 

 

Increased IL-17A in BAL upon combined SEB and CS exposure 

As previously described24, 4-wk CS-exposure clearly induced high levels of KC (mouse homolog for 

IL-8) and MCP-1 in BAL (Fig. 4). In contrast sole SEB application induced a modest increase in KC, 

and very low levels of IFN-gamma and IL-17A. Whereas the CS-induced KC and MCP-1 levels in 

BAL were not affected by an additional SEB exposure, the combined CS and SEB exposure did 

induce IL-17A levels in BAL, compared to single CS or SEB exposure (Fig. 4). Also IFN-gamma 

levels tended to be highest in the combined CS/SEB group. 

mRNA levels of MIP-3a were increased after both CS or SEB exposure. Combined CS/SEB exposure 

did not cause a further MIP-3a increase (Fig. 4). 
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Figure 4: Protein measurement in BAL. 4-wk CS-exposure clearly induced high levels of KC and 
MCP-1 in BAL. In contrast, sole SEB application induced a modest increase in KC, and very low 
levels of IFN-gamma and IL-17A. Combined CS and SEB exposure significantly increased IL-17A 
levels in BAL, compared to single CS or SEB exposure. Also IFN-gamma levels tended to be highest in 
the combined CS/SEB group. Levels of MIP-3a mRNA were significantly increased after both CS or 
SEB exposure, but combined CS/SEB exposure did not cause a further MIP-3a increase. Results are 
expressed as mean±SEM, n=8 animals/group, *p<0.05, **p<0.01, ***p<0.001. 
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Figure 5: BAL immunoglobulin levels. In BAL, CS exposure induced a small but significant 
increase in IgA. Both IgA and IgM levels in BAL were increased upon SEB-exposure. IgE in BAL 
was below the detection limit. Results are expressed as mean±SEM, n=8 animals/group, *p<0.05, 
**p<0.01, ***p<0.001. 
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SEB induces IgA and IgM levels in BAL 

Systemic effects of either CS or SEB, or both were evaluated in serum, but no significant differences 

in total IgG, IgM, IgA or IgE levels were detected between the experimental groups. In BAL, CS 

exposure induced a small but significant increase in IgA. Both IgA and IgM levels in BAL were 

increased upon SEB-exposure  (Fig. 5). IgE in BAL was below the detection limit, IgG was not 

measured in BAL. 

 

Combined CS/SEB exposure affects epithelial remodeling 

Epithelial remodeling was evaluated by counting the number of PAS-positive goblet cells per 

millimeter of basement membrane. A strong tendency towards increased numbers of goblet cells in the 

CS/SEB mice was observed, compared to all other conditions (Fig. 6A,B). This finding correlated 

nicely with a significant increase in IL-13 mRNA expression in total lung in CS/SEB mice (Fig. 6C). 

 

Combined CS/SEB induces the formation of dense lymphoid aggregates in lung tissue 

Previously, our group has demonstrated increased lymphoid neogenesis after 6 months of CS-

exposure25. As earlier shown in the CS-model, subacute CS-exposure as such did not result in 

lymphoid neogenesis. Interestingly however, already after 4-wk CS-exposure, dense, organized 

lymphoid aggregates could be demonstrated in the combined CS/SEB group whereas air/SEB mice 

displayed mainly loose, non-organized lymphoid aggregates (Fig. 7).  

Since CXCL13, CCL19 and CCL21 are chemokines involved in the homeostatic trafficking of 

leukocytes, mainly lymphocytes, to the secondary and tertiary lymphoid tissues, their expression was 

also evaluated in this model. The increase in dense lymphoid aggregates in CS/SEB mice correlated 

nicely with significant increases in CXCL13 (protein levels in BAL fluid, mRNA levels in total lung) 

and CCL19 (mRNA levels) expression in CS/SEB mice compared to all other groups (Fig. 8). CCL21 

mRNA levels (both isoforms CCL21-Ser and CCL21-Leu) decreased upon CS exposure, confirming 
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previous findings of CCL21 downregulation upon subacute CS exposure26 and decreased even further 

in the CS/SEB group. Intriguingly, the CCL21 mRNA levels of both isoforms tended to increase upon 

sole SEB exposure. 

 

Figure 6: Epithelial remodeling. A strong tendency towards increased numbers of goblet cells in the 
CS/SEB mice was observed, compared to all other conditions. This finding collated nicely with a 
significant increase in IL-13 mRNA expression in total lung in CS/SEB mice. Results are expressed as 
mean±SEM, n=8 animals/group, *p<0.05, ** p<0.01, *** p<0.001. 
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DISCUSSION 

We hereby describe a novel mouse model of combined Staphylococcus aureus enterotoxin B (SEB) 

application and cigarette smoke exposure, which results in a significant aggravation of key features of 

CS-induced pulmonary inflammation, such as neutrophils and CD8+ T cells in BAL and lung. 

Furthermore, levels of IL-17A in BAL were significantly increased upon concomitant SEB and CS 

exposure, compared to sole exposures of SEB or CS. In addition, tendencies of increased goblet cell 

hyperplasia, IL-13 mRNA expression and lymphoid neogenesis in smoke/SEB mice have been 

demonstrated, as well as increased expression of the relevant chemokines CXCL13 and CCL19. 

Altogether, these findings point to a possible disease-modifying role for SEB in CS-induced 

inflammation in this mouse model of subacute CS exposure. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Evaluation of lymphoid aggregates in lung tissue. Subacute CS-exposure as such did not 
result in lymphoid neogenesis. Interestingly however, already after 4-wk CS-exposure, dense, 
organized lymphoid aggregates could be demonstrated in the combined CS/SEB group whereas 
air/SEB mice displayed mainly loose, non-organized lymphoid aggregates. Results are expressed 
as mean, n=8 animals/group, *p<0.05, **p<0.01, ***p<0.001. 
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Increasing evidence from human and murine research suggests that Staphylococcus aureus enterotoxin 

B is able to aggravate underlying disease. Moreover, SEB itself is also able to induce inflammation, 

depending on the dosage and timing of the experimental protocol16, 19. Interestingly, these findings are 

not confined to SEB, as other staphylococcal superantigens demonstrate similar effects upon mucosal 

contact28,29. In line with previously reported findings, in our model sole endonasal SEB application 

caused an increase in total BAL cell number, lymphocytes and neutrophils16. Moreover, we could 

demonstrate raised numbers of macrophages and dendritic cells, a finding previously reported after S. 

aureus enterotoxin A exposure28,29. In the latter studies however, the authors could not demonstrate 

increased eosinophils, which was the case in our model. The superantigen effect of SEB caused the 

expected lymphocyte accumulation in BAL, which appeared to be non-specific, as both CD4+ and 

CD8+ T cells were increased. These data stress the potency of staphylococcal superantigens of 

initiating a massive immune response. 

Concomitant CS/SEB exposure lead to a remarkable increase in neutrophil number, compared to CS 

or SEB exposure alone. Although the findings for neutrophils in lung (measured with granulocyte 

marker GR-1) were less convincing than in BAL, the combined CS/SEB group showed the highest 

number of GR-1+ cells. Interestingly, also the CD8+ T cell fraction in lung single cell suspensions, 

was significantly upregulated when smoke and SEB were combined. The potential clinical relevance 

of increased neutrophil and CD8+ T-cell numbers lays in the fact that neutrophilic inflammation in the 

airways in smokers correlates with an accelerated decline in lung function30, and increased T-cell 

numbers correlate with the amount of alveolar destruction and the severity of airflow obstruction31. 
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We confirm an increased MIP-3a expression in lungs after CS exposure leading to an accumulation of 

dendritic cells in this model24. Interestingly, this increase in MIP-3a is also seen after SEB exposure, 

with raised DCs in BAL and airway parenchyma in these groups.  

As previously demonstrated in the subacute CS-model, we have observed an increase in levels of KC, 

MCP-1 and IFN-gamma after 4-wk CS exposure24, explaining the accumulation of inflammatory cells 

in BAL and lung. Sole SEB application on the other hand resulted in raised levels of KC, IFN-gamma 

and IL-17A, but not MCP-1. Interestingly, the combined exposure of smoke and SEB further 

Figure 8: Chemokines involved in the homeostatic trafficking of leukocytes. The increase in dense 
lymphoid aggregates in CS/SEB mice correlated nicely with significant increases in CXCL13 (protein 
levels in BAL fluid, mRNA levels in total lung) and CCL19 (mRNA levels) expression in CS/SEB mice 
compared to all other groups. CCL21 mRNA levels (both isoforms CCL21-Ser and CCL21-Leu) 
decreased upon CS exposure, and decreased even further in the CS/SEB group. Intriguingly, the 
CCL21 mRNA levels of both isoforms tended to increase upon sole SEB exposure. Results are 
expressed as mean±SEM, n=8 animals/group, *p<0.05, **p<0.01, ***p<0.001. 
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increased the IL-17A levels, which might explain the exacerbated BAL neutrophilia in CS/SEB mice. 

Indeed, IL-17 is known to be important in neutrophil maturation, migration and function in the lung 

tissue and airways. Furthermore, IL-17 induction of neutrophil activation and migration is important in 

defense against organisms infecting the lung32. Interestingly, IL-17 can also induce eosinophilic 

accumulation, in particular circumstances33. 

IL-17 is normally produced by CD4+ T cells, although it might also arise from CD8+ T cells and in 

some cases even from macrophages, neutrophils or eosinophils34, as a necessary step in the normal 

immunity against bacterial infections in the airways. However, IL-17 has been linked to unfavorable 

outcome to infection, in particular in the presence of IFN-gamma35, resulting a high inflammatory 

pathology and tissue destruction. Increasing evidence dedicates a role to exaggerated recruitment and 

activation of neutrophils in the clinical course of airway diseases like COPD. Therefore, it is tempting 

to speculate on a role for SEB in the induction of IL-17 release, leading to the aggravation of cigarette 

smoke-induced inflammation, with increased number and activation of neutrophils, which causes 

amplification of tissue destruction and subsequent disease progression.  

In addition, we could observe already after 4-wks an increase in the number of dense lymphoid 

aggregates in CS/SEB mice, linked to increased levels of CXCL13 and CCL19, which are attractants 

for B- and T-cells respectively. Moreover, it has been described that the respective receptors for these 

chemokines – CXCR5 and CCR7 – are also expressed on Th17 cells migrating into inflamed tissue36, 

indicating a potential contribution of IL17-producing Th17 cells in this model of early COPD. The 

finding that lymphoid aggregates and the chemokines responsible for their neogenesis and 

organization25 are already upregulated after 4-wk CS/SEB exposure, stresses the clinical relevance of 

this novel model of combined CS and enterotoxin exposure. 

Staphylococcal superantigens are able to cause massive polyclonal T and B cell proliferation. Upon 

local application, as is done in this model, this leads to the mucosal synthesis of immunoglobulins, 

explaining the observed increase in BAL IgA and IgM. In humans, it is thought that continuous 
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microbial stimulation leads to B cell turnover and plasma cell formation in nasal polyp disease, 

leading to an overproduction of immunoglobulins37. 

In this mouse model of early stage COPD with goblet cell hyperplasia and increased number of 

lymphoid follicles, endonasal SEB application has resulted in augmented CS-induced lower airway 

inflammation. CS and subsequent bacterial colonization are, amongst others, factors believed to 

determine both progression of COPD, as well as the frequency and severity of COPD exacerbations38. 

Therefore, mouse models of CS and bacterial co-exposure have been used in the past, mainly using 

Haemophilus influenzae39.  Bacterial colonization and infection is rare in lower airways, but not in 

upper airways. Local carriage of enterotoxin-producing S. aureus in the nasal cavity is common, 

although multiple sites can be colonized (e.g. skin, pharynx and perineum)40. These toxins, like toxic 

shock syndrome toxin-1 (TSST-1), are known superantigens causing systemic diseases like food 

poisoning and toxic shock syndrome 4. In nasal polyp disease, these toxins are believed to drive the 

local immunoglobulin production in response to enterotoxin-producing Staphylococcus aureus. 

 Usage of a single toxin instead of S. aureus in this model is both a strength and a limitation, since it 

simplifies the interpretation on one hand, but is not the real life situation on the other hand. Another 

limitation is that we cannot rule out endotoxin related effects in our model, although the LPS content 

of our SEB was below detection limit. In addition, SEB on itself has resulted in pronounced 

inflammation in BAL and lungs, as it is a known superantigen. Finally, another possible limitation of 

this model is the short term (4-wk) CS exposure, whereas COPD is a chronic disease. 

Despite these limitations, altogether our findings indicate the importance of bacterial toxins present in 

the upper airways, affecting lower airway inflammation. The possible disease-modifying role for 

SAEs in COPD that has been described in humans in the past14, combined with our findings stress the 

potential role of airway colonizing and toxin-producing Staphylococcus aureus, in the 

pathophysiology of COPD3. 
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DISCUSSION 

Enterotoxin-producing Staphylococcus aureus are one of the most intensively studied pathogens in 

relation to inflammatory airway disease. The ubiquitous nature of this bacteria and its ability to secrete 

potent exotoxins, explain the fact that staphylococcal enterotoxins are possibly involved in the 

aggravation or modulation of numerous inflammatory conditions. Starting from the initial observations 

in chronic upper airway disease, where SEs are known modulators of CRSwNP disease, we have 

developed new mouse models and in vitro models, in which we have demonstrated that the prototypic 

staphylococcal enterotoxin B is able to initiate pronounced immune activation, leading to clinically 

significant disease. This proof of concept clearly dedicates an important role for staphylococcal 

enterotoxins in general, and SEB in particular, in the pathogenesis of airway disease. 

 

SEB FACILITATES ALLERGIC SENSITIZATION 

In chapter 3 we have investigated whether the immunostimulatory signal provided by SEB, is able to 

overcome immunological tolerance, which is the normal immune answer upon contact of the airway 

with an allergen. In collaboration with P. Holt we started from an observation in humans that in a 

cohort of 1380 14-year old teenagers, levels of SE-specific IgE were significantly higher in atopic 

individuals compared to non-atopics1. Moreover, SE-specific IgE was an independent risk factor for 

asthma and bronchial hyperreactivity (BHR) amongst these atopics. SEs may therefore play a role in 

allergic sensitization, and the development of BHR. This hypothesis was tested in a mouse model of 

repeated endonasal application of SEB, combined with the commonly used allergen OVA. Increasing 

data confirms on the role of microbial stimuli as adjuvant activity of microbial stimuli became recently 

available2, 3. These findings confirm our hypothesis that SEB is able to break primary tolerance to 

inhaled allergen4, possibly involving CD98 expression on nasal epithelial cells5. 

Concomitant endonasal application of OVA and enterotoxin B resulted in an immune response to an 

otherwise inert allergen, characterized by the production of OVA-specific IgE, increased production of 

IL-4, IL-5 and IL-13, bronchial influx of eosinophils and development of BHR. Moreover, these 
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findings can be explained by the increase in DC migration and maturation observed in these mice, 

which occur in parallel to the SEB-mediated augmentation of allergen-specific T cell proliferation. 

This mouse model displays several interesting features mimicking more closely the human situation of 

allergic sensitization. First of all, both SEB and allergen are applied endonasally, which is the natural 

way of airway mucosal contact with these substances. Mouse models of allergic asthma, however 

classically use intraperitoneal injections with artificial Th2-inducing stimuli or adjuvants such as 

aluminium hydroxide to obtain allergic sensitization. Secondly, the combination of both the allergen 

and the enterotoxin appeared to be critical to induce sensitization and features of allergic asthma. 

Neither substance could induce these features on itself, which is indeed the case in the human 

situation, where airway contact with allergens normally results in tolerance. Thirdly, the presence of S. 

aureus in the upper airways has been demonstrated before6, serving as a possible reservoir for SE 

exposure to the airways. Testing of normal adolescent sera indeed reveals widespread seroconversion 

to many of the common staphylococcal SAgs, indicating that exposure to a range of strains begins 

very early in life. Altogether, these findings strongly indicate a role for SEs in the development of 

allergic sensitization to common inhaled allergens.  

Perspectives 

In parallel with the demonstration of the capacity of SEB to break immune tolerance and cause 

sensitization to the allergen OVA in Balb/c mice, we showed that other enterotoxins of the 

Staphyloccus aureus were not capable of inducing similar immune effects. It may well be that other 

staphylococcal toxins can induce sensitization to OVA in difference mouse strains with another 

genetic repertoire like TCR VB isotypes or TLR expression profiles. In addition, toxins of other 

bacteria like Streptococcus, Yersinia, … or viruses may be involved in the immune responses to OVA, 

and can help in understanding the pathophysiology of sensitization and chronic airway inflammation. 

Furthermore, the pivotal role of dendritic cells in this model cannot be underestimated. As SEB is 

known not only to bind on MHC class receptors, but also on Toll-like receptors, the specific role of 

these receptors on the antigen presenting cell must be elucidated. The role of the specific DC subsets 
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involved in the facilitation of allergic sensitization in this model will be investigated. Testing whether 

other, more relevant allergens like grass pollen or house dust mite also result in sensitization upon 

concomitant application with SEB, will confirm the clinical relevance of this model. Finally, SEB 

might be able to break the secondary tolerance, which establishes in mouse models of allergic asthma 

after repeated allergen challenge. This repeated challenge results in the establishment of a state of 

inhalational tolerance, which can be delayed upon concomitant cigarette smoke exposure7. As SEB is 

able to break the primary tolerance in our model, it might also be able to achieve similar results.  

 

SEB-INDUCED CHEMOKINES AND GRANULOCYTE MIGRATION AND SURVIVAL 

Functioning as superantigens, SEs cause massive T and B cell stimulation. Other cell types however 

are also activated upon superantigenic contact: eosinophils, macrophages, mast cells, dendritic cells 

and epithelial cells. Mostly, these cells act as accessory cells for T or B cell activation, although direct 

activation of these pro-inflammatory cells is also possible. In this study, we evaluated the effect of 

SEB on human nasal epithelial cells. The epithelium is increasingly acknowledged as an important 

player in the pathogenesis of inflammatory airway disease, like CRSwNP as demonstrated recently8. 

The airway epithelium is not only a physiological barrier, but actively participates in the inflammatory 

response, because it is a major source of inflammatory cytokines and mediators. The fact that SEs are 

secreted from S. aureus which resides in this epithelium, contributes to the clinical relevance of this 

question.  

The innate immune activation which was achieved by applying the prototypic superantigen SEB, was 

characterized by increased levels of IP-10, MIG, G-CSF, RANTES and MCP-1. These data stress the 

important role of the epithelium in chemokine production after contact with SEB, therefore actively 

participating in the pathogenesis of inflammatory diseases. Recently, investigators have demonstrated 

increase in IL-19 release by nasal epithelial cells from CRSwNP patients, indicating the importance of 

the TLR4/MyD88 pathway after microbial encouter8. 
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Interestingly, in our studies the supernatant containing the epithelial secreted chemokines, 

significantly altered granulocyte biology. Augmented migration and survival of granulocytes was 

induced upon co-incubation of this supernatant. As epidemiological data suggest a role for SEs in 

granulocyte-dominated disease like atopic dermatitis, allergic rhinitis, asthma, nasal polyposis or 

COPD, our data might contribute to the understanding of the granulocyte biology in these diseases. 

The mechanism via which SEB switches on the epithelium to release chemokines, has been shown to 

rely on both MHC II receptors as well as non-MHC II receptors. Furthermore, SEB can bind Toll-like 

receptors, which are also present on epithelial cells. In this model however, we were not able to 

suppress SEB-induced epithelial cell activation using anti-TLR2/4 mAbs. 

Perspectives 

Mechanistically, the role of TLRs in the initiation of SEB-induced inflammation clearly merits further 

investigation. The pathway via which SEB activates the epithelial cells to secrete chemokines will be 

further investigated, in order to identify possible therapeutical targets. Furthermore, this novel model 

of freshly isolated nasal epithelial cells can be used to study the interaction of the epithelium with 

other agents, like allergens, pollutants, viruses, etc. This will provide further insight in the specific role 

of the epithelium in the pathogenesis of specific inflammatory airway diseases, and may contribute to 

the development of new therapeutic strategies using specific monoclonal antibodies in order to prevent 

the initiation of SEB-induced inflammation. 
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REGULATION OF INFLAMMATION IN UPPER VS LOWER AIRWAYS 

In a mouse model of subacute and chronic cigarette smoke (CS) exposure, which is described in 

chapter 5, we have investigated the regulation of inflammation in upper and lower airways. The 

findings of this model were relevant for the development of the protocol used in the experiments in 

chapter 6. Until now, little data has been published on the inflammatory response of the upper airways 

upon CS exposure, especially in comparison to the lower airways. However, human data suggest that 

75% of the COPD patients have concomitant nasal symptoms and more than 1/3 of patients with 

sinusitis also have lower airway symptoms of asthma or COPD. Moreover, the link between upper and 

lower airway smoke induced inflammation is illustrated by increased nasal IL-8 concentrations 

correlating with IL-8 in sputum of COPD patients. In addition, these patients report a high prevalence 

of nasal symptoms and sinusitis, and nasal and bronchial inflammation coexist in smokers and is 

characterized by infiltration of CD8+ T lymphocytes9, 10. In this mouse model, we have demonstrated 

Figure 1 : Summary of the effects of SEB on nasal epithelial cells (left), with chemokine secretion 
causing augmented granulocyte migration and survival. Combined OVA/SEB exposure (right) 
resulted in DC migration and maturation, T and B cell activation and key features of allergic 
sensitization like bronchial hyperreactivity, eosinophilia and OVAsIgE secretion. 
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that cigarette-smoke induced inflammation differs between nose and lungs. After CS exposure, 

inflammatory markers were upregulated in lungs at all time points. However, this was not the case in 

the nose, where particularly upon chronic CS exposure nasal inflammatory markers were significantly 

lower than the control (air) conditions. These findings are recently confirmed in the human situation, 

where authors demonstrate a divergent response in nasal vs. bronchial epithelial cells after CS extract 

exposure11. Interest in the behavior of upper airways after CS exposure is growing, in particular in the 

context of chronic infectious disease12. Other investigators evaluate upper airway inflammation after 

CS exposure in the scope of sudden infant death syndrome13, indicating the important contribution of 

the upper airways in the inflammatory answer of the respiratory tract after CS exposure. 

The nature and kinetics of both the neutrophil and monocyte/macrophage inflammation are clearly 

different in both airways compartments. This indicates the involvement of different regulatory 

mechanisms, which is reflected by the observed differences in FoxP3 increase after CS exposure. The 

suppressive mechanisms arise earlier and appear to be more efficient in nose than in lungs. Although 

increased levels of MCP-1, MIP-3α and GCP-2 are found both in nose and lungs after subacute CS 

exposure, the neutrophilic influx and increase in neutrophilic chemoattraction signals are transient in 

upper airways while they remain constant in lower airways. Consequently, chronic upper airway CS 

exposure results in a non-inflammatory status with a significant downregulation of inflammation, 

while lower airway inflammation is clearly present and ongoing. The regulation of the CS-induced 

inflammation was assessed in both airway compartments by measuring levels of FoxP3 mRNA. This 

is a marker for regulatory T cells, which are thought to play a role in controlling CS induced 

inflammation. In nose, we have demonstrated a fast and pronounced increase in FoxP3, mirroring a 

fast and adequate control of inflammation. In lungs however, FoxP3 increase occurred later and 

appeared to be inadequate, as inflammatory markers are increased despite high levels of T regulatory 

cells. Interestingly, in humans the functionality of infiltrating Tregs in lungs after CS exposure is 

thought to be weak14. It is tempting to speculate that Tregs act early and adequately in the nose to 

suppress CS-induced inflammation, but invade later and have weaker functionality in lungs, allowing 

inflammation to persist. 
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Perspectives 

The differences in regulation of inflammation between upper and lower airways are possibly due to 

differences in functionality in Tregs in both airway compartments. Further studies actually 

demonstrating these differences in Treg functionality could confirm this interesting hypothesis. 

Therefore, Tregs isolated from inferior turbinates can be co-incubated with naïve T cells, in order to 

study the suppressive capacity of these nasal Tregs. As a proof of concept, this suppressive capacity 

can be compared to the suppressive capacity of the pulmonary Tregs after CS-exposure. In addition, 

transfer of Tregs from upper to lower airways in order to suppress lower airway inflammation could 

prove the principle of adequate control of inflammation. Furthermore, unraveling the mechanisms 

responsible for adequate disease control in upper airways could lead to new therapeutic strategies for 

the optimization of disease control in lower airways. 

 

SEB EXACERBATES CIGARETTE SMOKE-INDUCED INFLAMMATION 

Similar to severe asthma, significantly higher levels of sIgE to SEs were found in COPD patients, 

indicating a disease-modifying role for enterotoxins in this particular condition. This hypothesis 

formed the basis for the experiments described in chapter 6. Here, we tested whether endonasally 

applied SEB could aggravate CS-induced inflammation, and expedite disease progression towards 

more severe stage COPD-like features. Therefore we took advantage of a mouse model of subacute CS 

exposure and developed a protocol of concomitant SEB application. Interestingly, combined 

Staphylococcus aureus enterotoxin B (SEB) application and cigarette smoke exposure resulted in a 

significant aggravation of key features of CS-induced pulmonary inflammation, such as neutrophils 

and CD8+ T cells in BAL and lung. Furthermore, levels of IL-17A in BAL were significantly 

increased upon concomitant SEB and CS exposure, compared to sole exposure to SEB or CS. In 

addition, tendencies of increased goblet cell hyperplasia, IL-13 mRNA expression and lymphoid 

neogenesis in smoke/SEB mice have been demonstrated, as well as increased expression of the 

relevant chemokines CXCL13 and CCL19. 
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An interesting feature of this model was the presence of dense lymphoid aggregates already after 4 

weeks, in the mice receiving both CS and SEB. Indeed, the clinical relevance of this model exist in the 

fact that it confirms the initial hypothesis that COPD patients had a significant higher immune answer 

to SEs, indicating a possible role for these SEs in the pathogenesis of COPD. Moreover, lower airways 

COPD patients are more frequently colonized with bacteria, amongst which enterotoxin-producing S. 

aureus. In addition, upper airways are the most frequent region in the human body where S. aureus 

colonization is found. Altogether, these findings indicate that the pathophysiology of COPD is 

possibly influenced by S. aureus which colonizes upper and/or lower airways and is able to produce 

disease-modifying enterotoxins. 
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Figure 2: CS exposure induced a remarkably different alteration in secretion of inflammatory 
mediators in nose vs. lungs at different time points (right). Combined CS/SEB exposure (left) 
aggravated CS induced inflammation, leading to activation of B cells, Th17 cells and neutrophils. 
Increased goblet cell hyperplasia and lymphoid neogenesis were also observed. 
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Perspectives 

We could confirm the initial hypothesis of SAE involvement in the pathogenesis of COPD. Therefore, 

returning to the human situation and confirming the presence of increased number of lymphoid 

follicles in the COPD patients with higher SE-specific IgE levels, would prove the critical role of these 

SEs in this human diseases. In addition, we will elaborate more on the mechanisms behind the 

aggravating effects of SEB on CS-induced inflammation, in order to find new preventative strategies 

which could prevent the disease progression towards more severe stages of COPD. Therapeutic 

interventions like specific eradication of enterotoxin-producing S. aureus, or usage of enterotoxin-

specific antibodies to prevent superantigen-induced immune activation could contribute to better 

disease control in severe COPD patients. 
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GENERAL CONCLUSIONS AND PERSPECTIVES 

This thesis for the first time demonstrates the promotion of sensitization to inhalational allergens in 

mice, when these are co-administrated with Staphylococcus aureus enterotoxin B. Furthermore, 

concomitant allergen and SEB application to the airways augmented dendritic cell migration and 

maturation, which results in effector T cell activation and the induction of airway inflammation and 

bronchial hyperresponsiveness. In another in vitro model, this pro-inflammatory role of SEB was 

confirmed: we have demonstrated that the incubation of nasal epithelial cells with SEB has resulted in 

chemokine secretion by the epithelium, which activates granulocytes for increased migration and 

survival. For the first time, freshly isolated nasal epithelial cells were used for such experiments which 

is a valuable protocol for future research purposes.  

Regulation of cigarette smoke induced inflammation is different in upper versus lower airways. This 

thesis demonstrates the early and adequate control of inflammation in upper airways, which is 

indicated by an increase in FoxP3 mRNA. In lower airways, this increase begins later and appears to 

be inadequate, as inflammation in the lower airways is still present and ongoing, despite high FoxP3 

levels. In this same mouse model of subacute CS exposure, combined CS and SEB exposure has led to 

hallmarks of early COPD, displaying lymphoid neogenesis already after 4 weeks. Furthermore, CS 

and SEB appeared to function synergistic, and not just additive. These findings confirm human 

observations, where a disease-modifying role for SEs in COPD has been suggested. 

In summary, this thesis shows that Staphylococcus aureus enterotoxin B is potent inducer and 

modulator of airway inflammation. Derived from observations in human airway disease where SEs are 

known to modulate ongoing inflammation, new experimental models have been developed, closely 

mimicking human airway disease. The key role that SEB plays in these models, by inducing and 

aggravating airway inflammation, opens possibilities for new therapeutic strategies in the prevention 

and treatment of airway inflammatory conditions. Specific eradication of enterotoxin producing 

Staphylococcus aureus in patients with early airway disease like asthma or COPD in order to prevent 

disease progression, may offer better disease control in these patient. Furthermore, antagonism of SEB 
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using monoclonal antibodies targeting SEB is another possible therapeutic tool. Our findings may 

contribute also to the prevention of allergic sensitization, where eradication of SAE again offers a 

possible therapeutic tool against the allergic march. Clinical studies confirming this hypothesis 

therefore are certainly worthwhile undertaking. 
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